Benha University
High Institute of Technology
Electrical Power Technology
Dr.Wael Abdel-Rahman Mohamed

Jan. 2011 Mechanical Department 3rd year (تخلفات) Time: 3 Hrs

Exam with model answer

Answer the following questions.

Question (1): [15 Marks]

- a) What are the kinds of electrical power generation and the kinds of power stations?

 Hydroelectric, Coal fired, Nuclear, Wind power, Diesel electric, Solar, Gasoline engine,
 Ocean currents
- b) Explain the difference between passive and active elements.

Passive elements don't require a power from the supply to produce its effect on a signal. They derive the power of the input signal to perform its action. e.g. Resistor- it doesn't require a separate supply to provide its action of resistance in a circuit. (Also inductors and capacitors.)

In active elements there should be a power source for its working. They require a supply for there working. e.g. transistor - Only after biasing the transistor in required region of operation, its characteristics are applied on the signal. ie, for amplification, transistor require a source from where it can work in. (Also diodes, thyristors and ICs.)

c) The field winding of a DC electromagnet is wound with 960 turns and has a resistance of 30Ω when exciting voltage is 330V, the coil magnetic flux linking is 0.005wb. This winding is connected in series with a capacitor having C=0.0001F. Calculate the self-inductance of the coil, the resistance power loss and the energy stored in the magnetic field and the capacitor.

NΦ = I L
I = V / R = 11 A
→ L = 0.436 H
P =
$$I^2$$
 R = 3630 Watt
W_L = .5 L I^2 = 26.378 J
W_C = .5 C V^2 = 5.445 J

Question (2): [15 Marks]

a) Give proof of the impedance and admittance of long transmission line π connected by parameters from comparison between the general equations and π connection equations.

See in the book

b) State:

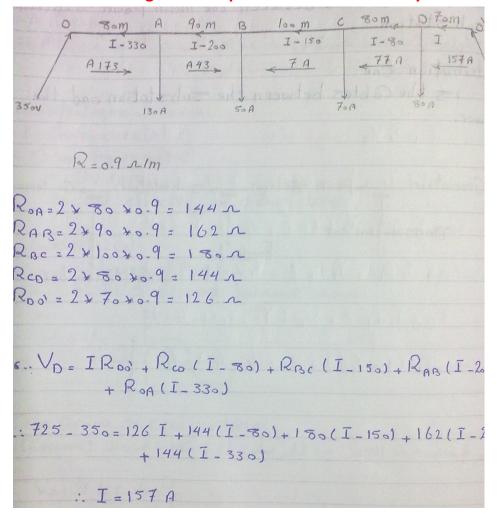
1- The corona and the corona critical voltage.

Corona is a phenomenon that has the capability for degrading insulators, and causing systems to fail. Corona critical voltage is the maximum voltage after that the corona happens.

2- The regulation factor.

See in the book

3- The feeder line and distribution line.


The feeder line is the cables between the main power station and substation. Distribution line is the cables between the substation and the customer.

4- The annual cost function.

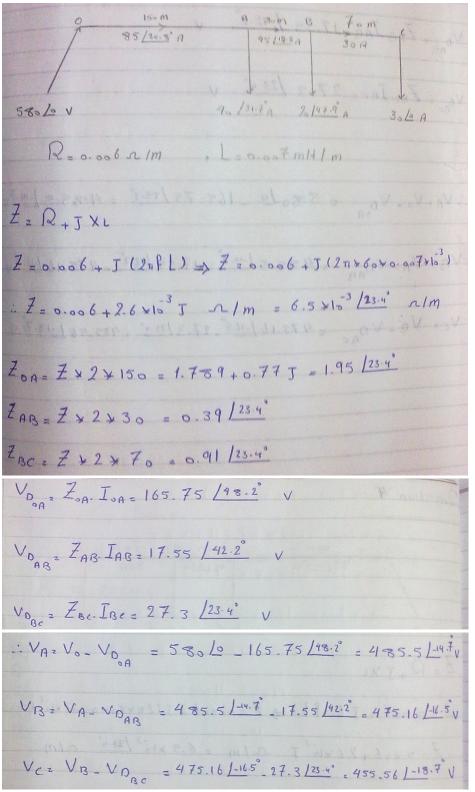
See in the book

Question (3): [15 Marks]

DC distribution line is fed from two ends. The feeder voltages are 350V and 725V. The resistance per meter is 0.9Ω . The current at each load is I_1 =130A, I_2 =50A, I_3 =70A and I_4 =80A. The length of each part is L_1 =80m, L_2 =90m, L_3 =100m, L_4 =80m and L_5 =70m. Calculate the distribution voltage of each point and their efficiency.

Vo = Ros * Ios = 126 x 157 = 19782 V VDC = Rco x Ico = 144 x 77 = 110 50 V Vosc = RBC * IBC = 180 * 7 = 1260 v VOR = RAB * IAB = 162 * -43 = - 6966 V VDa = R.A + IOA = 144 + -173 = -24912 V · VD= Vo - VD0 = 725 - 19782 = - 19057 V Vc = VD - VD = - 19057 - 11088 = - 301451 VB = VC - VDBC = -30145 - 1260 = -31405 V VA = VB - VDAB = - 31405 - (-6966) = -24439 Pip Pip=(725*157)+(350 x-173) = 53275 W

Poir = Pip - Passes


R = I'an Ran + Ina Ran + I'ac Rac + I'co Red + I'as Rac

PL = 55776 54

2 : 66.2 / 1

Question (4): [15 Marks]

AC distribution line, single phase, is fed from one end. The feeder voltage is $580 \ \underline{/0}$ V. The resistance per meter is 0.006Ω , the inductance per meter is 0.007mH and the frequency is 60Hz. The current at each load is I_1 =40A at 0.85 power factor lag, I_2 =20A at 0.67 power factor lag and I_3 =30A at unity power factor. The length of each part is L_1 =150m, L_2 =30m and L_3 =70m. Calculate the distribution voltage of each point.

