

RESULTS AND DISCUSSION

4-RESULTS and DISCUSSION

4.1. Tree growth

The effect of organic manure sources, namely cattle, poultry and rabbit, method of organic manure application *i.e.* surface and trench and biofertilizers namely Rhizobacterien and Nitrobien as well as their combination on tree growth of Washington navel orange during 2000 and 2001 seasons expressed as growth cycles (duration and intensity), increase in shoot length during different growth cycles, increase in number of leaves in each growth cycles and some leaf parameters *i.e.* surface area, leaf shape index, leaf chlorophyll (*a*) & (*b*) and leaf dry weight is presented in Tables (3-25).

4.1.1. Growth cycles duration

Data reported in **Tables (3 & 4)** show the effect of organic manure source, method of organic manure application and biofertilizers as well as their interactions on the growth cycles of Washington navel orange trees during 2000 and 2001 seasons.

Generally, under conditions of Kalubia Governorate, growth of Washington navel orange trees commenced on January, 27th and January, 26th in 2000 and 2001 seasons, respectively.

Furthermore, tree growth occurred in four distinctive and consecutive cycles *i.e.* one in spring, two during summer and one in autumn. The spring growth cycle of poultry manured trees fertilized in trenches and inoculated with Rhizobacterien started on January, 27th and January, 26th and continued till April, 2nd and April, 3rd in the first and second seasons, respectively (about 65 and 67 days duration). On the

contrary, cattle manured trees, fertilized superficially and inoculated with Rhizobacterien commenced spring growth cycle on February, 1st and January, 31st and continued till April, 1st and April, 2nd in 2000 and 2001 seasons, respectively (about 60 and 62 days duration). Shortly, all tested combinations of tested three factors *i.e.* organic manure source, method of organic manure application and biofertilizers exerted considerably similar effect on spring growth cycle duration except for the combinations of cattle manure applied superficially or in trenches and fertilized with Rhizobacterien or Nitrobien which showed comparatively shorter spring growth cycle duration (59 – 63 days).

On the other hand, the new growth of the first summer growth cycle of poultry manured trees, fertilized in trenches and inoculated with Rhizobacterien peeped out on April, 19th and April, 20th and ceased on May, 27th and May, 27th in the first and second seasons, respectively (about 38 and 37 days). Other tested interactions recorded about 31- 36 days duration for the first spring growth cycle. Moreover, the growth of the second summer cycle began on June, 18th and June, 17th for those trees fertilized with poultry manure applied in trenches and inoculated with Rhizobacterien and ceased on August, 19th and August, 20th with duration of about 62 and 64 days for the first and second seasons, respectively. On the contrary, cattle manured trees, fertilized superficially and inoculated with Nitrobien recorded the shortest duration for the second summer growth cycle (55 and 57 days) in 2000 and 2001 seasons, respectively. Other studied interactions scored intermediate values for the second summer growth cycle.

In summary, poultry manure applied in trenches and supported with Rhizobacterien prolonged the annual growth cycle (228 and 233 days), followed descendingly by poultry manured trees, fertilized in trenches and inoculated with Nitrobien (220 and 225 days) in the first and second seasons, respectively. On the contrary, cattle manured trees, fertilized superficially and inoculated with Nitrobien recorded the shortest annual growth (207 days) in both seasons. The other studied combinations scored intermediate values of annual growth cycle (208 – 223 days). The growth of autumn cycle of poultry manured trees, fertilized in trenches and inoculated with Rhizobacterien began on August, 24th and August, 22nd and ceased on October, 25th and October, 26th with duration of about 63 and 65 days for the first and second seasons, respectively. On the contrary, the shortest autumn growth cycle duration was shown on cattle manured trees, fertilized superficially and inoculated with Nitrobien (about 55 and 57 days) in the first and second seasons, respectively. Other tested interactions showed comparatively inbetween values regarding autumn growth cycle duration (58 – 63 days).

The obtained results of growth cycles of Washington navel orange trees in the present study go in line with the findings of **Helail and Awad** (1993). They mentioned that under conditions of Kalubia Governorate, growth of Washington navel orange trees commenced on January, 31st and 29th and ceased on October, 25th and 21st in 1990 and 1991 seasons, respectively. They added that tree growth occurred in four distinctive cycles *i.e*, one in spring, two during summer and one in autumn.

4.1.2. Growth intensity (No. of shoots/branch)

The effect of organic manure source, method of organic manure application and biofertilizers as well as their interactions on growth intensity (No. of shoots/branch) of growth cycles of Washington navel orange trees during 2000 and 2001 seasons is reported in **Tables (5-9)**.

It is quite clear from **Table (5)** that fertilizing Washington navel orange with poultry manure significantly increased growth intensity of spring growth cycle (39.13 shoots/branch), first summer growth cycle (19.75 shoots/branch). second summer growth cycle (17.42 shoots/branch) and autumn growth cycle (10.25 shoots/branch) with grand average (21.7 shoots/branch) against (34.80, 15.75, 13.20 and 8.10 shoots per branch for spring, first and second summer and autumn growth cycles of cattle manured trees, respectively, with grand average (17.90 shoots/branc). On the other hand, rabbit manured trees scored 37.28, 17.75, 15.43 and 8.80 shoots/branch for spring, first and second summer growth cycles and autumn growth cycle, respectively with grand average (19.83 shoots/branch). However, differences between the three studied organic manure sources regarding No. of shoots/branch of different growth cycles were more obvious to reach the significance level at 5% level.

Furthermore, the application of organic manure in trenches surpassed the surface application regarding the number of produced shoots per branch of spring, first and second summer and autumn growth cycles during 2000 and 2001 seasons (Table, 5).

In addition, it is obvious from **Table (5)** that biofertilizing Washington navel orange trees with Rhizobacterien significantly enhanced growth intensity of different growth cycles (spring, first, second summer and autumn) as compared with the analogous ones inoculated with Nitrobien.

On the other hand, **Table (6)** demonstrates that fertilizing Washington navel orange trees with poultry manure firstly in trenches and secondly superficially induced the highest stimulative effect on growth intensity of spring, first and second summer and autumn growth cycles. On the contrary, cattle manured trees particularly those fertilized superficially

exerted the lowest positive effect in this concern. Besides, rabbit manured trees with the superiority to those trenches fertilized in occupied an intermediate position between the previously two mentioned categories. However, differences between all the tested combinations were significant in the side of poultry manure and trench application.

Moreover, Table (7) indicates that in both seasons, the application of Nitrobien and the trench application method proved to be the most effective combinations in enhancing growth intensity of different growth cycles. Besides, the addition of Nitrobien and surface application of organic manure exerted similar effect to that of interaction between Rhizobacterien and trench application. On the contrary, biofertilizing with Rhizobacterien when interacted with surface method of organic manure application gave comparatively the lowest values of growth intensity of growth cycles. However, significant differences were obvious between the different studied combinations.

Additionally, the interaction between organic manure source and biofertilizers shows that in both seasons the highest values of growth intensity (number of shoots per branch) of spring, first and second summer and autumn growth cycles were shown in descending order with the studied combinations as follows: (poultry manure x Nitrobien), (poultry manure x Rhizobacterien), (rabbit manure x Nitrobien), (rabbit manure x Rhizobacterien), (cattle manure x Nitrobien) and (cattle manure x Rhizobacterien) (Table, 8).

Furthermore, the interaction between organic manure source, method of organic manure application and biofertilizers demonstrates that poultry manured trees, fertilized in trenches firstly or superficially and inoculated with Rhizobacterien recorded the highest values of growth intensity (number of shoots per branch of different growth cycles). Besides, trees

fertilized with poultry manure applied in trenches or superficially and inoculated with Nitrobien and those manured with rabbit manure applied in trenches and fertilized with Rhizobacterien exerted positive effect in this respect. On the contrary, cattle manured trees applied superficially and fertilized with Nitrobien or Rhizobacterien exerted the lowest positive effect in this concern. Other studied combinations occupied an intermediate position between the previously mentioned categories regarding their effect on growth intensity (number of shoots per branch) of the different growth cycles (Table, 9).

Table (3): Effect of organic manure source, method of application and biofertilizer on growth cycles of Washington navel orange trees (2000 season).

				6		- Trans		6								
				o D	Spring growin	OWILL		N N	Summer growth cycle	OWIN	Sycie		Aut	Autumn growtn	rowth	Annual
Organic	App	Application	Biotertilizer		cycle	a .		1st cycle	<u>е</u>		2nd cycle	e ;		cycle	a ,	growth
Manure	Ž.	method	N-fixing	Beg.	End	Duratio	Beg.	End	Duratio	Beg.	End	Duratio	Beg.	End	Duratio	(days)
source	•	50100	bacteria			=			ᆮ			_			_	
						(days)			(days)			(days)			(days)	
	c		→ Nitrobien	1/2	1/4	po 09	23/4	26/5	33 cd	22/6	18/8	57 bcd	27/8	24/10	58 bc	208 bc
Cattle	in L	Surface →	→ Rhizobacterien	1/2	31/3	p 69	24/4	25/5	31 d	23/6	17/8	25 d	28/8	23/10	29 c	207 c
manure	ŀ	_	→ Nitrobien	31/1	1/4	61 bcd	23/4	26/5	33 cd	22/6	18/8	57 bcd	27/8	24/10	58 bc	209 bc
Busi	<u>•</u>	↑	→ Rhizobacterien	31/1	31/3	po 09	23/4	25/5	32 cd	22/6	17/8	26 cd	27/8	23/10	61 ab	209 bc
	4		→ Nitrobien	28/1	1/4	63 ab	20/4	26/5	36 ab	19/6	18/8	60 ab	27/8	24/10	61 ab	220 ab
Poultry	ing L	Surface →	 Rhizobacterien 	29/1	31/3	61 bcd	21/4	25/5	34 bc	20/6	17/8	58 bcd	25/8	23/10	59 bc	212 bc
manure			→ Nitrobien	27/1	2/4	65 a	19/4	27/5	38 a	18/6	19/8	62 a	24/8	25/10	63 a	228 a
Eq.	<u>.</u> •	t Irench →	→ Rhizobacterien	28/1	1/4	63 ab	20/4	26/5	38 a	19/6	18/8	60 ab	26/8	24/10	61 ab	220 ab
	ć	_	→ Nitrobien	30/1	1/4	61 bcd	22/4	26/5	34 pc	21/6	18/8	58 bcd	26/8	24,10	29 pc	212 bc
Rabbit	ing t	Surrace —	→ Rhizobacterien	30/1	1/4	61 bcd	22/4	26/5	34 pc	21/6	18/8	58 bcd	26/8	24/10	59 bc	212 bc
manure	,		→ Nitrobien	31/1	2/4	62 bc	23/4	27/5	34 pc	22/6	19/8	58 bcd	27/8	25/10	59 bc	213 bc
THE STREET	<u>+</u>	l rencn	- Rhizobacterien	31/1	1/4	po 09	23/4	26/5	33 pc	22/6	18/8	59 abc	27/8	24/10	58 bc	210 bc
Means wit	thin eac	h column,	Means within each column, followed by the same letter(s) are not significantly different at 5% level	same	letter	(s) are r	ot sig	nificar	ntly diffe	renta	t 5%	evel.				

Table (4): Effect of organic manure source, method of application and biofertilizer on growth cycles of Washington navel orange trees

Application B method		())
	Biofertilizer	Z)	Spring growth	rowth		S	Summer growth cycle	rowth	cycle			it imn	17.000	
	N-fixing		- 1	o l		1st (cle		2nd cycle	G G	ć	IIII I	Molg IIII	Annual
	hartoria	peg.	End	Duratio	Beg.	End	Duratio	Bed			- 1	- 1	9	growth
	מכופוום			n (dave)	Ē.		L ,	ń		Duratio	geg.	End	Duratio	(days)
TIN	Nitrobien	34/1	NIC	600	1		(days)			(days)			(davs)	
Surface →			7	3	74/4	26/5	32 c	21/6	19/8	59 bcd	26/8	25/10	62 h	04E kg
₹ KI	→ Knizobacterien	31/1	1/4	61 d	25/4	26/5	31 c	22/6	18/8	57 cd	9770		7 1	DOG 617
Trench Nitrobien	obien	30/1	2/4	63 bcd	24/4	26/5	24.5		5 6	3	0//7	24/10	28c	207 d
A Rhiz	Rhizobactorion	7700	3		-	007	<u>ာ</u>	21/6	19/8	58 pcd	26/8	25/10	62 b	214 bcd
	zonaciei iei	700	1/4	62 cd	24/4	25/5	31 c	21/6	18/8	58 hod	0/30	07/70	?	
Surface Tritrobien	obien	29/1	2/4	64 bc	21/4	26/5	35 h	10/6	10/0	3 -	0/07	74/10	910	212 cd
- Rhizobacte	zobacterien	30/1	1/4	62 00	7700	i	3	0/0	3/0	ol abc	23/8	25/10	63 ab	223 abc
1		5		20 20	477	5/57	33 pc	19/6	18/8	60 abcd	23/8	24/10	61.4	240 1-1
Trench → Nitrobien	opien	26/1	3/4	67 a	20/4	27/5	37 a	17/6	20/8	64.9	0/00	0.400	- L	7 IO DCG
¬ Rhizobacte	obacterien	27/1	2/4	65 ab	21/4	26/5	35 h			3 .	0/77	70/10	65 a	233 a
Nitrohien	hien	2014	110			5	3		3/8	62 ab	23/8	25/10	63 ab	225 ab
Surface →		1/67		04 DC	23/4	26/5	33 bc 2	20/6	19/8	30 abcd	25/8	25/10	4	
- Khizo	► Khizobacterien	29/1	2/4	64 bc	23/4	26/5	33 bc	20/6	10/8	SO obed				ZIO DCd
Trench → Nitrobien	bien	30/1	3/4 (64 bc	24/4	27/5				o and				218 bcd
- Rhizo	obacterien	30/1	2/4	63 hod 53	NVC	2/20	1 0	2 :		on apod	8/97	26/10	63 ab	220 bc
Means within each column, followed by the column followed by the col	wed hy thou			7	7 +/+-	6/07	33 DC 7	71/6	9/8	60 abcd	26/8 2	25/10	62 h	206 4

Table (5): Specific effect of organic manure source, application method and biofertilizer on number of shoots per branch of Washington navel orange trees (2000 and 2001 seasons).

				-	No. o	No. of Shoots per branch	s per b	ranch					
	Spr	Spring growth	wth		Su	Summer growth cycle	owth c	/cle		Autı	Autumn growth	owth	Grand
Factor		cvcie			1st cycle	9		2nd cycle	е		cycle		Average
	(2000)		Average	(2000)	(2001)	(2001) Average	(2000)	(2001)	(2000) (2001) Average	(2000)	(2001)	(2001) Average	
		Ŧ	12		a. Effe	ct of or	ganic	nanur	a. Effect of organic manure source	a)			
Cattle manure	34.25 c	35.35 c	34.80 c	15.35 c	16.17 с	15.75 c	12.15 c	12.15 c 13.88 c	13.20 c	7.90 c	8.23 c	8.10 b	17.90 с
Poultry manure	38.53 a	39.63 a	39.13 a	19.35 a	20.15 a	19.75 a	16.52 a	18.33 a	17.42 a	10.07 a	10.21 a	10.25 a	21.71 a
Rabbit manure	36.58 b	37.92 b	37.28 b	17.35 b	18.15 b	17.75 b	14.48 b	14.48 b 16.27 b	15.43 b	8.63 b	8.90 b	8.80 b	19.83 b
					b.E	b. Effect of application method	applica	ation n	nethod				
Surface	35.88 b	37.17 b	36.55 b	16.90 b	17.70 b	17.30 b	13.80 b	15.58 b	14.68 b	8.37 b	8.68 b	8.55 b	19.28 b
Trench	37.02 a	38.10 a	37.58 a	17.80 a	18.62 a	18.20 a	14.97 a	16.75 a	15.90 a	9.37 a	9.54 a	9.55 a	20.34 a
						c. Effect of biofertilizer	t of bic	fertili	zer				
Nitrobien	35.93 b	37.17 b	36.57 b	16.97 b	17.78 b	17.37 b	13.85 b	13.85 b 15.63 b	14.75 b	8.63 b	8.88 b	8.83 b	19.41 b
Rhizobacterien	36.97 a	38.10 a	37.57 a	17.73 a	18.53 a	18.13 a	14.92 a	16.70 a	15.83 a	8.10 b	9.34 a	9.27 a	20.22 a
Means within each column.		ed by th	e same	letter(s	are no	tsignific	antly di	ferent	followed by the same letter(s) are not significantly different at 5% level.	el.			

Table (6): Effect of interaction between organic manure source and application method on number of shoots per branch of Washington navel orange trees (2000 and 2001 seasons).

			STATE	-										
Organic	\triangleleft	4	Spring growth	owth		No.	No. of Shoots per branch	ts per	branch					
manure	method		cvcle			SL	Summer growth cycle	rowth o	sycle		Δ114	1		31
		(2000)	1	(2001) Average (2000)	10000/	-	е		2nd cycle	a	Š	drum growth	owth	Grand
			1	and and	(2000)	- 1	(2001) Average	(2000)	(2004)	A	1000	cycle		Average
Cattle	Surface	33.75 f	34.85 e	34.30 f	14.85 f	15 65 f	15.05		(2001)	(2001) Average	(2000)	(2001)	Average)
	1					200	9 07:01	11.85 f	13.35 f	12.05 f 7.45 b	7.45 b	7 80 4	7.05	
	Lench	34.75 e	35.85 d	35.30 e	15.85 e	16.70 e	16.25 d	19.65					D CO. /	17.40 e
	Surface	27.07.				(i) (i)	0.4.0.	12.03 6	14.90 e	13.55 e	8.35 b	8.65 c	8 55 0	10 40
Poultry >	odilace	37.85 b	38.95 b	38.45 b	18.95 b	19.75 b	19.35 a	15 85 h	47 CF L					18.40 d
	▼Trench	39 20 3	7000						0 00.71	16.75 b	9.80 a	10.10 ab	9.95 ab	21.32 h
			40.30 a	39.80 a	19.75 a	20.55 a	20.15 a	17.20 a	19 00 2	10 10				0.40.14
Pohrit.	-Surface	36.05 d	37.70 c	36.90 d	16 90 4	. 07.7			9		10.35 a	10.32 a	10.55 a	22.10 a
Vappil 7	F.					007.71	17.30 c	13.90 d 15.70 d	15.70 d	14.80 d	7.85 b	8.15 d	8 05 24	
	Hench	37.10 c	38.15 c	37.65 c	17.80 c 18.60 c	18.60 c	18 20 h	15.05.0				,	2000	19.50 c
Means with	Means within each column, followed by the same lotto-//	in, follo	wed by	thesamo	104001		0.04:0.	13.03 C	10.85 c	16.05 c	9.40 a	9.65 b	9.55 b	20150
				alo calla	letter	s) are n	ot signific	cantly o	lifferent	at 5% lev	0			2

Table (7): Effect of interaction between application method and biofertilizer on number of shoots per branch of Washington navel orange trees (2000 and 2001 seasons).

						No.	No. of Shoots / branch	ts / bra	anch					
Method of		Spr	Spring growth	wth		Sur	Summer growth cycle	owth cy	cle,		Autı	Autumn growth	owth	Grand
application	Bioterilizer		cycle			1st cycle	o o	2	2 nd cycle	е		cycle		Average
=		(2000)	(2001)	Average	(2000)	(2001)	Average	(2000)	(2001)	(2000) (2001) Average (2000) (2001) Average (2000) (2001) Average (2000) (2001) Average	(2000)	(2001)	Average	
	-Nitrobien	35.37 c	35.37 c 36.83 c	36.10 c	16.53 c	17.33 c	16.53 c 17.33 c 16.93 c	13.30 c	15.10 c	13.30 c 15.10 c 14.20 c 8.17 c 8.47 c	8.17 c	8.47 c	8.37 c	18.90 c
Surface≯	Rhizobacterien	36.40 b	36.40 b 37.50 b	37.00 b	17.27 b	18.07 b	17.67 b	14.30 b 16.03 b	16.03 b	15.17 b	8.57 c	8.90 bc	8.73 c	19.67 b
	Witrobien	36.50 b	37.50 b	37.03 b	17.40 b	17.40 b 18.23 b	17.80 b 14.40 b 16.17 b	14.40 b	16.17 b	15.30 b	9.10 b	9.29 ab	9.30 b	19.91 b
Trench →		37.53 a	37.53 a 38.70 a	38.13 a	18.20 a	18.20 a 19.00 a	18.60 a	15.53 a 17.67 a	17.67 a	16.50 e	9.63 a	9.79 a	9.30 a	20.77 a
Means wi	Means within each column,		ed by th	ne same	letter(s)	are not	: significa	antly dif	ferent a	followed by the same letter(s) are not significantly different at 5% level	<u>e</u>			

Table (8): Effect of interaction between organic manure source and biofertilizer on number of shoots per branch of Washington navel orange trees (2000 and 2001 seasons).

Biofertilizer Summer growth cycle Summer growth cycle cycle 1st cycle 2nd cycle (2000) (2001) Average	Organic		(No. o	No. of Shoots per branch	s per t	ranch			-		
Cycle 1st cycle (2000) (2001) Average (2000) (2001) Average (2000) *Nitrobien 33.75 f 34.80 e 34.25 e 14.90 f 15.75 f 15.30 d 11.60 f 15.00 a 12.00 a 12.15 a 12.15 a 12.10 a 12.10 a 17.15 a 12.10 a 17.10 a	maniro	Biofertilizer	do	ring gro	owth		Su	mmer gr	owth c	ycle		Aut	Aufumn growth	Owith	Grand
Cu000 Cu001 Average Cu000 Cu001 Average Cu000	5			cycle			1st cycl	e		2nd cvc	0		olovo alovo	OWE	Average
Hitrobien 33.75			(2000)	(2001)	Average	(2000)	(2001)	Average	(2000)	(2001)	Average	(2000)	(2004)	Avorono	Avel age
Rhizobacterien 34.75 e 35.90 d 35.35 d 15.80 e 16.60 e 16.20 c 12.70 e 14.90 e -Nitrobien 37.90 b 39.00 b 38.50 b 19.00 b 19.80 b 19.40 a 15.90 b 17.70 b -Rhizobacterien 39.15 a 40.25 a 39.75 a 19.70 a 20.50 a 20.10 a 17.15 a 18.95 a -Nitrobien 36.15 d 37.70 c 36.95 c 17.00 d 17.80 d 17.40 b 14.05 d 15.85 d 15.85 d -Rhizobacterien 37.00 c 38.15 c 37.60 c 17.70 c 18.50 c 18.10 b 14.90 c 16.70 c	Cattle →	-Nitrobien	33.75 f	34.80 e	34.25 e	14.90 f	15.75 f	15.30 d	11.60 f	13.35 f	12.50 f	7.45 c	7.75 c	7.65 c	17.40 f
-Nitrobien 37.90 b 39.00 b 38.50 b 19.00 b 19.80 b 19.40 a 15.90 b 17.70 b -Rhizobacterien 39.15 a 40.25 a 39.75 a 19.70 a 20.50 a 20.10 a 17.15 a 18.95 a -Nitrobien 36.15 d 37.70 c 36.95 c 17.00 d 17.80 d 17.40 b 14.05 d 15.85 d -Rhizobacterien 37.00 c 38.15 c 37.60 c 17.70 c 18.50 c 18.10 b 14.90 c 16.70 c		Rhizobacterien	34.75 e	35.90 d	35.35 d	15.80 e	16.60 e	16.20 c	12.70 e	14.90 e	13.55 e	8.35 b	8.70 b	8.55 b	18 40 6
-Rhizobacterien 39.15a 40.25a 39.75a 19.70a 20.50a 20.10a 17.15a 18.95aNitrobien 36.15d 37.70c 36.95c 17.00d 17.80d 17.40b 14.05d 15.85dRhizobacterien 37.00c 38.15c 37.60c 17.70c 18.50c 18.10b 14.90c 16.70c	Poultry	Nitrobien	37.90 b	39.00 b	38.50 b	19.00 b	19.80 b	19.40 a	15.90 b	17.70 b	16.80 b	9.95 a	10.08 a	10.15 a	21 15 h
Nitrobien 36.15 d 37.70 c 36.95 c 17.00 d 17.80 d 17.40 b 14.05 d 15.85 d		→Rhizobacterien	39.15 a	40.25 a	39.75 a	19.70 a	20.50 a	20.10 a	17.15 a	18.95 a	18.05 a	10.20 a	10.33 a	10 35 a	22.22
-Rhizobacterien 37.00 c 38.15 c 37.60 c 17.70 c 18.50 c 18.10 b 14.90 c 16.70 c	Rabbit→	Nitrobien	36.15 d	37.70 c	36.95 c	17.00 d	17.80 d	17.40 b	14.05 d	15.85 d	14.95 d	8.50 b	8.80 b	8.70 b	1930 d
			37.00 c	38.15 c	37.60 c	17.70 c	18.50 c	18.10 b	14.90 c	16.70 c	15.90 c	8.75 b	.00 6	ά α	30.00
Means within each column, followed by the same letter(s) are not significantly different at 5% longi	Means with	in each column,	followe	d by th	e same le	etter(s)	are not	significa	ntly diff	oront o	10/ 10:10			0.30 0	20.35 C

Table (9): Effect of interaction between organic manure source, application method and biofertilizer on number of shoots per branch of Washington navel orange trees (2000 and 2001 season).

							No. o	f Shoo	ts per	No. of Shoots per Branch	ť				
Organic		Biofertilizer	Spr	Spring growth	wth		Sul	Summer growth cycle	rowth c	ycle		Autu	Autumn growth	owth	Grand
Manire	Application	N-fixing		cycle	**E		1st cycle	4		2nd cycle			cycle		average
Source	method	bacteria	2000	2001	average	2000	2001	average	2000	2001	average	2000	2001	average	
	<u>+</u>	→ Nitrobien	33.2 h	34.3 h	33.7 g	14.4 f	15.2 f	14.8 e	11.1 h	12.9 h	12.0 g	7.0 e	7.3 d	7.2 f	16.9 g
Cattle	→ Surface →	 Rhizobacterien 	34.3 g	35.4 g	34.9 f	15.3 e	16.1 e	15.7 de	12.2 g	13.8 h	13.0 f	7.9 de	8.3 cd	8.1 ef	17.9 f
manure	•	→ Nitrobien	34.3 g	35.3 g	34.8 f	15.4 e	16.3 e	15.8 de	12.1 g	13.8 h	13.0 f	7.9 de	8.2 cd	8.1 ef	17.9 f
	Trench →	▼ Trench → Rhizobacterien	35.2 f	36.4 f	35.8 ef	16.3 d	17.1 d	16.7 cd	13.2 f	15.0'g	14.1 e	8.8 Sq	9.1 bc	9.0 de	18.9 e
	t	→ Nitrobien	37.3 cd	38.4 cd	37.9 c	18.4 b	19.2 b	18.8 b	15.3 cd	17.1 cde	16.2 c	9.7 abc	10.0 ab	9.9 abod	20.7 cd
Poultry	Poultry → Surface→	→ Rhizobacterien	38.4 b	39.5 b	39.0 b	19.5 a	20.3 a	19.9 a	16.4 b	18.2 bc	17.3 b	9.9 ab	10.2 a	10.0 abc	21.6 bc
manure	•	- Nitrobien	38.5 b	39.6 b	39.1 b	19.6 a	20.4 a	20.0 a	16.5 b	18.3 b	17.4 b	10.2 a	10.5 a	10.4 ab	21.7 ab
	Trench →	▼ Trench → Rhizobacterien	39.9 a	41.0 a	40.5 a	19.9 a	20.7 a	20.3 a	17.9 a	19.7 a	18.8 a	10.5 a	10.8 a	10.7 a	22.6 a
	₹_	Nitrobien	35.6 f	37.8 de	36.7 de	16.8 cd	17.6 od	17.2 c	13.5 f	15.3 fg	14.4 e	7.8 e	8.1 cd	8.0 f	19.1 e
Rabbit	Rabbit	- Rhizobacterien	36.5 e	37.6 e	37.1 cd	17.0 cd	17.8 c	17.4 c	14.3 e	16.1 efg	15.2 d	7.9 e	8.2 cd	8.11	19.5 e
manure		→ Nitrobien	36.7 de	37.6 e	37.2 cd	17.2 c	18.0 c	17.6 c	14.6 de	16.4 def	15.5 d	9.2 bc	9.5 ab	9.4 ed	19.9 de
5	Irench →	➤ Rhizobacterien	37.5 c	38.7 c	38.1 bc	18.4 b	19.2 b	18.8 b	15.5 c	17.3 bod	16.6 c	9.6 abc	9.8 ab	9.7 bcd	20.8 cd
Means v	within each colu	Means within each column, followed by the same letter(s) are not significantly different at 5% level.	the sa	me let	ter(s) aı	re not	signific	antly d	ifferent	at 5% l	evel.				Ì

4.1.3. Shoot length increase

Tables (10-14) show the effect of organic manure source (cattle, poultry and rabbit), method organic manure application (surface and trench) and biofertilizers (Rhizobacterien and Nitrobien) as well as their combinations on shoot length increase of spring, summer and autumn growth cycles of Washington navel orange trees during 2000 and 2001 seasons.

It is quite clear that poultry manured trees produced the longest shoots during spring, summer and autumn growth cycles as compared with those resulted from cattle or rabbit manured trees. In other words, the shortest shoots of the different studied growth cycles were shown on cattle manured. Besides, shoots of rabbit manured trees scored intermediate values of length during spring, summer and autumn growth cycles. Generally, differences between the three studied organic manure sources in shoot length increase of the different growth cycles were remarkable to be significant (Table, 10).

It is obvious from Table (10) that the application of organic manure in trenches exerted higher positive effect on shoot length increase of different growth cycles than surface application method. The differences in shoot length increase of the different growth cycles between the two organic manure application methods sources were obvious to reach significant level.

Furthermore, fertilizing with Rhizobacterien enhanced shoot length increase that did Nitrobien fertilization during spring, summer and autumn growth cycles. However, the superiority of Rhizobacterien in this concern was remarkable to be significant.

Table (11) reveals that the interaction between organic manure source and organic manure application method exerted that poultry manure applied firstly in trenches and secondly superficially proved to be the most effect combinations in enhancing shoot length of different growth cycles of Washington navel orange trees. On the contrary, cattle manure whether applied in trenches or superficially gave similarly the lowest values of shoot length increase during the different growth cycles. Besides, rabbit manure when applied in trenches produced longer shoots than surface application.

Additionally, the interaction between organic manure source and biofertilizers induced similar trend to that of interaction between organic manure source and method of application, where poultry manured trees supported with Rhizobacterien fertilizer gave significantly the longest shoots of all studied growth cycles, followed descendingly by the analogous ones manured with poultry and enriched with Nitrobien fertilizer. On the contrary, cattle manure whether provided with Rhizobacterien or Nitrobien gave similarly and comparatively the shortest shoots during the different growth cycles. Besides, rabbit manure provided with Rhizobacterien or Nitrobien induced similarly intermediate positive effect on shoot length of different growth cycles, (Table, 12).

As for the interaction between method of organic manure application and biofertilizers, Table (13) declares that out of all tested combinations, the interaction between trench method of organic manure application and Rhizobacterien gave the highest values of shoot length increase of spring, summer and autumn growth cycles. Other tested interactions showed fluctuated trend in shoot length increase of the different growth cycles of Washington navel orange trees.

Finally, the interaction between the three studied factors *i.e.* organic manure source, method of organic manure application and biofertilizers, Table (14) demonstrates that poultry manure applied in trench and supported with Rhizobacterien significantly increased shoot length of

different growth cycles, followed descendingly by those manured with poultry applied in trenches and provided with Nitrobien fertilizer. Besides, poultry manure, applied superficially and fertilized with Rhizobacterien surpassed the corresponding ones provided with Nitrobien in enhancing shoot length of different growth cycles. The combinations of rabbit manure surpassed the corresponding ones of cattle manure in the same pattern of poultry manure interactions, regarding shoot length increase of spring, summer and autumn growth cycles of Washington navel orange trees.

4.1.4. No. of leaves/shoot

The effect of organic manure source, method of organic manure application and biofertilizers as well as their combinations on number of leaves per snoot of spring, summer and autumn growth cycles of Washington navel orange trees during 2000 and 2001 seasons is reported in Tables (15-19).

It is obvious from Table (15) that shoots of poultry manured trees had significantly higher number of leaves of spring (5.20 & 5.05), summer (6.70 & 6.97) and autumn (3.30 & 3.42), whereas, those of rabbit manured trees recorded (4.97 & 4.76) for spring, (6.20 & 6.50) for summer and (2.95 & 3.10) for autumn growth cycles in 2000 and 2001 seasons, respectively. On the contrary, shoots of cattle manured trees recorded the lowest number of leaves for spring (4.70 & 4.45), summer (5.62 & 5.92) and autumn (2.65 & 2.87) in the first and second seasons, respectively.

Furthermore, the application of organic manure either superficially or in trenches induced similar effect on number of developed leaves per shoot of spring and autumn growth cycles. Meanwhile, trench application of organic manure surpassed surface application in enhancing number of produced leaves per shoot of summer growth cycle.

Table (10): Specific effect of organic manure source, application method and biofertilizer on shoot length increase of Washington navel orange trees (2000 and 2001 seasons).

					Shoot	Shoot length increase (cm	increas	se (cm)	I				
, , ,	Spr	Spring growth	wth		Su	Summer growth cycle	owth c	ycle		Autı	Autumn growth	owth	Grand
1900	0.	cycle			1st cycle	е	. 4	2 nd cycle			cycle		Average
	(2000)	(2001)	Average (2000)		(2001)	(2001) Average	(2000)	(2001)	(2001) Average	(2000)	(2001)	Average	
					a. Effe	a. Effect of organic manure source	ganicr	nanure	source	6)			
Cattle manure	9.23 c	9.43 c	9.30 c	7.50 c	7.33 c	7.43 c	12.15 c	13.90 c	13.02 c	2.80 c	2.55 c	2.70 €	6.80 b
Poultry manure	11.65 a	11.83 a	11.75 a	9.15 a	9.05 a	9.10 a	16.52 a	18.33 a	17.42 a	4.20 a	3.92 a	4.05 a	7.87 a
Rabbit manure	10.20 b	10.46 b	10.35 b	8.50 b	8.33 b	8.43 b	14.39 b	16.28 b	15.43 b	3.50 b	3.22 b	3.37 b	7.62 a
					b.	b. Effect of application method	applica	ation m	ethod				
Surface	10.23 b	10.42 b	10.35 b	8.33 a	8.22 a	8.30 a	13.74 b	15.58 b	14.68 b	3.48 a	3.23 a	3.36 a	7.60 a
Trench	10.48 a	10.72 a	10.58 a	8.43 a	8.25 a	8.33 a	14.97 a	16.75 a	15.90 a	3.51 a	3.23 a	3.38 a	7.26 a
						c. Effect of biofertilizer	t of bic	fertiliz	je.				
Rhizobacterien	10.52 a	10.74 a	10.63 a	8.50 a	8.40 a	8.50 a	13.85 b	15.63 b	14.75 b	3.68 a	3.43 a	3.56 a	7.80 a
Nitrobien	10.20 b	10.40 b	10.30 b	8.20 b	8.08 b	8.15 b	14.86 a	16.70 a	15.83 a	3.31 b	3.03 b	3.18 b	7.06 b
Means within each column, foliowed by the same letter(s) are not significantly different at 5% level.	ın, foliow	ed by th	ne same	etter(s)	are no	tsignific	antly dif	ferent a	t 5% leve	<u></u>			

Table (11): Effect of interaction between organic manure source and application methods on shoot length increase of Washington navel orange trees (2000 and 2001 seasons).

	:					Shoots	Shoots length increase (cm.	increa	ıse (cn	()	-			OCCUPANT AND ADDRESS OF THE PERSON OF THE PE
Organic	4	Spi	Spring growth	wth		Sui	Summer growth cycle	owth c	ycle		Auti	Autumn growth	owth	Grand
manure	method		cycle		×	1st cycle	Ф		2nd cycle	9		cycle		Average
	***************************************	(2000)	(2001)	(2001) Average	(2000)	(2001)	Average	(2000)	(2001)	(2001) Average (2000) (2001) Average	(2000)	(2001)	(2001) Average)
Cattle	- Surface	9.20 e	9.35 e	9.30 d	7.45 d	7.30 c	7.40 c	11.65 f	13.40 f	11.65f 13.40f 12.50f	2.80 c	2.55 c	2.70 c	6.80 c
	L► Trench	9.25 e	9.50 e	9.30 d	7.55 d	7.35 c	7.50 €	12.65 e	14.40 e	13.55 e	2.80 c	2.55 c	2.70 c	6.80 c
Poultry	→ Surface	11.45 b	11.60 b	11.55 b	9.10 ab	9.05 a	9.10 a	15.85 b	17.65 b	16.75 b	4.15 a	3.95 a	4.05 a	7.30 b
, and	Trench	11.85 a	12.05 a	11.95 a	9.20 a	9.05 a	9.10 a	17.20 a	19.00 a	18.10 a	4.25 a	3.90 a	4.05 a	8.45 a
Pahhit	- Surface	10.05 d	10.30 d	10.20 c	8.45 c	8.30 b	8.40 b	13.73 d	15.70 d	14.80 d	3.50 b	3.20 b	3.35 a	7.55 b
Nappil	Trench	10.35 c	10.62 c	10.50 c	8.55 bc	8.35 b	8.50 b	15.05 c	16.85 c	16.05 c	3.50 b	3.25 b	3.40 b	7.70 b
Means with	Means within each column, followed by the same letter(s) are not significantly different at 5% level	, follow	ed by th	e same le	etter(s)	are not	significa	ntly diff	erenta	t 5% leve				

Table (12): Effect of interaction between organic manure source and biofertilizer on shoot length increase of Washington navel orange trees (2000 and 2001 seasons).

Management of the Control of Street, S	AVENT LA WARRETT SELECTION AND AVENT OF THE PARTY AND AVENT OF THE P					Shoot	Shoot length increase (cm)	increas	se (cm)					,
Organic	:	Spi	Spring growth	wth		Sui	Summer growth cycle	owth c)	elo		Aut	Autumn growth	owth	Grand
manure	Biorertilizer		cycle			1st cycle	0	,7	2 nd cycle	Ф		cycle		Average
		(2000)	(2001)	Average	(2000)	(2001)	(2001) Average		(2001)	(2000) (2001) Average (2000)	(2000)	(2001)	Average	
	-Rhizobacterien 9.35	9.35 d	9.55 d	9.45 d	7.70 e	7.50 d	7.60 de	11.60 f	13.35 f	12.50 f	2.95 e	2.75 e	2.85 e	6.95 cd
Cattle →	-Nitrobien	9.10 e	9.30 d	9.15 e	7.30 f	7.15 e	7.23 ef	12.70 e	14.45 e	13.55 e	2.65 f	2.35 f	2.55 f	6.65 d
	-Rhizobacterien 11.90 a	11.90 a	12.10 a	12.00 a	9.30 a	9.15 a	9.23 a	15.90 b	17.70 b	16.80 b	4.40 a	4.15 a	4.30 a	8.70 a
Poultry→	-Nitrobien	11.40 b	11.55 b	11.50 b	9.00 b	8.05 a	8.53 a	17.15 a	18.95 a	18.05 a	4.00 b	3.70 b	3.80 b	7.05 cd
	-Rhizobacterien 10.30 c	10.30 c	10.57 c	10.45 c	8.70 c	8.50 b	8.60 bc	14.05 a	15.85 d	14.95 d	3.70 c	3.40 c	3.55 c	7.75 b
Rabbit→	-Nitrobien	10.10 c	10.35 c	10.25 c	8.30 d	8.15 c	8.23 cd	14.73 c	16.70 c	15.90 c	3.30 d	3.05 d	3.20 d	7.50 bc
Means wit	Means within each column followed by the same letter(s) are not significantly different at 5% level	follow	red but	e same	etter(s	are no	tsianific	antly dif	ferent a	at 5% lev	el.			

Table (13): Effect of interaction between application method and biofertilizer on shoot length increase of Washington navel orange trees (2000 and 2001 seasons).

						Shoot	Shoot length increase (cm)	increa	se (cm	(And the Control of th	THE NAME OF PERSONS OF THE PERSONS
Method of	Method of Biofertilizer	Spi	Spring growth	wth		Su	Summer growth cycle	owth c	ycle		Aut	Autumn growth	owth	Grand
application			cycle			1st cycle	o		2nd cycle	Ф		cvcle		Average
		(2000)	(2001)	Average	(2000)	(2001)	Average	(2000)	(2001)	(2000) (2001) Average (2000) (2001) Average (2000) (2001) Average (2000) (2001) Average	(2000)	(2001)	Average	
Surface	Rhizobacterien 10.33 b 10.53 b 10.43 b	10.33 b	10.53 b	10.43 b	8.47 b	8.30 ab	8.39 b	13.30 c	15.10 c	13.30 c 15.10 c 14.20 c 3.60 a	3.60 a	3.40 a	3.50 a	7.70 a
	Nitrobien	10.13 b	10.30 b	10.27 b · 8.20 c	8.20 c	8.13 b	8.17 c	14.19 b	16.07 b	14.19b 16.07b 15.17b	3.36 b	3.06 b	3.23 b	7.50 a
Trench	Rhizobacterien 10.	10.70 a	10.94 a	10.83 a	8.67 a	8.47 a	8.57 a	14.40 b	14.40 b 16.17 b	15.30 b	3.76 a	3.46 a	3.63 a	7.90 a
	-Nitrobien	10.27 b	10.50 b	10.27 b 10.50 b 10.33 b		8.20 c 8.03 b	8.12 c 15.53 a 17.33 a	15.53 a	17.33 a	16.50 a	3.26 b	3.00 b	3.13 b	6.63 b
Means wit	Means within each column, followed by the same letter(s) are not significantly different at 5% level.	, follow	ed by th	e same le	etter(s)	are not	significa	ntly diff	ferent a	t 5% leve				

Table (14): Effect of interaction between organic manure source, application method and biofertilizer on number of shoot length increase Washington navel orange trees (2000 and 2001 season).

Organic						,	SHOOL		ב	SHOOL IEILIGII IIICI EASE (CILI	(111)				
		Biofertilizer	Spr	Spring growth	wth		Su	Summer growth cycle	rowth c	ycle		Autı	Autumn growth	owth	Grand
	Application	N-fixing		cycle			1st cycle	Ф		2nd cycle	ø.		cycle		average
	method	bacteria	2000	2001	average	2000	2001	average	2000	2001	average	2000	2001	average	
		Rhizobacterien	9.2 fg	9.4 e	9.3 fg	7.6 fg	7.4 d	7.5 fg	8.0 f	8.2 d	8.1e	2.9 ghi	2.7 fg	2.8 def	6.9 def
Cattle Sul	► Surface →	→ Nitrobien	9.2 fg	9.3 e	9.3 fg	7.3 g	7.2 d	7.3 g	7.5 g	7.5 f	7.5 f	2.7 hi	2.4 gh	2.6 ef	6.7 ef
manure	t t	- Rhizobacterien	9.5 f	9.7 e	9.6 f	7.8 f	7.6 d	7.7 f	8.0 f	8.1 e	8.0 e	3.0 gh	2.8 ef	2.9 de	7.0 def
<u>≓</u>	▼ Trench →	Nitrobien	9.0 g	9.3 e	9.0g	7.3 e	7.1 d	7.2 g	7.59	7.6 f	7.5 f	2.61	2.3 h	2.5 f	6.6 f
	T	Rhizobacterien	11.7 b	11.9 a	11.8 b	9.2 ab	9.1 ab	9.2 ab	9.3 b	9.5 a	9.4 a	4.3 ab	4.2 a	4.3 a	8.6 ab
Poultry → Surface→	T	- Nitrobien	11.2 c	11.3 b	11.3 c	9.0 bc	9.0 ab	9.0 abc	9.0°C	9.1 b	9.0 b	4.0 bc	3.7 b	3.8 b	8.3 abc
manure	. Ł	- Rhizobacterien	12.1 a	12.3 a	12.2 a	9.4 a	9.2 a	9.3 a	9.6 a	9.5 a	9.5 a	4.5 a	4.1 a	4.3 a	8.8 a
Ĕ 1	▼ Trench →	- Nitrobien	11.6 b	11.8 a	11.7 b	9.0 bc	8.9 ab	8.9 bc	9.10	9.0 b	9.0 b	4.0 bc	3.7 b	3.8 b	8.4 ab
		* Rhizobacterien	10.1 e	10.3 cd	10.2 e	8.6 de	8.4 c	8.5 de	8.6 de	8.5 c	8.5 cd	3.6 de	3.3 cd	3.4 c	7.6 cd
Rabbit → Surface→		→ Nitrobien	10.0 e	10.3 cd	10.2 e	8.3 e	8.2 c	8.3 e	8.5 e	8.3 d	8.4 d	3.4 ef	3.1 de	3.3 €	7.5 cde
manure	ب ا انه ه	Rhizobacterien	10.5 d	10.8 bc	10.7 d	8.8 cd	8.6 bc	8.7 od	8.7 d	8.6 c	8.6 c	3.8 cd	3.5 bc	3.7 b	7.9 bc
≓ †	▼ Trench → Nitrobien	Nitrobien	10.2 de	10.4 cd	10.3 e	8.3 e	8.1c	8.2 e	8.4 e	8.3 d	8.4 d	3.2 fg	3.0 def	3.1 cd	7.5 cde

Moreover, the biofertilizers effect took the same trend of application method, regarding number of leaves per shoots of different growth cycles. Where, Rhizobacterien induced more positive effect on number of developed leaves per shoot of summer growth cycle, only than did Nitrobien (Table, 15).

Regarding the interaction between organic manure source and method of application Table (16) shows that organic manure source exerted dominant influence on the net of interaction between organic manure source and method of application. Thereupon, the two methods of application of poultry manure showed comparatively similar and higher values of number of leaves per shoot of spring, summer and autumn, followed descendingly and typically by those of rabbit and finally by the corresponding ones of cattle manure.

In addition, Table (17) reveals that the interaction between organic manure source and biofertilizers took the same trend to that of organic manure source x method of application, hence the combinations of two biofertilizers with poultry manure scored similarly and higher values of number of leaves per shoot of spring, summer and autumn growth cycles, followed descendingly in the same by the combinations of rabbit manure and lastly by the interactions of cattle manure.

Table (18) demonstrates that the interaction between method of organic manure application and biofertilizers failed to induce a distinctive effect on number of developed leaves per shoot of most studied growth cycles of Washington navel orange trees in 2000 and 2001 seasons.

As for the interaction between the three studied factors namely organic manure source, method of organic manure application and biofertilizers, Table (19) demonstrates that organic manure source had the upper hand on interaction net, where all combinations of poultry manure produced nearly similar and higher positive effect on number of developed leaves per shoot of spring, summer and autumn growth cycles followed descendingly in typical manner by those of rabbit manure and finally by the corresponding ones of cattle manure.

Table (15): Specific effect of organic manure source, application method and biofertilizer on number of leaves per shoot of Washington navel orange trees (2000 and 2001 seasons).

	THE PERSON NAMED IN COLUMN 2 I		No. of leaves / shoot	es / shoot		
10,000	Spring growth	growth	Means of summer growth	nmer growth	Autumn growth	growth
ractor	cvcle	<u>a</u>	cycles	les	cycle	ie :
	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
			a. Effect of organic manure source	c manure source		
Cattle manure	4.70 c	4.45 c	5.62 c	5.92 c	2.65 c	2.87 c
Poultry manure	5.20 a	5.05 a	6.70 a	6.97 a	3.30 a	3.42 a
Rabbit manure	4.97 b	4.76 b	6.20 b	6.50 b	2.95 b	3.10b
			b. Effect of application method	lication method		
Surface	4.91 a	4.71 a	6.05 b	6.35 b	2.85 b	3.01 a
Trench	5.00 a	4.79 a	6.30 a	6.58 a	3.08 a	3.25 a
			c. Effect of	c. Effect of biofertilizer		
Rhizobacterien	5.00 a	4.79 a	6.25 a	6.56 a	3.03 a	3.20 a
Nitrobien	4.91 a	4.71 a	6.10 b	6.36 b	2.90 b	3.06 a
Means within each column, followed by the same letter(s) are not significantly different at 5% level	, followed by	the same lett	er(s) are not significan	tly different at 5% level.		

Table (16): Effect of interaction between organic manure source and application method on number of leaves per shoot of Washington navel orange trees (2000 and 2001 seasons).

Organic	1			No. of lea	No. of leaves / shoot		A STATE OF THE PARTY OF THE PAR
manure Application source method	sation	Spring	Spring growth cycle	Means of su	Means of summer growth	Autumr	Autumn growth
		(2000)	(2001)	(2000)	(2001)	(2000)	(2004)
Cattle → Surface	9 0	4.65 d	4.40 d	5.45 d	5.80 e	2.55 e	2.80 c
Trench	٤	4.75 cd	4.50 cd	5.80 c	6.05 de	2.75 de	2.95 bc
Poultry → Surface	e	5.15 ab	5.00 ab	6.60 a	6.85 ab	3.15 b	3.30 ab
Trench	٠.	5.25 a	5.10a	6.80 a	7.10 a	3.45 a	3.55 a
Rabbit → T-Surface	e	4.95 bc	4.75 bc	6.10 b	6.40 cd	2.85 cd	2.95 bc
_ Trench		5.00 b	4.78 b	6.30 b	6.60 bc	3.05 hc	3 OF OF
Means within each column	nn follow	ad hy the cam	1010010		followed by the constant	2	0.20 ab

Table (17): Effect of interaction between organic manure source and biofertilizer on number of leaves per shoot of Washington navel orange trees (2000 and 2001 seasons).

CONTRACTOR OF CHARACTER STATES OF CONTRACTOR				No. of lear	No. of leaves / shoot		
Organic manure	Biofertilizer	Spring growth	growth	Means of su	Means of summer growth cycles	Autumn growth cycle	mn growth cycle
sonrce		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	Rhizobacterien	4.75 cd	4.50 c	5.65 c	6.00 d	2.70 de	2.90 cd
Cattle →	-Nitrobien	4.65 cd	4.40 c	5.60 c	5.85 d	2.60 e	2.85 d
	→Rhizobacterien	5.25 a	5.10a	6.80 a	7.10a	3.40 a	3.55 a
Poultry →	→ Nitrobien	5.15 ab	5.00 a	6.60 a	6.85 ab	3.20 ab	3.30 ab
3	► Rhizobacterien	5.00 abc	4.78 b	6.30 b	6.60 bc	3.00 bc	3.15 bc
Rabbit →	- Nitrobien	4.95 bc	4.75 b	6.10 b	6.40 c	2.90 cd	3.05 bcd
Moans within	Maans within each column followed by the same letter(s) are not significantly different at 5% level.	wed by the sarr	ne jetter(s) are	e not significantly	y different at 5% le	evel.	

Table (18): Effect of interaction between application method and biofertilizer on number of leaves per shoot of Washington navel orange trees (2000 and 2001 seasons).

:				No. of leav	No. of leaves / shoot		
Application method	Biofertilizer	Spring cy	Spring growth cycle	Means of summe cycles	Means of summer growth cycles	Autumr	Autumn growth
		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
Surface	-Rhizobacterien	4.95 a	4.73 a	6.13 bc	6.46 a	2.93 bc	3.06 b
3	► Nitrobien	4.86a	4.70 a	5.96 c	6.23 b	2.76 c	2.96 b
Trench	Rhizobacterien	5.03 a	4.85 a	6.36 a	6.66 a	3.13 a	3.33 a
(→ Nitrobien	4.96 a	4.73 a	6.23 ab	6.50 a	3.03 ab	3.16.ab

Table (19): Effect of interaction between organic manure source, application method and biofertilizer on number of leaves/ shoot of Washington navel orange trees (2000 and 2001 seasons).

Organic A manure source	Application							
source	method	Biofertilizer N-fixing	Spring growth cycle	growth	Mean of summe growth cycles	Mean of summer growth cycles	Autumn growth cycles	growth
		bacteria	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	-	➤ Rhizobacterein	4.7 de	4.4 d	5.5 fg	5.9 ef	2.6 fg	2.8 d
S + S	Surface →	► Nitrobein	4.6 e	4.4 d	5.4 g	5.7 f	2.5 g	2.8 d
Φ	-	- Rhizobacterein	4.8 cde	4.6 cd	5.8 ef	6.1 de	2.8 defg	3.0 bcd
<u>+</u>		→ Nitrobein	4.7 de	4.4 d	5.7 ef	6.0 def	2.7 efg	2.9 cd
	<u> </u>	➤ Rhizobacterein	5.2 ab	5.0 ab	6.7 ab	7.0 ab	3.3 abc	3.4 ab
S + Value	Surface →	➤ Nitrobein	5.1 abc	5.0 ab	6.5 bc	6.7 bc	3.0 cde	3.2 bcd
		- Rhizobacterein	5.3 a	5.2 a	6.9 a	7.2a	3.5 a	3.7 a
⊢ •	Trench →	→ Nitrobein	5.2 ab	5.0 ab	6.7 ab	7.0 ab	3.4 ab	3.4 ab
	t.	- Rhizobacterein	5.0 abcd	4.8 bc	6.2 cd	6.5 c	2.9 def	3.0 bcd
S +	Surface →	→ Nitrobein	4.9 bcde	4.7 bcd	6.0 de	6.3 cd	2.8 defg	2.9 cd
manure	ţ.	- Rhizobacterein	5.0 abcd	4.8 bc	6.4 bc	6.7 bc	3.1 bcd	3.3 abc
_+	▼ Trench →	→ Nitrobein	5.0 abcd	4.8 bc	6.2 cd	6.5 c	3.0 cde	3.2 bcd

4.1.5. Leaf parameters

Tables (20-25) show the response of some leaf parameters, *i.e.* leaf surface area, leaf shape index, leaf chlorophyll (a & b) and leaf dry weight to organic manure source, method of organic manure application and biofertilizers as well as their interactions during 2000 and 2001 seasons.

4.1.5.1. Leaf surface area

It is clear from **Table (20)** that poultry manured trees produced more expanded leaves as compared with those arised from cattle or rabbit manured ones. However, the differences between cattle and rabbit manure in this respect were so small to reach the significance level.

Moreover, trench manured-orange trees produced more expanded leaves than superficially manured ones.

Furthermore, Rhizobacterien-inoculated trees produced more expanded leaves as compared with those resulted from Nitrobien-inoculated ones.

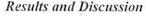
On the other hand, the interaction between organic manure and method of organic manure application method reveals that poultry manure applied particularly in trenches or secondly + superficially exerted the highest positive effect on leaf surface area of Washington navel orange trees in both seasons, (Table, 21). Other studied interactions gave nearly more or less similar values in this respect.

In addition, Table (22) illustrates that the interaction between organic manure source and biofertilizer took nearly the same trend of interaction between organic manure source and method of organic manure application, hence poultry manured trees, inoculated with Rhizobacterien, followed descendingly by poultry manured, inoculated with Nitrobien produced the most expanded leaves. Combination of cattle and rabbit manure induced statistically similar effect in this respect, except for cattle

manure applied superficially which showed the lowest leaf surface area values from statistical standpoint.

Furthermore, trench application of organic manure associated with Rhizobacterien-inoculation exerted the highest stimulative effect on leaf surface area, followed descendingly by those provided with Nitrobien (Table, 23). Besides, the application of organic manure superficially and supporting with Rhizobacterien enhanced leaf surface area rather than the association with Nitrobien inoculation.

Finally, the interaction between the three studied factors indicates that the interaction of poultry manure surpassed the other combination (cattle and rabbit) in enhancing leaf surface area with the superiority of trench application on the expense of surface application and Rhizobacterien inoculation on the expense of Nitrobien inoculation. Besides, rabbit manure combinations surpassed cattle manure interactions in this respect and took the same pattern of poultry manure combinations in both seasons, (Table, 24).


4.1.5.2. Leaf shape index

It is clear from Tables (20 - 24) that neither the three tested factors (organic manure sources, method of organic manure application and biofertilizer) levelly nor in their different combinations succeeded in exerting a distinctive effect on leaf shape index of Washington navel orange trees.

4.1.5.3. Leaf chlorophyll (a & b)

Table (20) shows that leaves of poultry manured trees had the highest values of chlorophyll a & b, followed descendingly by those of rabbit manured ones and finally those of cattle manured trees. However, the differences between the three organic manure sources in this respect were obvious to be significant at 5% level.

Furthermore, trenchly-manured trees produced leaves richer in their content of chlorophyll a & b than superficially manured ones.

Additionally, Rhizobacterien inoculation trees gave leaves richer in their content of chlorophyll a & b than did those inoculated with Nitrobien.

On the other hand, trench application of organic manure provided with Rhizobacterien or Nitrobien exerted more positive effect on leaf chlorophyll a & b than did surface application supported with Rhizobacterien or Nitrobien inoculation (Table, 23).

Finally, the interaction between the three studied factors (**Table, 24**) demonstrates that the combinations of poultry manure gave the highest values of leaf chlorophyll *a* & *b* with the superiority in side trench application and Rhizobacterien inoculation. Besides, the interactions of rabbit manure surpassed the corresponding ones of cattle manure with the superiority to trench and Rhizobacterien inoculation.

On the other hand, Table (21) reveals that poultry manure when applied in trenches gave the highest values of leaf chlorophyll a & b, followed by superficial application. Besides, the combinations of rabbit manure surpassed cattle manure in enhancing leaf chlorophyll a & b with the superiority to trench application.

Furthermore, **Table (22)** shows that poultry manure provided with Rhizobacterien proved to be the most efficient interaction in improving leaf chlorophyll *a* & *b*, followed by poultry manure supported with Nitrobien. Besides, rabbit manure combinations surpassed cattle manure combination with the superiority to Rhizobacterien inoculation.

4.1.5.4. Leaf dry weight

It is cleat that leaves of poultry and rabbit manured trees had similarly higher values of dry weight than those produced by cattle manured trees (Table, 20).

Furthermore, neither the method of organic manures application (trench and surface) nor the biofertilizers type (Rhizobacterien and Nitrobien) induced distinctive and remarkable effect on leaf dry weight of Washington navel orange trees.

As for the interaction between organic manure source and method of organic manure application, **Table (21)** reveals that the combination of poultry and rabbit exerted statistically similar and higher positive effect on leaf dry weight as compared with those arised from cattle combinations.

Furthermore, the interaction between organic manure source and biofertilizer illustrates that all studied interactions produced statistically similar and higher values of leaf dry weight as compared with cattle manure x Rhizobacterien combination in both seasons of study, (Table, 22).

Additionally, **Table (23)** reveals that when the method of organic manure application interacted with biofertilizer, it failed to add an additional remarkable effect on leaf dry weight of Washington navel orange trees.

Finally, the interaction between the three studied factors (organic manure source, method of organic manure application and biofertilizer) reveals that all studied interactions induced nearly similar and higher values of leaf dry weight as compared with cattle manure applied superficially and supported with Rhizobacterien in both seasons of study (Table, 24).

Conclusively, poultry manure proved to be the most efficient organic manure source in enhancing tree growth of Washington navel orange trees expressed as the longest growth cycles durations, the highest growth cycles intensity, the longest shoot of different growth cycles, the highest number of leaves per shoot of different growth cycles, the largest leaf surface area, the richest leaves in chlorophyll content and the heaviest leaf dry weight. Cattle manure induced the least positive effect, whereas rabbit manure exerted intermediate effect in this concern.

Moreover, trench application of organic manure surpassed surface application in improving the previously mentioned tree growth parameterts.

Furthermore, Rhizobacterien -inoculated trees showed better growth and higher values of the studied growth parameters as compared with Nitrobien-inoculation.

The enhancement in tree growth due to organic manure in general and poultry manure in particular, may be attributed to the fact that manures often improve the structure of soil; they may do this directly through their action as bulky diluents in compacted soils, or indirectly when the waste products of animals or micro-organisms cement soil particles together. These structural improvements increase the amount of water useful to crops that soils can hold; they also improve aeration and drainage and encourage good root growth by providing enough pores of the right sizes and preventing the soil becoming too rigid when dry or completely waterlogged and devoid of air when wet. Consequently, the positive effects of organic manure on growth due to: (1) its physical effects on soil condition, (2) the nutrients it supplies and (3) the way it supplies them. Besides, poultry manure is characterized by containing twice as much nitrogen as farmyard manure, they are much richer in phosphorus and contains as much potassium as farmyard manure, (Cooke, 1982). Besides, Li et al. (1998) pointed out that organic manure increased the soil content of IAA and cytokinins and stimulated plant growth.

On the other hand, the enhancement of tree growth due to trench application of organic manure rather than surface application may be due to the fact that the uric acid in fresh manure is decomposed by micro-organisms to give ammonia, which is easily lost if the manure is exposed (Cooke, 1982). Losses of nitrogen by volatilization, of course, will still unless the manure is plowed under or disked in immediately (Tisdale and Nelson, 1956).

Furthermore, the improvement of tree growth as a result of biofertilizers may be due to the production of growth regulators as well as to N-fixation (Rao and Dass, 1989).

The results of organic manure source in enhancing tree growth are confirmed by the findings of Mukherjee et al. (1983) on jack fruit, Sekiya et al. (1983) on apple, Darfeld and Lenz (1985) on pear, Pil'Shchikov (1986) on apple, Villasurda and Baluyut (1990) on guava, Awad et al. (1993) on olive, Li et al. (1993) on pummelo, Smith (1994) on banana, Abou-Sayed-Ahmed (1997) on pear, Li et al. (1998) on apple, Takahashi et al. (1998) on mulberry, Ashinov and Bekanov (1999) on plum, cherry, peach, apricot and wild cherry, El-Kobbia (1999) on Washington navel orange and Grassi et al. (1999) on Rangpur lime seedlings. They concluded that leaf surface area, leaf fresh and dry weights as well as photosynthetic pigment content, i.e. chlorophyll a and b, total chlorophyll and carotene were superior with organic manure particularly poultry and cattle manure.

On the other hand, the results of organic manure application method in this respect go in line with the reports of Makhmadbekov et al. (1984) on lemon and Fisun and Kodzokov (1991) on plum.

Furthermore, positive effect of tested biofertilizers on tree growth are in harmony with the findings of Ball et al. (1983) on groundnut, Nagarajan et al. (1989) on mulberry, Haggag and Azzazy (1996) on mango, Ahmed et al. (1997) on grapevines, Sharma and Bhutani (1998) on apple, Fernandez et al. (1998) on banana, Mansour (1998) on Anna apple, Wange and Ranawade (1998) on grape, and Mahmoud and Mahmoud (1999) on peach. They showed that biofertilizers, i.e. Rhizobacterien and Nitrobien caused material improvement in shoot length, leaf-area and cane thickness.

Table (20): Specific effect of organic manure source, application method and biofertilizer on some leaf parameters of Washington navel orange trees (2000 and 2001 seasons).

ı	Leaf sur	Leaf surfaçe area Leaf shape index	Leaf sha	pe index	Le	af chloro	Leaf chlorophyll (mg/L)	//F)	Leaf dry weight	weight
Factor	0)	(cm ²)	7	L/W)	(a)	(E	=)	(q)	(a))
	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
			· Co	a. Effect of organic manure source	of organ	ic manur	e source	0)		
Cattle manure	14.30 b	14.57 b	2.32 a	2.33 a	5.77 c	6.10 b	2.29 c	2.48 c	0.97 b	1.08 b
Poultry manure	15.85 a	16.06 a	2.32 a	2.34 a	6.32 a	6.51 a	2.94 a	3.13 a	1.20 a	1.23 a
Rabbit manure	14.80 b	15.00 b	2.33 a	2.33 a	6.00 b	6.10 b	2.64 b	2.91 b	1.14a	1.18 a
				b. Effec	t of app	b. Effect of application method	nethod			
Surface	14.72 b	14.91 b	2.32 a	2.34 a	5.94 b	6.10 b	2.54 b	2.79 b	1.08 a	1.14a
Trench	15.25 a	15.52 a	2.32 a	2.33 a	6.12a	6.40 a	2.70 a	2.89 a	1.13 a	1.19 a
				S.	ffect of	c. Effect of biofertilizer	zer			
Rhizobacterien	15.13 a	15.36 a	2.31 a	2.34 a	6.10 a	6.39 a	2.60 a	2.90 a	1.12a	1.16a
Nitrobien	14.83 b	15.07 b	2.33 a	2.33 a	5.96 b	6.15 b	2.50 b	2.78 b	1.09 a	1.17a
Means within each column,		followed by the same letter(s) are not significantly different at 5% level.	ne letter(s	are not s	ignificant	y differen	t at 5% lev	/el.		

 Table (21):
 Effect of interaction between organic manure source and application method on some leaf parameters of Washington navel orange trees (2000 and 2001 seasons).

Organic		Leaf surface area	ace area	Leafs	Leaf shape	Le	Leaf chlorophyii (mg/L)	ohyii (mg	/L)	Leaf dry weight	weight
manure	₹	(cm ²)	n ²)	index	index (L/W)	۳	(a)	(q)	(((g)	(1
source	- nomem	(2000)	(2001)	(2000)	(2003)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
1	Surface	14.10 d	14.35 d	2.32 a	2.34 a	5.68 f	5.88 d	2.21 f	2.41 c	0.92 b	1.06 c
Cattle	Trench	14.50 cd	14.80 cd	2.33 a	2.33 a	5.85 e	6.33 bc	2.37 e	2.55 c	1.01 b	1.11 bc
	-Surface	15.35 b	15.52 b	2.33 a	2.35 a	6.20 b	6.38 b	2.86 b	3.05 ab	1.19 a	1.21 a
Poulitry	Trench	16.35 a	16.60 a	2.31 a	2.33 a	6.45 a	6.64 a	3.01 a	3.21 a	1.22 a	1.25 a
	-Surface	14.70 c	14.85 cd	2.33 a	2.33 a	5.95 d	6.14 c	2.56 d	2.91 b	1.13 a	1.20 a
Kappit	Trench	14.90 bc	14.90 bc 15.15 bc	2.33 a	2.33 a	6.06 c	6.25 bc	2.72 c	2.92 b	1.16 a	1.22 a

Table (22): Effect of interaction between organic manure source and biofertilizer on some leaf parameters of Washington navel orange trees (2000 and 2001 seasons).

Organic		Leaf surf	Leaf surface area	Leaf	Leaf shape	Le	Leaf chlorophyll (mg/L)	phyll (mg	(\L)	Leaf dry	Leaf dry weight
manure	biorertilizer	(cm ₂)	n-)	index	index (L/W))	(a)		(b)		,
source		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(0000)	(2004)
Cattle →	Rhizobacterien	14.40 de	14.40 de 14.70 de	2.32 a	2.33 a	5.81 d	6.30 bc	2.32 c	2.52 c	0.99 b	1.01 b
	Nitrobien	14.20 e	14.45 e	2.32 a	2.33 a	5.73 d	5.91 e	2.26 c	2.44 c	1.15 a	1.16 a
Poultry	- Rhizobacterien	16.10 a	16.27 a	2.31 a	2.33 a	6.42 a	6.61a	2.96 a	3.15 a	1.22 a	1.25 a
, in .	- Nitrobien	15.60 b	15.85 b	2.32 a	2.35 a	6.22 b	6.42 b	2.91 a	3.11 a	1.19 a	127 a
Rabbit →	Rhizobacterien	14.90 c	15.10 c	2.31 a	2.33 a	6.06 c	6.25 cd	2.69 b	2.90 b	1.16 a	1.22 a
	→ Nitrobien	14.70 cd 14.90 cd	14.90 cd	2.34 a	2.33 a	5.95 c	6.20 d	2.60 b	2.79 b	0	1 10 2
Means withi	Means within each column, followed by the same letter(s) are not significantly different at 500 to 1	lowed by t	he same le	Hor(c) ar	10000	15:				5	2

Table (23): Effect of interaction between application method of organic manure and biofertilizer on some leaf parameters of Washington navel orange trees (2000 and 2001 seasons).

A STATE OF THE STA		Leaf sur	Leaf surface area	Leafs	Leaf shape	Lea	Leaf chlorophyll (mg/L)	hyll (mg	(L)	Leaf dry weight	weight
Application	Application Biofertilizer) (C	(cm^2)	index (L/W)	(L/W)	e)	((q)	(3)	(
mernoa		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	Rhizobacterien	14.83 bc	15.04 c	2.32 a	2.33 a	5.99 bc	5.99 bc 6.19 bc 2.59 b	2.59 b	2.90 a	1.10 a	1.12 a
Surface	- Nitrobien	14.60 c	14.77 d	2.33 a	2.34 a	5.90 c	6.08 c	2.50 c	2.68 b	1.09 a	1.16 a
	Rhizobacterien	15.43 a	15.67 a	2.31 a	2.33 a	6.20 a	6.59 a	2.72 a	2.91 a	1.15 a	1.20 a
rencn	_ Nitrobien	15.07 b	15.37 b	2.33 a	2.33 a	6.03 b	6.23 b	2.68 ab	2.88 a	1.11a	1.18 a
Means within	Means within each column, followed by the same letter(s) are not significantly different at 5% level	llowed by t	he same let	tter(s) ar	e not sign	ificantly	different a	t 5% leve			

Table (24): Effect of interaction between organic manure source, application method and biofertilizer on some leaf parameters of Washington navel orange trees (2000 and 2001 seasons).

Organic	Application method	ation	Biofertilizer N-fixing bacteria	Leaf s area	Leaf surface area (cm²)	Leaf shape Index (L/W)	Leaf shape Index (L/W)	Les (a	Leaf chlorophyll (mg/L) (a) (b)	phyll (mg	1g/L) (b)	Leaf dr	Leaf dry weight (a)
source				(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	*Surface	1	 Rhizobacterein 	14.2 gh	14.5 gh	2.34 a	2.35 a	5.72 ef	5.93 gh	2.25 gh	2.46 de	0.95 cd	0.97 c
Cattle			▼ Nitrobein	14.0 h	14.2 h	2.30 a	2.33 a	5.65 f	5.84 h	2.17 h	2.36 e	1.15 ab	1.16 ab
manure	Trench	1	Rhizobacterein	14.6 efg	14.9 efg	2.31 a	2.32 a	5.90 de	6.68 ab	2.40 fg	2.58 de	1.15 ab	1.06 bc
		<u>-</u> }	→ Nitrobein	14.4 fgh	14.7 fg	2.35 a	2.34 a	5.81 ef	5.98 fgh	2.35 fg	2.53 de	1.14 ab	1.13 ab
	Surface	1	Rhizobacterein	15.5 bc	15.5 c	2.31 a	2.33 a	6.25 b	6.44 c	2.90 ab	3.09 ab	1.20 ab	1.22 ab
Poultry	5		 Nitrobein 	15.2 cd	15.4 cd	2.35 a	2.33 a	6.15 bc	6.33 cd	2.83 bc	3.01 ab	1.18 ab	1.20 ab
Manure	Trench	1	→ Rhizobacterein	16.7 a	16.9 a	2.32 a	2.34 a	6.60 a	6.78 a	3.03 a	3.21 ab	1.25 a	1.28 a
	3		→ Nitrobein	16.0 b	16.3 b	2.30 a	2.33 a	6.30 b	6.51 bc	3.00 a	3.21 ab	1.20 ab	1.22 ab
	Surface	1	Rhizobacterein	14.8 def	15.0 def	2.31 a	2.33 a	6.01 cd	6.20 def	2.63 de	2.15 ab	1.15 ab	1.17 ab
Rabbit			→ Nitrobein	14.6 efg	14.7 fg	2.35 a	2.34 a	5.90 de	6.08 efg	2.50 ef	2.68 cd	1.12b	1.13 ab
manure	Trench	1	▼ Rhizobacterein	15.0 cde	15.2 cde	2.32 a	2.34 a	6.12 bc	6.31 cde	2.75 bcd	2.94 abc	1.17 ab	1.28 a
			→ Nitrobein	14.8 def	15.1 def	2.34 a	2.33 a	6.00 cd	6.20 def	2.70 cd	2.90 bc	1.15 ab	1.16 ab
eans with	iin each col	lumn, f	Means within each column, followed by the same letter(s) are not significantly different at 5% level.	ne letter	r(s) are n	ot signific	cantly dir	ferent at	5% leve	_			

A STATE OF THE

Table (25): Specific effect of organic manure source, application method and biofertilizer on leaf N, P, K, Ca and Mg content of Washington navel orange trees (2000 and 2001 seasons).

			Lieu	lents cor	centrati		Elements concentration in uried leaves (%)	(%)		
Factor	Nitro	Nitrogen	Phosphorus	horus	Potassium	sium	Calcium	ium	Magne	Magnesium
	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
			to	i. Effect (of organ	ic manur	a. Effect of organic manure source	0		
Cattle manure	2.42 c	2.44 c	0.127 a	0.132 a	0.76 c	0.74 c	3.07 c	3.30 €	0.35 c	0.37 c
Poultry manure	2.67 a	2.70 a	0.142 a	0.152 a	1.04 a	0.93 a	4.02 a	4.43 a	0.53 a	0.55 a
Rabbit manure	2.55 b	2.57 b	0.137 a	0.147 a	0.90 b	0.89 b	3.37 b	3.68 b	0.44b	0.46b
				b. Effec	b. Effect of application method	lication r	nethod			
Surface	2.53 a	2.55 a	0.133 a	0.142a	0.88 a	0.87a	3.40 b	3.68 b	0.42b	0.45b
Trench	2.55 a	2.59 a	0.138 a	0.147 a	0.92 a	0.90 a	3.58 a	3.92 a	0.46a	0.47 a
				S.	c. Effect of biofertilizer	biofertili	zer			
Rhizobacterien	2.57 a	2.60 a	0.148a	0.146a	0.92a	0.91 a	3.62 a	3.93 a	0.46a	0.47a
Nitrobien	2.51 b	2.54 b	0.140 a	0.141 a	0.88 b	0.86 b	3.36 b	3.67 b	0.42 b	0.45 b

4.2. Leaf mineral content

Leaf mineral content (N, P, K, Ca, Mg, Fe, Zn, Mn and Cu) of Washington navel orange trees during 2000 and 2001 seasons in response to organic manure source (cattle, poultry and rabbit), method of organic manure application (surface and trench) and biofertilizers (Rhizobacterien and Nitrobien) as well as their interactions is reported in **Tables (25 -35)**.

4.2.1. Nitrogen

It is clear from Table (25) that leaves of poultry manured trees had higher values of nitrogen content (2.67 & 2.70%) as compared with those manured with cattle (2.42 & 2.44%) in the first and second seasons, respectively. Besides, leaves of rabbit manured trees scored inbetween values of nitrogen content (2.55 & 2.57%) in 2000 and 2001 seasons, respectively. Anyhow, the differences between the three studied organic manure sources in this regard were obvious to be significant.

Furthermore, the method of organic manure application failed to induce a distinctive effect on leaf nitrogen content from the statistical standpoint.

In addition, fertilizing Washington navel orange trees with Rhizobacterien improved leaf nitrogen content rather than the inoculation with Nitrobien.

Moreover, the interaction between organic manure source and method of organic manure application demonstrates that leaf nitrogen content showed more response to organic manure source rather than to method of organic manure application, hence poultry manure applied firstly in trenches and/or secondly superficially

Additionally, **Table (27)** indicates that leaf nitrogen content responded largely to organic manure source rather than biofertilizers, where poultry manured trees supported firstly by Rhizobacterien or secondly by Nitrobien scored the highest values of leaf nitrogen content, followed descendingly by those of rabbit manure and lastly by the combinations of cattle manure.

Moreover, **Table (28)** reveals that the application of organic manure in trench and Rhizobacterien fertilization proved to be most efficient interaction in enhancing leaf nitrogen content of Washington navel orange trees. Other tested combinations induced similar effect on leaf nitrogen content from the statistical standpoint.

Finally, the interaction between organic manure source, method of organic manure application and biofertilizers shows that the interactions of poultry manure, particularly when poultry manure applied in trenches and supported with Rhizobacterien induced the highest positive effect on leaf nitrogen content. On the contrary, the combinations of cattle manure exerted the least positive effect on leaf nitrogen content. Besides, the combinations of rabbit manure occupied inbetween positions in this respect (Table, 29).

4.2.2. Phosphorus

Table (25-29) demonstrates that the three studied factors *i.e.* organic manure source (cattle, poultry and rabbit), method of organic manure application (surface and trench) and biofertilizers alone or in different combinations failed to show any distinctive effect on leaf phosphorus content of Washington navel orange trees during 2000 and 2001 seasons.

4.2.3. Potassium

It is clear that fertilizing Washington navel orange trees with poultry manure enriched leaf potassium content (1.04 & 0.93%) as compared with those manured with rabbit (0.90 & 0.89%) and cattle manured trees (0.76 & 0.74%) in 2000 and 2001 seasons, respectively. Anyhow, the differences between the three organic manure sources in this respect were obvious to be significant.

Furthermore, the application of organic manure in trenches or superficially exerted similar effect on leaf potassium content of Washington navel orange from the statistical standpoint.

Moreover, Table (25) reveals that fertilizing Washington navel orange trees with Rhizobacterien improved leaf potassium content rather than Nitrobien fertilization.

Furthermore, Table (26) shows that leaf potassium content responded largely to organic manure source rather than method of organic manure application, when their interactions were concerned, thereupon poultry manure whether applied superficially or in trenches induced similarly higher positive effect on leaf potassium content, followed descendingly by the combinations of rabbit manure and lastly by the corresponding ones of cattle manure in both seasons of study.

In addition, the interaction between organic manure source and biofertilizers demonstrates that the upper hand for the effect on leaf potassium content was organic manure source rather than biofertilizers. Thereupon, poultry manured trees supported with Rhizobacterien or Nitrobien induced statistically similar and higher positive effect on leaf potassium content, followed descendingly by those of rabbit manure and lastly the interactions of cattle manure (Table, 27).

On the other side, **Table (28)** reveals that out of interaction between method of organic manure application and biofertilizers, trench application x Rhizobacterien scored statistically higher leaf potassium content. Other tested combinations produced similar effect on leaf potassium content from the statistical point in both seasons of study.

Finally, the interaction between the three studied factors *i.e.* organic manure source, method of organic manure application and biofertilizers demonstrates that the interactions of poultry manure exerted similarly higher positive effect on leaf potassium content of Washington navel orange trees, followed descendingly by those of rabbit manure, and lastly, the interaction of cattle manure in the first and second seasons (**Table, 29**).

4.2.4. Calcium

It is obvious from **Table (25)** that leaves of poultry manured trees had higher values of calcium (4.02 & 4.43%), followed by those manured with rabbit (3.37 & 3.68%) and lastly by those of cattle manured trees (3.07 & 3.30%) in 1999 and 2000 seasons, respectively. The differences between the three studied organic manure sources, regarding leaf calcium content were remarkable to be significantly at 5% level.

In addition, the application of three studied organic manure sources in trenches induced higher positive effect on leaf calcium content rather than superficial application (Table, 25).

Moreover, inoculating Washington navel orange trees with Rhizobacterien enhanced leaf calcium content rather than Nitrobien fertilization.

As for the interaction between organic manure source and application method of organic manure, **Table (26)** reveals that poultry manure applied firstly in trenches and secondly superficially showed to be

the most efficient combinations in enhancing leaf calcium content. Besides, the interactions of rabbit manure surpassed the corresponding ones of cattle manure in improving leaf calcium content of Washington navel orange trees in both seasons.

Regarding the interaction between organic manure source and biofertilizers, Table (27) demonstrates that Rhizobacterien combinations surpassed Nitrobien interactions in enhancing leaf calcium content. Thereupon, the highest values of leaf calcium content were noticed with poultry manured trees supported with Rhizobacterien followed descendingly by those manured with the same organic manure source and provided with Nitrobien. Besides, the combinations of rabbit manure took not only the same trend, but also surpassed the analogous ones of cattle manure.

Furthermore, Table (28) shows that the application of organic manure in trenches provided with Rhizobacterien inoculation enhanced leaf calcium content, followed descendingly by surface application supported with Rhizobacterien. On the other hand, trench application of organic manure associated with Nitrobien surpassed surface application provided with the same biofertilization in enhancing leaf calcium content.

Finally, **Table (29)** illustrates the interaction between the three studied factors *i.e.* organic manure source, application method of organic manure and biofertilizers on leaf calcium content. Briefly, poultry manure x trench application x Rhizobacterien, followed by poultry manure x trench or surface application x Rhizobacterien or Nitrobien gave the highest values of leaf calcium content. On the other side, the combinations of rabbit manure surpassed the corresponding ones of cattle manure in improving leaf calcium content of Washington navel orange trees.

4.2.5. Magnesium

Table (25 – 29) shows that, the specific effect of organic manure source, application method of organic manure and biofertilizer (**Table**, **25**), the interaction effect between organic manure source and application method (**Table**, **26**), the interaction effect between organic manure source and biofertilizer (**Table**, **27**), the interaction effect between method of organic manure application and biofertilizer (**Table**, **28**) and the interaction effect between the three studied factors, *i.e.* organic manure source, method of application and biofertilizer, (**Table**, **29**) took nearly similar trend to that of leaf calcium content of Washington navel orange trees in 2000 and 2001 seasons.

4.2.6. Iron, Manganese and Zinc

It is obvious from **Table (30)** that leaves of poultry manured trees had the highest values of leaf Fe, Mn and Zn content, followed descendingly by those of rabbit manured ones and lastly those fertilized with cattle manure. However, the differences between the three tested organic manure sources in this concern were remarkable to be significant.

Furthermore, the application of organic manure in trenches enhanced leaf Fe, Mn and Zn content rather than surface application.

Moreover, inoculation Washington navel orange trees with Rhizobacterien exerted more positive effect on leaf Fe, Mn and Zn rather than Nitrobien inoculation.

Additionally, **Table (31)** reveals that the application of poultry manure firstly in trenches and secondly superficial exerted the highest stimulative effect on leaf Fe, Mn and Zn content. On the contrary, the applications of cattle manure either in trenches or superficially induced the

lowest values in this respect. The interactions of rabbit manure occupied an intermediate position in this sphere.

Table (32) shows that the interaction between organic manure source and biofertilizers took the same trend of interaction between organic manure source and method of organic manure application regarding leaf Fe, Mn and Zn content. Thereupon, leaves of poultry manured trees in general, manured in trench in particular or superficially were the richest ones in their content of Fe, Mn and Zn. Besides, the combinations of rabbit manure induced higher positive effect on leaf Fe, Mn and Zn content as compared with those of cattle manure.

It is quite evident from **Table (33)** that the application of organic manure in trenches, provided with Rhizobacterien recorded the highest values of leaf Fe, Mn and Zn content. Moreover, trench application of organic manure supported with Rhizobacterien exerted similar positive effect on leaf Fe, Mn and Zn content to that of surface application of organic manure associated with Rhizobacterien inoculation. On the contrary, trees manured superficially and inoculated with Nitrobien had the lowest leaf Fe, Mn and Zn content.

Lastly, the interaction between organic manure source, method of organic manure application and biofertilizer, (Table, 34) reveals that poultry manured trees, inoculated with Rhizobacterien and fertilized in trenches in particular and/or superficially followed descendingly by the corresponding ones inoculated with Nitrobien and manured firstly in trenches and secondly superficially showed the highest values of leaf Fe, Mn and Zn content. Besides, the combinations of rabbit manure proved to be more efficient in enhancing leaf Fe, Mn and Zn content than the analogous ones of cattle manure.

4.2.7. Copper

It is clear from Tables (30 - 34) that the three studied factors, *i.e.* organic manure source, method of organic manure application and biofertilizer whether concerned lonely or in their different studied combinations failed to induce a distinctive effect on leaf copper content of Washington navel orange trees during 2000 and 2001 seasons.

Abstractly, poultry manure proved to be the superior organic manure source in enhancing leaf N, K, Ca, Mg, Fe, Mn and Zn content. Besides, the application of organic manure in trenches exerted more positive effect on leaf Ca, Mg, Fe, Mn, and Zn than surface application. Moreover, Rhizobacterien inoculation surpassed Nitrobien inoculation in improving leaf N, K, Ca, Mg, Fe, Mn and Zn content.

The improvement in leaf nutrient content due to poultry manure may be explained by the fact that it induces positive effect on physical condition of the soil; creates favourable conditions for root growth and nutrients absorption; it supplies much nutrients, and it facilities the tree of fixed nutrients to be absorbed. Besides, poultry manure contains twice as much nitrogen as farmyard manure, they are much richer in phosphorus and contain as much potassium as farmyard manure (Cook, 1982).

Furthermore, the enhancement of leaf nutrient content due to trench application of organic manure, may be due to the fact that the incorpation of manure in the soil provided a protection against nutrients losses (Cook, 1982).

Briefly, the results of leaf mineral content due to organic manure source are in accordance with the findings of Sekiya *et al.* (1983) on Satsuma mandarin, Kalu-Singh *et al.* (1984) on mango, Noack (1984) on apple, Darfeld and Lenz (1985) on pear, Umemiya and Sekiya (1985) on persimmon, Villasurda and Baluyut (1990) on guava, Ben-Ya-acov *et al.*

(1992) on avocado, Awad et al. (1993) on olive, Alvarez et al. (1993) on pineapple, Smith (1994) on banana, Abou-Sayed Ahmed (1997) on Balady mandarin and El-Kobbia (1999) on Washington navel orange. They reported that organic manure, particularly, poultry manure enhanced leaf mineral content.

Besides, the obtained results of leaf mineral content attributed to the effect of method of organic manure application are in harmony with the findings of Tkachuk (1983) on apple, Bhangoo et al. (1988) on grape and Goede (1993) on mange. Moreover, the results of biofertilizer regarding leaf mineral content are in agreement with the findings of Pomares et al. (1983) on oranges, Chokha et al. (1993) on orange, Haggag and Azzazy (1996) on mango, Ahmed et al. (1997) on grape, Awasthi et al. (1998) on peach, Fernandez et al. (1998) on banana, Mansour (1998) on Anna apple, Mahmoud and Mahmoud (1999) on peach and Tiwary et al. (1999) on banana. They mentioned that Rhizobacterien enhanced most leaf mineral content.

Table (26): Effect of interaction between organic manure source and application method on leaf N, P, K, Ca and Mg content of Washington navel orange trees (2000 and 2001 seasons).

Organic					Elem	Elements concentration in dried leaves (%)	centration	on in dri	ed leave	s (%)		
manure	Q	Application -	Nitrogen	den	Phosp	Phosphorus	Potassium	sium	Calcium	ium	Magnesium	sium
source		method	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
		◆ Surface	2.41 d	2.43 d	0.125 a	0.130 a	0.74 c	0.72 c	3.05 d	3.20 e	0.33 c	0.36 c
Cattle	<u> </u>	Trench	2.42 d	2.45 d	0.130 a	0.135 a	0.78 c	0.76 c	3.10 d	3.40 d	0.37 c	0.37 c
		- Surface	2.64 ab	2.67 b	0.140 a	0.150 a	1.03 a	1.02 a	3.80 b	4.20 b	0.52 a	0.52 a
Poultry →	<u> </u>	Trench	2.69 a	2.73 a	0.145 a	0.155 a	1.05 a	1.04 a	4.25 a	4.65 a	0.55 a	0.56 a
	<u></u>	→ Surface	2.53 c	2.56 €	0.135 a	0.145 a	0.88 b	0.87 b	3.35 c	3.65 c	0.43 b	0.45 b
Rabbit -	<u>†</u>	→ Trench	2.56 bc	2.59 c	0.140 a	0.150 a	0.93 b	0.90 b	3.40 c	3.70 c	0.45 b	0.47 b
leans withir	neac	Means within each column, followed by the same letter(s) are not significantly different at 5% level	owed by tl	he same	letter(s) a	re not sig	nificantly	different	at 5% leve	.i.		

Table (27): Effect of interaction between organic manure source and biofertilizer on leaf N, P, K, Ca and Mg content of Washington navel orange trees (2000 and 2001 seasons).

Organic	i			Elem	Elements concentration in dried leaves (%)	centrati	on in dri	ed leave	(%)		
manure	Biofertilizer	Nitr	Nitrogen	Phos	Phosphorus	Potas	Potassium	Calc	Calcium	Magn	Magnesium
sonice		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
Cattle	_*Rhizobacterien	2.43 d	2.45 d	0.130 a	0.130 a 0.140 a	0.78 c	0.76 c	3.15 e	3.40 e	0.37 d	0.38 d
	Nitrobien	2.40 d	2.42 d	0.125 a	0.125 a	0.73 c	0.72 c	3.00 f	3.20 f	0.33 e	0.36 d
Poultry +	Rhizobacterien	2.71 a	2.74 a	0.145 a	0.155 a	1.07 a	1.05 a	4.25 a	4.65 a	0.56 a	0.56 a
5	-Nitrobien	2.62 b	2.65 b	0.140 a	0.140 a 0.150 a	1.02 a	1.00 a	3.80 b	4.20 b	0.51 b	0.53 b
+i44ca	Rhizobacterien	2.57 bc	2.60 bc	0.140 a	0.150 a	0.92 b	0.89 b	3.45 c	3.75 c	0.45 c	0.47 c
Nabbil	Nitrobien	2.52 c	2.55 c	0.135 a	0.135a 0.145a	0.89 b	0.87 b	3.30 d	3.60 d	0.43 c	0 45 6
Means withir	Means within each column, followed by the same letter(s) are not significantly different at 5% level	owed by t	he same l	etter(s) a	re not sign	ificantly	different a	+ 5% love			

Table (28): Effect of interaction between application method of organic manure and biofertilizer on leaf N, P, K, Ca and Mg content of Washington navel orange trees (2000 and 2001 seasons).

Application				Elem	Elements concentration in dried leaves (%)	centrati	on in dri	ed leave	(%) s	*	
mothod	Biofertilizer	Nitro	Nitrogen	Phosp	Phosphorus	Potas	Potassium	Calcium	inm	Magn	Magnesium
nomalli		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
1000	Rhizobacterien	2.55 ab	2.57 ab	0.136 a	2.55 ab 2.57 ab 0.136 a 0.146 a 0.90 b 0.87 b 3.50 b 3.80 b	0.90 b	0.87 b	3.50 b	3.80 b	0.44 b	0.44 b 0.46 ab
	► Nitrobien	2.51 b	2.53 b	0.130 a	2.53 b 0.130 a 0.136 a	0.87 b	0.85 b	3.30 d	3.57 c	0.41 b	0.43 b
/ 1	-Rhizobacterien	2.59 a	2.62 a	0.140 a	0.140 a 0.150 a	0.94 a	0.93 a	3.73 a	4.07 a	0.47 a	0.48 a
Lencu	→ Nitrobien	2.52 b	2.55 b	0.136 a	2.52b 2.55b 0.136a 0.143a	0.89 b	0.86 b	3.43 c	3.77 b		0.43 b 0.46 ab
Means within	Means within each column, followed by the same letter(s) are not significantly different at 5% level	lowed by t	he same l	etter(s) a	re not sign	nificantly	different	at 5% leve	-		

Table (29): Effect of interaction between organic manure source, application method and biofertilizer on leaf (N, P, K, Ca and Mg) content of Washington navel orange trees (2000 and 2001 seasons).

	. 01			Eleme	ents coi	ncentra	Elements concentration in dried leaves (%)	fried lea	%) səvi	(
Organic	Application method	Biofertilizer N-fixing bacteria	Nitro	Nitrogen	Phosphorus	horus	Potassium	sium	Calcium	ium	Magn	Magnesium
source			(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
		→Rhizobacterein	2.42 ef	2.44 fg	0.13 a	0.14 a	0.76 ef	0.74 ef	3.1 h	3.3 fg	0.35 fg	0.37 f
Cattle	• onliace	→ Nitrobein	2.41 ef	2.42 g	0.12 a	0.12a	0.71 f	0.70 f	3.0 i	3.19	0.30 g	0.31 f
manure	10	- Rhizobacterein	2.45 def	2.47 efg	0.13 a	0.14 a	0.80 de	0.79 de	3.2 g	3.5 ef	0.38 ef	0.39 ef
	I rench	 Nitrobein 	2.40 f	2.43 g	0.13 a	0.13 a	0.75 ef	0.73 ef	3.0 i	3.3 fg	0.35 fg	0.38 f
	-	→Rhizobacterein	2.67 ab	2.70 ab	0.14 a	0.15 a	1.05 a	1.03 a	4.0 b	4.4 b	0.53 ab	0.55 ab
Poultry		▼ Nitrobein	2.61 bc	2.64 bcd	0.14 a	0.15 a	1.01 ab	1.00 ab	3.6 €	4.0 c	0.50 bc	0.52 bc
Manure		- Rhizobacterein	2.75 a	2.79 a	0.15 a	0.16 a	1.08 a	1.08 a	4.5 a	4.9 a	0.58 a	0.58 a
	→ Trench →	- Nitrobein	2.63 bc	2.67 bc	0.14 a	0.15a	1.02 ab	1.00 ab	4.0 b	4.4 b	0.52 b	0.54 ab
		Rhizobacterein	2.56 bod	2.59 bode	0.14 a	0.15 a	0.88 cd	0.86 cd	3.4 e	3.7 de	0.44 de	0.46 cd
Rabbit	→ Surface →	Nitrobein	2.51 cdef	2.54 cdef	0.13 a	0.14 a	0.88 cd	0.87 cd	3.3 f	3.6 de	0.42 de	0.44 de
manure		→ Rhizobacterein	2.59 bc	2.62 bcd	0.14 a	0.15 a	0.95 bc	0.93 bc	3.5 d	3.8 cd	0.46 cd	0.48 cd
	↑ Irench	→ Nitrobein	253. cde	2.56 cdef	0.14 a	0.15 a	0.90 c	0.88 cd	3.3 f	3.6 de	0.44 cde	0.46 cd
Means wit	hin each column	Means within each column, followed by the same letter(s) are not significantly different at 5% level.	me lette	r(s) are r	ot signif	icantly di	fferenta	t 5% leve				

Table (30): Specific effect of organic manure source, application method and biofertilizer on leaf Fe, Mn, Zn, and Cu content of Washington navel orange trees (2000 and 2001 seasons).

		1	ובווובוווים כס	ורפוונומנוס	2000	Elements concentration in arrea reaves (ppin)		
Factor	2	Iron	Manga	Manganese	Zi	Zinc	Cop	Copper
*	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
		•	a. Effec	st of organ	a. Effect of organic manure source	sonrce		
Cattle manure	9 Z S	70 c	46 c	50 c	45 c	44 c	6 a	7 a
Poultry manure	89 8	92 a	72 a	77 a	72 a	70 a	6 2	7 a
Rabbit manure	76 b	81 b	61 b	q 99	29 b	97 b	6 a	6а
			b. Ef	fect of app	b. Effect of application method	ethod		
Surface	76 b	73 b	97 b	61 b	26 b	55 b	6 a	7 a
Trench	80 a	83 a	62 a	67 a	61 a	61 a	6а	6 а
			O.	. Effect of	c. Effect of biofertilizer	<u>.</u>		
Rhizobacterien	80 a	83 a	62 a	68 a	61 a	60 a	6а	7 a
Nitrobien	76 b	4 6Z	57 b	9 09	57 b	55 b	6 a	7 a

Table (31): Effect of interaction between organic manure source and application method on leaf Fe, Mn, Zn, and Cu content of Washington navel orange trees (2000 and 2001 seasons).

Organic manure		Application		Elen	nents con	centratio	n in dried	Elements concentration in dried leaves (ppm)	(mai	
source		method	1	Iron	Mang	Manganese	Zir	Zinc		100
		5	(2000)	(2004)	(2000)	(2004)		17000/	laddon	ned
			(2002)	(2001)	(2000)	(2001)	(7000)	(2001)	(2000)	(2001)
Cattle manure	1	Surface	65 d	68 d	43 f	46 e	42 c	41 d	6а	7 a
	<u></u>	Trench	68 d	71 d	48 e	52 d	48 c	47 c	6 a	6 a
Poultry manure →	1	Surface	86 b	90 P	70 b	73 b	70 a	69 a	6 a	7 a
		Trench	92 a	95 a	74 a	80 a	74 a	73 a	6 a	7 a
Rabbit manure -	t	Surface	77 c	80 c	58 d	65 c	58 b	26 b	6a	6 a
		Trench	79 c	82 c	64 c	67 c	62 b	62 b	69	7.9
Means within each column, followed by the same letter(s) are not significantly different at 50, 1	lumn, 1	followed by th	e same le	Her(s) are	of cianific	anthu differ			5	3

Table (32): Effect of interaction between organic manure source and biofertilizer on leaf Fe, Mn, Zn, and Cu content of Washington navel orange trees (2000 and 2001 seasons).

			Elen	Elements concentration in dried leaves (ppm)	centration	n in dried	leaves (F	(mdo	
Organic manure	Biofertilizer	=	Iron	Manganese	nese	Zinc	nc	Cop	Copper
source	•	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	▼ Rhizobacterien	p 69	73 d	49 e	54 e	48 c	47 c	6 a	7 a
Cattle manure	▼ Nitrobien	64 e	e 29	42 f	45 f	42 d	41 d	5 a	7 a
	➤ Rhizobacterien	91 a	95 a	74 a	81 a	74 a	73 a	6 a	7 a
Poultry manure	→ Nitrobien	87 b	q 06	4 0 Z	72 b	70 a	67 a	5 a	7 a
	▼ Rhizobacterien	26Z	82 c	63 c	68 c	9 09	61 b	5 a	7 a
Rabbit manure ->	- Nitrobien	77 c	80 c	29 d	63 d	d 63	57 b	6а	6 a
Means within each column, followed by the same letter(s) are not significantly different at 5% level	ımn, followed by 1	he same le	etter(s) are	not signific	antly diffe	rent at 5%	level.		

Table (33): Effect of interaction between organic manure application method and biofertilizer on leaf Fe, Mn, Zn, and Cu content of Washington navel orange trees (2000 and 2001 seasons).

Application	nc	i		Elen	nents con	Elements concentration in dried leaves (ppm)	n in dried	leaves (p	(mdo	
method		Biotertilizer	ī	Iron	Mang	Manganese	Zir	Zinc		Copper
			(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
Surface	1	Rhizobacterien	77 b	81 b	9 69	64 b	29 b	57 b	6a	7a
		- Nitrobien	74 c	77 c	55 c	58 c	55 c	53 c	6a	7 a
F	1	Rhizobacterien	82 a	85 a	65 a	71 a	64 a	63 a	6 a	6 a
		→ Nitrobien	78 b	81 b	9 09	63 b	29 b	58 b	o s	6.9
Means within each column,	each	column, followed by the same letter(s) are not significantly different at 5% level.	the same le	tter(s) are	not signific	antly differ	ent at 5% I	evel.		

Table (34): Effect of interaction between organic manure source, application method and biofertilizer on leaf (Fe, Mn, Zn, and Cu)

				Elem	ents cond	entration	Elements concentration in dried leaves (ppm	leaves (p	(mdi	
Organic manure	Application method	Biofertilizer N-fixing	Iron	L.	Manganese	anese	Zinc	ا ر	Copper	per
source		bacteria	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
٠		Rhizobacterein	68 gh	72 gh	46 h	51 f	44 ef	42 e	6 a	7 a
Cattle	- ani lace	→ Nitrobein	63 i	65 i	40 i	42 g	40 f	39 e	5a	7 a
manure		- Rhizobacterein	71 g	749	52 g	57 е	52 de	52 d	6а	6 a
	Leucu	Nitrobein	66 hi	69 hi	44 h	48 f	44 ef	42 e	5a	6a
		Rhizobacterein	88 bc	92 bc	71 b	76 b	72 a	71 ab	6 a	7 a
Poultry	◆ Surrace →	→ Nitrobein	85 cd	88 cd	96 bc	70 c	68 ab	99 cd	5a	7 a
Manure		Rhizobacterein	95 a	98 a	81 a	87 a	77 a	75 a	6а	6 a
	↑ Irencu →	 Nitrobein 	90 b	93 b	71 b	74 b	72 a	71 ab	S B	7 a
	1	Rhizobacterein	78 ef	81 ef	62 ef	p 99	60 bcd	58 cd	5a	6a
Rabbit	→ Surrace →	 Nitrobein 	76 f	79 f	58 fg	63 d	26 cd	54 d	6 a	6 a
manure		→ Rhizobacterein	81 de	84 de	99 cd	70 c	65 bcd	63 bc	5a	7 a
	↑ Irench	 Nitrobein 	78 ef	81 ef	62 de	64 d	62 bc	90 cd	6 a	6 a

Means within each column, followed by the same letter(s) are not significantly different at 5% level.

4.3. Tree fruiting

Data presented in **Tables** (35 – 45) show the effect of organic manure source, *i.e.* cattle, poultry and rabbit, method of organic manure application (surface and trench) and biofertilizers (Rhizobacterien and Nitrobien) as well as their interactions on tree fruiting parameters *i.e.*, fruit set, fruit drop percentages, number of fruits per tree and yield (kg/tree) of Washington navel orange trees during 2000 and 2001 seasons.

4.3.1. Fruit set percentages

It is quite evident from **Table (35)** that poultry manured-navel orange trees set higher percentages of fruits (16.92 & 17.33), followed descendingly by rabbit manured trees (16.46 & 16.81) and finally cattle manured ones (16.15 & 16.40) in 2000 and 2001 seasons, respectively. However, the differences between poultry manure and cattle manure in this respect were obvious to be significant at 5% level. On the other hand, the differences between rabbit manure and both poultry and cattle manure in this concern were so small to reach the significance level.

Furthermore, the application of organic manures either superficially or in trenches failed to induce any significant effect on fruit set of Washington navel orange trees in both seasons of study (Table, 35).

In addition, inoculation of Washington navel orange trees with Rhizobacterien exerted more positive effect on fruit set percentages (17.08 & 17.43) as compared with the analogous ones inoculated with Nitrobien (16.93 & 16.28) in the first and second seasons, respectively.

As for the effect of interaction between organic manure source and method of application on fruit set percentages of Washington navel orange trees, Table (36) demonstrates that in both seasons of study, the combinations of organic manure sources *i.e.* cattle, poultry and rabbit and

the methods of application namely surface and trench failed to induce a pronounced effect on fruit set from the statistical standpoint.

Concerning the effect of interaction between organic manure source and biofertilizers. Table (37) demonstrates that flowers of Washington navel orange trees fertilized with poultry manure and inoculated with Rhizobacterien set comparatively higher percentages of fruits. On the contrary, flowers of Washington navel orange trees manured with cattle and inoculated with Nitrobien set comparatively lower percentages of fruits. Generally, all combinations of Rhizobacterien induced relatively similar and higher positive effect on fruit set of Washington navel orange trees than the corresponding one of Nitrobien.

Regarding the effect of interaction between method of organic manure application and biofertilizers, it is clear from **Table (38)** that in 2000 and 2001 seasons, the application of organic manure in trenches and fertilizing the trees with Rhizobacterien exerted higher percentage of fruit set. Besides, the combinations of Nitrobien and the two methods of organic manure application (surface and trench) produced statistically similar and lesser positive effect on fruit set percentages than the interaction between Rhizobacterien and the application of organic manure superficially in both seasons of study.

Regarding the interaction between organic manure source, method of organic manure application and biofertilizers, **Table (39)** indicates that nearly all the studied combinations of the three tested factors recorded statistically similar values of fruit set percentages of Washington navel orange trees except for the combinations of cattle manure applied superficially and Nitrobien which gave comparatively lower values of fruit set percentages of navel orange trees.

4.3.2. Fruit drop percentages

Table (35) reveals that in both seasons cattle manured trees recorded higher percentages of fruit dropping during April, 15^{th} – May, 3^{rd} , May, 4^{th} – May, 24^{th} and May, 25^{th} – June, 21^{st} as compared with those fertilized with poultry or rabbit manure. Besides, poultry manured trees shed lesser percentages of fruits during April, 15^{th} – May, 3^{rd} and May, 4^{th} – May, 24^{th} as compared with those fertilized with rabbit manure in both seasons. The reverse was true during the period of May, 25^{th} – June, 21^{st} .

Furthermore, the application of organic manures in trenches succeeded in reducing fruit shedding during the three studied periods of fruit dropping, *i.e.* April, 15th – May, 3rd, May, 4th – May, 24th and May, 25th – June, 21st as compared with surface application in both seasons.

Additionally, biofertilization in the form of Rhizobacterien surpassed Nitrobien in reducing fruit shedding during the studied periods of fruit dropping in 2000 and 2001 seasons (Table, 35).

Concerning the effect of interaction between organic manure source and method of application, **Table (36)** demonstrates that in general, the application of poultry and rabbit manure either superficially or in trenches induced nearly similar and negative effect on fruit dropping during April, 15^{th} – June, 21^{st} as compared with cattle manure when applied superficially in both seasons.

As for the effect of interaction between organic manure source and biofertilizers, it is clear from **Table (37)** that in both seasons cattle manured trees whether inoculated with Rhizobacterien and Nitrobien shed comparatively higher percentages of fruits as compared with other tested combinations during April, 15th – June, 21st. On the other hand, other tested interactions induced relatively similar effect in this respect during most studied periods.

Table (38) shows that the interaction between method of organic manure application and biofertilizers failed to induce an obvious trend regarding their effect on fruit drop percentage during April, 15th – June, 21st in both seasons of study.

Additionally, the interaction between organic manure source, method of organic manure application and biofertilizers shows that cattle manured-trees applied superficially or in trenches and supported with Rhizobacterien or Nitrobien recorded higher values of fruit shedding during the three studied periods *i.e.* April, 15th – May, 3rd, May, 4th – May, 24th and May, 25th – June, 21st. Besides, other tested combinations namely, poultry and rabbit manure whether applied superficially or in trenches and supported with Rhizobacterien or Nitrobien exerted nearly similar effect on fruit shedding during the periods of April, 15th - June, 21st.

4.3.3. No. of fruit/tree

Table (40) indicates that in both seasons, the three studied organic manure sources *i.e.* cattle, poultry and rabbit exerted statistically similar effect on number of produced fruits per tree. Besides, neither the application method (surface and trench) nor the biofertilizers (Rhizobacterien and Nitrobien) significantly affect number of produced fruits per tree in 2000 and 2001 seasons.

Furthermore, **Table (41)** shows that out of all interactions between organic manure source and method of organic manure application, poultry manure applied in trenches gave the highest remarkable positive effect on number of produced fruit/tree. Other tested interactions failed to induce a distinctive trend in this respect.

In addition, Table (42) reveals that the interaction between organic manure source and biofertilizers took similar trend to that of interaction

between organic manure source and method of application, hence, out of all interactions, poultry manure and rabbit manure supported with Rhizobacterien induced higher distinctive effect on number of developed fruits/tree. Other tested interactions failed to show a distinctive trend in this concern.

4.3.4. Yield (kg)/tree

It is quite evident from **Table (40)** that poultry manure and rabbit manure significantly increased tree yield as compared with those manured with cattle manure in 2000 and 2001 seasons. However, the differences between poultry and rabbit manure in this respect were lacking from statistical standpoint.

Furthermore, trench application of organic manure significantly increased number of fruits/trees as compared with superficial application (Table, 40).

Moreover, the two tested methods of organic manure application *i.e.* surface and trench exerted similar effect on tree yield in both seasons of study.

Furthermore, the two studied biofertilizers namely Rhizobacterien and Nitrobien scored statistically similar values of tree yield in the first and second seasons.

In addition, the interaction between organic manure source and method of organic manure application reveals that out of all studied interactions poultry manure applied in trenches showed distinctive and higher values of tree yield in both seasons. On the contrary, cattle manure whether applied in trenches or superficially recorded the lowest values of tree yield particularly in the second season (2001). The combinations of rabbit manure showed inbetween values in this respect (**Table, 41**).

Table (42) demonstrates that the interaction between organic manure source and biofertilizers exerted that poultry manure provided with Rhizobacterien proved to be the most effective combination in enhancing tree productivity of Washington navel orange. On the contrary, cattle manure interactions showed to be the lowest effective combinations in this concern. Besides, other studied interactions produced intermediate effect on tree yield in both seasons of study.

It is obvious from **Table (43)** that out of all interactions between method of organic manure application and biofertilizers, trench application of manure when interacted with Rhizobacterien showed distinctive and higher positive effect on tree yield in both seasons. Other tested combinations gave similar values of tree yield from the statistical standpoint.

Moreover, Table (43) demonstrates that the interaction between method of organic manure application and biofertilizers gave in most cases similar effect on number of produced fruits per tree in both seasons.

Finally, the interaction between organic manure source, method of application and biofertilizers, indicates that out of the tested combinations, poultry manure applied in trenches and supported with Rhizobacterien or Nitrobien showed a remarkable and higher positive effect on number of produced fruits per tree. Other tested interactions gave statistically similar values in this respect.

Concerning the interaction between the three studied factors *i.e.* organic manure source, method of organic manure application and biofertilizers, (Table, 44) poultry manure applied in trenches and supported with Rhizobacterien or Nitrobien exerted the highest positive distinctive effect in enhancing tree productivity [yield (kg)/tree]. Other tested

interactions scored comparatively similar values of tree yield (kg) from the statistical standpoint.

Abstractly, poultry manure proved to be the most efficient organic manure source in enhancing tree fruiting of Washington navel orange trees, hence it increased fruit set percentage reduced fruit dropping waves and improved tree yield (No. of fruits/tree and yield (kg)/tree). Besides, trench application of organic manure reduced the waves of fruit dropping as compared with surface application. Moreover, Rhizobacterien inoculation enhanced fruit set percentage and reduced fruit shedding percentage as compared with Nitrobien inoculation.

The enhancement of tree productivity as a result of using organic manure in general and poultry manure in particular may be due to the following facts: (1) manure improves soil physical conditions, (2) it creates more favourable conditions for plant growth and nutrient absorption, (3) it supplies nutrient elements with much higher with poultry manure, (4) it releases much more of less available elements (particularly P, Fe, Zn and Mn), (5) it increases the soil content of IAA and cytokinins (Li et al., 1998).

In addition, the improvement of tree fruiting as a result of biofertilizers may be due to the production of growth regulator as well as N-fixation (Rao and Dass, 1989).

The results of tree fruiting induced by organic manure source are emphasized by the findings of Bacha and Abo-Hassan (1983) on date palm, Marecek and Moravek (1983) on apple, Mukherjee et al. (1983) on jack fruit, Sekiya et al. (1983) on Satsuma mandarin, Tanas'ev and Balan (1983) on apple, Gasanor (1984) on persimmon, Kalu-Singh et al. (1984) on mango, Kopytko (1984) on apple, Motskobili (1984) on Satsuma, Tanas'ev (1984) on apple, Darfeld and Lenz (1985) on pear,

Pil'Shchikov (1986) on apple, Bussi and Defrance (1987) on peach, Gadelha and Vieira (1988) on pineapple, Piatkowski et al. (1990) on apple, Villasurda and Baluyut (1990), Davitadze (1991), Wang et al. (1991) on grape, Ben-Ya-acov et al. (1992) on avocado, Bussi et al. (1992) on peach, Gouda et al. (1992) on grape, Alvarez et al. (1993) on pineapple, Rabeh et al. (1993) on Balady mandarin, Prabhuram and Sathiamoorthy (1993) on banana, Li et al. (1997) on pear, Song et al. (1999) on apple and Ye-Jianwin et al. (1999) on pummelo. In this respect, Ben-Ya-acov et al. (1992) mentioned that the combination of the better rootstock and organic manure application increased yield by 135% compared with the other rootstocks without organic manure application. Besides, Gouda et al. (1992) reported that the best result of combined treatments on yield were poultry manure and cattle manure at 3.5 and 12 t/fed, respectively. Recently, El-Kobbia (1999) on Washington navel orange, realized the highest yield was produced by cattle manure.

The obtained results regarding the effect of organic manure application method on tree fruiting go in line with those mentioned by Tsipko (1982) on apple, Tkachuk (1983) on apple, Bhangoo et al. (1988) on grape, Fisun and Kodzokov (1991) on plum and Goede (1993) on mango.

In addition, tree fruiting results produced by biofertilizers are in harmony with the findings of Ball et al. (1983) on groundnut, Chang (1983) on peanuts, Pomares et al. (1983) on orange, Akl et al. (1997), Fernandez et al. (1998) and Mansour (1998) on apple.

Table (35): Specific effect of organic manure source, application method and biofertilizer on fruit set and fruit drop percentages of Washington navel orange trees (2000 and 2001 seasons).

; ; ; ; ;	Frui	Fruit set			Fruit She	Fruit Shedding (%)		
ractor		(%)	April, 15 th	- May, 3rc	May, 4th	Mav. 24th	May 25th	April, 15th - May, 3rd May, 4th - May, 24th May 25th Line 24st
	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
			a. Effec	t of organ	a. Effect of organic manure source	e source		(1.5.1)
Cattle manure	16.15 b	16.40 b	65.20 a	66.42 a	9.80 a	9.66 a	4.70 a	4.47 a
Poultry manure	16.92 a	17.33 a	63.00 b	64.17 c	9.41 b	9.27 b	4.31 b	4.10 b
Rabbit manure	16.46 ab	16.81 ab	63.80 b	65.02 b	9.80 a	9.69 a	4.20 c	3.10 c
			b. Effe	ct of app	b. Effect of application method	ethod		
Surface	16.23 a	16.51 a	64.31 a	65.53 a	9.74 a	9.62 a	4.50 a	4.26 a
Trench	16.80 a	17.19 a	63.66 b	64.87 a	9.60 a	9.46 b	4.32 b	4.11 6
			Ö	Effect of	c. Effect of biofertilizer	Je L		P F S
Rhizobacterien	17.08 a	17.43 a	62.80 b	64.00 b	9.63 a	9.53 a	4.40 a	4.19 a
Nitrobien	16.93 b	16.28 b	65.20 a	66.41 a	9.70 a	9.55 a	4 41 2	7
Means within each column, followed by the same letter(s) are not circuitionally life.	owed by the same	letter(c) ar	itianio ton o	open the chief			5	1.00
	ome of the come	ובונבו (א) מו	mot signifi	cantly ante	rent at 5%	evel.		

Table (36): Effect of interaction between organic manure source and application method on fruit set and fruit drop percentages of Washington navel orange trees (2000 and 2001 seasons).

			Frui	Fruitset			Fruit She	Fruit Shedding (%)		
Organic manure	ure	Application	0	(%)	April, 15th	- May, 3rd	May, 4th	- May, 24th	May. 25 ^{tt}	April, 15th - May, 3rd May, 4th - May, 24th May. 25th - June, 21st
source		method	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
Cattle		*Surface	15.90 a	16.07 b	65.70 a	66.90 a	9.90 a	9.78 a	4.80 a	4.55 a
manure	1	► Trench	16.40 a	16.74 ab	64.73 b	65.90 ab	9.70 ab	9.55 bc	4.62 ab	4.40 b
Poultry	٠,	→ Surface	16.40 a	16.74 ab	63.60 c	64.81 bc	9.53 ab	9.42 c	4.50 b	4.28 b
manure	\uparrow	► Trench	16.77 a	17.95 a	62.32 d	63.54 c	9.30 b	9.13 d	4.12 c	3.93 €
. Bahhit		-► Surface	16.40 a	16.75 ab	63.70 c	64.90 b	9.80 ab	9.68 ab	4.16 c	3.95 c
manure	1	→ Trench	16.51 a	16.89 ab	63.92 bc	65.14 b	9.81 ab	9.70 ab	4.22 c	4.01 c
Means within	each	Means within each column, followed by the same letter(s) are not significantly different at 5% level	by the sam	e letter(s)	are not signi	ficantly diff	erent at 5°	% level.		

Table (37): Effect of interaction between organic manure source and biofertilizer on fruit set and fruit drop percentages of Washington navel orange trees (2000 and 2001 seasons).

Biofertilizer (%) (2000) (2001) Rhizobacterien 16.70 ab 16.93 abc 15.60 c 15.88 c 17.98 a 17.98 a 17.98 a 16.30 bc 16.71 bc 16.30 bc 16.71 bc 16.30 bc 17.37 ab 15.95 bc 16.27 bc each column, followed by the same letter(s) are	Organic									
rien 16.70 ab 16.93 abc 63.70 b 64.91 bc 9.80 a 9.65 a 4.73 a 16.30 bc 17.37 ab 64.53 b 65.76 b 64.23 c 9.80 a 9.67 a 4.23 b 16.95 bc 16.75 bc 16.7	manire		Fru	itset			Fruit She	dding (%)		
rien 16.70 ab 16.93 abc 15.60 c 15.88 c rien 17.60 a 17.98 a 16.30 bc 16.71 bc rien 16.96 ab 17.37 ab 15.95 bc 16.27 bc ollowed by the same letter(s) are	Control		_	(%	April. 15th	- May and	May Ath	Man 2441	4	
rien 16.70 ab 16.93 abc 15.60 c 15.88 c rien 17.60 a 17.98 a 16.30 bc 16.71 bc rien 16.96 ab 17.37 ab 15.95 bc 16.27 bc	sonice		(2000)	(2004)	10000/	, ooo,	INIdy, 4	Iviay, 24th	May. 25"	June, 21 st
rien 16.70 ab 16.93 abc 63.70 b 64.91 bc 9.80 a 9.65 a 4.73 a 15.60 c 15.88 c 66.70 a 67.93 a 9.80 a 9.65 a 4.70 a rien 17.60 a 17.98 a 61.60 c 62.81 d 9.35 a 9.24 b 4.30 b rien 16.30 bc 16.71 bc 64.32 b 65.54 b 9.50 a 9.31 b 4.34 b rien 16.96 ab 17.37 ab 63.06 b 64.23 c 9.80 a 9.67 a 4.20 b 15.95 bc 16.27 bc 64.53 b 65.76 b 9.82 a 9.71 a 4.23 b ollowed by the same letter(s) are not significantly different at 5% level		i	(222)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
15.60 c 15.88 c 66.70 a 67.93 a 9.80 a 9.65 a 4.70 a rien 17.60 a 17.98 a 61.60 c 62.81 d 9.35 a 9.24 b 4.30 b 16.30 bc 16.71 bc 64.32 b 65.54 b 9.50 a 9.31 b 4.34 b rien 16.96 ab 17.37 ab 63.06 b 64.23 c 9.80 a 9.67 a 4.20 b 15.95 bc 16.27 bc 64.53 b 65.76 b 9.82 a 9.71 a 4.23 b ollowed by the same letter(s) are not significantly different at 5% level	Cattle	-> Khizobacterien	16.70 ab	16.93 abc		64.91 bc	9.80 a	9.65 a	4.73a	4.51.9
rien 17.60 a 17.98 a 61.60 c 62.81 d 9.35 a 9.24 b 4.30 b 16.30 bc 16.71 bc 64.32 b 65.54 b 9.50 a 9.31 b 4.34 b rien 16.96 ab 17.37 ab 63.06 b 64.23 c 9.80 a 9.67 a 4.20 b 15.95 bc 16.27 bc 64.53 b 65.76 b 9.82 a 9.71 a 4.23 b ollowed by the same letter(s) are not significantly different at 5% level		► Nitrobien	15.60 c	15.88 c	66.70 a	67.93 a	9.80 a	9.65 a	4.70 a	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
16.30 bc 16.71 bc 64.32 b 65.54 b 9.50 a 9.31 b 4.34 b rien 16.96 ab 17.37 ab 63.06 b 64.23 c 9.80 a 9.67 a 4.20 b 15.95 bc 16.27 bc 64.53 b 65.76 b 9.82 a 9.71 a 4.23 b ollowed by the same letter(s) are not significantly different at 5% level	Poultry	Rhizobacterien	17.60 a	17.98 a	61.60 c	62.81 d	9.35.9	0 24 15		
16.30 bc 16.71 bc 64.32 b 65.54 b 9.50 a 9.31 b 4.34 b rien 16.96 ab 17.37 ab 63.06 b 64.23 c 9.80 a 9.67 a 4.20 b 15.95 bc 16.27 bc 64.53 b 65.76 b 9.82 a 9.71 a 4.23 b ollowed by the same letter(s) are not significantly different at 5% level	manure	Nitrobion)	0.540	4.30 B	4.10 b
rien 16.96 ab 17.37 ab 63.06 b 64.23 c 9.80 a 9.67 a 4.20 b 15.95 bc 16.27 bc 64.53 b 65.76 b 9.82 a 9.71 a 4.23 b		lie long	16.30 bc	16.71 bc	64.32 b	65.54 b	9.50 a	9.31 b	4.34 b	4.10 h
15.95 bc 16.27 bc 64.53 b 65.76 b 9.82 a 9.71 a 4.23 b ollowed by the same letter(s) are not significantly different at 5% level	Rabbit	- Rhizobacterien	16.96 ab	17.37 ab	63.06 b	64.23 c	9.80 a	9.67	7 00 1	2
ollowed by the same letter(s) are not significantly different at 5% level	manure	- Nitrobien	15.95 bc	16.27 bc	64 53 h	6E 76 L	0	5	4.500	3.95 C
and a same letter(s) are not significantly different at 5% level	Means withir	Pach column follows				007.00	9.82 a	9.71 a	4.23 b	4.02 bc
		cacii colullii, lollowed	by the same	etter(s) ar	e not signifi	cantly diffe	rent at 5%	level		

Table (38): Effect of interaction between organic manure source and biofertilizer on fruit set and fruit drop percentages of Washington navel orange trees (2000 and 2001 seasons).

		Fruit set	set			Fruit She	Fruit Shedding (%)		
Application	Biofertilizer	6)	(0)	April, 15th	- May, 3rd	May, 4 th –	April, 15th - May, 3rd May, 4th - May, 24th May. 25th - June, 21st	May. 25"	June, 21°
method		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	► Rhizobacterien	16.71 ab	17.06 ab	63.50 b	64.70 b	9.72 a	9.61 a	4.50 a	4.25 a
Surface →	- Nitrobien	15.70 c	15.97 bc	65.16 a	66.40 a	9.50 a	9.64 a	4.50 a	4.26 a
	- Rhizobacterien	17.40 a	17.79 a	62.10 c	63.32 c	9.60 a	9.45 a	4.30 b	4.12 b
Trench →	- Nitrobien	16.20 bc	16.59 bc	65.22 a	66.44 a	9.61 a	9.47 a	4.34 ab	4.11 b
Moans within a	Means within each column, followed by the same letter(s) are not significantly different at 5% level.	d by the same	e letter(s)	are not signi	ficantly diff	erent at 5%	6 level.		

Table (39): Effect of interaction between organic manure source, application method and biofertilizer on fruit set and fruit drop percentages of Washington navel orange trees (2000 and 2001 seasons).

manure	e Application		Fruit set	tset		F	uit drop	Fruit drop percentage	de	
source		N-IIAIIIG Dacteria		(%)	April, 15 th -	- May, 3rd	May, 4th	April, 15th - May, 3rd May, 4th - May, 24th May. 25th June 21st	May. 25 th	June. 21
			(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2004)
	▼ Surface →	Rhizobacterein	16.50 ab	16.58 bc	64.13 bc	65.35 cd	9.82 a	9.71 ab	·4.81a	4.59 a
Cattle		Nitrobein	15.28 b	15.56 c	67.20 a	68.42 a	9.95a	9.84 a	4.72 ab	4.50 ab
מ	Trench +	 Rhizobacterein 	16.90 ab	17.28 abc	63.25 c	64.47 cd	9.76a	9.65 ab	4.65 ab	4.43 abc
	_	→ Nitrobein	15.90 ab	16.20 bc	66.21 ab	67.43 ab	9.55 a	9.45 bc	4.59 ab	4.37 bc
	► Surface →	 Rhizobacterein 	17.00 ab	17.40 abc	63.05 c	64.27 d	9.57 a	9.46 bc	4.49 bcd	4.27 c
Poultry		→ Nitrobein	15.80 ab	16.08 bc	64.12 bc	65.34 cd	9.48 a	9.37 bc	4.50 bc	4.28 c
Marure	Trench →	- Rhizobacterein	18.15a	18.56 a	60.12 d	61.34 e	9.12a	9.02 d	4.05 e	3.93 d
		Nitrobein	16.72 ab	17.00 abc	64.52 bc	65.74 cd	9.35 a	9.27 cd	4.18 e	3.92 d
	→ Surface →	→ Rhizobacterein	17.00 ab	17.40 abc	63.05 c	64.27 d	9.57 a	9.46 bc	4.49 bcd	4.27 c
Poultry	_	 Nitrobein 	15.80 ab	16.08 bc	64.12 bc	65.34 cd	9.48 a	9.37 bc	4.50 bc	4.28 c
Mariure	Trench	→ Rhizobacterein	18.15 a	18.56 a	60.12 d	61.34 e	9.12a	9.02 d	4.05 e	3.93 d
		 Nitrobein 	16.72 ab	17.00 abc	64.52 bc	65.74 cd	9.35 a	9.27 cd	4.18 e	3 92 d

Table (40): Specific effect of organic manure source, application method and biofertilizer on fruiting of Washington navel orange trees (2000 and 2001 seasons).

	ž	No. of fruits/	riela (kg)/	(kg)/
Factor		tree	tree	е
	(2000)	(2001)	(2000)	(2001)
		a. Effect of organic manure source	c manure source	
Cattle manure	216 b	203 a	42.34 b	40.30 b
Poultry manure	227 a	213 a	46.79 a	44.87 a
Rabbit manure	223 a	214a	45.68 a	44.24 a
		b. Effect of app	b. Effect of application method	
Surface	219 a	207 b	44.69 a	41.99 b
Trench	225 a	213 a	45.78 a	44.24 a
		c. Effect of	c. Effect of biofertilizer	
Rhizobacterien	227 a	213 a	45.92 a	44.00 a
Nitrobien	217 a	207 a	43.95 a	42.22 a
100 100				

Table (41): Effect of interaction between organic manure source and application method on some fruiting parameters of Washington navel orange trees (2000 and 2001 seasons).

0 1100	Application	No. of	No. of fruits/	Yield (ka)/	(ka)/
mailule	method	tre	tree	ţ	tree
sonice		(2000)	(2001)	(2000)	(2004)
Cattle	→ Surface	217 b	205 cd	42.31 b	40.40 c
manure	Trench	215 b	201 d	42.36 b	40.20 c
Poultry	→ Surface	220 b	204 cd	45.10 ab	42.22 bc
manure	- Trench	235 a	223 a	48.47 a	47.40 a
	▼ Surface	222 b	212 bc	44.84 ab	43.40 b
manure	Trench	225 a	216 ab	46.51 ab	45 13 ah

Table (42): Effect of interaction between organic manure source and biofertilizer on some fruiting parameters of Washington navel orange trees (2000 and 2001 seasons).

Organic		NO. OI ITUITS/	ruits/	(Ry) niai i	(SV)
manure	Biofertilizer	tree	e	tree	ee
source		(2000)	(2001)	(2000)	(2001)
Cattle	Rhizobacterien	221 abc	206 cd	43.53 bc	41.30 bc
manure	► Nitrobien	211 c	200 c	41.14 c	39.30 c
Poultry	_►Rhizobacterien	232 b	214 ab	47.62 a	45.40 a
manure	→ Nitrobien	222 abc	213 ab	45.97 ab	44.22 ab
Rabbit	-Rhizobacterien	228 ab	219 a	46.51 ab	45.33 a
manure	→ Nitrobien	218 bc	209 abc	44.74 ab	43.15 ab

Table (43): Effect of interaction between application method of organic manure and biofertilizer on some fruiting parameters of Washington navel orange trees (2000 and 2001 seasons).

		No. of Iruits/	II dits/		(Bu) pion
Application	Biofertilizer	tre	tree	tr	tree
method	1	(2000)	(2001)	(2000)	(2001)
	- Rhizobacterien	224 ab	210 ab	45.24 ab	42.90 ab
Surrace	Nitrobien	214 b	204 b	42.94 b	41.10 b
	Rhizobacterien	230 a	216 a	46.61 a	45.12 a
Lench	Nitrobien	220 ab	210 ab	44.96 ab	43.40 ab

Table (44): Effect of interaction between organic manure source, application method and biofertilizer on fruiting of Washington navel orange trees (2000 and 2001 seasons).

Organic	Application	ation	Biofertilizer	No. of fruit/ tree	tree	Yield (kg)/tree	tree,
manure source	ce methoc	po	N-fixing bacteria	(2000)	(2001)	(2000)	(2001)
	Cochin	1	- Rhizobacterein	222 abc	210 abcd	43.51 bc	41.79 bcd
Cattle	201190	1	Nitrobein	212 bc	200 d	41.12 c	39.00 d
manure		ŧ.,	Rhizobacterein	220 bc	203 cd ⁷	43.56 bc	40.80 cd
		<u> </u>	Nitrobein	210 c	200 d	41.16 c	39.60 cd
	000	/	- Rhizobacterein	225 abc	203 cd	46.35 abc	42.42 bcd
Poultry	our lace		Nitrobein	215 bc	205 bcd	43.86 abc	42.02 bcd
Manure		1	- Rhizobacterein	240 a	225 a	50.88 a	48.37 a
		<u>-</u>	Nitrobein	230 ab	221 ab	48.07 ab	46.63 ab
	9	9	 Rhizobacterein 	227 abc	217 abc	45.85 abc	44.48 abc
Rabbit	- Surrace	<u> </u>	Nitrobein	217 bc	208 bcd	43.83 abc	42.22 bcd
manure		1	P Rhizobacterein	230 ab	221 ab	47.38 ab	46.18 ab
			Nitrobein	220 bc	211 abcd	45.32 abc	44.09 abc
Means within	each column	, followe	Means within each column, followed by the same letter(s) are not significantly different at 5% level.	are not significant	ly different at 5%	level.	

4.4. Fruit quality

4.4.1. Fruit physical properties

The effect of organic manure source, method of organic manure application and biofertilizers as well as their interactions on fruit physical properties expressed as fruit weight, length, diameter, juice weight and peel thickness of Washington navel orange trees during 2000 and 2001 seasons is reported in Tables (45-49).

4.4.2. Fruit weight

It is clear from **Table (45)** that poultry manured trees produced heavier fruits (207.8 & 209.5 g) than those produced by rabbit manured ones (203.8 & 205.3 g) and finally those produced by cattle manured trees (196.0 & 198.3 g) in 2000 and 2001 seasons, respectively. The differences between the three studied organic manure sources were obvious to be significant.

Furthermore, trench application of organic manure significantly increased fruit weight as compared with superficial application.

In addition, fertilizing Washington navel orange trees with Rhizobacterien significantly increased fruit weight than fertilizing with Nitrobien.

Furthermore, the interaction between organic manure source and method of organic manure application reveals that poultry manure applied in trenches proved to be the most effective interaction in enhancing fruit weight of Washington navel orange trees. On the contrary, cattle manure whether applied superficially or in trenches proved to be the least effective interactions in enhancing fruit weight. Other combinations induced intermediate effect in this concern (Table, 46).

Moreover, the interaction between method of organic manure application and biofertilizers shows that out of all studied interactions, the application of organic manure in trenches and supporting with Rhizobacterien induced the highest positive effect on fruit weight. Other combinations induced statistically similar effect in this concern (Table, 47).

In addition, **Table (48)** demonstrates that out of all interactions between organic manure source and biofertilizers, poultry manure supported with Rhizobacterien proved to be the most efficient interaction in enhancing fruit weight. On the contrary, the interactions of cattle manure gave the lowest values of fruit weight. Besides, the combinations of rabbit manure exerted intermediate effect in this respect.

As for the interaction between the three studied factors namely organic manure source, method of organic manure application and biofertilizer reveals that out of all interactions poultry manure applied in trenches and provided with Rhizobacterien proved to be the most effective interactions in enhancing fruit weight. On the other hand, all combinations of cattle manure induced the lowest values of fruit weight. Besides, other tested combinations exerted intermediate effect in this respect (Table, 49).

4.4.1.2. Fruit length

It is clear that organic manure source, *i.e.* cattle, poultry and rabbit failed to exert a distinctive effect on fruit length of Washington navel orange trees (Table, 45).

Furthermore, the applications of organic manure in trenches or superficially showed similar effect on fruit length of Washington navel orange during the two seasons of study.

Moreover, Rhizobacterien-inoculated trees produced longer fruits as compared with Nitrobien-inoculated ones.

On the other hand, the interaction between organic manure source, *i.e.* cattle manure, poultry manure and rabbit and organic manure application method (surface and trench) exerted similar effect on fruit length of Washington navel orange from the statistical standpoint (Table, 46).

Additionally, the interaction between method of organic manure application and biofertilizer shows that Washington navel orange trees manured in trenches or superficially and inoculated with Rhizobacterien produced the longest fruits. On the contrary, fruits of Washington navel orange trees manured superficially and inoculated with Nitrobien had the lowest values of fruit length. Other combination reduced intermediate values of fruit length, (Table, 47).

Furthermore, **Table (48)** illustrates that neither the interaction between organic manure source, *i.e.* cattle, poultry and rabbit manure, nor the biofertilizer type namely Rhizobacterien and Nitrobien induced a distinctive effect on fruit length of Washington navel orange trees.

Finally, **Table (49)** reveals that the interaction between the three studied factors, *i.e.* organic manure source, method of organic manure application and biofertilizers failed to exert a distinctive and pronounced effect on fruit weight of Washington navel orange trees during the two seasons of study.

4.4.1.3. Fruit diameter

Table (45) shows that cattle manured trees, poultry manured trees and rabbit manured ones produced fruits similar in their diameter from the statistical standpoint.

On the other hand, the application of organic manure in trenches enhanced fruit diameter rather than the application of organic manure superficially.

Furthermore, Rhizobacterien-inoculated trees produced fruits similar in their diameter to those produced by Nitrobien-inoculated ones from the statistical standpoint.

In addition, the interaction between organic manure source, *i.e.* cattle, poultry and rabbit manure and method of organic manure application namely surface and trench failed to induce a distinctive effect on fruit diameter of Washington navel orange trees (**Table**, **46**).

On the other hand, the combination of method of organic manure application and biofertilizer failed to add a pronounced effect on fruit diameter of Washington navel orange trees, (Table, 47).

Concerning the effect of interaction between organic manure source and biofertilizer, **Table (48)** demonstrates that all the studied combination exerted statistically similar effect on fruit diameter of Washington navel orange trees in both seasons of study.

Finally, **Table (49)** indicates that when the three studied factors, *i.e.* organic manure source, method of organic manure application and biofertilizer interacted together failed to induce a remarkable effect on fruit diameter of Washington navel orange trees from the statistical standpoint.

4.4.1.4. Peel thickness

Table (45) reveals that Washington navel orange trees whether manured with cattle, poultry or rabbit produced fruits similar in their rind thickness from the statistical standpoint.

Moreover, Washington navel orange trees manured in trenches produced fruits thicker in their peel rather than those manured superficially. In addition, fruits of Rhizobacterien-inoculated trees had thicker rinds as compared with those produced by Nitrobien-inoculated ones in both seasons of study.

Furthermore, **Table (46)** demonstrates that rind thickness showed insignificant response to the interaction between organic manure source, *i.e.* cattle, poultry and rabbit and method of organic manure application in both seasons of study.

On the other side, the interaction between application method of organic manure and biofertilizer, (Table, 47) reveals that all studied combination showed statistically similar effect on peel thickness except for surface application of organic manure associated with Nitrobien inoculation which recorded statistically the lowest values of peel thickness in both seasons.

In addition, supporting organic manure source (cattle, poultry and rabbit) with biofertilizer (Rhizobacterien or Nitrobien) failed to exert an additional effect on peel thickness from statistical standpoint (Table, 48).

Lastly, the studied combinations of the three studied factors, *i.e.* organic manure source, application method of organic manure and biofertilizer exerted statistically similar effect on peel thickness in both seasons, (Table, 49).

4.4.1.5. Juice weight

It is clear from **Table (45)** that Washington navel orange trees whether manured with cattle, poultry and rabbit produced fruits similar in their juice content from the statistical standpoint.

Furthermore, the application of organic manure in trenches enhanced fruit juice content rather than the application of organic manure superficially.

Moreover, Rhizobacterien-inoculated trees produced juicy fruits as compared with the analogous ones inoculated with Nitrobien.

As for the interaction between organic manure source and method of organic manure application, **Table (46)** shows that there was no distinctive trend could be attributed to the studied interactions in both seasons of study.

On the other hand, **Table (47)** demonstrates that when method of organic manure application interacted with biofertilizer, the biofertilizer type showed to be the responsible for the final result of the interaction, hence Rhizobacterien inoculation, whether supported with surface or trench application of organic manure recorded the highest values of fruit juice content. On the contrary, surface application of organic manure provided with Nitrobien scored the lowest values of fruit juice content.

Furthermore, Table (48) demonstrates that organic manure source was responsible on the final result of interaction between organic manure source and biofertilizer. Briefly, fruits of poultry manured trees, inoculated with Rhizobacterien were the richest ones in juice content. Besides, Rhizobacterien combinations of the other two studied organic manure source produced statistically similar and higher positive effect on fruit juice content as compared with the interactions of Nitrobien.

Finally, the interaction between the three studied factors, *i.e.* organic manure source, method of organic manure application and biofertilizer reveals that out of these studied combinations poultry manure x trench application x Rhizobacterien induced the most pronounced distinctive effect on fruit juice content of Washington navel orange in both seasons of study (Table, 49).

Abstractly, fruit weight was only, the parameter out of all studied fruit physical characteristics (fruit length, diameter, peel thickness and juice

weight) that positively responded to poultry manure. Moreover, trench application of organic manure enhanced fruit weight, peel thickness and juice weight as compared with surface application. Also, Rhizobacterien inoculation improved fruit weight, length, peel thickness and juice weight as compared with Nitrobien inoculation.

4.4.2. Fruit chemical properties

Tables (50-54) show the effect of organic manure source (cattle, poultry and rabbit), method of organic manure application (surface and trench) and biofertilizers (Rhizobacterien and Nitrobien) as well as their interactions on some fruit chemical properties *i.e.* total soluble solids (TSS) percentage total acidity. TSS/acid ratio and ascorbic acid of Washington navel orange trees during 2000 and 2001 seasons.

4.4.2.1. Total soluble solids (T.S.S)

It is quite evident that poultry manured trees produced fruits richer in their total soluble solids content (10.60 & 10.13%) as compared with those produced by rabbit manured trees (10.15 & 9.65%) and cattle manured ones (9.70 & 9.20%) in 2000 and 2001 seasons, respectively. However, the differences between the three organic manure sources in this respect were obvious to be significant (Table, 50).

Furthermore, the application of organic manure in trenches succeeded in enhancing fruit content of total soluble solids than the application of organic manure superficially (Table, 50).

In addition, the type of biofertilizer *i.e.* Rhizobacterien or Nitrobien failed to induce a pronounced effect on fruit total soluble solids content in both seasons of study.

Additionally, Table (51) demonstrates that poultry manure applied superficially or in trenches produced not only similar but also higher positive effect on fruit total soluble solids content, followed descendingly by rabbit manure whether applied superficially or in trenches. Lastly, cattle manure applied in trenches or superficially induced similarly the lowest positive effect on fruit total soluble solids content of Washington navel orange trees.

On the other side, **Table (52)** reveals that organic manure source showed to be more effective in enhancing fruit total soluble solids content rather than biofertilizer type, where poultry manure whether provided with Rhizobacterien or Nitrobien induced nearly similar and higher positive effect on fruit total soluble solids content, followed descendingly by rabbit manure either supported with Rhizobacterien or Nitrobien and lastly cattle manure whether enriched with Rhizobacterien or Nitrobien.

On the other hand, the interaction between of organic manure application method and biofertilizers showed that the application of organic manure in trenches and fertilizing with Rhizobacterien proved to be the most efficient interaction in enhancing fruit total soluble solids content. On the contrary, surface application of organic manure and fertilizing with Nitrobien took the other way around. Other studied interactions took an intermediate positions between the previously two mentioned categories (Table, 53).

On the other hand, the interaction between organic manure source, method of organic manure application and biofertilizers exerted that the application of poultry manure in trenches or superficially and provided with Rhizobacterien, followed descendingly by the analogous ones fertilized with poultry manure whether in superficially or in trenches and inoculated with Nitrobien gave comparatively the highest values of fruit total soluble solids

content. On the contrary, cattle manure whether applied in trenches or superficially and supported with Rhizobacterien or Nitrobien produced the lowest values of fruit total soluble solids content. Other studied combinations of rabbit manure showed inbetween values in this respect.

4.4.2.2. Total acidity

Table (50) reveals that in 2000 and 2001 seasons, the studied organic manure sources (cattle, poultry and rabbit), method of organic manure application (surface and trench) and biofertilizers (Rhizobacterien and Nitrobien) induced statistically similar effect on fruit total acidity content.

Furthermore, interaction between organic manure source (cattle, poultry and rabbit) and method of organic manure application (surface and trench) produced similar effect on fruit total acidity content from the statistical standpoint (Table, 51).

Table (52) demonstrates that the interaction between organic manure source i.e. cattle, poultry and rabbit and biofertilizers namely Rhizobacterien and Nitrobien failed to induce an additive effect on fruit total acidity content of Washington navel orange during the two seasons of study.

Additionally, **Table (53)** shows that in both seasons, the interaction between the method of organic manure application (surface and trench) and biofertilizers (Rhizobacterien and Nitrobien) failed to add any complementary effect on fruit total acidity content of Washington navel orange trees.

Finally, the interaction between the three studied factors *i.e.* organic manure source, method of organic manure application and biofertilizers failed to show any additive effect on fruit total acidity content of Washington navel orange trees (**Table**, **54**).

4.4.2.3 TSS/acid ratio

It is obvious from **Table (50)** that fruits produced by poultry manured trees had higher TSS/acid ratio (13.77 & 13.47) followed descendingly by the corresponding ones resulted from rabbit manured trees (13.06 & 12.58) and lastly those produced by cattle manured ones (12.61 & 12.27) in 2000 and 2001 seasons, respectively. The differences between the three studied organic manure sources were more obvious to be significant.

Moreover, the application of organic manure in trenches succeeded in improving fruit TSS/acid ratio rather than the application of organic manure superficially.

Furthermore, **Table (50)** demonstrates that in both seasons Rhizobacterien surpassed Nitrobien in enhancing fruit TSS/acid ratio of Washington navel orange trees.

On the other side, **Table (51)** shows that the effect of organic manure source dominate the effect of method of application regarding fruit TSS/acid ratio, hence poultry manure whether applied in trenches or superficially induced the highest positive effect in this concern, followed descendingly by rabbit manure applied either superficially or in trenches and lastly cattle manure applied in trenches or superficially.

Furthermore, **Table (52)** reveals that in both seasons, the effect of organic manure source predominates the effect of biofertilizers, where poultry manure whether provided with Rhizobacterien or Nitrobien produced nearly similar and higher positive effect on fruit TSS/acid ratio, followed descendingly by rabbit manure whether supported with Rhizobacterien or Nitrobien and lastly, cattle manure enriched with Rhizobacterien or Nitrobien.

In addition, the interaction between the method of organic manure application and biofertilizers indicates that fruit TSS/acid ratio responded

mainly to biofertilizer type rather than the method of organic manure application, hence fertilizing Washington navel orange trees with Rhizobacterien and whether the organic manure was added superficially or in trenches gave the highest values of fruit TSS/acid ratio rather than inoculating the soil with Nitrobien, regardless whether the organic manure was added superficially or in trenches (Table, 53).

As for the interaction between organic manure source, method of organic manure application and biofertilizer, **Table (54)** demonstrates that poultry manure combinations in general and those applied in trenches or superficially and inoculated with Rhizobacterien in particular recorded the highest values of fruit TSS/acid ratio. Other tested combinations of cattle and rabbit manure gave nearly more or less similar effect in this respect.

4.4.2.4. Ascorbic acid

It is quite evident from **Table (50)** that in both seasons, poultry manured trees produced fruits richer in their ascorbic acid content (55.50 & 59.41 mg/100 ml juice) as compared with those resulted from rabbit manure (52.25 & 56.25 mg/100 ml juice) and cattle manured trees (50.00 & 54.25 mg/100 ml juice) in 2000 and 2001 seasons, respectively. The differences between cattle and rabbit manure in this respect were lacking from the statistical standpoint.

On the other hand, the method of organic manure application failed to induce a reasonable effect on fruit ascorbic acid content of Washington navel orange trees.

Furthermore, **Table (50)** indicates that fruit ascorbic acid content did not show a pronounced response whether the trees were inoculated with Rhizobacterien or Nitrobien in both seasons of study.

Additionally, the interaction between organic manure source and method of organic manure application reveals that the positive effect on

fruit ascorbic content was attributed to organic manure source rather than the method of organic manure application, hence poultry manure whether applied superficially or in trenches produced similarly higher positive effect on fruit ascorbic acid content, followed descendingly by rabbit manure applied either superficially or in trenches and finally, cattle manure applied in trenches or superficially.

On the other side, **Table (52)** shows that the values of fruit ascorbic acid content resulted from interaction between organic manure source and biofertilizers were attributed mainly to the predominating effect of organic manure source rather than biofertilizers. Thereupon, poultry manure supported with Rhizobacterien or Nitrobien scored the highest values of fruit ascorbic acid content, followed descendingly by the combinations of rabbit manure and lastly by those of cattle manure.

In addition, it is clear from **Table (53)** that the interaction between method of organic manure application (surface and trench) and biofertilizers (Rhizobacterien and Nitrobien) failed to give an additive effect on fruit ascorbic acid content of Washington navel orange trees in 2000 and 2001 seasons.

In summary, the interactions between organic manure source, method of organic manure application and biofertilizers show that all combinations of poultry manure *i.e.* poultry manure *x* (surface and trench) x (Rhizobacterien and Nitrobien) induced similar higher positive effect on fruit ascorbic acid content of Washington navel orange trees in both seasons of study. Other studied combinations of rabbit and cattle manure showed more or less similar effect in this respect, (**Table, 54**).

Shortly, poultry manure proved to be the superior organic manure source in enhancing the studied fruit chemical characteristics, *i.e.*, T.S.S, total acidity and T.S.S./acid ratio. Besides, the application of organic

manure in trenches exerted high positive effect on the previously mentioned fruit chemical characteristics rather than surface application. Moreover, Rhizobacterien inoculation induce stimulative effect on T.S.S/acid ratio, only as compared with Nitrobien inoculation.

Fruit quality results due to organic manure source are in agreement with the findings of Sermann et al. (1975) on pomes, stones and vines, Bacha and Abo-Hassan (1983) on date palm, Sekiya et al. (1983) on Satsuma mandarin, Gasanov (1984) on persimmon, Kalu-Singh et al. (1984) on mango, Darfeld and Lenz (1985) on pear, Lenartowicz (1985) on raspberry, Umemiya and Sekiya (1985) on persimmon, Bussi and Defrance (1987) on peach, Piatkowski et al. (1990) on apple, Davitadve (1991) on lemon, Wang et al. (1991) on grape, Gouda et al. (1992) on grape, Hussein et al. (1992) on date palm, Alvarez et al. (1993) on pineapple, Li et al. (1993) on pummelo, Li et al. (1997) on pear, Mansour and Ahmed (1998) on banana, Silva (1998) on mango, El-Kobbia (1999) on Washington navel orange and Songe et al. (1999) on apple. In this respect, Rabeh et al. (1993) (on Balady mandarin) and Huang et al. (1995) (on Satsuma mandarin) mentioned that poultry manure and farmyard manure enhanced fruit quality and gave better than pig manure.

Furthermore, the results of organic manure application method go in line with the findings of Bhangoo et al. (1988) on grapevines, Fisun and Kodzokov (1991) on plum and Goede (1993) on mango. In addition, fruit quality results attributed to biofertilizers are in accordance with those reported by Pomares et al. (1983) on mango, Das et al. (1996) on mulberry and Mansour (1998) on Anna apple. In this concern, Akl et al. (1997) mentioned that Rhizobacterien and Nitrobien added positive improvement on chemical and physical properties of grape berries.

Table (45): Specific effect of organic manure source, application method and biofertilizer on fruit physical properties of Washington navel orange trees (2000 and 2001 seasons).

				F	Fruit characteristics	acteristic	s			
Factor	Weight (g)	nt (g)	Length (cm)	(cm)	Diameter (cm)	er (cm)	Juice weight (g)	eight (g)	Peel thickness (mm)	less (mm)
	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
			В	. Effect	of organ	ic manur	a. Effect of organic manure source			
Cattle manure	196.0 c	198.3 с	7.23 a	7.55 a	7.23 a	7.08 a	91.7 a	92.5 a	6.1a	6.2 a
Poultry manure	207.8 a	208.5 a	7.78 a	7.60 a	7.25 a	7.10a	93.0 a	94.0 a	6.2 a	6.3 a
Rabbit manure	203.8 b	205.3 b	7.73 a	7.55 a	7.33 a	7.15a	91.7a	92.2 a	6.0 a	6.2a
				b. Effec	b. Effect of application method	lication r	nethod			
Surface	200.7 b	202.3 b	7.70 a	7.70 a	7.26a	7.07 a	91.3 b	92.1 b	6.0 b	6.1 b
Trench	204.4 a	206.3 a	7.78 a	7.63 a	7.28 a	7.15a	93.0 a	93.6 a	6.2 a	6.3a
				S.	c. Effect of biofertilizer	biofertili	zer			
Rhizobacterien	203.9 a	206.0 a	7.82 a	7.73 a	7.34 a	7.22 a	94.1 a	94.5 a	6.2 a	6.3 a
Nitrobien	201.2 b	202.6 b	7.67 b	7.47 b	7.23 a	7.10a	90.0 b	91.3 b	6.0 b	6.1 b
Means within each column, followed by the same letter(s) are not significantly different at 5% level.	, followed	by the san	ne letter(s	are not s	ignificant	ly differen	ıt at 5% lev	el.	^	

Table (46): Effect of interaction between organic manure source and application method on fruit physical properties of Washington navel orange trees (2000 and 2001 seasons).

Organic					Fru	Fruit characteristics	teristic	S			
manure	Application	We	Weight (g)	Lengt (cm)	ç	Dian (c)	Diameter (cm)		Juice weight	Peel thickness	ckness
		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2004)
Cattle	→ Surface	195.0 d	197.0 c	7.70 a	7.50 a	7.22 a	7.05 a	91.0 a	91.5 a	6.0 a	6.1 a
manure	└► Trench	197.0 d	199.5 c	7.75a	7.60 a	7.25 a	7.10 a	92.5 a	93.5 a	6.1 a	6.2 a
Poultry →	Surface	205.0 io	206.0 b	7.70 a	7.50 a	7.20 a	7.05 a	91.5 a	92.5 a	6.0 a	6.1a
manure	Trench	210.5 a	213.0 a	7.85 a	7.70 a	7.30 a	7.15a	94.5 a	95.5 a	6.3 a	6.3 a
Rabbit	> Surface	202.0 c	204.0 b	7.70 a	7.50 a	7.37 a	7.10a	91.5 a	92.5 a	6.0 a	6.1 a
manure	Trench	205.7 b	206.5 b	7.75a	7.60 a	7.30 a	7.20 a	92.0 a	92.0 a	6	200
Means withir	Means within each column, followed by the same letter(s) are not cignificantly different to the same l	owed by t	al ames ah	ttor(e) are	Simple town	11.00				5	7.0

Table (47): Effect of interaction between application method and biofertilizer on fruit physical properties of Washington navel orange trees (2000 and 2001 seasons).

					Frui	Fruit characteristics	teristics				
Application	Biofertilizer	W.	Weight	Length	gth	Diameter	eter	Juice	Juice weight	Peel thickness	ckness
mernod		(2000)	(2001)	(2000)	n) (2001)	(cm) (2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	-Rhizobacterien	201.3 b	201.3 b 203.7 b	7.80 a	7.70 a	7.30 a	7.20 a	93.6 a	94.0 a	6.1a	6.2 a
Surface	_► Nitrobien	200.0 b	201.0 b	7.60 b	7.30 c	7.22 a	6.93 c	39.0 c	90.3 c	2.9 b	6.0 b
h .	→ Rhizobacterien	, 206.4 a	208.3 a	7.83 а	7.77 a	7.33 a	7.23 a	94.6 a	95.0 a	6.2 a	6.3 a
l rencn	→ Nitrobien	202.3 b	204.3 ab	7.73 ab	7.50 b	7.23 a	7.07 a	91.3 b	92.3 b	6.1a	6.2 a
Means withir	Means within each column, followed by the same letter(s) are not significantly different at 5% level.	lowed by	the same le	etter(s) are	not signif	icantly dif	ferent at	5% level.			

Table (48): Effect of interaction between organic manure source, application method and biofertilizer on fruit physical properties of Washington navel orange trees (2000 and 2001 seasons).

Organic					Fru	Fruit characteristics	teristics				
manure	Biofertilizer	M	Weight (g)	Lengt	4	Dian	Diameter (cm)	1	Juice weight	Peel thickness	kness
		(2000)	(2004)	(2000)	(2004)	10000	(11)	(6)	- 1	(mm)	(
		(222)	(2007)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
Cattle	Rhizobacterien	197.0 c	200.0 cd	7.80 a	7.70a	7.30 a	7.20 a	93.5 b	93.5 b	6.2 a	6.3 a
manure	▼ Nitrobien	195.0 c	196.5 b	7.65 a	7.60 a	7.17a	7.19a	90.0 c	91.5 c	6.0 a	6.1 a
Poultry →	- Rhizobacterien	209.0 a	211.0 a	7.85 a	7.80 a	7.35 a	7.25 a	95.5 a	96.5 a	6.3	6.3 a
manure	→ Nitrobien	206.5 a	208.0 ab	7.70 a	7.60 a	7.15a	7.10a	90.5 c	91.5 c	6.1a	6.2 a
Rabbit ->	P Rhizobacterien	205.7 a	207.0 ab	7.30 a	7.70 a	7.30 a	7.20 a	93.5 b	93.5 b	6.1a	6.2 a
manure	Nitrobien	202.0 b	203.5 bc	7.65 a	7.70 a	7.37 a	7.10a	90.0 c	91.0 c	0	
Means with	Means within each column, followed by the same letter(s) are not significantly different at 5% ievel	lowed by t	he same le	tter(s) are	not signifi	cantly dif	ferent at	lavai %5		5	2

Table (49): Effect of interaction between organic manure source, application method and biofertilizer on fruit physical of Washington navel orange trees (2000 and 2001 seasons).

200000000000000000000000000000000000000	navel orang	navel orange trees (2000 and 2001 seasons)	Seasons	5).								
		(8)				Fri	Fruit characteristics	acteris	tics			
Organic	₹	Biofe	We	Weight	Length	gth	Diameter	eter	Peel thickness	ckness	Juice	Juice weight
manure	method	N-fixing bacteria	٣	(a)	(cm)	π ((cm)	n)	(mm)	m)	۳	(6)
source			(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	To cooper	Rhizobacterein	196 e	199 ef	7.8 a	7.7a	7.3 a	7.2a	6.2 a	6.3 a	93 pc	92 bc
Cattle	2 our lace	- Nitrobein	194 e	195 f	7.6 a	7.5a	7.1 a	7.0 a	6.0a	6.0 a	p 68	91 c
manure		Rhizobacterein	198 de	201 def	7.8 a	7.7a	7.3 a	7.2a	6.2a	6.3 a	94 b	95 b
	Lencu	- Nitrobein	196 e	198 ef	7.7 a	7.5a	7.2 a	7.0 a	6.1 a	6.2 a	91 cd	92 bc
		▼Rhizobacterein	206 bc	207 bcd	7.8 a	7.7 a	7.3a	7.2a	6.2a	6.3a	94 b	95 b
Poultry	→ Surface →	► Nitrobein	204 bc	205 bcde	7.6 a	7.5a	7.1 a	7.1a	6.0 a	6.0 a	p 68	o 06
Manure	1	Rhizobacterein	212 a	215a	7.9 a	7.7a	7.4a	7.3a	6.3 a	6.3a	97 a	98 a
	i rencn	- Nitrobein	209 ab	211 ab	7.7 a	7.5a	7.2 a	7.0 a	6.3 a	6.3a	92 bc	93 pc
	⊕ ageting ♣	* Rhizobacterein	202 cd	205 bcde	7.8 a	7.7 a	7.3 a	7.2 a	6.1 a	6.2 a	94 b	95 b
Rabbit	5	► Nitrobein	202 cd	203 cde	7.6 a	7.5a	7.1 a	7.0 a	6.0 a	6.0 a	p 68	၁ 06
manure		- Rhizobacterein	205 ab	209 abc	7.8 a	7.7a	7.3 a	7.2a	6.2 a	6.3 a	93 bc	92 bc
	Trench	→ Nitrobein	202 cd	204 bcde	7.7a	7.5 a	7.3 a	7.2 a	6.1 a	6.2 a	91 cd	92 bc

Means within each column, followed by the same letter(s) are not significantly different at 5% level.

Table (50): Specific effect of organic manure source, application method and biofertilizer on fruit chemical properties of Washington navel orange trees (2000 and 2001 seasons).

				Fr	Fruit characteristics	S		
Factor	i S	T.S.S. (%)	Total	Total acidity (%)	T.S.S. (%)	T.S.S. (%)/ acid ratio	Ascor	Ascorbic acid
	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	1100/ 100 ml
				a. Effect of	a. Effect of organic manure source	e source	(222-)	(2001)
Cattle manure	9.70 c	9.20 c	0.77 b	0.75a	12.61 c	12.27 c	50.00 b	54.25 b
Poultry manure	10.60 a	10.13 a	0.77 b	0.75a	13.77 a	13.47 a	55.50 a	59.41 a
Rabbit manure	10.15 b	9.65 b	0.78a	0.75 a	13.06 b	12.58 b	52.25 b	56.25 b
				b. Effect	b. Effect of application method	nethod		
Surface	10.07 b	9.57 b	0.77 a	0.75a	13.06 b	12.62 b	52.33 a	55.61 b
Trench	10.23 a	9.75a	0.77 a	0.75 a	13.23 a	12.92 a	52.83 a	57.66 a
				c. Eff	c. Effect of biofertilizer	er		
Rhizobacterien	10.20 a	9.82 a	0.76 b	0.76 a	13.36 a	13.01 a	53.00 a	57.83 a
Nitrobien	10.10 a	9.50 a	0.78 a	0.76a	12.93 b	12.53 b	52.17 a	55.44 a
Means within each column, followed by the same letter(s) are not significantly different at 5% level.	nn, followed	by the san	e letter(s	are not sig	nificantly different	at 5% level.		

Table (51): Effect of interaction between organic manure source and application method on fruit chemical properties of Washington navel orange trees (2000 and 2001 seasons).

		-	THE RESERVE AND PERSONS ASSESSMENTS	-			a prilo man limitation and the principal		
				Ŧ	uit chara	Fruit characteristics			
Organic	Application	T.S.S.	S. C.	Total acidity (%)	cidity	T.S.S. (%)/ acid ratio	acid ratio	Ascort (mg/1	Ascorbic acid (mg/100 ml)
source		(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
Cattle C	_ Surface	9.60 c	9.10 c	0.77 c	0.76a	12.52 c	12.06 d	50.00 c 53.50 c	53.50 c
manure	Trench	9.80 c	9.30 c	0.77 c	0.75 a	12.71 c	12.48 c	50.00 c	50.00 c 55.00 bc
Poultry	-► Surface	10.50 a	10.00 a	0.77 c	0.75a	13.67 a	13.25 b	55.00 a	57.83 ab
manure	1	10.70 a	10.25 a	0.77 €	0.75a	13.90 a	13.70 a	56.00 a	61.00 a
pabbit	→ Surface	10.10 b	9.60 b	0.76 b	0.77 a	13.04 b	12.60 c	52.00 b	55.50 bc
manure	→ Trench	10.20 b	9.70 b	0.78 a	0.76a	13.08 b	12.60 c	52.50 b	52.50 b 57.00 b
							-		

Means within each column, followed by the same letter(s) are not significantly different at 5% level.

Table (52): Effect of interaction between organic manure source and biofertilizer on fruit chemical properties of Washington navel orange trees (2000 and 2001 seasons).

Biofertilizer	Organic					Ш	ruit char	Fruit characteristics			
Rhizobacterien 9.70 c 9.30 cd 0.76 d 0.75 a 12.74 c 12.40 d 50.00 d	manure		Biofertilizer	7.5 (°)	5.S. 6)	Total (°	acidity %)	T.S.S. (%)/	acid ratio	Ascor (mg/	bic acid
Rhizobacterien 9.70 c 9.30 cd 0.76 d 0.75 a 12.74 c 12.40 d 50.00 d Nitrobien 9.70 c 9.10 d 0.78 b 0.75 a 12.50 c 12.13 e 50.00 d Rhizobacterien 10.70 a 10.35 a 0.76 d 0.75 a 14.08 a 13.73 a 56.00 a Rhizobacterien 10.20 b 9.80 b 0.77 c 0.76 a 13.30 b 55.00 ab Nitrobien 10.10 b 9.50 b 0.79 a 0.76 a 12.90 c 53.00 bc				(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
Nitrobien 9.70 c 9.10 d 0.78 b 0.75 a 12.50 c 12.13 e 50.00 d	Cattle	1	Rhizobacterien	9.70 c	9.30 cd	0.76 d	0.75 a	12.74 c	12.40 d	50.00 d	55.00 cd
Rhizobacterien 10.70 a 10.35 a 0.76 d 0.75 a 14.08 a 13.73 a 56.00 a 10.50 a 9.90 b 0.78 b. 0.75 a 13.50 a 13.20 b 55.00 ab 10.20 b 9.80 b 0.77 c 0.76 a 13.30 b 12.90 c 53.00 bc Nitrobian 10.10 b 9.50 b 0.79 a 0.76 a 12.90 c 12.25 c 51.50 cd	manure		Nitrobien	9.70 c	9.10 d	0.78 b	0.75a	12.50 c	12.13 e	50.00 d	53.50 d
Nitrobien 10.50 a 9.90 b 0.78 b. 0.75 a 13.50 a 13.20 b 55.00 ab Rhizobacterien 10.20 b 9.80 b 0.77 c 0.76 a 13.30 b 12.90 c 53.00 bc Nitrobien 10.10 b 9.50 b 0.79 a 0.76 a 12.90 c 12.25 c 51.50 cd	Poultry	1	Rhizobacterien	10.70 a	10.35 a	0.76 d	0.75a	14.08 a	13.73 a	56.00 a	61.00 a
Rhizobacterien 10.20 b 9.80 b 0.77 c 0.76 a 13.30 b 12.90 c 53.00 b c Nitrobien 10.10 b 9.50 b 0.79 a 0.76 a 12.90 c 12.25 c 51.50 cd			Nitrobien	10.50 a	9.90 b	0.78 b	0.75 a	13.50 a	13.20 b	55.00 ab	57.83 b
Nitrobien 10.10 b 9.50 b 0.79 a 0.76 a 12.90 c 12.25 c 51.50 cd	Rabbit	<u>+</u>	Rhizobacterien	10.20 b	9.80 b	0.77 c	0.76a	13.30 b	12.90 c	53.00 bc	57.50 bc
	manure	<u>_</u>	Nitrobien	10.10 b	9.50 b	0.79 a	0.76a	12.90 c	12.25 c	51.50 cd	55.00 bcd

Table (53): Effect of interaction between method of application and biofertilizer on fruit chemical properties of Washington navel orange trees (2000 and 2001 seasons).

		٠		Ŀ	ruit chara	Fruit characteristics			
Application	Biofertilizer	T.S.S.	S	Total	Total acidity	T.S.S. (%)/	T.S.S. (%)/ acid ratio	Ascorbic acid (mg/100 ml)	c acid 0 ml)
Method		(0/)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	→ Nitrobien	10.13 ab	9.73 ab	0.76 d	0.76 a	13.33 a	12.81 b	52.67 a	57.00 a
Surface →	- Rhizobacterien	10.00 b	9.40 c	0.78a	0.75a	12.80 c	12.43 c	52.00 a	54.22 b
	→ Nitrobien	10.27 a	9.90 a	. 0.77 c	0.75a	13.40 b	13.22 a	53.33 a	58.66 a
Trench →	- Rhizobacterien	10.20 ab	9.60 b	0.78b	0.75a	13.09 b	12.63 b	53.33 a	56.66 a
Means within each colum	ach column, followed	n, followed by the same letter(s) are not significantly different at 5% level	etter(s) are	not signifi	cantly diff	erent at 5% l	evel.		

Table (54): Effect of interaction between organic manure source, application method and biofertilizer on fruit chemical properties of Washington navel orange trees (2000 and 2001 seasons).

nanne	manure method	Biofertilizer N-fixing	T.S.S.	S.	Total	Total acidity	T.S.S	T.S.S./acid	Ascork	Ascorbic acid
source		bacteria	(%)	(9)	(%)	(%)	Ľa	ratio	(mg/1	(mg/100 ml)
			(2000)	(2001)	(2000)	(2001)	(2000)	(2001)	(2000)	(2001)
	r Surface →	→ Rhizobacterein	9.6 f	9.2 f	0.76b	0.75 a	12.63 ef	12.27 fg	50 c	54 cd
Cattle		Nitrobein	9.6 f	9.0 g	0.78 ab	0.76a	12.40 f	11.84 h	50 c	53 d
manure	Trench →	- Rhizobacterein	9.8 ef	9.4 ef	0.76 b	0.75a	12.86 de	12.53 ef	51 c	56 bcd
		► Nitrobein	9.8 ef	9.2 fg	0.78 ab	0.74a	12.56 ef	12.43 efg	50 c	54 cd
	→ Surface →	 Rhizobacterein 	10.6 ab	10.2 ab	0.76 b	0.76a	13.94a	13.42 b	55 ab	59 ab
Poultry		 Nitrobein 	10.4 bc	9.8 cd	0.78 ab	0.75a	13.33 bc	13.07 cd	55 ab	58 abc
Manure	Trench	- Rhizobacterein	10.8 a	. 10.5а	0.76 b	0.74 a	14.21 a	14.05 a	57 a	62 a
		 Nitrobein 	10.6 ab	10.0 bc	0.78 ab	0.75a	13.59 b	13.33 bc	55 ab	59 ab
	→ Surface →	 Rhizobacterein 	10.2 cd	9.8 cd	0.76b	0.77 a	13.42 bc	12.73 de	53 bc	57 bcd
Rabbit		▼ Nitrobein	10.0 de	9.4 ef	0.79a	0.76a	12.65 ef	12.37 fg	51 c	54 cd
manure	Trench +	→ Rhizobacterein	10.2 cd	9.8 cd	0.78 ab	0.75a	13.08 cd	13.07 bcd	53 bc	58 abc
		 Nitrobein 	10.2 cd	9.6 de	0.78 ab	0.76a	13.07 cd	12.13 gh	52 bc	56 bcd