RESULTS AND DISCUSSION

IV. RESULTS AND DISCUSSION

IV.1- Washington navel orange.

IV.1.1- Vegetative growth measurements:

IV.1.1.1- Shoot length (cm.).

It is clear from **Table (4)** that, in both seasons, the highest length of shoot was obtained from 300 ml/l "yeast extract" (14.05 and 14.30) followed by 75 ppm "GA₃" (13.52 and 13.98) and 150 ml/l "yeast extract" (13.27 and 13.42). On the other hand, the lowest length of shoot was obtained from "control" (10.28 and 10.64) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" 0.5 g/l "best flower" + 0.5 ml/l "amino power" (10.60 and 11.43), 0.5 g/l "best flowers" (11.85 and 11.80) and 0.5 ml/l "amino power" (12.10 and 12.40) during the first and second season, respectively.

This results is in agreement with that reported by Vu and Yelenosky (1988) on rough lemon and Fawzi and Eman (2004) on Flame seedless grapevines.

IV.1.1.2- Leaf area (cm.).

It is obvious from **Table (4)** that, in both seasons, the largest leaf area was obtained from 300 ml/l "yeast extract" (35.70 and 33.14) followed by 75 ppm "GA₃" (32.98 and 32.50) and 150 ml/l "yeast extract" (32.80 and 32.44). On the contrary, the lowest leaf area was obtained from "control" (30.67 and 28.55) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (31.35 and 28.83), 0.5 g/l "best flowers" (31.19 and 29.11) and 0.5 ml/l "amino power" (31.83 and 29.49) during the first and second season, respectively.

Table (4): Some vegetative growth measurements (shoot length, leaf area and leaf dry weight) of Washington both 2008 and 2009 seasons. Navel orange Cv., in response to some stimulative compounds sprays and their combinations during

Shoot len	gth (cm.)	Leaf ar	ea (cm²)	Dry weight of leaf	ht of leaf
2008	2009	2008	2009	2008	2009
10.28e	10.64d	30.67c	28.55b	230.7e	242.7d
12.90a-c	13.97a	32.27bc	31.69a	261 7h	275 7h
13.52ab	13.98a	32.98b	32.50a	269 7 _a	270 34
13.27a-c	13.42ab	32.80b	32 44a	261 7h	274.04
14.05a	14.30a	35.70a	33.14a	272.7a	287.0a
11.85cd	11.80c	31.19bc	29.11b	241.7d	246 7d
12.45bc	12.57bc	31.83bc	29.77b	251.0c	263 3c
12.10bc	12.40bc	31.83bc	29.49b	242.3d	264 3c
12.21bc	13.15ab	32.07bc	29.78b	246.3cd	262.7c
10.60de	11.43cd	31.35bc	28.83b		243.7d
	2008 10.28e 12.90a-c 13.52ab 13.27a-c 14.05a 11.85cd 12.45bc 12.10bc 12.21bc		ωωωωω	2008 2008 30.67c 32.27bc 32.28b 32.80b 35.70a 31.19bc 31.83bc 31.83bc 32.07bc 31.83bc 31.83bc 31.83bc	Leaf area (cm²) 2008 2009 30.67c 28.55b 32.27bc 31.69a 32.98b 32.50a 32.80b 32.44a 35.70a 33.14a 31.19bc 29.11b 31.83bc 29.77b 31.83bc 29.49b 32.07bc 29.78b 31.35bc 28.83b

These results are in harmony with those obtained by Hegab et al., (1997) on Valencia orange trees and Fawzi and Eman (2004) on Flame seedless grapevines.

IV.1.1.3- Leaf dry weight (mg.).

It is clear from **Table (4)** that, in both seasons, the highest dry weight of leaf was obtained from 300 ml/l "yeast extract" (272.7 and 287.0) followed by 75 ppm "GA₃" (269.7 and 279.3), 50 ppm "GA₃" (261.7 and 275.7) and 150. ml/l "yeast extract" (261.7 and 274.0). On the other hand, the lowest dry weight of leaf was obtained from "control" (230.7 and 242.7) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" 0.5 ml/l "amino power" (232.0 and 243.7), 0.5 g/l "best flowers" (241.7 and 246.7) and 0.5 ml/l "amino power" (242.3 and 264.3) during the first and second season, respectively.

These results confirmed that reported by Singh et al., (2000) on Volkamarian rootstock as well as Omran and Abd El-Latif (2003) on Red Roomy grapevines. They reported that spraying with GA₃ or active dry yeast significantly increased dry weight of different plant organs.

IV.1.2- Leaf mineral composition:

IV.1.2.1- Nitrogen (%).

It is obvious from **Table (5)** that in both seasons, the highest value of leaf nitrogen content was obtained from 75 ppm " GA_3 " (2.91 and 2.53) followed by 300 ml/l "yeast extract" (2.90 and 2.36) and 50 ppm " GA_3 " (2.31 an 2.35). On the contrary, the lowest value of leaf nitrogen content was obtained from "control" (2.15 and 2.11) followed by 50 ppm " GA_3 " + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (2.19 and 2.13), 0.5 g/l "best flowers" (2.21 and 2.13)

and 0.5 ml/l "amino power" (2.22 and 2.23) during the first and second season, respectively.

IV.1.2.2- Phosphorus (%).

It is clear from **Table (5)** that in both seasons, the highest value of leaf phosphorus content was obtained from 300 ml/l "yeast extract" (0.313 and 0.277) followed by 1.0 ml/l "amino power" (0.223 and 0.330) and 0.50 g/l "best flowers" (0.207 and 0.320). On the contrary, the lowest value of leaf phosphorus content was obtained from "control" (0.137 and 0.130) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (0.160 and 0.137) and 50 ppm "GA₃" (0.190 and 0.180) during the first and second season, respectively.

IV.1.2.3- Potassium (%).

It is obvious from **Table** (5) that in both seasons, the highest value of leaf potassium content was obtained from 75 ppm "GA₃" (1.46 and 1.41) followed by 300 ml/l "yeast extract" (1.47 and 1.39), 50 ppm "GA₃" (1.45 and 1.38) and 150 ml/l "yeast extract" (1.43 and 1.34). On the other hand, the lowest value of leaf potassium content was obtained from "control" (1.24 and 1.20) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower + 0.5 ml/l "amino power" (1.28 and 1.23), 0.5 g/l "best flowers" (1.32 and 1.26) and 0.5 ml/l "amino power" (1.34 and 1.25 during the first and second season, respectively.

IV.1.2.4- Calcium (%).

It is clear from **Table (5)** that in the first season, the highest value of leaf calcium content was obtained from 0.5 ml/l "amino power" followed by 50 ppm "GA₃" + 150 ml/l "yeast"

Table (5): Some macro-nutrients contents (N, P, K, Ca and Mg) in leaves of Washington Navel orange Cv., as influenced by some stimulative compounds sprays and their combinations during both 2008 and 2009 seasons.

of some summand of the source	1100011	1	L							
	(%) N	(9)	P (%)		K (%)	(%	Ca (%)	(0%	Mg (%)	(%)
Treatments	2008	2009	2008	2009	2008	2009	2008	2009	2008	2009
Spray (control)	2.15c	2.11c	0.137g	0.130c	1.24d	1.20f	4.21c	4.42a	0.323d	0.243e
Spray GA, at 50 ppm	2.31b	2.35b	0.190e	0.180bc	1.45a	1.38ab	3.98de	3.62ef	0.403ab	0.427ab
Spray GA, at 75 nnm	2.91a	2.53a	0.203de	0.320a	1.46a	1.41a	3.94e	3.48g	0.417a	0.460a
Spray yeast extract at 150 ml/l	2.30bc	2.32b	0.277b	0.150c	1.43ab	1.34bc	4.12c-e	3.59f	0.387a-c	0.383bc
Spray yeast extract at 300 ml/l	2.90a	2.36b	0.313a	0.277a	1.47a	1.39ab	3.99de	3.71de	0.440a	0.440ab
Spray yeast flowers at 0 5 g/l	2.2.1bc	2.13c	0.207c-e	0.320a	1.32c	1.26de	4.40b	3.92b	0.330cd	0.283de
Spray Dest nowers at 0.5 g/1	2.77bc	2 32h	0.217cd	0.163bc	1.33c	1.28c-e	4.11c-e	3.90bc	0.343cd	0.330cd
Spray best 110 wers at 1.0 g/l	2.22bc	2.23bc	0.203de	0.220b	1.34c	1.25ef	5.11a	3.80cd	0.350b-d	0.260e
Spray amino power at 1.0 ml/l	2.25bc	2.32b	0.223c	0.330a	1.36bc	1.31cd	4.16cd	3.88bc	0.330cd	0.300de
Spray GA ₃ (50 ppm) + yeast (150 ml/l) + best flower (0.5 g/l) + amino power (0.5 ml/l)	2.19bc	2.13c	0.160f	0.137c	1.28cd	1.23ef	4.49b	4.45a	0.327cd	0.277de
2,0										

extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" and 0.5 g/l "best flowers". Meanwhile, the lowest value of leaf calcium content in the first season was obtained from 75 ppm "GA₃" followed by 50 ppm "GA₃" and 300 ml/l "yeast extract". On the contrary, the highest value of leaf calcium content in the second season was obtained from 50 ppm "GA₃" + 150 ml/l "yeast extract" 0.5 g/l "best flower" + 0.5 ml/l "amino power" and "control". Meanwhile, the lowest value of leaf calcium content in the second season was obtained from 75 ppm "GA₃" and 150 ml/l "yeast extract.

IV.1.2.5- Magnesium (%).

It is obvious from **Table (5)** that in both seasons, the highest value of leaf magnesium content was obtained from 75 ppm "GA₃" (0.417 and 0.460) followed by 300 ml/l "yeast extract" (0.440 and 0.440) and 50 ppm "GA₃" (0.403 and 0.427).On the other hand, the lowest value of leaf magnesium content was obtained from "control" (0.323 and 0.243) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (0.327 and 0.277), 0.5 g/l "best flowers" (0.330 and 0.283) and 1.0 ml/l "amino power" (0.330 and 0.300) during the first and second season, respectively.

IV.1.2.6- Iron (ppm).

It is clear from **Table (6)** that in both seasons, the highest value of leaf iron content was obtained from 75 ppm " GA_3 " (51.67 and 61.67) followed by 300 ml/l "yeast extract" (50.33 and 60.67) and 50 ppm " GA_3 " (50.00 and 59.33). On the contrary, the lowest value of leaf iron content was obtained from "control" (42.67 and 39.33) followed by 0.5 ml/l "amino power"

(44.00 and 39.33), 50 ppm " GA_3 " + 150 ml/l "yeast extract" + 0.5 g/l "best flowers" (45.00 and 41.33) during the first and second season, respectively.

IV.1.2.7- Zinc (ppm).

It is clear from **Table (6)** that in both seasons, the highest value of leaf zinc content was obtained from 75 ppm "GA₃" (47.00 and 30.67) followed by 50 ppm "GA₃" (44.67 and 29.67), 150 ml/l "yeast extract" (35.67 and 28.67) and 300 ml/l "yeast extract" (34.67 and 29.33). On the contrary, the lowest value of leaf zinc content was obtained from "control" (25.33 and 19.67) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (27.00 and 21.67), 0.5 g/l "best flowers" (29.67 and 22.33) and 0.5 ml/l "amino power" (34.33 and 24.33) during the first and second season, respectively.

IV.1.2.8- Manganese (ppm).

It is obvious from **Table (6)** that in both seasons, the highest value of leaf manganese content was obtained from 75 ppm "GA₃" (31.33 and 29.67) followed by 50 ppm "GA₃" (30.67 and 27.67) and 300 ml/l "yeast extract" (29.00 and 25.33). On the other hand, the lowest value of leaf manganese content was obtained from "control" (20.33 and 18.33) followed by 0.5 ml/l "amino power" (23.33 and 21.33), 0.5 g/l "best flowers" (24.33 and 19.33) and 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" during the first and second season, respectively.

In this respect the present result is in agreement with that reported by **Abd El-Rahman (2003)** who mentioned that leaf N, Ca, Fe, Mn and Zn content of Washington navel orange trees

Table (6): Some micro-nutrients contents (Fe, Zn and Mn) in leaves of Washington Navel orange Cv., as 2009 seasons. influenced by some stimulative compounds sprays and their combinations during both 2008 and

Treatments	Fe (ppm)	pm)	Zn	Zn (ppm)	Mn (ppm)	ppm)
	2008	2009	2008	2009	2008	2009
Spray tap water (control)	42.67e	39.33e	25.33d	19.67e	20.33e	18.33e
Spray GA ₃ at 50 ppm	50.00ab	59.33a	44.67a	29.67a	30.67a	27.67ab
Spray GA ₃ at 75 ppm	51.67a	61.67a	47.00a	30.67a	31.33a	29 67a
Spray yeast extract at 150 ml/l	49.00a-c	54.33b	35.67b	28.67ah	28 67a-c	23 676-6
Spray yeast extract at 300 ml/l	50.33ab	60.67a	34 67hc	79 33ah	20 nnah	25.0.50
Samuel Land 19 19 19						10.000
Spray best flowers at 0.5 g/l	45.00с-е	41.33de	29.67cd	22.33de	24.33d	19.33e
Spray best flowers at 1.0 g/l	46.00b-e	45.67cd 33.33bc	33.33bc	26.67a-c	27.00b-d	21.67с-е
Spray amino power at 0.5 ml/l	44.00de	39.33e	34.33bc	24.33cd	23.33de	21.33de
Spray amino power at 1.0 ml/l	47.33a-d	47.33c	34.67bc	25.33b-d	24.33d	22.00c-e
Spray GA ₃ (50 ppm) + yeast (150 ml/l) + best flower (0.5 g/l) + amino power (0.5 ml/l)	44.33de	40.00e	27.00d	21.67de	25.00cd	19.67e

were significantly maximized when the trees were sprayed with GA₃. on the other hand, **El-Saida** (2007) reported that spraying navel orange trees with active dry yeast led to elevate N, P, Ca, Mg, Fe, Zn and Mn concentrations in the leaves. The same result was obtained by **Bakry** (2007) on Java orange trees.

IV.1.3- Fruiting parameters:

IV.1.3.1- Fruit set (%).

Table (7) shows that, the highest fruit set percentage of the first and second seasons was obtained from spraying trees with GA₃ (at 50 ppm) + yeast (at 150 ml/l) + Best flower (at 0.5 g/l) + Amino power (at 0.5 ml/l) and yeast extract 300 ml/l. on the other hand, the lowest fruits set percentages were obtained when the trees were sprayed with best flower at 0.5 g/l and GA₃ at 50 ppm treatments compared with the control. Meanwhile, the differences between all used treatments were significant as each treatment compared with the control.

These results are in agreement with the findings of Atawia and El-Desouky (1997).

IV.1.3.2- Remaining fruits after June drop.

Regarding the data obtained during the both seasons as shown in **Table (7)** pointed out that remaining fruits after June drop and yield the percentages of mature fruits followed the same trend and significantly compared with the control.

The obtained result is in general agreement with the findings of Atawia (1984) and Atawia and El-Desouky (1997).

Table (7): Effect of foliar sprays by some stimulative compounds on fruit set, remaining fruits after June drop and yield of Washington Navel orange Cv., trees during 2008 and 2009 seasons.

Treatments	Fruit	Fruit set %	Remai after Jun	Remain fruits after June drop %	Matur (%	Mature fruits (%)	Yield (Yield (kg/tree)	Yield incr	Yield increment (%)
	2008	2009	2008	2009	2008	2009	2008	2009	2008	2009
Spray tap water (control)	3.75f	3.64e	2.59e	2.26d	3.45d	2.46a	42.90d	48.00e	0.00h	0.00i
Spray GA3 at 50 ppm	5.63e	4.93d	3.92d	3.13c	5.63c	4.90d	50.30c	52.00d	17.25f	8.33h
Spray GA ₃ at 75 ppm	6.32cd	6.10c	4.43cd	3.90bc	6.78c	5.88cd	52.60bc	53.00cd	22.61d	10.42g
Spray yeast extract at 150 ml/l	6.73bc	6.96b	5.39ab	4.25ab	8.92ab	5.92cd	53.00bc	53.00cd	23.54c	10.45g
Spray yeast extract at 300 ml/l	7.42a	8.02a	5.54a	4.89a	9.85a	9.64a	65.00a	70.67a	51.52b	47.23b
Spray best flowers at 0.5 g/l	6.57cd	5.94c	4.83bc	3.42c	7.75bc	4.92d	50.00c	54.00cd	16.55g	12.50f
Spray best flowers at 1.0 g/l	7.29ab	7.36ab	5.51ab	4.23ab	8.90ab	6.98a	53.00bc	55.00cd	23.54c	14.58e
Spray amino power at 0.5 ml/l	6.06de	7.00b	4.30cd	3.27c	6.85c	6.26cd	51.33c	56.00c	19.65e	16.67d
Spray amino power at 1.0 ml/l	7.16ab	7.68a	5.25ab	3.89bc	8.79ab	7.89b	53.00bc	62.00b	23.54c	29.17c
Spray GA ₃ (50 ppm) + yeast (150 mL/I) + best flower (0.5 g/I) + amino power (0.5 mL/I)	7.32a	7.94a	5.52a	4.81a	10.71a	9.86a	66.67a	72.00a	55.41a	50.00a

IV.1.3.3- Yield (kg/tree) and yield increment % in relation to the control.

Data tabulated in Table (7) displayed clearly that, both yield as (kg/tree) and yield increment percentage in relation to the control were responded significantly to all used treatments as compared to the control during the two seasons of study. Furthermore, the greatest statistically values of both yield parameters were resulted from Washington Navel orange trees being sprayed with GA3 (50 ppm) + yeast extract (150 ml/l) + best flower (0.5 g/l) + amino power (0.5 g/l) followed by yeast extract at 300 ml/l treatments as compared with either the control or other investigated treatments. On the other hand, the opposite trend was detected with water sprayed trees (control) which reflected significantly the lowest value of tree yield (as kg). also, the response of the yield increment percentage in relation to the control was typically followed the same trend previously detected with the abovementioned parameter (yield as kg/tree). In addition to that, other treatments gave intermediate values in both 2008 and 2009 seasons for both yield parameters.

IV.1.4.1- Fruit quality (properties):

IV.1.4.1.a- Average fruit weight (g.).

It is obvious from **Table (8)** that in both seasons, the highest average weight of fruit was obtained from 75 ppm "GA₃" (252.0 and 255.3) followed by 300 "yeast extract" (221.0 and 232.5) and 50 ppm "GA₃" (218.0 and 229.1). On the other hand, the lowest average weight of fruit was obtained from "control" (168.5 and 169.5) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (180.5 and 199.2), 0.5 g/l "best flowers" (190.1 and 132.8) and 0.5 ml/l "amino power" (200.0 and 200.0) during the first and second season, respectively.

IV.1.4.1.b- Average fruit volume (ml).

It is clear from **Table (8)** that in both seasons, the highest average volume of fruit was obtained from 75 ppm " GA_3 " (0.167 and 0.167) followed by 300 ml/l "yeast extract" (0.157 and 0.167) and 50 ppm " GA_3 " (0.152 and 0.155). On the contrary, the lowest average volume of fruit was obtained from "control" (0.061 and 0.048) followed by 50 ppm " GA_3 " + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (0.118 and 0.134), 0.5 ml/l "amino bower" (0.121 and 0.137) and 0.5 g/l "best flowers" (0.141 and 0.137) during the first and second season, respectively.

IV.1.4.1.c- Average fruit length (cm).

It is obvious from **Table (8)** that in both seasons, the highest average length of fruit was obtained from 75 ppm "GA₃" (7.34 and 7.13) followed by 50 ppm "GA₃" (6.60 ad 6.98) and 300 ml/l "yeast extract" (6.58 and 6.82). On the other hand, the lowest average length of fruit was obtained from "control" (5.94 and 6.12) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (6.11 and 6.14), 0.5 g/l "best flowers" (6.36 and 6.30) and 0.5 ml/l amino power" (6.43 and 6.45) during the first and second season, respectively.

IV.1.4.1.d- Average fruit diameter (cm).

It is clear from **Table (8)** that in both seasons, the highest average diameter of fruit was obtained from 75 ppm " GA_3 " (7.25 and 7.38) followed by 50 ppm " GA_3 " (6.94 and 6.62), 300 ml/l "yeast extract" (6.58 and 6.45) and 150 ml/ yeast extract (6.53 and 6.44). On the contrary, the lowest average diameter of fruit was obtained from "control" (6.02 and 5.80) followed by 50 ppm " GA_3 " + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5

Navel orange Cv., in response to some stimulative compounds sprays and their combinations during Table (8): Some fruit physical properties (average fruit weight, volume, length and diameter) of Washington both 2008 and 2009 seasons.

						7	August	d trinit
	A worsan fruit	fruit	Average fruit	e fruit	Averag	Average Iruit	Average II un	ı m ırı
	Average		volume (ml ³)	(ml ³)	length	length (cm.)	diameter (cm.)	r (cm.)
Treatments	weignt (g.)	(8.)	A CITATION		0000	0000	2006	2000
	2008	2009	2008	2009	2008	6007	7000	7007
	200	32025	0.0614	0.048	5 94d	6.12f	6.02d	5.80f
Snrav tan water (control)	168.5e	16.691	0.0014	0.010	3		1000	1077
June Of the Annual Control	218.0bc	229.1bc	229.1bc 0.152ab	0.155ab	q09.9	6.98ab	6.94ab	0.020
Spray GA3 at 50 ppm	25.700	255 39	0.167a	0.167a	7.34a	7.13a	7.25a	7.38a
Spray GA ₃ at 75 ppm	232.0a	10000	0.152ah	-	6.51b	p-q69.9	6.53bc	6.44bc
Snrav veast extract at 150 ml/l	214.1bc	218.0cd	0.132aU	201110	100	000	6 58hc	6 45hc
Cress 200 ml/l	221.0b	232.5b	232.5b 0.157ab	0.167a	98C.9	0.82a-c	0.3000	2001.0
Spray yeast extract at 500 miles	1001	127 80	0.141h	0 141h 0 137bc 6.36bc	6.36bc	6.30ef	6.40cd	6.01d-f
Spray best flowers at 0.5 g/l	190.1c-e	132.00		0.12750	481 y	6 45d-f	6.47b-d	6.23c-e
Comment of flowers of 1 0 of	204.0b-d 140.7de	140.7de	0.1420	0.13/00	0.400	7 7 7 7		(210)
Spray Dest Howers at 1:0 g/.	200 Oh-d	200.0e		0.121c 0.137bc	6.43b	6.45d-t	6.41cd	9.21c-e
Spray amino power at 0.5 mi/1	3 00.007	210 010	+	0 143hc	6 49h	6.63c-e	6.49b-d	6.32b-d
Spray amino power at 1.0 ml/l	211.1bc	217.0de	-	200110				
Spray GA ₃ (50 ppm) + yeast (150 ml/l) + best flower (0.5 g/l) + amino	180.5de	199.2e	0.118c	0.134c	6.11cd	6.14f	6.25cd	5.99ef
(I/Im 5 m/I/I)								

Mean followed by the same letter's within each column are not significantly different from each other at 0.5 level.

ml/l "amino power" (6.25 and 5.99), 0.5 g/l "best flowers" (6.40 and 6.01) and 0.5 ml/l "amino power" (6.41 and 6.21) during the first and second season, respectively.

IV.1.4.1.e- Average peel thickness.

It is obvious from **Table (9)** that in both seasons, the highest average thickness of peel was obtained from 75 ppm "GA₃" (3.93 and 4.47) followed by 300 ml/l "yeast extract" (4.13 and 4.77) and 50 ppm "GA₃" (3.90 and 4.30). On the other hand, the lowest average thickness of peel was obtained from "control" (3.50 and 3.63) followed by 0.5 g/l "best flowers" (3.70 and 4.10), 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (3.63 and 4.03) and 1.0 ml/l "amino power" (3.83 and 4.27) during the first and second season, respectively.

IV.1.4.1.f- Average juice weight (g.).

It is obvious from **Table (9)** that in both seasons, the highest average weight of juice was obtained from 75 ppm " GA_3 " (80.00 and 78.33) followed by 300 "yeast extract" (68.17 and 70.17) and 50 ppm " GA_3 " (64.00 and 65.33). On the other hand, the lowest average weight of juice was obtained from "control" (46.50 and 48.83) followed by 0.5 g/l "best flowers" (57.50 and 52.00), 0.5 ml/l "amino power" (56.83 and 56.67) and 50 ppm " GA_3 " + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (56.83 and 59.67) during the first and second season, respectively.

IV.1.4.1.g- Average juice volume (ml).

It is clear from **Table (9)** that in both seasons, the highest average volume of juice was obtained from 75 ppm " GA_3 " (89.60 and 91.20) followed by 300 ml/l "yeast extract" (80.40 and 82.20) and 50 ppm " GA_3 " (78.00 and 75.60).

Table (9): Some fruit physical properties (average peel thickness, juice weight and volume) of Washington Navel orange Cv., in response to some stimulative compounds sprays and their combinations during

	70																_		
flower (0.5 g/l) + amino power (0.5 min)	Spray GA ₃ (50 ppm) + yeast (150 ml/l) + best	Spray amino power at 1.0 mM	Opial masses F	Spray amino power at 0.5 ml/l	Spray best flowers at 1.0 g/l	opiaj sessas	Spray hest flowers at 0.5 g/l	Spray yeast extract at 300 ml/1	Spiray yeast carriers	Sanar weest extract at 150 ml/l	Spray GA ₃ at 75 ppm	oping out in	Spray GA, at 50 ppm	Spray tap water (control)	(control)	I I CANTILL CARRE	Treatments		both 2008 and 2009 seasons.
	3.63f	3.83bc	2	3.7.3de	0.0000	2 0004	3.70ef	4.100	1139	3.93b	0.700	3 03h	3.90b		3.50g	2008	(IIICKIICSS (IIIIII)	Average peel	
	4.03bc	4.2/40	4 2724	4.20a- c	4.1.00	4 17hc	4.10bc		4 77a	4.3/ab		4.47ab	4.30ab	13051	3.63c	2009	(peel (mm)	
	56.83e	0).07.00	50 67de	56.83e		58.67e	37.308	57 500	68.17b	03.0000	2000	80.00a	04.000	200 19	46.50f	2008	á	Average Juice weigh (gm/fruit)	•
1 -10 5 [aval	59.67b-e	,	59.33b-e	56.67с-е		59.67b-e	02.0000	9P00 C>	70.17ab	02.170 4	63 17h_d	78.33a	00.00	65 33bc	48.83e	2009	2000	ruit)	n inht
	65.20e		71.20d	69.000	20001	69.60d	50 501	64.00e	80.40b		63 00c	89.60a		78.00bc	56.001	2000	2000	volume (ml³/fruit)	Average juice
	60.40eI	6	68.80c-f	1-207.60	60 70° £	/0.40c-e	70 100 0	63.00d-f	82.20ab	200	72.20b-d	91.20a	01 00	75.60bc	27.001	27 606	2009	nl ³ /fruit)	e iuice

On the contrary, the lowest average volume of juice was obtained from "control" (56.00 and 57.60) followed by 0.5 g/l "best flowers" (64.00 and 63.00), 50 ppm " GA_3 " + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (65.20 and 60.40), 0.5 ml/l "amino bower" (69.00 and 68.20) during the first and second season, respectively.

These results are in agreement with the findings of Mansour (1998) on Anna apple and Tawfik (2001) on Balady mandarin trees.

IV.1.4.2- Fruit chemical properties:

IV.1.4.2.a- Total soluble solids (%) (T.S.S).

It is clear from **Table (10)** that the highest values of T.S.S. in the first season were obtained from 0.5 ml/l "amino power" followed by 300 ml/l "yeast extract", 1.0 ml/l "amino power" and 50 ppm "GA₃". Meanwhile, the lowest values of T.S.S. in the first season were obtained from 75 ppm "GA₃" followed by 150 ml/l "yeast extract", 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" and "control". On the contrary, the highest values of T.S.S. in the second season were obtained from 1.0 ml/l "amino power" followed by 300 ml/l "yeast extract", 50 ppm "GA₃", "control" and 50 ppm "GA₃" + 150 ml/l "yeast extract" +0.5 g/l "best flower" + 0.5 ml "amino power". Meanwhile, the lowest values of T.S.S. in the second season were obtained from 75 ppm "GA₃" followed by 150 ml/l "yeast extract" and 0.5 ml/l "amino power".

IV.1.4.2.b- Total acidity (%).

It is clear from Table (10) that in both seasons, the highest values of acidity were obtained from 1.0 ml/l "amino

power" (1.363 and 0.620) followed by 1.0 g/l "best flower" (1.273 and 0.593) and 0.5 ml/l "amino power" (1.267 and 0.573). On the other hand, the lowest values of acidity were obtained from 150 ml/l "yeast extract" (0.540 and 0.513) and 0.5 g/l "best flowers" (0.593 and 0.583) during the first and second season, respectively.

IV.1.4.2.c- TSS/acidity ratio.

It is clear from **Table (10)** that in both seasons, the highest values of TSS/acidity were obtained from 150 ml/l "yeast extract" (2.25 and 2.37) followed by 300 ml/l "yeast extract" (2.16 and 2.21) and 0.5 g./l "best flowers" (2.15 and 2.18). On the other hand, the lowest values of TSS/ acidity were obtained from 1.0 ml/l "amino power" (0.967 and 2.21) followed by 1.0 g/l "best flowers" (0.992 and 2.14) and 0.5 ml/l "amino power" (1.08 and 2.16) during the first and second season, respectively.

IV.1.4.2.d- L ascorbic acid.

It is obvious from **Table (10)** that in both seasons, the highest values of L ascorbic acid were obtained from 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml "amino power" (4.97 and 4.93) followed by 1.0 g/l "best flowers" (4.43 and 4.40), 50 ppm "GA₃" (4.50 and 4.27) and 300 ml/l "yeast extract" (4.47 and 4.27). On the contrary, the lowest values of L ascorbic acid were obtained from "75" ppm "GA₃" (3.90 and 3.73) followed by "control" (3.93 and 4.13), 0.5 g./l "best flowers" (4.10 and 3.93) during the first and second season, respectively.

Table (10): Some fruit chemical properties (T.S.S, acidity, TSS/acid ratio and vitamin C) of Washington Navel orange Cv., in response to some stimulative compounds sprays and their combinations during both 2008 and 2009 seasons.

Treatments	%S.S.Z	% S	Acic	Acidity %	TSS/	TSS/acidity ratio	L. as acid (L. ascorbic acid (mg/100
	2008	2000	3000	0000				mi juice)
Shrav fan weter (control)		6007	2002	7009	2008	2009	2008	2009
Fred the water (control)	17.60c-e	12.73c	0.620cd	0.627a	2.03ab	2 03h	3 020	11260
Spray GA ₃ at 50 ppm	13.03bc	12 730	0.61704			200.1		
Spray GA, at 75 nnm	10.070		_	0.000a	7.14ab	2.15ab	4.50b	4.27bc
Shrow woods to the state of the	17.0/I	12.00d	0.593cd	0.600a	2.04ab	2.00h	3 000	2 73.4
Spray yeast extract at 150 ml/	12.17ef	12.13d	0.540d	0.513h	-	_	30.0	J./3d
Spray yeast extract at 300 ml/l	13 23ah	12 JOE	. 0000	1	_		4.3/0	4.23bc
Chrow hoot flowers	000000	13.200	0.020ca	0.613a	2.16ab	2.21ab	4.47b	4.27bc
Spray best 110wers at 0.5 g/l	12.70cd	12.70c	0.593cd	0.583ah 2 15ah 2 18ah	2 15ah	2 10ah	101	,
Spray best flowers at 1.0 o/l	17 6224	17 01		2	2.1.2aD	7.10dD	4.10bc	3.93cd
Some Some Some Some Some Some Some Some	12.03ca	17.0/C	1.273b	0.593a	0.992c	2.14ab	4.43b	4 40h
Spray amino power at 0.5 ml/l	13.60a	12.33cd	1 257h	1257h 05739h	1 000	210	_	- 11
Spray amino power at 1 0 ml/l	17171	1000		0.21.2aD	1.000	7.10aD	4.13bc	4.07bc
Spray GA ₂ (50 ppm) + voca+ (150 mm)	13.1/ab	13.67a	1.363a	0.620a	0.967c	0.967c 2.21ab	4.23bc	4.20hc
best flower (0.5 g/l) + amino nower (0.5	17 57 1		1					
mI/I)	12.33de	12.73c	0.653c	0.620a 1.92b 2.06b	1.92b	2.06b	4.97a	4.93a

Data of the present study, concerning the effect of GA₃ and yeast extract sprays on fruit chemical properties of Valencia orange agree with those obtained by **Mansour (1998)** on Anna apple and **Badawy-Sabah (2005)** on Balady mandarin trees.

IV.2- Valencia orange.

IV.2.1- Vegetative growth measurements:

IV.2.1.1- Shoot length (cm.).

It is obvious from **Table (11)** that in both seasons, the highest shoot length was obtained from 75 ppm "GA₃" (14.33 and 13.33) followed by 50 ppm "GA₃" (14.00 and 12.67) and 300 ml/l "yeast extract" (11.33 and 12.67). On the contrary, the lowest length of shoot was obtained from "control" (9.33 and 10.00) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" 0.5 g/l "best flower" + 0.5 ml/l "amino power" (9.33 and 10.00), 0.5 g/l "best flowers" (10.00 and 10.67) and 0.5 ml/l "amino power" (10.33 and 11.33) during the first and second season, respectively.

This result is in agreement with that reported by Vu and Velenosky (1988) on rough lemon and Fawzi and Eman (2004) on Flame seedless grapevines.

IV.2.1.2- Leaf area (cm.).

It is clear from **Table (11)** that in both seasons, the largest leaf area was obtained from 75 ppm "GA₃" (37.67 and 38.33) followed by 300 ml/l "yeast extract" (33.00 and 37.67) and 150 ml/l "yeast extract" (30.33 and 34.00). On the other hand, the lowest leaf area was obtained from "control" (24.67 and 28.33) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (24.67 and 28.33), 0.5 g/l "best flowers" (26.67 and 29.67) and 0.5 ml/l "amino power"

Table (11): Some vegetative growth measurements (shoot length, leaf area and leaf dry weight of leaf) Valenica orange Cv., in response to some stimulative compounds sprays and their combinations during both 2008 and 2009 seasons.

	Shoot le	Shoot length (cm.)		Leaf area (cm²)	Dry weig	Dry weight of leaf
	2008	2009	2008	2000	3000	
Spray tap water (control)			0000	4003	2008	2009
	9.33c	10.00c	24.67d	28.33d	333.7d	233 Da
Spray GA ₃ at 50 ppm	14.00a	12.67ab	29 00h-d	35 220h	+	20.00
Spray GA; at 75 npm	14.00		7.000.0	22.33aD	349.Uab	253.7bc
mddo	14.53a	13.33a	37.67a	38.33a	355 33	26172
Spray yeast extract at 150 m//	11.00bc	11 33hc	30 33ho	24.00	BC:000	204./4
Spray yeast extract at 200 10			20.22.00	34.UUD	347.7ab	253.3bc
at 500 mill	11.33b	12.67ab	33.00b	37.67a	355 73	26030
Spray best flowers at 0.5 g/l	10 00hc	10.670	- 17/0		3	200.3aD
	20000	10.0/0	70.0/cd	29.67d	339.7b-d	242.7d
at 1.0 g/l	10.67bc	11.33bc	27.67cd	33 00hc	335 023	
Spray amino power at 0.5 ml/l	10 33ho	11 221		2000:00	DOO.CCC	744.0d
	0.2200	11.33bc	25.33d	30.00cd	335.3cd	243 74
	11.00bc	11 33hr	20 00 1	1000		
nost flores		7000011	70.00cd	33.67b	347.7ab	251.3c
_	9.33c	10.00c	24.67d	28 33d	345 Obo	, ,,,,

(25.33 and 30.00) during the first and second season, respectively.

These results are in harmony with those obtained by Hegab et al., (1997) on Valencia orange trees and Fawzi and Eman (2004) on Flame seedless grapevines.

IV.2.1.3- Leaf dry weight (mg.).

It is obvious from **Table (11)** that in both seasons, the highest dry weight of leaf was obtained from 75 ppm "GA₃" (355.3 and 264.3) followed by 300 ml/l "yeast extract" (355.7 and 260.3) and 50 ppm "GA₃" (249.0 and 253.7). On the contrary, the lowest dry weight of leaf was obtained from "control" (333.7 and 233.0) followed by 1.0 g./l "best flowers" (335.0 and 244.0) and 0.5 ml/l "amino power" (335.3 and 243.7) during the first and second season, respectively.

These results confirmed that reported by Singh et al., (2000) on Volkamarian rootstock as well as Omran and Abd El-Latif (2003) on Red Roomy grapevines. They reported that spraying with GA₃ or active dry yeast significantly increased dry weight of different plant organs.

IV.2.2- Leaf mineral composition

IV.2.2.1- Nitrogen (%).

It is obvious from **Table (12)** that, in both seasons, the highest value of leaf nitrogen content was obtained from 75 ppm "GA₃" (2.91 and 2.43) followed by 300 ml/l "yeast extract" (2.87 and 2.43) and 50 ppm "GA₃" (2.77 an 2.38). On the other hand, the lowest value of leaf nitrogen content was obtained from "control" (2.12 and 2.22) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (2.12 and 2.31), 0.5 ml/l "amino power" (2.17 and 2.30)

and 0.5 g/l "best flowers" (2.20 and 2.31) during the first and second season, respectively.

IV.2.2.2- Phosphorus (%).

It is clear from **Table (12)** that, in both seasons, the highest value of leaf phosphorus content was obtained from 75 ppm " GA_3 " (0.210 and 0.310) followed by 50 ppm " GA_3 " (0.190 and 0.270) and 300 ml/l "yeast extract" (0.153 and 0.213). On the contrary, the lowest value of leaf phosphorus content was obtained from "control" (0.110 and 0.130) followed by 50 ppm " GA_3 " + 150 ml/l "yeast extract + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (0.113 and 0.133), 0.5 ml/l "amino power" (0.117 and 0.147) and 0.5 g/l "best flowers" (0.127 and 0.157) during the first and second season, respectively.

IV.2.2.3- Potassium (%).

It is obvious from **Table (12)** that, in both seasons, the highest value of leaf potassium content was obtained from 75 ppm "GA₃" (1.42 and 1.40) followed by 50 ppm "GA₃" (1.37 and 1.39), 300 ml/l "yeast extract" (1.34 and 1.34). On the other hand, the lowest value of leaf potassium content was obtained from "control" (1.13 and 1.19) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower + 0.5 ml/l "amino power" (1.15 and 1.20), 0.5 ml/l "amino power" (1.18 and 1.20) and 0.5 g/l "best flowers" (1.20 and 1.21) during the first and second season, respectively.

IV.2.2.4- Calcium (%).

It is clear from **Table (12)** that, in the first season, the highest value of leaf calcium content was obtained from 0.5 g/l "best flower" (4.28 and 4.40) and 0.5 ml/l "amino power" (4.16 and 4.29). On the contrary, the lowest value of leaf calcium

Table (12): Some macro-nutrients contents (N, P, K, Ca and Mg) in leaves of Valencia orange Cv., as influenced by some stimulative compounds sprays and their combinations during both 2008 and 2009 seasons.

							0 0000	000000	7 71	
	N 1/0		b (%)	9	K (%)	(9)	Ca (%)	(%)	Mg (%)	(0/
- Lancarton F	(0Z) N	(0)			0000	0000	3000	2009	2008	2009
Learments	2008	2009	2008	2009	2002	2002	7000		4 1 2 2	
	3 126	2000	0 110f	0.130f	1.13e	1.19f	3.19g	3.33f	0.297d	0.233g
Spray tap water (control)	2.121	277	1001	407C 0	1 37ah	1.39a	3.33de	3.36d-f	0.370ab	0.330c
Spray GA, at 50 ppm	2.77b	2.38a	0.1900	0.7700	200				2000	0.410a
man skir i o	2 91a	2.43a	0.210a	0.310a	1.42a	1.40a	3.39d	3.43c-e	0.380a	0.410a
Spray GA3 at /5 ppm	1000	4000	0.150cd	0.207c	1.31c	1.32c	3.28ef	3.42c-e	0.373ab	0.333c
Spray yeast extract at 150 ml/l	7.730	7.320	0.100				107	2 446	0 380a	0.367b
1/1 m 1/1	2.87a	2.43a	0.153c	0.213c	1.34bc	1.34b	3.40d	3.440	20000	
Spray yeast extract at 300 mills			t c	0.15740	1 204	121f	4.28a	4.40a	0.317b-d	0.280de
Same best flowers at 0.5 g/l	2.20e	2.31b	0.12/et	0.13/de	1.500				•	- 100
Spirat pest months	7000	2.214	0.133de	0.163de	1.20d	1.27e	3.86c	3.44cd	0.370ab	0.2970
Spray best flowers at 1.0 g/l	D/7.7	2.310	2000			300.	4 164	40C L	0.2874	0.263ef
Mm 5.0 amino nomer at 0.5 ml/l	2.17ef	2.30b	0.117ef	0.147ef	1.18de	1.201	4.100	4.270	5	
Spray amino poner as one	2000	2 32h	0.150cd	0.170d	1.29c	1.30d	3.79c	3.44cd	0.357a-c	0.337c
Spray amino power at 1.0 ml/l	2775	7.770							ß	
Spray GA ₃ (50 ppm) + yeast (150 ml/l) + best flower (0.5 g/l)	2.12f	2.31b	0.113f	0.133f	1.15de	1.20f	3.21fg	3.35ef	0.300cd	0.2601
+ amino power (0.5 ml/l)								-		

Mean followed by the same letter's within each column are not significantly different from each other at 0.5 level.

content was obtained from "control" (3.19 and 3.33 and 50 ppm " GA_3 " + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (3.21 and 3.35) during the first and second season, respectively.

IV.2.2.5- Magnesium (%).

It is obvious from **Table** (12) that in both seasons, the highest value of leaf magnesium content was obtained from 75 ppm "GA₃" (0.380 and 0.410) followed by 300 ml/l "yeast extract" (0.380 and 0.367) and 150 ml/l "yeast extract" (0.373 and 0.333). On the other hand, the lowest value of leaf magnesium content was obtained from "control" (0.297 and 0.233) followed by 0.5 ml/l "amino power" (0.287 and 0.263), 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (0.300 and 0.260), 0.5 g/l "best flowers" (0.317 and 0.280) during the first and second season, respectively.

IV.2.2.6- Iron (ppm).

It is clear from **Table (13)** that in both seasons, the highest value of leaf iron content was obtained from 75 ppm "GA₃" (53.33 and 56.33) followed by 150 ml/l "yeast extract" (51.33 and 42.67) and 300 ml/l "yeast extract" (48.33 and 51.33). On the contrary, the lowest value of leaf iron content was obtained from "control" (39.33 and 38.67) followed by 0.5 ml/l "amino power" (39.67 and 39.00), 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flowers" (41.67 and 40.00) during the first and second season, respectively.

IV.2.2.7- Zinc (ppm).

It is clear from Table (13) that in both seasons, the highest value of leaf zinc content was obtained from 75 ppm

"GA₃" (35.33 and 35.67) followed by 50 ppm "GA₃" (33.33 and 34.33) and 300 ml/l "yeast extract" (32.67 and 30.67). On the contrary, the lowest value of leaf zinc content was obtained from "control" (18.67.33 and 19.00) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (20.33 and 19.33), 0.5 g/l "best flowers" (21.33 and 19.67) and 0.5 ml/l "amino power" (25.33 and 20.33) during the first and second season, respectively.

IV.2.2.8- Manganese (ppm).

It is obvious from **Table (13)** that in both seasons, the highest value of leaf manganese content was obtained from 75 ppm "GA₃" (31.33 and 29.67) followed by 75 ppm "GA₃" (34.00 and 26.67) followed by 50 ppm "GA₃" (33.33 and 22.33) and 300 ml/l "yeast extract" (31.33 and 26.00). On the other hand, the lowest value of leaf manganese content was obtained from "control" (19.33 and 22.33) followed by 0.5 g/l "best flowers" (20.00 and 22.67), 0.5 ml/l "amino power" (20.67 and 22.67) and 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (26.33 and 22.67) during the first and second season, respectively.

In this respect the present result is in agreement with that reported by **Abd El-Rahman** (2003) who mentioned that leaf N, Ca, Fe, Mn and Zn content of Washington navel orange trees were significantly maximized when the trees were sprayed with GA₃. on the other hand, **El-Saida** (2007) reported that spraying navel orange trees with active dry yeast led to elevate N, P, Ca, Mg, Fe, Zn and Mn concentrations in the leaves. The same result was obtained by **Bakry** (2007) on Java orange trees.

Table (13): Some micro-nutrients contents (Fe, Zn and Mn) in leaves of Valencia orange Cv., as influenced by some stimulative compounds sprays and their combinations during both 2008 and 2009 seasons.

			200	Sur zoog and zoog seasons	1 4007 505	SOUS.
Treatments	Fe (Fe (ppm)	Zn (Zn (ppm)	Mn	Mn (nnm)
	2008	2009	2008	2000	0000	(mdd)
Spray (an water (control)			2000	7007	2008	2009
(10mino)	39.33f	38.67e	18.67e	19.00e	19 336	22 22
Spray GA ₃ at 50 ppm	48.67c	46 330	22 22ah	24.00	2000	44.330
Sprav GA, at 75 ppm		2000	22.2340	34.33a	33.33a	26.33a
mdd cym can fa y	55.53a	56.33a	35.33a	35.67a	34.00a	26 673
Spray yeast extract at 150 ml/l	51.33b	42.67c-e	29 67hc	2000	1000	20.01
Spray veast extract of 300			20.00	20.00C	9/9//7	26.00a
I - J J - S CALL ACT AL JOO INLI	48.33c	51.33b	32.67ab	30.67h	31 220	26.00
Spray best flowers at 0.5 g/l	41 6730	10001			21.33a	20.00a
Shares I was	an/o.tr	40.00de	21.33e	19.67e	20.00c	22.67h
Spray Dest Howers at 1.0 g/l	42.00de	40 00de	25 6703	2000	100	
Spray amino nower at 0 5 mil	0	3	20.0.02	20.0/de	77.67b	24.67ab
A STATE OF THE STA	39.6/1	39.00e	25.33d	20.33de	20 670	77 676
Spray amino power at 1.0 ml/l	47 674	1, ,,,,			20:01	0/0.77
Spray GA2 (50 nnm) + yeart (150 -10)	D/0.71	45.33cd	29.67bc	23.00d	31.33a	25.33a
(0.5 g/I) + amino power $(0.5 m/I) + best flower$	40.33ef	41.33de	20 336	10 222	10000	
(Imm Cio)		1	00:01	17.336	20.336	77 674

IV.2.3- Fruiting parameters:

IV.2.3.1- Fruit set (%):

It is obvious from **Table (14)** from sprayed trees with yeast extract 300 ml/l (17.00 & 21.64) followed by spraying trees with GA₃ (at 50 ppm) + yeast (at 150 ml/l) + Best flower (at 0.5 g/l) + Amino power (at 0.5 ml/l) (17.33 & 21.67), respectively. On the other hand, the remaining treatments were intermediate between the two mentioned treatment and the control.

IV.2.3.2- Remaining fruits after June drop:

It is clear from **Table (14)** that, in both seasons the highest values of remaining fruits after June drop were obtained when Valencia orange trees were sprayed with yeast extract with 300 ml/l (22.67 & 26.67) followed by spraying trees with GA₃ (at 50 ppm) + yeast (at 150 ml/l) + Best flower (at 0.5 g/l) + Amino power (at 0.5 ml/l) (22.50 &26.00) for both seasons, respectively.

IV.2.3.3- Yield (kg/tree) and yield increment % in relation to the control.

Referring of spraying Valencia orange trees with different stimulative compounds on the mature fruits and the yield as kg/tree were obtained in **Table (14)** it is quite obvious that, generally the superiority treatment of both season was obtained when the trees sprayed with spraying trees with GA₃ (at 50 ppm) + yeast (at 150 ml/l) + Best flower (at 0.5 g/l) + Amino power (at 0.5 ml/l) (13.67 & 17.00) and (84.67 & 82.33), respectively.

On the other hand, GA₃ at 50 ppm treatments gave the lowest values of mature fruit percentage and the yield as kg/tree (6.67 & 10.00) (62.33 & 60.67), respectively.

Table (14): Effect of foliar sprays by some stimulative compounds on fruit set, remaining fruits after June drop and yield of Valencia orange trees during 2008 and 2009 seasons.

		,		2000	coo and 2007 seasons.	scasonis.				
Treatments	Fru	Fruit set %	Remain	Remain fruits after June drop %	Mature	Mature fruits (%)	Yield (Yield (kg/tree)	Yield (%)	Yield increment (%) over the
	2008	2000	3000						S	control
	000	5007	2002	2009	2008	2009	2008	2009	2008	2000
Spray tap water (control)	8.33g	11.67f	13.33f	16.33f	5 00F	2000	0000		200	5007
Spray GA ₃ at 50 ppm	10 32af	14 67	100		1000	9,00,0	gon.no	53.671	0.00i	0.00h
midd on the second	10.2361	14.0/e	D00.71	20.00e	e.67e	10.00f	62.33fg	60.67e	3.88h	13 040
Spray GA ₃ at 75 ppm	12.67cd	18.00cd	19.67c	23.33cd	P/9.6	12.33e	65.670	K1 224	0.460	SLOCA
Spray yeast extract at 150 ml/l	14 67cd	10 33hc	10000				0.00	04.330	9.451	19.86f
	70.0	17.3300	20.0/DC	25.33ab	12.33ab	14.67b-d	81.00b	75 67h	35 000	40.00
Spray yeast extract at 300 ml/l	17.00a	21.67a	22.67a	26 67a	13.885	16 05	100		300.00	40.990
Spray hest flowers of 0 5 mg	200			3	12.004	10.038	85.6/a	81.33a	39.45b	51.54b
r-1 201 101 101 201	9.331g	17.00d	P00'L1	21.00e	7.33e	12.33e	63 00F	65 003	000	
Spray best flowers at 1.0 g/l	14.00bc	18 67h d	10 272				100.00	000.00	3.00g	21.11e
		1000	17.330	D-0/5.52	10.33cd	13.33de	71.67c	70.00c	19 454	30 434
Spray amino power at 0.5 ml/l	11.33de	17.67cd	19.00c	23.00d	10 004	14 3204	500 47	1	30	DC+:00
Spray amino power at 1 0 ml/l	12 22ho	1 00 00	(00000	14.33Cd	D55.10	/0.33c	12.22e	31.04d
	13.3300	ZU.UUab	70.00c	25.00a-c	10.67b-d	15.33bc	71 67	J5 67k	10 45 1	
Spray GA ₃ (50 ppm) + yeast						200	71011	0/0.6/	19.45d	40.99c
(1.50 m//1) + best flower (0.5 g/l) + amino power (0.5 ml/l)	17.33a	21.67a	22.50a	26.00a	13.67a	17.00a	84.67a	82.33a	41.12a	53.409
									ACCESS SECTIONS	20.00

Considering the tree yield (kg) of Valencia orange in response to the investigated treatments, data represented in Table (14) disclosed clearly that, all treatments were used in this study gave a significant increase in yield per three in both 2008 and 2009 seasons as compared to watered trees (control). The highest yield in this respect resulted from trees sprayed with (GA₃ at 50 ppm + yeast extract at 150 ml/l + best flower at 0.5 g/l + amino power at 0.5 ml/l) followed by yeast extract at 300 ml/l treatments, respectively during both seasons of study.

With regard to the yield increment percentage as compared with yield of control trees, it is obvious from data in the same Table that, nearly a similar trend to that found with tree yield was detected during both 2008 and 2009 seasons.

Data of the present study, concerning of the effect of GA₃ and yeast extract sprays on fruit set, remaining fruit June drop and yield of Valencia orange trees agree with Smith (1992), El-Desouky (1997) and Bakry (2007).

IV.2.4- Fruit physical properties:

IV.2.4.1- Average fruit weight (g.).

It is obvious from **Table (15)** that in both seasons, the highest average weight of fruit was obtained from 75 ppm "GA₃" (316.6 and 322.0) followed by 300 "yeast extract" (302.5 and 321.5) and 50 ppm "GA₃" (294.7 and 312.0). On the other hand, the lowest average weight of fruit was obtained from "control" (189.4 and 208.0) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (195.3 and 222.7), 0.5 g/l "best flowers" (212.9 and 250.9) and 0.5 ml/l "amino power" (262.6 and 236.2) during the first and second season, respectively.

IV.2.4.2- Average fruit volume (ml).

It is clear from **Table** (15) that in both seasons, the highest average volume of fruit was obtained from 75 ppm "GA₃" followed by 300 ml/l "yeast extract" and 150 ml/l "yeast extract". Meanwhile, the lowest average volume of fruit in the first season was obtained from "control" followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" and 0.5 ml/l "amino bower". On the contrary, the highest average volume of fruit in the second season was obtained from 300 ml/l "yeast extract" followed by 75 ppm "GA₃", 150 ml/l yeast extract" and 50 ppm "GA₃". Meanwhile, the lowest average volume of fruit in the second season was obtained from "control" and 50 ppm "GA₃" + 150 ml/l yeast extract + 0.5 g./l "best flower" + 0.5 ml/l "amino power".

IV.2.4.3- Average fruit length (cm).

It is obvious from **Table (15)** that in both seasons, the highest average length of fruit was obtained from 75 ppm "GA₃" (7.63 and 8.37) followed by 300 ml/l "yeast extract" (7.54 and 7.91) and 50 ppm "GA₃" (7.64 ad 7.78). On the other hand, the lowest average length of fruit was obtained from "control" (6.51 and 6.65) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (6.59 and 6.82), 0.5 ml/l amino power" (7.01 and 7.00) and 0.5 g/l "best flowers" (7.39 and 7.48) during the first and second season, respectively.

IV.2.4.4- Average fruit diameter (cm).

It is clear from **Table (15)** that in both seasons, the highest average diameter of fruit was obtained from 75 ppm " GA_3 " (7.61 and 7.54) followed by 50 ppm " GA_3 " (7.61 and 7.41) and 300 ml/l "yeast extract" (7.60 and 7.37). On the

Table (15): Some fruit characteristics (average fruit weight, volume, length and diameter) of Valenica orange Cv., in response to some stimulative compounds sprays and their combinations during both 2008 and 2009 seasons.

Average fruit weight (g.) Average fruit weight volume (ml³) Average fruit weight (ml³) Average fruit (ml³) <t< th=""><th>in the same</th><th></th><th></th><th></th><th></th><th></th><th>· · · · · · ·</th><th>Average frill</th><th>I IIIII</th></t<>	in the same						· · · · · · ·	Average frill	I IIIII
2008 2009 <th< th=""><th></th><th>Average fru</th><th>nit weight</th><th>Average</th><th>e fruit (ml³)</th><th>Averag length</th><th>(cm.)</th><th>diameter (cm.)</th><th>r (cm.)</th></th<>		Average fru	nit weight	Average	e fruit (ml³)	Averag length	(cm.)	diameter (cm.)	r (cm.)
189.4f 208.0e 0.161e 0.159d 6.51c 6.65c 6 294.7bc 312.0ab 0.227ab 0.230b 7.64a 7.78b 7 316.6a 322.0a 0.243a 0.243ab 7.63a 8.37a 7 287.6bc 306.8ab 0.234ab 0.231b 7.54a 7.75b 7 302.5ab 321.5a 0.239ab 0.255a 7.54a 7.91b 7.91b 212.9e 250.9c 0.205c 0.197c 7.53a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Treatments			2008	2009	2008	2009	2008	2009
189.4f 208.0e 0.101e 0.107d 0.230b 7.64a 7.78b 7.78b 294.7bc 312.0ab 0.243ab 0.243ab 7.63a 8.37a 7.75b 287.6bc 306.8ab 0.234ab 0.231b 7.54a 7.75b 302.5ab 321.5a 0.239ab 0.255a 7.54a 7.91b 212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c		2004		0.121.0	0 1594	6 510	6.65c	6.23d	6.22f
294.7bc 312.0ab 0.227ab 0.230b 7.64a 7.78b 316.6a 322.0a 0.243a 0.243ab 7.63a 8.37a 287.6bc 306.8ab 0.234ab 0.231b 7.54a 7.75b 302.5ab 321.5a 0.239ab 0.255a 7.54a 7.91b 212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray tan water (control)	189.4f	208.0e	0.1016	0.1274				
316.6a 322.0a 0.243a 0.243ab 7.63a 8.37a 287.6bc 306.8ab 0.234ab 0.231b 7.54a 7.75b 302.5ab 321.5a 0.239ab 0.255a 7.54a 7.91b 212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spiral tap mars	294.7bc	312.0ab	0.227ab	0.230b	7.64a	7.78b	7.61a	7.41b
316.6a 3.22.0a 0.234ab 0.231b 7.54a 7.75b 287.6bc 306.8ab 0.234ab 0.231b 7.54a 7.75b 302.5ab 321.5a 0.239ab 0.255a 7.54a 7.91b 212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray GA3 at 50 ppm		0000	0.3430	0.243ah	7.63a	8.37a	7.61a	7.54a
287.6bc 306.8ab 0.234ab 0.231b 7.54a 7.75b 302.5ab 321.5a 0.239ab 0.255a 7.54a 7.91b 212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray GA, at 75 ppm	316.6a	322.Ua	0.2434	Onc. 7:0				1
302.5ab 321.5a 0.239ab 0.255a 7.54a 7.91b 212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	// m // to to to 150 m //	287.6bc	306.8ab	0.234ab	0.231b	7.54a	7.75b	7.47a	7.37b
302.5ab 321.5a 0.239ab 0.233a 7.34a 7.34a 212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray yeast extract at 150 min				0.055	7 540	7 91h	7 609	7.37b
212.9e 250.9c 0.205c 0.197c 7.39a 7.48b 276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Course speed avtract at 300 ml/l	302.5ab	321.5a	0.239ab	0.255a	/.J4a	017.7	100.7	
212.9e 230.9c 0.226ab 0.227b 7.53a 7.59a 276.9cd 292.1b 0.226ab 0.207b 7.63a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray yeast chiract at 500	0	20.030	0.2050	0.197c	7.39a	7.48b	7.34a	7.03d
276.9cd 292.1b 0.226ab 0.227b 7.53a 7.59a 262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray best flowers at 0.5 g/l	217.9e	250.90	0.202.0	2000			100000000000000000000000000000000000000	1
262.6d 236.2cd 0.180d 0.204c 7.01b 7.00c 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	and finds	776 9cd	292.1b	0.226ab	0.227b	7.53a	7.59a	7.53a	7.17c
262.6d 236.2cd 0.180d 0.204c 7.010 7.010 282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray best flowers at 1.0 g/1	20.017			1000	7.015	7 000	6 92b	e.60e
282.5b-d 303.3ab 0.221bc 0.224b 7.59a 7.64b 195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Caray amino nower at 0.5 ml/l	262.6d	236.2cd	0.180d	0.204c	010./	200.	2000	
282.3b-d 303.3d0 0.2210 0.170d 6.59c 6.82c	Spiral amino poner as	-	400 000	0.221hc	0 224h	7.59a	7.64b	7.40a	7.10cd
195.3ef 222.7de 0.165de 0.170d 6.59c 6.82c	Spray amino power at 1.0 ml/l	282.5b-d	303.3a0	0.44100	0.22				
100.001	Samuel CA (50 nnm) + veast (150 ml/l) + best	105 3ef	222 7de	0.165de	0.170d	6.59c	6.82c	6.64c	6.51e
_	Spray and Coppen John Committee and Committe	190.061	1111						

Mean followed by the same letter's within each column are not significantly different from each other at 0.5 level.

contrary, the lowest average diameter of fruit was obtained from "control" (6.23 and 6.22) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (6.64 and 6.51), 0.5 ml/l "amino power" (6.92 and 6.60) and 0.5 g/l "best flowers" (7.34 and 7.03) during the first and second season, respectively.

IV.2.4.5- Average peel thickness.

It is obvious from **Table** (16) that in both seasons, the highest average thickness of peel was obtained from 300 ml/l "yeast extract" (4.27 and 4.67) followed by 75 ppm "GA₃" (4.40 and 5.37) and 150 ml/l "yeast extract" (3.97 and 4.40). On the other hand, the lowest average thickness of peel was obtained from "control" (3.43 and 3.87) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (3.63 and 3.97), 0.5 g/l "best flowers" (3.57 and 3.63) and 0.5 ml/l "amino power" (3.93 and 4.03) during the first and second season, respectively.

IV.2.4.6- Average juice weight (g.).

It is obvious from **Table (16)** that in both seasons, the highest average weight of juice was obtained from 75 ppm "GA₃" (97.00 and 96.67) followed by 50 ppm "GA₃" (93.33 and 89.67) and 300 "yeast extract" (77.00 and 80.33). On the other hand, the lowest average weight of juice was obtained from "control" (55.00 and 53.83) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (60.00 and 61.33), 0.5 g/l "best flowers" (66.00 and 65.83) and 0.5 ml/l "amino power" (64.00 and 71.33) and during the first and second season, respectively.

Table (16): Some fruit characteristics (average peel thickness, juice weight and volume) of Valenica orange Cv., in response to some stimulative compounds sprays and their combinations during both 2008 and

2009 seasons.						
	Average neel	lee l	Average juice	e juice	Average juice	inice
	thickness (mm)	(mm)	weight (gm/fruit)	m/fruit)	volume (ml³/fruit)	ıl³/fruit)
Treatments	2008	2009	2008	2009	2008	2009
	3 43f	3.87de	55.00g	53.83g	68.75e	67.29e
Spray tap water (control)	4 07hc	-	93.33b	89.67b	116.66a	112.09a
Spray GA ₃ at 50 ppm	4.40a	5.37a	97.00a	96.67a	121.25a	120.84a
Spray GA3 at 15 ppm	3.97b-d	4.40bc	71.00d	73.73d	88.75c 92.16bc	92.16bc
Spray yeast extract at 150 mm	4 27ab	4.67b	77.00c	80.33c	96.25b	100.41b
Spray yeast extract at 500 III/I	3 57ef	3.63cd	66.00e	65.83e	82.50c	82.29cd
Spray best flowers at 0.5 g/1	3 90c-e	4.13cd	67.00e	73.17d	83.75c	91.46bc
Spray best flowers at 1.0 g/1	3 93h-d	4.03cd	64.00e	71.33d	80.00cd	89.16cd
Spray amino power at 0.3 m//	3.83c-e	3.90de	71.00d	72.67d	88.75c	90.84bc
Spray GA ₃ (50 ppm) + yeast (150 ml/l) + best flower (0.5 g/l)	3.63d-f	3.63d-f 3.97de	90.009	61.33f	75.00de	76.66de
+ amino power (0.5 mi/1)				. 9		

Mean followed by the same letter's within each column are not significantly different from each other at 0.5 level.

IV.2.4.7- Average juice volume (ml).

It is clear from **Table** (16) that in both seasons, the highest average volume of juice was obtained from 75 ppm "GA₃" (121.25 and 120.84) followed by 50 ppm "GA₃" (116.66 and 112.09) and 300 ml/l "yeast extract" (96.25 and 100.41). On the contrary, the lowest average volume of juice was obtained from "control" (68.75 and 67.29) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" (75.00 and 76.66), 0.5 ml/l "amino bower" (80.00 and 89.16) and 0.5 g/l "best flowers" (82.50 and 82.29) during the first and second season, respectively.

These results are in agreement with the findings of Mansour (1998) on Anna apple and Tawfik (2001) on Balady mandarin trees.

IV.2.5- Fruit chemical properties:

IV.2.5.1- Total soluble solids (%) (TSS).

It is obvious from **Table** (17) that the highest values of T.S.S. in the first season were obtained from 150 ml/l "yeast extract followed by 1.0 g/l "best flowers" and "control". Meanwhile, the lowest values of T.S.S. in the first season were obtained from 0.5 g/l "best flowers" followed by 50 ppm "GA₃" + 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml/l "amino power" and 0.5 ml/l "amino power". On the other hand, the highest values of T.S.S. in the second season were obtained from 0.5 g/l "best flowers" followed by 150 ml/ "yeast extract" and "control". Meanwhile, the lowest values of T.S.S. in the second season were obtained from 50 ppm "GA₃" + 150 ml/l "yeast extract + 0.5 g/l "best flower" + 0.5 ml/l "amino power"

followed by 300 ml/l "yeast extract" and 0.5 ml/l "amino power".

IV.2.5.2- Total acidity (%).

It is clear from **Table (17)** that in both seasons, the highest values of acidity were obtained from 150 ml/l "yeast extract" (1.71 and 1.69) followed by 1.0 g/l "best flowers" (1.69 and 1.71) and 0.5 g./l "best flowers" (1.66 and 1.66). On the contrary, the lowest values of acidity were obtained from 300 ml/l "yeast extract" (1.37 and 1.40) followed by 50 ppm "GA₃" + 150 ml/l "yeast extract + 0.50 g./l "best flower" + 0.5 ml/l "amino power" (1.43 and 1.44 and 75 ppm "GA₃" (1.42 and 1.51) during the first and second season, respectively.

IV.2.5.3- TSS/acidity.

It is obvious from **Table** (17) that in both seasons, the highest values of TSS/acidity were obtained from 300 ml/l "yeast extract" (1.312 and 1.391) followed by 75 ppm "GA₃" (1.508 and 1.425) and 50 ppm "GA₃"+ 150 ml/l "yeast extract" + 0.5 g/l "best flower" + 0.5 ml "amino power" (1.422 and 1.459). On the other hand, the lowest values of TSS/ acidity were obtained from 1.0 g/l "best flowers" (1.296 and 1.294) followed by 0.5 ml/l "amino power" (1.318 and 2.265) and 150 ml/l "yeast extract" (1.312 and 1.391) during the first and second season, respectively.

IV.2.5.4- L. ascorbic acid.

It is clear from **Table (17)** that in both seasons, the highest values of L. ascorbic acid were obtained from 75 ppm " GA_3 " (16.07 and 16.03) followed by 50 ppm " GA_3 " (14.97 and 15.33) and 150 ml/l "yeast extract" (13.47 and 14.40). On the

contrary, the lowest values of L. ascorbic acid were obtained from 1.0 ml/1 "amino power" (11.00 and 11.17) followed by 0.5 ml/l "amino power" (11.37 and 11.47), 1.0 g./l "best flowers" (11.37 and 11.60) and 50 ppm " GA_3 " + 150 ml/l "yeast extract + 0.5 g/l "best flowers" + 0.5 ml/l "amino power" (11.40 and 11.83) during the first and second season, respectively.

Data of the present study, concerning the effect of GA₃ and yeast extract sprays on fruit chemical properties of Valencia orange agree with those obtained by **Mansour (1998)** on Anna apple and **Badawy-Sabah (2005)** on Balady mandarin trees.

Table (17): Some fruit chemical properties (T.S.S, acidity, TSS/acid ratio and vitamin C) of Valencia orange Cv., in response to some stimulative compounds sprays and their combinations during both 2008 and 2009 seasons.

alla 2009 seasons.				-			1	Lio oid
	T.S.S %	%	Acidity %	y %	TSS/acidity ratio	ty ratio	(mg/100 ml juice)	nt juice)
Treatments				9	0000	9000	2008	2009
	2008	2009	2008	2009	2007	7007		
	21 83h	22 20h	1.65ab	1.64ab	1.325c	1.354b-d	13.23c	13.54b-d
Spray tap water (control)	0.00.12	207.10	1 50h-d	1.55a-d	1.447a-c	1.383a-d	14.42a-c	13.81a-d
Spray GA ₃ at 50 ppm	2000.12	704.17	2000	11.7	1 508a-h	1 42.5a-c	15.05a-b	14.22a-c
Spray GA ₃ at 75 ppm	21.37cd	21.47c	1.4200	n-01C.1	1.000	100	12 120	13 80a-C
//m 051 to to 150	22.43a	23.47a	1.71a	1.69a	1.312c	1.391a-c	13.120	10.07
Spray yeast extract at 150 mil			1 274	1 404	1.545a	1.513a	15.45a	15.09a
Spray yeast extract at 300 ml/l	21.17d	21.13cd	n/C-1		1 0204	1 400a-d	10.28d	13.98a-d
1 Last florings at 0 5 of	17.07f	23.20a	1.66ab	1.66ab	1.050d	1.400a a		
Spray best flowers at 0.2 g/1	100	22 12h	1 693	1.71a	1.296c	1.294cd	12.96c	12.94cd
Spray best flowers at 1.0 g/l	21.900	061.77	1.0.1		1 2102	1 2654	13.21c	12.65d
Mm 5.0 mino nower at 0.5 mM	20.47e	21.13cd	1.55a-c	1.6/ab	1.3180	DC07.1		
Spiray amino Ponci es es	21 27cd	22 13h	1.55a-c	1.58a-c	1.376bc	1.403a-d	13.79bc	14.01a-d
Spray amino power at 1.0 ml/1	DO/ C.12	601.77						9 9 6
Spray GA ₃ (50 ppm) + yeast (150 ml/l) + best flower (0.5 g/l)	20.33e	20.97d	1.43cd	1.44cd	1.422a-c	1.459ab	14.22a-c	14.56ab
+ cmino nower (0.5 ml/l)		,						