Each type of mowers was tested under its recommended speed except the prototype which was tested under two different engine-speeds with three different gear variations I, II and III resultuing in 6 different forward speeds. The variation in engine speeds were selected to suit the type of crop and field surface -conditions.

The results indicated that:

1- The average field capacities for front mounted mower (Prototype) were 0.589 and 0.529 fed/h./meter of cutter; bar width for harvesting of wheat and cutting stalks of cotton resp.

The average field capacities for self-propelled mower were 0.407 and 0.342 fed./h./meter of cutter bar width for the harvesting of wheat and the cutting stalks of cotton resp.

The average field capacities for tractor rear mounted mower were (0.736 and 0.65 fed/h./meter of cutter-bar width) for harvesting of wheat and cutting stalks of cotton resp.

The average field efficiencies for self-propelled mower were very low since they were 55.2 % and 57% for cutting stalks of cotton and harvesting wheat resp., while they become slightly high for both of the prototype and the rear -mounted mowers, (67.2% and 73.82 %) for the

- prototype and (70.2% and 74%) for the rear mounted mower for cotton and wheat resp.
- 3- The prototype showed better results in the cutting and harvesting efficiency by about (6%) more than self-propelled mower and by about 4% more than rear mounted mower since the cutting efficiency for the three mowers were 96%, 90% and 92% resp.
- 4- The average heights of cut for the prototype were 4 and 3.65 cm for cotton and wheat resp., 12 and 10 cm for self-propelled mower, and 7.5 and 6.5 cm for rear mounted mower resp.
- 5- The harvesting cost of wheat for the prototype was less than that for the self -propelled mower and rear mounted mower since their operating costs were 7.7, 14.9 and 17.7 L.E/fed resp. This cost variation was mainly due to the cost of labor needed for collection of the harvsted wheat during the operation of the rear-mounted mower (2 labours . h /fed.)
- 6- The cutting cost of cotton stalks widely varied from 6.42 L. E./fed using the rear-mounted mower to 8.09 L.E./fed, and 17.77 L. E./fed when using the prototype (front mounted) and self-propelled mowers resp. These data indicate that rear -mounted mower was economically favorable machine to cut cotton stalks while self-propelled mower was the most expensive machine to cut

cotton stalks since its cost was almost equal to the cost of manual cutting was (22 L.E. /fed. on the basis of 1989 prices) .

Test of the improved rear mounted mower resulted in the following conculussions :-

The improved rear -mounted mower had the best results in most of the evaluation parameters since, its field capacity reached 1.19 fed/h., its field efficiency was 80 % its cutting height was 4 cm, its harvesting losses was 4 g/m2, and its harvesting cost was 6.83 L.E/fed.

The only one disadvantage of the improved rear mounted mower is the manual harvesting needed at the begining of operation to clear a swath for tractor around the field, inspite of that the rear mounted mower with conveyor is considered of avorable machine for Egyption agriculture conditions. This improvement will decrease the harvesting cost spent in man power required continuously, after normal rear mounted mowers also, it will raise the efficiency of the recent number of mowers used in egypt.

6.REFERENCES

- Awady, M.N., (1974): Wheat harvesting machinery and the effect of their operation on the economics of operation in the local conditions of the kingdom of saudi Arabia. (in Arabic). Tech. Bull. 53, Dep. Agric. Res, and Dev., C.N.E.E. M.A.. 1962: Livre du Maitre, Paris. (C.F. Hanna, G. B. 1986).
- Awady, M. N., E. Y. Ghoniem and E. A. EL- Nakib, (1985) circular mower performance in alfalfa cutting, Misr J. Ag. Eng. 2(3): 68-81.
- Awady, M.N., M. N. Mostafa, A. M. Gindy, and E.A. sahar, 1988: Design of a small rotary mower for lawns mowing, Misr j. ag. Eng. 5(3): 220 231,
- Bailliere, J. B.. (1948): Agricultural Machines. Paris Library. . 414-426.
- Bainer, R., R. A., Kepner and E. L., Barger, (1955): Principles of farm machinery, John wiley and Sons. (C.F. Danasory, M.M. 1984;298-324).
- Brant, W. L. (1979): Machinery costs. Virginia Agricultural Economics. (U.S.A.) ISSAN 0042-6466. (Jun). (No.303).:3-4
- Chancelor, W.J.. (1958): Energy requirements for cutting forage. (Agricultural Engineering) Vol. 39, No. 10, P. 633-636. (C.F. Danasory M.M. 1984).
- Culpin claude.. (1976): Farm Machinery. Crosby lockwood staples london. P. 146-156.
- Devani, R. S. and Pandy, M.M. (1985): Design, development and field evaluation of vertical conveyor reaper windrower. Agricultural Mechanization in Asia, AFRICA and AMERICA. 1985 Vol 16 No 2.)
- Danasory, M.M., (1984): Intensifying the use of mowers under Egyptian conditions. cairo university M. Sc. thes (Ag Eng.): 50 \Rightarrow 80.

- Embaby, A.T. (1985): A comparison of the different mechanization systems for cerieal crop production M. Sc. Thesis. Faculty of agriculture, cairo university, Egypt. 38: 75.
- Hanna, G.B. and suliman, A. E. (1986): Appropriate harvesting equipement for small Egyptian farms. Misr J. Ag. Eng., 3 (1): 58-72.
- Kepner, R.A., (1952): Analysis of the cutting action of a mower. Agricultural Engineering. Vol 33. No. 11. P 693,697, 704, (C.F. Hanna, G. B. 1986).
- Lovergrove, H.T., (1968): Crop production equipment, Hutchinson Technical Edu. P. 229-255 (C.F. Danasory M.M. 1984)
- Mckibben, E.G. ET AL., (1943): Duty of field Machines, Agricultural Engineering Vol. 23, No. (11) P. 357-359,366 (C.F. Michael, K. H. 1981)
- Miller. M.r., (1968): Developing a high capacity stalk cutter, Agricultural Engineering Vol. 49, No.(3): P. 132-133 (C.F.Michael, K. M. 1981).
- Mickael, K.M., (1981): Study of different mechanization levels in small holdings. M. Sc., Agr. Eng Dept. Faculty of Agriculture, Cairo Univ.: 35-81
- Metwalli, M.M., (1981): Design of New mower suitable for small holdings, J. of Ag. Res., Tanta Univ. March. 7(1).
- Ojha, T. P. and S. S., Wain., (1980): Farm machinery industrial research crop, systems approach in scheduling harvest and post -harvest operations. Ag Mech in Asia, Vol. 11, No. 2, spring. (C. F. Danasory, M. M. 1984).

- Prince, R. P., C. W. Wheeler and A. D. Fisher., (1958):
 Disscussion on energy requirements for cutting forage, Agricultural Engineering 39 (10: 638-639).
- Phillipson, A., et al., (1970): A method for predicting field -machinery, efficiency and capacity. Trans ASAE, Vol. 13:448-449 (C.F. Michael, K. M. 1981)
- Park, R. D. and M. Eddowers., (1975): Crop Husbandry. Oxford University press: 277-283.
- Richey. C. B., P. Jacobson, and C. W. Hall., (1961).

 Agricultural Engineer, s Handbook Mc Graw Hill
- Smith, H. P., (1955): Farm machinery and equipment: 313-356. (C.F.Hanna, G.B. 1986).
- Shippen, J. M., R. C. Ellin and H. G. Clover., (1980):
 Basic Farm machinery. Oxford, P. 195-215.
- Taib.Z. A., (1982): Shredding and mechanical handling of cotton stalks. M. Sc., Agr. Eng. Depl Fac.Ag, CAIRO.: 70:81.
- Waltham, R., G., shepperson and F. Raymond., (1975): Forage conservation and feeding, Farming press limited: 65-85
- Wahba, F., (1976): Studies on mechanization of planting and harvesting of wheat and barley in tahrir province.
 M.Sc. Agri. Eng. Dept. Fac. of Ag, Al Azhar.
- Tractor koubota L 295, mower Ferrari 702 and mower Busatis 1102 BM. care and maintenance literature.