Results and Discussion

4. RESULT AND DISCUSSION

4.1. First experiment, Effect of NPK mineral fertigation and foliar spray with Hammer® and Pepton® as well as their interaction on vegetative growth, chemical composition, fruit yield and its quality of strawberry plants cv. Sweet Charlie.

4.1.1. Vegetative growth characteristics.

Data recorded in Tables (1 and 2) indicate the effect of fertigation using mineral (NPK) fertilizers and spray with natural compounds as well as their interaction on vegetative growth aspects of strawberry plants during 2007/2008 and 2008/2009 seasons.

a. Effect of mineral fertilizers.

Data presented in Tables (1 and 2) show that application of mineral fertilizers, i.e., ammonium sulphate as a source of nitrogen, phosphoric acid (60%) a source of phosphorus and potassium sulphate as source of potassium at the recommended dose (200kg N, 80 kg P_2 O_5 and 240 $K_2O/Fed.$) or at 25% more or less than the recommended dose significantly affected all the studied growth traits i.e., plant height, number of leaves and secondary crowns per plant as well as crown diameter, average leaf area and fresh and dry weight per plant during both seasons of study . In this respect, increasing the rate of application by 25% of recommended dose (250 kg N, 100 kg P_2 O_5 and 300 kg K_2O/fed) significantly reflected the highest values in all studied growth traits compared with using the recommended

Table (1): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on vegetative growth characteristics of cv. Sweet Charlie during 2007/2008 seasons.

Table (2): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on vegetative growth characteristics of cv. Sweet Charlie during 2008/2009 seasons.

	Treatments 20082009				20082009			
NPK	Spray	Plant height (cm)	Fresh weight/plant(g	Dry weight/plant(g	Number of leaves/plant	Number of crowns/plant	Crown diameter (cm)	Leaf area(cm²)
75%		18.20	68.94	14.27	25.54	2.63	2.50	498.72
100%		19.93	70.75	14.45	27.32	27.2	2.57	523.15
125%		20.79	71.77	15.48	29.77	3.33	2.61	538.59
LSD at 0.5%		98.0	2.22	0.51	1.69	0.32	N.S	18.11
	Control	18.68	61.58	13.13	24.39	2.41	2.41	486.62
	Hammer® 1g/l	19.39	68.48	14.42	26.82	2.78	2.55	516.50
	Hammer® 2g/l	19.79	73.89	15.19	26.39	3.00	2.61	530.07
	Pepton®0.5g/l	20.10	73.23	15.32	28.78	3.06	2.58	527.27
	Pepton® 1g/l	20.23	75.25	15.61	31.34	3.23	2.65	540.31
LSD at 0.5%		0.57	2.64	0.70	2.53	0.48	S.N.	18.01
	Control	17.48	59.82	13.06	22.50	2.40	2.30	447.70
, 	Hammer® 1g/l	17.83	69.99	14.05	24.61	2.50	2.50	501.33
75%	Hammer® 2g/1	18.05	72.56	14.74	25.67	2.67	2.57	513.87
	Pepton®0.5g/l	18.94	72.13	14.69	26.50	2.75	2.53	512.67
	Pepton® 1g/l	18.72	73.49	14.79	28.44	2.83	2.60	518.03
	Control	18.48	61.79	12.90	23.66	2.33	2.43	492.77
	Hammer® 1g/1	19.80	69.32	14.07	27.33	2.67	2.57	518.60
%001	Hammer® 2g/l	20.33	73.50	14.92	25.17	2.83	2.60	533.00
	Pepton®0.5g/l	20.35	72.97	14.85	28.83	2.75	2.60	525.07
	Pepton® 1g/l	20.68	76.17	15.50	31.58	3.03	2.65	546.30
	Control	20.08	63.12	13.42	27.00	2.50	2.52	519.40
	Hammer® 1g/l	20.53	69.42	15.14	28.50	3.17	2.58	529.57
125%	Hammer® 2g/l	21.00	75.62	15.91	28.33	3.50	2.65	543.33
	Pepton®0.5g/l	21.03	74.60	16.43	31.00	3.67	2.60	544.07
	Pepton® 1g/l	21.30	76.07	16.52	33.99	3.83	2.70	556.60
LSD at 0.5%		0.99	4.58	1.22	4.39	0.83	N.S	31.19

in redulations.

Results and Discussion

dose or decreasing the amounts by 25 % of decided amounts. In addition, no significant differences were found between the application of fertilizers at 100% or 75% of the recommended dose during both seasons of growth. In this connection, such increments in all studied growth parameters as a result of increasing the amounts of mineral fertilizers to 125% of the recommended dose may be attributed to the main role of macromartinets (N, P and K) on formation of protoplasmic material, cells division and elongations bio— chemicals interaction which affect the rate of plant growth. In this regard, Albregts and Howard (1987), Albregts and Howard (1991), Mohamed and El Miniawy (2001), El- Sayed (2004), Abo Sedera et al., (2009) and Ulvi Morr et al., (2009) all working on strawberry indicated that plant growth traits were increased with the application of N P and K mineral fertilizers at tested rates.

b. Effected of natural compounds.

Data indicated in Tables (1 and 2) reveal that spraying strawberry plants with Hammer at 1 and 2g /l as a source of humic acid and Pepton at 0.5 and 1g/l as source of amino acids six times starting twenty days after transplanting and every ten days by intervals significantly increased plant vegetative growth expressed as plant height, number of leaves and crowns per plant as well as average leaf area, crown diameter, fresh and dry weight per plant compared with the control treatment. However, no significant difference were detected among the used organic substance in all measured growth traits except in case of the highest rate of pepton (1g/l) which was superior in this regard. Obtained results are similar during the two seasons of growth.

Such increases in growth aspects due to spray of tested organic substances (Hammer and Pepton) may be due to the role of Hammer as source of humic and folvic acids which affected on enzymes activities which in turn affect on marco - nutrient absorption and assimilation and consequently increased plant growth. Also, the effect of Pepton as a source of amino acids which play an important role in plant metapolism and protein necessary for cells formation which assimilation consequently increased fresh and dry matter of plant which are good indicator for plant growth. In this connection. Albregts et al., (1988), Arancon et al., (2003), Talaat (2003) on strawberry and El-Zohiri and Asfor (2009) on potato and El-Zohiri and Abdou (2009) on garlic reported similar results on tested vegetable crops.

c. Effect of the interaction.

Data recorded in Tables (1 and 2) show clearly that application of mineral fertilizer at the highest used level (125% of recommended dose) and spray the plants six times starting after twenty days of transplanting and every ten days intervals with Pepton at.1g/liter exhibited the highest values in all measured growth parameters during both seasons of study. However, no significant differences were noticed in most of plant measurements among the other studied interaction treatments under the same level of fertilization.

4.1.2. Chemical constituents of plant foliage.

Data in Table (3) show the effect of mineral fertilizer (NPK) and natural compounds foliar spray as well as their interaction on total nitrogen, phosphorus and potassium as well

Table (3): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on chemical constituents of plant foliage of cv. Sweet Charlie during two seasons study.

LSD at 0.5%			125%						100%					75%			LSD at 0.5%						LSD at 0.5%	125%	100%	75%		NPK		Ire	3
	Peptone® 1g/1	Pepton®0.5g/l	1.3mmer@ 2g/1	Hamman (15)	Hammer® 19/1	Control	Pepton® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control	Pepton® 1g/l	Pepton®0.5g/l	Hammer® 2g/I	Hammer® 1g/l	Control		Pepton® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control						Spray		I reatments	E company of pull company of the com
243	2817	2697	2767	2597	7507	2447	2753	2650	2667	2570	2447	2587	2500	2533	2487	2360	140	2719	2616	2656	2551	2418	1111	2665	2617	2493	d.w)	(mg/100g	Z		
27	477	453	463	42/	127	417	450	433	440	430	423	437	410	427	403	390	16	454	432	443	420	410	13	447	435	413	d.w)	(mg/100g	P	2007	
N.S.	1697	1620	1670	15/3	1577	1507	1553	1430	1463	1397	1360	1493	1430	1447	1373	1337	N.S.	1581	1493	1527	1448	1401	165	1613	1441	1416	d.w)	(mg/100g	×	2007/2008	The state of the s
1.01	11.26	10.51	10.59	10.35		9.41	10.62	10.50	10.53	10.33	9.91	10.48	10.35	10.47	10.33	8.99	0.59	10.79	10.45	10.53	10.34	9.44	0.16	10.42	10.38	10.12	(g/100g d.w)	tes	Carbohydra		mg two scaso
194	2837	2747	2780	2673	2000	2597	2713	2510	2647	2500	2483	2660	2510	2577	2487	2433	112	2737	2589	2667	2553	2504	91	2727	2571	2533	ď.w)	(mg/100g	Z		no study.
30	477	457	470	450	455	111	470	443	447	433	423	453	433	443	420	407	17	467	444	453	434	421	16	457	443	431	d.w)	(mg/100g	p	2008	
Z	1703	1650	1697	1627	1202	1502	1623	1647	1587	1500	1457	1590	1513	1550	1500	1470	N.S	1639	1603	1611	1542	1503	98	1652	1563	1525	d.w)	(mg/100g	7	2008/2009	
0.03	11 23	11.14	11.15	10.73	9.03	00.00	10.80	10.50	10.68	10.25	9.39	10.77	10.25	10.44	10.43	9.59	0.53	10.93	10.63	10.76	10.47	9.54	0.42	10.77	10.32	10.29	(g/100o d w)	Carbohydrat			

I MARKET I

as total carbohydrates content of plant foliage during the two seasons of growth.

a. Effect of mineral fertilizers.

Data recorded in Table (3) show clearly that total nitrogen, phosphorus, potassium and total carbohydrates were significantly different as a result of the tested amounts of mineral fertilizer during both seasons of study. In this connection, application of mineral fertilizers at 125% of the recommended dose (200 kg N + 80 kg P_2O_5 + 240 kg K_2O / fed.) reflected the highest value in all assayed chemical constituents compared with using mineral fertilizers at the recommended dose or at 75% of it during the two seasons of study. In addition no significant difference in all determined chemical constituent among the treatment which supplied with the recommended dose of mineral fertilizers and that treatment which contained 75 % of the recommended amount of used NPK fertilizers. Such increments in N, P and K content as a result of increments in increasing the amounts of added mineral fertilizers may be due to the increase of such nutrient in roots biosphere and consequently increases its uptake and accumulation of such macro- nutrients Also the increase in total carbohydrate content might attributed to the main role of used macro- nutrients (NPK) as constituents of photosynthetic pigment molecules and assimilation rate for precursors of carbohydrates in leaves. Cutcliffe and Blatt (1984), El- Oksh et al., (1987), Haynes and Goh (1987), Castelane et al., (1993), Kaponski and Kawecki (1994), Mass et al., (1997), Mohamed and El Miniawy (2001), Eissa (2002) Abd El- Aziz (2007), and Abo Sedera et al., (2009) all working on strawberry reported significant increments in all determined chemical constituents as a result of using NPK fertilizers at different rates.

b. Effect of natural compounds.

Data presented in Table (3) indicate that spraying strawberry plants six times during the growing season with Hammer at 1 and 2 g/liter and Pepton at 0.5 and 1.0g/liter significantly increased total nitrogen phosphorus, potassium and total carbohydrates content in plant foliage compared to the In addition, the highest values in all control treatment. determined chemical constituents were recorded in case of using Hammer and Pepton at the higher rates (1 and 2g/liter) for Hammer and Pepton, respectively without significant difference among them. Such results are true during both seasons of study. In this respect, the increments in macro nutrient and carbohydrates as a result of using Hammer and Pepton may be attributed to the role of such compounds in increasing the availability of macro- nutrients to plant absorption and or increasing the passive force in plants required for nutrient elements absorption and consequently increased its content in plant foliage, furthermore, such tested organic compound play a positive role on carbohydrates assimilation through the photosynthetic process and consequently increased plant foliage. In this regard, total nitrogen, phosphours and potassium of plant foliage were positively affected as a result of using humic acid, Pepton and Mega power (Pilanal and Kaplan, 2003 on strawberry, and El-Zohiri and Abdiu, (2009) on Garlic).

c. Effect of the interaction.

As for the effect of the interaction between mineral fertilizers and organic compounds, the same data in Table (3) clearly show that, application of mineral fertilizers (NPK) at rate of 125% of recommended dose (250 Kg N + 100 kg P_2 O_5 + 300 kg K_2 O/fed.) and spraying the plants with the higher concentration of Hammer or Pepton reflected the highest values in all assayed chemical constituents during the two seasons of growth.

4.1.3. Fruit yield and its components

Date recorded in Table (4 and 5) indicated the effect of mineral fertilizers (NPK) and organic compounds application as well as their interaction on produced fruit yield and its components during 2007 / 2008 and 2008/ 2009 seasons.

a. Effect of mineral fertilizers

Data recorded in Tables (4 and 5) show that total produced yield and its components expressed as early, exportable and marketable yield per plant and feddan were significantly affected by the application of mineral fertilizers (NPK) at the recommended dose or at 125 % and 75 % of it during both seasons of study. In this respect, application mineral fertilizers (NPK) at 125% of the recommended dose (200kg N, 80kg P₂ O₅ and 240 kg K₂ O/fed.) exhibited the highest values for total produced yield and its components followed by treatment fertilized by 100% of recommended dose and 75 % in descending order, However, no significant differences were noticed between treatments in which the plants fertilized with mineral fertilizers at 100% and 75% of the recommended dose

Table (4): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on total fruit yield and its components of cv. Sweet Charlie during 2007/2008 season.

Treatments

2007/2008

	LSD at 0.5%			8/ 521	1250%					100%					75%				LSD at 0.5%						LSD at 0.5%	125%	100%	/5%	NPK		
		Peptone® 1g/l	Pepton®0.5g/l	1/87 @ Dammer	Hammar® 2c/l	Hammer® 1o/l	Control	Peptone® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control	Peptone® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control	Control	0	Peptone® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control					Spray	· CHIMICHES	1 reatments
0.70	0.1010	3.813	3.960	3.275	3.868	3.220	3 228	3.635	3.355	3.030	2.900	2.538	3.540	3.253	2.983	2.738	2.475	0.248	0.040	3 573	3 663	3.096	3.168	2.747	0.285	3.629	3.092	2.998	(ton/fed)	Paul de la constant	
0.500	0.507	2 5.18	2.283	1.835	2.473	1.923	1 022	1 775	1.528	1 535	1.400	1.418	1.605	2.223	1.533	1.585	1.478	0.292	2.011	2011	1 976	1634	1 810	1.606	0.144	2.212	1.531	1.685	Exportable yield(ton/fed)		
1.065	24./53	24.752	23 130	23.194	20.456	19.869	23.656	23.650	22.1/0	12.733	10 0 30	18.476	21 606	20.836	21.344	19.641	18.440	0.615	23.338	22.421	22.230	710.02	20.012	18 070	0.354	22.281	21.507	20.374	Marketable yield (ton/fed)	2007	
24.08	559.05	321.05	521.05	523 40	461.30	445.05	533.48	527.28	500.05	432./3	440.33	405.00	102.00	471 88	481 07	443.65	415.37	13.90	526.11	506.73	10.106	452.57	428.92	170 07	794	501.07	487 08	459 56	Total yield(g/plant)	2007/2008	
1.083	25.157	23.448	23.550	73 550	20.760	20.027	24.005	23.728	22.505	20.375	18.883	21.863	21.232	21.22	21 650	10.075	18 690	0.626	23.675	22.802	22.568	20.367	19.301	0.35/	886.77	21.813	20.030	Juin(vieu)	Total		
Z	405.00	317.25	355.50	000000	303.75	158.40	348.75	432.00	335.25	435.75	408.75	256.50	396.00	306.00	324.00	249.75	240 75	N.	336.75	381.75	332.25	354.50	372.30	N.S	307.98	306.10	306.45	yieid(kg/led)	Unmarketable		

Table (5): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on total fruit yield and its components of cv. Sweet Charlie during 2008/2009 season.

NPK Spray 75% 100% 125% Control Hammer® 1g/l	Early		7	TO SECURE OF THE PARTY OF THE P	(Log/+/Fr .	vield(kg/fed)
	11001/1-1/1	vield(ton/fed)	(ton/fed)	yield(g/plant)	yield(t/lea)	350.00
	yield(10ff/1cd)	2 190	21.533	486.28	+00.12	351 17
	4.629	0000	21.959	495.80	22.310	331.12
	4.742	7.007	24 139	544.58	24.506	366.80
	5.558	2.467	0500	21 141	0.950	S.S.
	0.374	0.132	0.938	477 65	21.268	350.93
Hammer® 1g/l Hammer® 2g/l	3.837	1.978	716.07	496.40	22.339	386.40
Hammer® 2g/l	4.822	2.151	21.953	505.00	23.665	325.73
Hammer 6 28/1	5.025	2.188	23.339	323.00	33.021	309.40
1	COLU	2.374	22.711	511.57	170.67	407.40
Pepton®0.5g/l	5.702	0.110	23.799	537.93	24.207	04./04
Peptone® 1g/l	5.494	2.418	0.803	18.039	0.8121	N.S.
	0.333	0.214	200.00	455.05	20.477	385.00
LSD at 0.5% Control	3.315	1.963	760.07	96 798	21.930	385.00
Hammer® 19/	4.450	2.108	21.545	20 20	22.315	284.20
	4.898	2.193	22.031	473.03	716.66	253.40
75% Hammer 2g/	2000	2 388	21.964	493.75	117:77	07 077
Pepton®0.5g/l	2.103	3 308	22.035	499.48	22.478	04.244
Peptone® 1g/1	5.315	0.770	20.281	457.20	20.572	291.20
Control	3.825	1.793	31 333	482.38	21.708	385.00
Hammer® 1g/l	4.273	1.828	21.323	211.48	23.015	359.80
	4.913	1.923	22.655	494 90	22.272	308.00
Pepton®0.5g/l	5.288	2.233	21.964	02.955	24.128	411.60
Peptone® 1g/l	5.410	2.270	23.710	505 70	22.755	376.60
Control	4.370	2.180	0/5.77	510 55	23.38	389.20
Hammer® 1g/1	5.743	2.518	177.991	570 33	25.665	333.20
	5.265	2.450	25.332	00.075	74.715	366.80
125%	6,653	2.503	24.348	249.20	210.20	368.20
repton 80.28/1	831.3	2.685	25.647	578.13	50.07	Z
Peptone® 1g/1	02.1.30	0.371	1.564	31.244	1.40/	

Results and Discussion

-46-

except in case of marketable yield during both seasons where treatment of 100% was superior than 75% of commended dose during the two seasons of study.

In this regard, the higher total produced yield and its components in case of using the higher level of mineral fertilizer (125%) were connected with the increase in vegetative growth rate Tables (3 and 4) and fruit physical parameters (Table 6) which in turn affect the total fruit yield . in this connection. Albregt et al., (1991a), Castellane et al (1993), Kara (1996), Lamarre and Lareau (1997), Arancon et al (2003), Abd El-Aziz (2007) And Ulvi Morr et al., (2009) indicated that total fruit yield and its components were enhanced as a result of application minerals (NPK) fertilizers.

b. Effect of natural compounds.

Concerning the effect of spray with organic compounds i.e. Hammer and Pepton on total produced fruit yield and its components, the same data in Tables (4 and 5) reveal that spraying the plants six times during the growing seasons starting at 20 days from transplanting and every 10 days intervals with Pepton as a source of amino acid at rate of 0.5 and 1.0 g/liter. exhibited the highest values in all determined yield parameters compared with other studied spray treatments especially during the first season. However, the highest level of both Pepton and Hammer were exhibited the highest values in this regard. Moreover no significant difference were recorded in case of the unmarketable fruit yield among all tested spray treatments and the control one, such increments in total produced yield and its components were connected with the increase in vegetative

growth Tables (1 and 2) which in turn affect the produce ability of plants. In this concern, Albregts et al., (1988), Pilanal and Kaplan (2000), Neri et al., (2002), and Arancon et al., (2003), on strawberry and Ahmed (2003), Neeraje et al., (2005) and Morad and Morad (2006) and Shafshak et al., (2008) on tomato indicated that using tested organic compounds reflected the higher values in total fruit yield and its components expressed as number of fruits, early and produced yield per urea.

c. Effect of the interaction

With regard to the effect of the interaction between mineral fertilization treatments and spray with organic compounds the same data in Tables (4 and 5) reveal that using the highest rate (125%) of (N PK) fertilizers and spaying the plants with the higher level of Pepton (1.0 g/liter) reflected the highest values except in case of early yield which was positively highest by using Peptone at 0.5 g/liter. during the two seasons of study.

4.1.4. Physical fruit quality

Data recorded in Table (6) indicate the effect of mineral fertilizers and organic compound spray as well as their interaction on physical fruit quality of strawberry during 2007/2008 and 2008/ 2009 seasons.

a. Effect of mineral fertilizers

Data in Table (6) show that fertilizing strawberry plant with mineral fertilizers (NPK) at the recommended dose, i.e., $200 \text{ kg N+80 kg P}_2 \text{ O}_5 + 240 \text{kg K}_2 \text{O}/\text{ fed or either increasing the}$ rate of application up to 125% or decreasing to 75% of the recommend dose significantly affected all the measured physical

Results and Discussion

Table (6): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on physical fruit quality of cv. Sweet Charlie during the two seasons of study.

ngth di	Fruit length diameter firmness(g/c (cm) (cm) m ²)
60.00	3.35 60.00 17.25 3.39 60.15 17.86
3.46 61.35 18.25 0.05 N.S 0.80	61.35 18.25 N.S 0.80
55.67 15.94 61.42 17.80 60.25 18.30 62.00 18.01	15.94 17.80 18.30
17.80 18.30 18.01 18.86 0.525	
	Fruit lengtl (cm) 4.42 4.43 4.49 0.07 4.30 4.49 4.49 4.49 4.49 4.49 6.08

fruit quality characters (average fruit length, diameter and weight) except fruit firmness which was not significantly affected. In this concern, application of mineral fertilizers (N P K) at 125% of the recommended dose exhibited the highest values for all measured fruit quality traits. In addition no significant differences were recorded in studied physical fruit quality parameter as a result of using the recommended dose and 75% of it. In this concept. Increasing the tested physical fruit quality as a result of increasing the rate of NPK fertilizers up to 125% of recommended rate my be attributed to such macronutrients are necessary to cells formation and division as well as increasing rates of photosynthetic assimilates and migration of it to storage organs (fruit) and in turn increase its parameters. In this regard. Barrventos (1982), and Abo- El- Hamed et al. (2006) reported that application of nitrogen and potassium fertilizers increased physical fruit quality expressed as fruit length, diameter and size. However, Abd El-Aziz (2007) indicated that application of mineral fertilizers did not affect physical fruit quality.

b. Effect of natural compounds.

Regarding the effect of organic compounds on physical fruit quality the same date in Table (6) reveal that averages fruit weight, length, diameter and fruit firmness were significantly affected due to spraying the plants with both Pepton and Hammer at different tested concentration compared with the control treatment. In this respect, spraying the plants with Pepton as a source of amino acids at 1g/liter was ranked first followed by Hammer as a source of humic acid at 2 g/liter without

significant difference among them. Obtained results are true during both seasons of study. Similar results were recorded by Ertan Yildirim (2007) and Shafshak et al., (2008) on tomato.

c. Effect of the interaction

As for the effect of the interaction the same data in Table (6) reveal that supplying the plants with mineral fertilizer at rate of 125% of the recommended dose combined with spraying the plants six times with the higher level of pepton 1.0g/liter as a source of amino acid reflected the highest values of all determined physical fruit traits during both seasons of study.

4.1.5. Chemical fruits quality.

Data presented in Tables (7 and 8) indicate the effect of mineral fertilization and spray with organic compounds as well as their combination on chemical fruit quality of strawberry during 2007/2008 and 2008/2009 seasons.

a. Effect of mineral fertilization:

Date recorded in Tables (7 and 8) indicate that fertilizing the plants with mineral fertilizer (N P K) at the recommended dose or either increasing the rate of application to 125% or decreasing it to 75% of the recommended dose significantly affected vitamin C total acidity and anthocyanine content during the first season and vitamin C, reducing and total sugars as well as anthocyanine pigments content during the second season. However, it did not affect T.S.S, reducing sugars and total acidity during the second season In this respected, the highest level of mineral (N P K) fertilizers (125% of recommended dose) recorded the highest values in all assayed chemical constituents during both seasons of study. Moreover, no significant

Table (7): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on chemical constituents in fruits of cv. Sweet Charlie during 2007/2008 season.

T	Treatments			2007/2008	800		
NPK	Spray	"XSSL	Vit.C (mg/100g f.w)	Acidty (mg/100g f.w)	Total sugars%	Reducing sugars%	Anthocyanin (mg/100g f.w)
75%		10.11	52.85	0.54	7.48	4.27	78.81
100%		10.24	53.67	0.52	7.52	4.32	78.83
125%		10.87	54.05	0.50	7.59	4.39	81.21
1 SD at 0 5%		N.S	1.13	0.03	N.S	N.S	0.53
	Control	9.267	50.69	0.59	7.35	3.35	75.27
	Hammer® 1g/l	10.59	53.67	0.49	7.53	4.54	80.73
	Hammer® 2g/l	10.48	54.17	0.52	7.49	4.49	80.67
	Pepton®0.5g/l	10.75	54.17	0.50	7.61	4.61	80.95
	Peptone® 1g/l	10.95	54.92	0.50	7.66	4.65	81.80
LSD at 0.5%		0.54	1.63	90'0	0.15	0.12	0.45
	Control	9.15	50.50	0.61	7.29	3.29	74.69
	Hammer® 1g/l	09.6	52.00	0.52	7.49	4.50	80.53
	Hammer® 2g/l	10.25	54.5	0.54	7.46	4.46	80.63
0%6/	Pepton@0.5g/l	10.70	53.25	0.5	7.56	4.55	80.81
	Peptone® 1g/l	10.85	54.00	0.51	7.58	4.57	81.40
	Control	9.05	50.33	0.59	7.30	3.32	70.75
-	Hammer® 1g/1	10.98	54.00	0.48	7.52	4.53	80.47
%001	Hammer® 2g/l	10.28	54.50	0.53	7.48	4.50	80.64
	Pepton@0.5g/l	10.35	54.75	0.49	7.59	4.61	80.58
	Peptone® 1g/l	10.55	54.75	0.52	7.68	4.65	81.70
	Control	09.6	51.25	0.56	7.44	3.44	80.39
	Hammer® 1g/l	11.20	55.00	0.47	7.58	4.59	81.19
125%	Hammer® 2g/l	10.90	53.50	0.49	7.52	4.50	80.72
	Pepton®0.5g/l	11.20	54.50	0.50	7.67	4.66	81.45
	Peptone® 1g/l	11.45	26.00	0.46	7.73	4.74	82.29
1 CD at 0 50%.		0.94	2.83	0.1	0.25	0.20	0.77

Table (8): Effect of fertgation using NPK mineral fertilizers and foliar spray with organic compounds as well as their interaction on chemical constituents in fruits of cv. Sweet Charlie during 2008/2009 season.

LSD at 0.5%			125%		,			100%	,				75%			LSD at 0.5%						LSD at 0.5%	125%	100%	75%	NPK	
	Peptone® 1g/1	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control	Peptone® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control	Peptone® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control		Peptone® 1g/l	Pepton®0.5g/l	Hammer® 2g/l	Hammer® 1g/l	Control					Spray	Treatments
0.85	11.43	11.30	10.28	11.25	9.83	11.10	10.85	11.00	11.13	9.48	10.75	10.95	10.15	10.40	9.80	0.49	11.09	11.03	10.48	10.93	9.70	N.S	10.82	10.71	10.41	TSS%	
3.961	58.75	57.75	53.25	55.00	54.50	55.00	53.75	53.50	53.75	51.25	55.00	54.00	55.25	53.50	50.25	2.287	56.25	55.17	54.00	54.08	52.00	2.49	55.85	53.45	53.60	Vit.C (mg/100g f.w)	
0.05	0.49	0.52	0.56	0.51	0.54	0.53	0.51	0.53	0.53	0.56	0.52	0.50	0.49	0.49	0.57	0.03	0.51	0.51	0.53	0.51	0.56	N.S	0.52	0.53	0.51	Acidty (mg/100g f.w)	Libert S
0.29	7.71	7.69	7.62	7.64	7.52	7.66	7.61	7.51	7.57	7.42	7.62	7.53	7.48	7.59	7.37	0.17	7.66	7.61	7.54	7.60	7.43	0.09	7.64	7.55	7.52	Total sugars %	2008/2009
0.28	4.72	4.68	4.62	4.65	3.53	4.67	4.6	4.52	4.56	3.43	4.63	4.59	4.48	4.54	3.36	0.16	4.67	4.62	4.54	4.58	3.44	0.09	4.44	4.35	4.32	Reducing sugars%	
2.33	82.57	81.27	80.79	81.25	80.33	81.80	80.65	80.74	80.50	75.61	81.51	80.80	80.70	80.46	75.56	1.34	81.96	80.90	80.74	80.74	77.17	1.30	81.24	79.86	79.80	Anthocyanin (mg/100g f.w)	

differences were found between using mineral fertilizers at the recommended dose and that contained the mineral fertilizers at 75% of it in all chemical constituent traits.

b. Effect of natural compounds.

Date present in Table (7 and 8) show that total soluble solids (T.S.S), vitamin C, total acidity, reducing and total sugars as well as anthocyanine content of fruit were significantly affected due to spraying the plants with either Hammer at 1 and 2 g/liter or Pepton at 0.5 and 1.0 g/liter compared with the control treatments. In this connection, the highest value in all determined chemical constituents were recorded in case of spraying the plants with peptone compound at its various level followed by using Hammer at higher level (2g/liter) except the total acidity which was higher in case of the control treatment. Obtained results were true during both season of study.

c. Effect of the interaction

As for the effect of the interaction the same data in Table (7 and 8) show that the highest values in all studied chemical fruit quality traits except total titratable acidity, were recorded as result of application the highest rate of mineral fertilizer (125% of recommended dose) and spray the plants with Peptone at 1g/liter compared with the other interaction treatments. Obtained results are true during both seasons of study.

4.2. Second experiments: Effect of foliar spray with mineral salts on growth, yield and quality of fruits for some strawberry cultivars.

4.2.1. Vegetative growth characteristics:

Data presented in Tables (9 and 10) show the effect of tested cultivars and spray with mineral salts i.e., calcium chlorides, calcium nitrate, potassium nitrate and mono potassium phosphate as well as their combination on vegetative growth parameters of strawberry plants, (plant height, number of leaves and crown per plant, crown diameter, average leaf area, fresh and dry weight per plant) during the two seasons of study.

a. Effect of cultivar:

Data in Tables (9 and 10) indicate that there were significant differences in most studied morphological parameters of strawberry plants among the tested cultivars during both seasons of growth. In this regard, cv. Festival reflected the highest values in all measured growth traits i.e. plant height, number of leaves and crown per plant, crown diameter, average leaf area as well as fresh and dry weight of plant, compared with cv. Sweet Charlie. In addition, such increments did not reach the level of significant in case of plant height, number of leave and crowns/ plant, crown diameter and dry weight during the first season and crow diameter during the second one. Such differences in growth aspects among the used cultivars may be attributed to the difference in genetic potential. Obtained results are in agreement with those reported by Strik and proctor (1998), Ragab et al., (2000), Ilgin and Kasava (2002), Mohamed (2003) and Ahmed (2009) on strawberry indicated

Table (9): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on vegetative growth characteristics of

strawberry plants during 2007-2008 season.

	Treatments				2002//2008			
	Licamients		Fresh	Drv			Crown	, , ,
CV	Spray	Plant height (cm)	weight/plant (g)	weight/plant (g)	Number of Leaves/plant	Number of crowns/plant	diameter (cm)	Leal area(cm²)
Charlia		19.24	53.89	12.00	21.23	2.42	2.61	351.85
Sweet Chaine		21 29	56.64	12.57	21.41	2.46	2.56	399.17
Festival		y Z	8.04	S.S.	N.S	N.S	N.S	27.93
L.S.D .at 0.05%	Control	18.050	48.86	11.09	18.75	2.03	2.29	317.53
	Calcium Colorid (0.5%)	19.88	55.05	12.08	20.58	2.15	2.49	365.98
	Calcium nitrat (1%)	20.59	56.28	12.20	21.33	2.50	2.63	381.96
	notassium nitrat (1.5%)	21.73	57.45	12.49	22.33	2.58	2.65	397.60
	Mono notossium nhosnhate(1%)	21.06	58.68	13.55	23.62	2.93	2.84	414.48
/05/0 0 1 0 0 20	Total marginal annual	1.80	4.32	1.60	1.79	0.65	0.29	19.65
L.S.D .at 0.03 /0	Control	16.27	47.77	10.30	18.99	1.99	2.42	289.36
	Calcium Colorid (0.5%)	19.10	54.30	12.05	20.00	2.06	2.57	356.37
	Calcina citerat (1%)	19 92	54.51	12.01	20.99	2.50	2.62	354.65
Sweet Charlie	Calcium mitrat (1.75)	70.07	55.59	12.31	22.66	2.66	2.62	373.80
	Mono notaesium nhosphate(1%)	19.92	57.29	13.32	23.50	2.86	2.80	385.07
	Control	19.82	49.95	11.89	18.50	2.06	2.15	345.70
	Calcium Colorid (0.5%)	20.66	55.79	12.11	21.16	2.24	2.41	375.59
T. C.	Calcium nitrat (1%)	21.27	58.05	12.40	21.67	2.50	2.65	409.27
r csuvai	notassium nitrat (1.5%)	22.50	59.32	12.68	22.00	2.50	2.68	421.40
	Mono notassium phosphate(1%)	22.19	80.09	13.79	23.75	2.99	2.88	443.88
70000		2.54	6.11	2.27	2.54	0.91	0.41	27.79

Results and Discussion

L.S.D .at 0.05% L.S.D .at 0.05% L.S.D .at 0.05% Sweet Charlie Sweet Charle Festival Festival CY strawberry plants during 2008-2009 season. Treatments Mono potassium phosphate(1%) Mono potassium phosphate(1%) Mono potassium phosphate(1%) Calcium Colorid (0.5%) potassium nitrat (1.5%) Calcium Colorid (0.5%) potassium nitrat (1.5%) potassium nitrat (1.5%) Calcium Colorid (0.5%) Calcium nitrat (1%) Calcium nitrat (1%) Calcium nitrat (1%) Control Control Control Spray height (cm) 18.97 Plant 20.71 19.54 18.44 17.50 19.41 17.61 17.25 17.03 20.06 18.39 17.73 19.85 17.76 18.86 0.69 1.04 weight/plant(g) 67.25 61.16 53.54 50.80 56.48 51.48 48.88 46.48 62.54 59.36 55.02 50.53 48.64 60.27 50.17 5.03 3.56 Fresh 47.53 3.46 weight/plant(g) 17.44 16.13 14.51 12.79 13.71 16.69 14.40 11.89 11.87 11.19 15.20 15.92 14.01 13.19 11.99 15.51 12.61 1.33 1.86 2008/2009 Leaves/plant Number of 23.99 20.50 21.95 22.80 22.00 20.75 20.25 22.33 19.22 18.00 21.65 17.00 1.74 23.16 20.61 19.37 18.62 1.29 19.41 crowns/plant Number of 2.500 0.57 3.00 2.83 2.66 2.66 2.25 2.75 2.25 2.16 2.00 0.402.87 0.322.66 2.46 2.41 2.12 2.68 2.33 diameter Crown 2.42 0.37 2.90 2.67 2.61 2.80 2.40 2.21 2.85 2.53 (cm) 2.42 2.21 2.28 2.56 2.44 2.21 2.62 Z.S

Table (10): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on vegetative growth characteristics of

area(cm2)

Leaf

537.66 414.80

14.73

513.62

458.36

466.71 429.48 412.33

486.82

417.01 348.48

30.71

554.59 508.26 462.98 451.92 403.42

642.46 587.03 that there were a differences in most studied growth measurements among the tested cultivars.

b. Effect of mineral salts:

As for the effect of mineral salts i.e., calcium chloride, calcium nitrate, potassium nitrate and mono potassium phosphate on vegetative growth, the same data in Tables (9 and 10) indicate that all the studied growth parameters i.e., plant height, number of leaves and branches per plant, crown diameter, average leaf area and fresh and dry weight of plant were significantly increased during the two seasons of growth as a result of spraying plants six times with the used mineral salts during the growth seasons, starting at the beginning of flowering and every 15 days intervals, compared with the control treatments. In this connection, using mono potassium phosphate at 1.0% exhibited the highest values in all studies growth parameters followed by potassium nitrate at 1.5%, calcium nitrate at 1% calcium chloride at 0.5% in descending order. Obtained results are true during both seasons of growth. Such increments in growth parameters as a result of using potassium mineral salts may be due to the role of such macro-nutrients on physiological process and cell division and elongation which in turn effect on tissues formation and consequently vegetative growth of plant. In this regard, Elbassiouny (1992), Kaya et al. (2003) and Yildirm et al. (2009) on strawberry and Hewedy et al (1994), Ramamoorthy et al. (1995) and Badawy et al. (2004) on bean reported similar results.

c. Effect of the interaction:

With regard to the effect of the interaction between the tested cultivars and spraying the plants with studied mineral compounds, on vegetative growth parameter of plant, the some data in Tables (9 and 10) show dearly that spraying the plants of cv. Festival with mono potassium phosphate six times during the growing seasons reflected the highest values in all measured growth traits compared with other interaction treatments during both seasons of study.

4.2.2. Chemical composition of plant foliage:

Data recorded in Table (11) indicate the effect of cultivars, mineral salts as well as their interaction on chemical composition of plant foliage during the two seasons of growth.

a. Effect of cultivars:

Concerning the effect of cultivars on chemical constituents of plant foliage, data in Table (11) indicate that total nitrogen, phosphorus, potassium and total carbohydrates content of plant foliage were differed among the tested cultivars. In this respect, cv. Festival recorded the highest values in all assayed chemical constituents compared with cv Sweet Charlie during both growth seasons. In this respect, Abd El-Aziz (2007) indicated that there were significant differences among the studied cultivars in as sayed chemical constituents of plant foliage.

b. Effect of mineral salts:

As for the effect of mineral salts i.e. $CaCl_2$, $Ca~(NO_3)_2$, KNO_3 and $KHPO_4$ on chemical constituents of plant foliage, data

Table (11): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on chemical constituents of plant foliage

			20	2007/2008		10	02	7002/2002	
	Treatments					Z	Ь	X	Carbohydrates
25	Spray	/gm) N	P (mg/ 100ed.w)	(mg/	Carbohydrates (g/ 100 g d.w.)	(mg/ 100gd.w)	(mg/ 100gd.w)	(mg/ 100gd.w)	(g/ 100 g d.w.)
5	•	inngnoi	433	100gd.w)	10.37	2458	433	1405	10.51
Sweet Charlie		2490	57	1501	10.50	2613	445	1611	10.59
Festival		2591	431	1751	Z	55	6	198	S.S.
L.S.D. at 0.05%		N.S.	N.S.	C.V.	00 01	2457	403	1287	10.21
	Control	2417	407	1479	90.01	2487	432	1537	10.54
	Calcium Colorid (0.5%)	2477	422	1467	10.30	2548	443	1593	10.64
	Calcium nitrat (1%)	2578	425	15.52	10.33	2592	458	1507	10.66
	notessium nitrat (1.5%)	2613	440	1538	10.01	2707	937	1617	10.70
	potassian absentate(1%)	2617	442	1567	10.61	2595	400	101	9000
	Mono potassium puospirare	961	17	N.S.	0.32	125	12	/77	022.0
L.S.D .at 0.05%		2413	400	1353	9.92	2387	397	1000	10.14
	Control	011.0	473	1387	10.40	2433	433	1483	10.50
	Calcium Colorid (0.5%)	0/47	671	1450	10.50	2480	437	1577	10.64
Sweet Charlie	Calcium nitrat (1%)	2523	427	1450		LLVC	443	1363	10.55
	notoccium nitrat (1.5%)	2497	423	1420	06.01			1600	10.70
	potassium	2546	443	1500	10.60	2513	64	0001	10.38
	- Amende	0CFC	413	1503	10.10	2527	410	5/61	07.01
	Control	0717	000	15.47	10.50	2540	430	1590	10.58
	Calcium Colorid (0.5%)	2483	470	15.7	05 01	2617	450	1610	10.63
Festival	Calcium nitrat (1%)	2633	423	1613	00.01	0296	160	1633	10.70
	potassium nitrat (1.5%)	2687	440	1633	10.60	2112	777	1650	10.78
	Mono potassium phosphate(1%)	2730	457	1657	10.80	C1/7	ŗ	333	0.32
	-	178	24	234	0.45	//-	2		

9-

in the same Table show clearly that total nitrogen, phosphorus, potassium and total carbohydrates were significantly increased as a result of a praying the plants with tested mineral salts at different used concentrations compared to the chick treatment. Obtained results were true during both seasons of study. In this connection, the highest values were recorded in case of using potassium mono phosphate, potassium nitrate and calcium nitrate, respectively without significant difference between them. Obtained results may be due to the increase of enzymatic activities which affect on absorption of mineral nutrients by plant and in turn increase its concentration in plant parts. Similar results were recorded by **Dierent and Faby(2003)**, **Ibrahim** et al.,(2004) and Yildirm et al.,(2009) all working on strawberry.

c. Effect of the interaction:

Regarding the effect of the interaction, the same data in Table (11) indicate that spray plants of cv. Festival with different studied mineral salts especially with potassium nitrate at 1.5% recorded the highest N, P, K and carbohydrates during the two seasons of study compared with other tested interaction treatments.

4.2.3. Fruit yield and its components:

Data recorded in Tables (12 and 13) show the effect of cultivars, spraying with mineral salts as well as their interaction on total fruit yield and its components during both seasons of study.

a. Effect of cultivars:

Concerning the effect of cultivars on total fruit yield and its components expressed as early yield, exportable and

Table (12): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on total fruits yield and its components

100	Ol stranger; J. F.			2007/2008	2008		
	Treatments			aldetelle	Total	Total	Unmarketable
	Const	Early	Exportable vield (ton/fed)	yield (ton/fed)	yield(g/plant)	yield(t/fed)	yield(kg/fed)
رد د	Spray	yield(Vieu	1.085	19.325	447.62		817.36
Sweet Charlie		3.73	1.407	19.473	449.43	20.220	747.18
Festival		3.14	104.1	y z	N.S.	N.S	58.18
70000		0.14	0.236	Carry I	403.80	18.170	966.10
L.S.D .310.05 /0		3.03	1.090	17.204	402.00	201.01	708 75
	Control	375	1.182	18.776	433.05	19.485	1 100
	Calcium Colorid (0.5%)	23.0	1 324	20.111	462.21	20.799	621.130
	Calcium nitrat (1%)	3.30		20,684	476.61	21.450	166.50
	potassium nitrat (1.5%)	3.60	1.293	20.02	466.97	21.014	782.25
	Mong potassium phosphate(1%)	3.94	1.343	767.07		0.535	92.79
	Target bound of the	0.25	0.128	0.537	11.92		00 2001
L.S.D .at0.05%		00.0	0.894	17.228	405.65	18.253	1025.00
	Control	3.30		18 575	428.82	19.295	720.30
	Calcium Colorid (0.5%)	3.56	1.00/	910.01	459.05	20.655	737.10
C Charlie	Calcium nitrat (1%)	3.67	1.181	13.710	168 13	21.068	791.70
201 Cmm 2 193	(1) 50%)	3.93	1.140	20.270	21:001	977.10	812.70
	potassium muar (1:2/2)	4 18	1.205	20.627	476.48	71.440	00 200
	Mono potassium phosphate(170)		736.1	17.181	401.95	18.088	02:/06
	Control	2.77	1.200	970 01	437.28	19.675	697.20
	Calcium Colorid (0.5%)	2.93	1.356	10.770	468.37	20.942	638.40
	(%) (10%)	3.04	1.467	20.304	403.37	31 633	741.30
Festival	Calcium mir at (1 %)	3.37	1.445	21.092	485.10	660.12	00 131
	potassium nitrat (1.5%)	3.70	1.481	19.836	457.48	20.588	06.167
	Mono potassium phosphate(1%)	0.75	0.181	092'0	16.86	0.757	69.66
10100		0.30					

62

Table (13): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on total fruits yield and its components of strawberry plants during 2008/2009 season.

	Color Color			2008/2009	009		
CV	Spray	Early yield(t/fed)	Exportable yield(ton/fed)	Marketable	Total	Total	Unmarketable
Sweet Charlie		7.45	2.833	10 010	yieid(g/plant)	yield(t/fed)	yield(kg/fed)
Festival		5.75	7 050	19.918	452.69	20.371	452.62
L.S.D .at0.05%		0.65	2.953	20.779	471.64	21.223	443.66
	Control	6.21	2,000	0.630	13.85	0.623	N.S.
	Calcium Colorid (0.5%)	94.9	2.000	19.011	434.44	19.549	537.60
	Calcium situat (10/)	0.40	2.85/	19.906	451.17	20.301	08 FOE
	Cancium mitrat (1 70)	6.60	2.945	20.550	465 18	20.022	1,00
	potassium nitrat (1.5%)	6.79	2.995	21 417	100.10	20.933	383.25
	Mono potassium phosphate(1%)	6.91	3 060	70.00	486.04	21.871	453.60
L.S.D .at0.05%		0 57	5.003	20.86	474.01	21.331	471.45
		0.37	0.110	0.660	15.64	0 703	
	Control	7.15	2.633	18.971	433.05	10 400	44.31
	Calcium Colorid (0.5%)	7.48	2.827	19 515	100.00	19.488	516.60
Sweet Charlie	Calcium nitrat (1%)	7.51	2 905	10.500	442.38	19.907	392.00
	potassium nitrat (1.5%)	7.52	2 860	19.089	446.75	20.103	413.70
	Mono potassium phosphate(1%)	7.50	2.000	19.943	453.42	20.405	462.00
	Control	7.37	2.942	21.474	487.85	21.953	478 80
	Control	5.26	2.567	19.051	435.83	10 610	
	Calcium Colorid (0.5%)	5.49	2.887	20.297	150.07	17.010	558.60
Festival	Calcium nitrat (1%)	5.69	2.986	21 410	459.97	20.695	397.60
	potassium nitrat (1.5%)	6.07	3.129	21 012	483.60	21.763	352.80
	Mono potassium phosphate(1%)	6.24	3 106	21.323	494.60	22.258	445.20
L.S.D .at0.05%		0.81	0.157	21.326	484.23	21.790	464.10
			9.150	1.000	22.12	0.994	62.67

marketable yield as well as total yield either per plant or feddan and unmarketable yield. Data recorded in Tables (12 and 13) show that all measured yield parameter were significantly differed among the tested cultivars. In this regard, such differences did not reach the level of significance in case of marketable and total produce yield for both plant and feddan during the first season only. In addition, cv. Festival recorded the highest produced total yield and its components except the early yield which was highest in case of cv. Sweet Charlie. Moreover, the lowest infected yield (unmarketable) was recorded in case of cv. Festival. Obtained results are true during both seasons of study. Such difference in total produced yield and its components between the tested cultivars are connected with the differences in vegetative growth performance which in turn affect on the productability of plants in each cultivar. In this regard, Libek (2002), Mezzetti et al., (2002), Rugianins et al., (2002), Turemis (2002), David and Dill (2003), Faedi et al., (2008), Nir-Dai et al., (2008), Simpson et al., (2008) and Ahmed (2009) all working on strawberry reported significant differences in the production of different tested strawberry cultivars. However, Mohamed (2003), Aranda et al., (2005) and Molinar and Yang (2006) found that no significant differences among strawberry cultivars in the early and total produced yield.

b. Effect of mineral salts:

With regard to the effect of spray treatments (calcium and potassium compounds) on total fruit yield and its components i.e., early, exportable, marketable as well as total yield per plant

or feddan and unmarketable yield, data in Tables (12 and 13) reveal that spraying strawberry plants six times at ten days intervals with the tested mineral salts at different studied concentration significantly increased the total produced yield and its components except the infected yield which was decreased compared to the control treatment.

In this regard, the highest values of early and exportable yield were recorded in case of using mono potassium phosphate while, the highest marketable and total yield for both plant and feddan were recorded in case of using potassium nitrate during the first season only. On the other hand, spray the plants with both potassium mono phosphate at 1% and potassium nitrate at 1.5% exhibited the highest produced yield and its component without significant differences among them compared with other studied spray treatments during the second season of study. However, using Ca salts decreased the infected fruits compared with other tested treatments.

The higher yield in case of using potassium salts may be attributed to the role of potassium in translocation of produced photosynthetic assimilates and accumulation of it in storage organs (fruits) and in turn increase the number, weight and size of it fruits which consequently affect positively on yield. Also such increases are connected with the increase in vegetative growth which connected greatly with the productvty of plant. In this regard, similar results were reported by Maroto et al (1998), Choir et al., (2000), Kaya et al., (2003), El-Shami et al., (2004), Lanauskas et al., (2006) and Singh et al., (2009) found

that preharvest application of calcium and potassium results positively affected fruit yield and its components.

c. Effect of the interaction:

As for the effect of the interaction, the same data in Tables (12 and 13) show that, spraying the plants of cv. Sweet Charlie by mono potassium phosphate at 1% and plants of cv. Festival with both potassium salts reflected the highest produced yield and its components compared with other interaction treatments during both seasons of study.

4.2.4. Fruit physical quality:

Data presented in Table (14) show the effect of different studied cultivars, mineral salts and their interaction on physical fruit characteristics during both seasons of study.

a. Effect of cultivars:

From data recorded in Table (14) it was obvious that fruit physical quality expressed as average fruit weight, length, and fruit firmness were significantly differed among the studied cultivars during both growth seasons. In addition, fruit diameter was not affected as a result of used genotypes. In this regard, fruits produced by cv. Festival show the highest fruit weight, length and firmness compared with that of fruits produced by cv. Sweet Charlie but there is no difference in fruit diameter during both seasons of study. This increments in morphological characters of fruit in case of cv. Festival may be due to vigorous in vegetative growth Table (11 and 12) which in turn affect on size of produced fruits.

Table (14): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on physical fruit quality of strawberry plants during two seasons of study.

L.S.D .at 0.05%			Festival	5 -				Sweet Charlie			L.S.D .At 0.0376	CD 240 050/					L.S.D .at 0.03 /0	I S D at 0.050/	Faction	Sweet Charlie	CV .	
	Mono potassium phosphate(1%)	potassium nitrat (1.5%)	Calcium nitrat (1%)	Calcium Colorid (0.5%)	Control	Mono potassium phosphate(1%)	potassium nitrat (1.5%)	Calcium nitrat (1%)	Calcium Colorid (0.5%)	Control		Wono potassium phosphate(1%)	potassium nitrat (1.5%)	Calcium nitrat (1%)	Calcium Colorid (0.5%)	Control					Spray	treatments
2.55	25.46	24.06	22.86	23.44	24.32	21.99	19.76	20.42	19.45	20.02	1.80	23.03	22.61	21.64	21.44	22.17	1.49	24.03	20.33	(g)	weight	5
0.41	4.90	4.85	4.42	4.57	4.72	4.50	4.17	4.40	4.20	4.35	S.S.	4.67	4.53	4.41	4.38	4.53	0.26	4.69	4.32	(cm)	length	:
0.18	3.40	3.42	3.32	3.40	3.22	3.25	3.27	3.25	3.22	3.15	0.13	3.32	3.35	3.28	3.31	3.18	N.	3.35	3.23	(cm)	diameter	2007/2008
13.05	153.13	149.38	152.75	159.88	144.10	70.28	68.10	69.00	72.93	61.01	9.22	111.70	108.74	110.88	116.40	102.55	13.19	151.84	68.26	(g/cm2)	firmness	
2.26	21.47	20.30	22.21	18.95	18.25	16.00	16.21	16.28	16.48	14.58	1.60	18.74	18.25	19.25	17.71	16.41	1.98	20.24	15.91	(g)	Fruit	
0.22	4.60	4.57	4.62	4.55	4.25	3.92	4.07	4.00	4.02	3.87	0.15	4.26	4.32	4.32	4.28	4.06	0.27	4.52	3.98	(cm)	Fruit	2008/2009
0.25	3.30	3.200	3.38	3.05	3.10	3.05	3.12	3.07	3.22	2.92	0.18	3.17	3.16	3.23	3.13	3.01	N.S.	3.21	3.08	(cm)	Fruit	
14.53	162.05	159.40	160.10	167.42	132.52	94.31	78.41	89.44	105.05	73.25	10.28	128.18	118.90	124.77	136.24	102.89	7.40	156.30	88.09	firmness (g/cm2)	Fruit	

In this connection, Aranda et al., (2004), Faedi and Baruzzi (2004), Finn (2004), Jensen and Andersen (2004), Aranda et al., (2005), Khanizadeh et al., (2005) and Ahmed (2009) reported that there were some differences were found among the all cultivars in fruit physical parameter (fruit, length, diameter and shape).

b. Effect of mineral salts.

Concerning the effect of mineral salts i.e. CaCl₂, Ca (NO₃)₂, K NO₃ and KHPO₄ at different tested concentrations the same data in Table (14) indicate that spraying strawberry plants with all aforementioned mineral salts significantly increased all measured fruit physical parameters compared with the control treatments during the two seasons of the experiment.

In this concern, spray plants with potassium salts (mono potassium phosphate and potassium nitrate) during the first season and calcium nitrate during the second one reflected the highest values in average fruit length, diameter and weight. However, the highest fruit firmness was recorded incase of spray plants with calcium chloride at 0.5% during both seasons of study. On the other hand, the lowest values in fruit length, diameter and weight were recorded in case of using calcium chloride. Such increments in fruit length, diameter and weight in case of KNO₃, KHPO₄ and Ca (NO₃)₂ may be due to the effect of such mineral constituents on water content of fruit which affect on cell formation and cells size in fruit receptacle and in turn on fruit parameters. **Grajkowski** *et al.* (2007) and Singh *et al.*, (2009) pointed out that preharvest spray of plants with mineral compounds containing calcium and potassium elements

produced largest and most firm fruits. However, Ram Asrey et al., (2004) and Lanauskas et al., (2006) reported that such salts had no effect on physical fruit quality.

c. Effect of the interaction:

As for the effect of the interaction between tested cultivars and mineral salts, the same data in Table (14) reveal that the highest values in average fruit parameters (length, diameter and weight) were recorded as a result of spraying the plant of cv. Festival by potassium nitrate at 1.5% followed by those sprayed with potassium mono phosphate of the same cultivars during the first season, In addition spray the plants with Ca (NO₃)₂ exhibited the highest values in average fruit weight, length and diameter during the second season Moreover, calcium chloride treatment via cv. Festival exhibited the highest values of fruit firmness during both seasons of study. Such increase in fruit firmness in case of using CaCl₂ may be due to Ca element is the main constituent of cell wall and in turn increased its solidity. In this regard, Cheour et al., (1990), Pawel and Mariusz (2003) and Lanauskas et al., (2006) reported similar results.

4.2.5. Fruit chemical quality:

Data recorded in Tables (15 and 16) show the effect of cultivars, spray with Ca and K compounds as well as their interaction on chemical fruit quality of strawberry during both seasons of study.

a. Effect of cultivars:

Data in Tables (15 and 16) show that chemical fruit quality expressed as totals soluble solids, total acidity, vitamin C, reducing and total sugars as well as anthocyanin concentrations

Table (15): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on chemical constituents in fruits of

				2007/2008	80		
	treatments			Total titratable		D. d. d. seiner	Anthocvanin
CV	Spray	T. S.S%	Vit.C (mg/100g f.w)	acidity (mg/100g f.w)	Total sugars%	Keducing sugars%	(mg/100g f.w)
		10.95	44.26	0.59	7.72	4.67	63.57
Sweet Charlie		10.34	41.80	19.0	69.9	3.64	87.04
Festival		10.24	1.03	0.02	90.0	60.0	1.00
L.S.D .at0.05%		10.35	41 66	99.0	7.15	4.12	73.02
	Control	10.30	40.83	0.68	7.14	4.10	71.56
	Calcium Colorid (0.5%)	10.14	43.16	890	7.19	4.16	76.15
	Calcium nitrat (1%)	10.78	43.10	29 0	7.24	4.19	74.86
	potassium nitrat (1.5%)	10.78	45.16	0.59	7.30	4.22	80.93
	Mono potassium phosphate(1%)	10.91	7.74	0.05	0.14	60.0	1.73
L.S.D .at0.05%		0.37	000		7.67	4.63	62.36
	Control	10.84	47.00	70.0		131	61 53
W	Calcium Colorid (0.5%)	10.65	41.33	0.64	7.66	10.4	5 5
	Calcium nitrat (1%)	10.99	44.66	0.59	7.73	4.67	63.17
Sweet Charine	(%) initial (15%)	11.03	46.33	0.57	7.75	4.71	64.08
	potassium mit at (12.72)	11.23	47.00	0.53	7.81	4.75	66.71
	- \animale	88.0	41.33	0.70	6.64	3.60	83.68
	Control	2000	40.33	0.73	6.62	3.59	81.58
	Calcium Colorid (0.5%)	9.64	55.04	99 0	99 9	3.65	89.14
Festival	Calcium nitrat (1%)	10.57	41.00	0.00	6.73	198	85.65
	potassium nitrat (1.5%)	10.54	42.33	0.66	0.73	3.70	95.16
	Mono potassium phosphate(1%)	10.60	43.33	0.64	67.9		2.44
		0.81	3.17	0.07	0.21	0.13	++-7

Results and Discussion

Table (16): Effect of cultivars and spray with calcium and potassium salts as well as their interaction on chemical constituents in fruits of strawberry plants during 2008-2009 season.

	Treatments			2008	2008/2009	
CV Sweet Charlie	Spray	T.S.S%	Vit. C (mg/100g f.w)	Total titratable acidity (mg/100g f.w)	Total sugars%	Reducing sugars %
Sweet Charlie		10.06	54.60	0.64	7 65	16
Festival		9.1.1	54.00	N 74	03	4.61
L.S.D .at 0.05%		2.50	34.00	0.71	6.62	3.57
		0.27	0.49	0.04	0.17	0.15
	Control	9.52	52.66	0.70	7.09	4.04
	Calcium Colorid (0.5%)	9.38	52.00	0.70	7.07	400
	Calcium nitrat (1%)	10.11	55.00	0.70	7.07	4.02
	Dotassium nitrat (1 5%)	10.00	55.00	0.68	7.13	4.07
	Mono notassium phosphata(10/)	10.00	33.66	0.67	7.18	4.12
L.S.D. at 0.05%	Prospirate(1 /0)	10.00	26.16	0.62	7.22	4.19
		0.52	1.36	0.05	0.10	0.08
	Control	9.68	53.00	0.66	7.60	4.57
:	Calcium Colorid (0.5%)	9.63	52.00	0.66	7.58	4.55
Sweet Charlie	Calcium nifrat (1%)	10.25	55.00	0.64	7.65	4.59
	potassium nitrat (1.5%)	10.35	56.33	0.64	7.69	4.65
	viono potassium phosphate(1%)	10.38	56.66	0.61	7.73	4.70
	Control	9.37	52.33	0.75	6.58	3.52
Factival	Calculation (0.5%)	9.13	52.00	0.74	6.56	3.49
TOWN	Calcium nitrat (1%)	9.97	55.00	0.73	6.61	3.55
	rotassium nitrat (1.5%)	9.66	55.00	0.70	6.66	3.58
	Mono potassium phosphate(1%)	9.62	55.66	0.64	6.69	3.70
L.S.D .81 0.05%		0.74	1.92	0.07	0.14	0.11

were significantly differed among the tested cultivars during both seasons of growth. In this respect, cv. Sweet Charlie exhibited the highest concentration of total soluble solids, vitamin-C, total and reducing sugars, while fruits of cv. Festival reflected the highest values for total titratable acidity and anthocyanin content. Such results are true during both seasons of growth. The superiority of cv. Sweet Charlie in total and reducing sugars and vitamin-C content may be due to the highest total soluble solids which in turn affected by photo assimilation rate.

In this connection, Hassan et al., (2001), Hakala et al., (2002), Yommi et al., (2003), Faedi and Baruzzi (2004), Aranda et al., (2005) Insfran et al., (2006) and Ahmed (2009) reported that significant differences were detected among the studied cultivars and strains of strawberry in total soluble solids, titratable acidity, ascorbic acids total and reducing sugars content of fruits.

b. Effect of mineral salts.

Data recorded in Tables (15 and 16) show that spraying the plants with mineral salts, i.e., CaCl₂, Ca (NO₃)₂, K NO₃ and KHPO₄ at the different tested concentrations statistically affected fruit contents of total soluble solids, total acidity, vitamin-C, reducing and total sugars as well as anthocyanin compared to the control treatment. In addition, such enhancing effect on all aforementioned chemical constituent was obvious in case of using potassium nitrate and potassium mono phosphate except in case of total acidity which was reduced as a result of using potassium slats. Moreover, using CaCl₂ salt resulted in higher

acidity content and reduced all other chemical constituents compared with the control and other studied treatments during both season of study.

c. Effect of the interaction

As for the effect of the interaction between studied cultivars and mineral salts, the same data in Tables (15 and 16) indicate that spraying the plants six times starting at the beginning of flowering and every 15 days intervals with mono potassium phosphate reflected the highest fruit content of T.S.S., vitamin-C., total and reducing sugars especially in case of cv. Sweet Charlie. However, such treatment reflected the highest anthocyanine especially in case of cv. Festival. On the other hand, using CaCl₂ increased total titratable acidity in both cultivars and the highest value was noticed in case of cv. Festival.