

References

1. Emara, M.B., "Nonlinear Analysis of RC Slab-Beam Column Subassemblies under Earthquake loads" Ph.D. Thesis, Department of civil Engineering, Helwan University,Cairo,Egypt,1989.
2. Ah-book, et al. "Analysis of the behavior of structural members under elevated temperature condition", journal of structure engineering, V.121, No.4, April, 1995, pp.664-675.
3. ACI committee 216 (ACI 216R-81), "Guide for Determining the Fire endurance of Concrete Elements", American Concrete Institue, Detroit, 1981.
4. James A.M., "Analytical Method to Evaluate Fire Resistance of Structural Members ", Journal of Structural Engineering, October 1999, pp.1179-1187.
5. Prof. Dr. Aggour, M.S., "Effect of Fire on Structure Element ", Academy of Scientific Research and Technology Report.
6. Lin,Wei,Ming,Lin,T.,D., and Durrani,A.J., "Microstucture of Fire-Damaged Concrete ",ACI material journal, V.93,No.3,May,June,1996, pp.199-205.
7. Hosny, H., and Abo.Elmagd, " Fire of Reinforced Concrete Structures" Dar Elnashr for Egyptian University, 1994.
8. Shieds, T.J., and Silcock, G.W.H., "Buildings and Fire" John Wiley and Sons, New York, 1983.
9. Malhotra, H.L., "The Effect of Temperature on the Compressive Strength on Concrete" Magazine of Concrete Research, Vol.No.23, August195,pp.85-94.
10. Cruz .C.R., "Elastic Properties of Concrete at High Temperature", Journal PCA Research and Development Laboratories, Vol .8, No.1, January 1996, pp.37-45.
11. Cruz, C.R., " Apparatus For Measuring Creep of Concrete From Strain Measurements During First Heating ",ACI SP,92,American Concrete Institute ,Detroit ,1086,pp.175-190.
12. Khoury,G.A., Grainger,b.n.,and Sullivan,P.J., " Strain of Concrete During First Heating to 600oC Under Load", Magazine of Concrete Research ,Vol.37,No.133,December 1985,pp.195-215.

13. Osman, K.M., "Finite Element Modeling of Concrete Slab Exposed to High Temperature ", M.Sc.Thesis Cairo University, Faculty of Engineering, 1998.
14. Awad, M.EL."Effect of Fire on the Behavior of High Strength Reinforced Concrete Beams", M.Sc.Thesis Cairo University, Faculty of Engineering, 1994.
15. Castillo, Carlos, and Durrani, A.J., "Effect of Transient High Temperature on High Strength Concrete", ACI Material journal. V.87, No.1, January-Febraru, 1990, pp.47-53.
16. Line,C.H., Chen,S.T., And Yang ,C.A., "Repair of Fire Damaged Reinforced Concrete Columns", ACI structural journal, July-August 1995.
17. Abd ElAziz, A.M., " The Elevated Temperature on Loaded Reinforced Concrete Columns Containing Different Aggregate Types and Different Mineral Admixtures", M.Sc. Thesis Cairo University, Faculty of Engineering, 2000
18. Abd Elstar, T.A., "Effect of Elevated Temperature on Loaded Reinforced Concrete Columns Strengthened with Glass Fiber Wrapping", M.Sc. Thesis Cairo University, Faculty of Engineering, 1999.
19. Lie, T.T., and Celikkol, B., "Method to Calculate the Fire Resistance of Circular Reinforced Concrete Columns", ACI Materials Journal, Volume.88, No. 1, January-february 1991.
20. Khalil, U.F."Experimental Study for the Residual Load Capacity of Short Model Columns Fired in a Fire Furnace", PhD. Thesis Cairo University, Faculty of Engineering, 2002.
21. ACI 318"International Building Code", ACI, 2000, American Concrete Institute.
22. Phan, "Fire Performance of High Strength Concrete", National Institute of Standards and Technology Gaithersburg, MD, 1996.
23. KODUR, V.K.R, "Performance of High Strength Concrete Beams under Severe Fire Conditions". Proceedings Third International Conference on Concrete under Sever Conditions, Vancouver, BC, Canada, pp.254-268, 2001.
24. KODUR, V.K.R, "Fire Resistance Design Guide Lines For HSC Columns for Mitigating Spalling and Enhancing Fire Endurance of HSC Columns ". NRCC-46116, 2004.

25. Dotreppe, et al, "Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode 2 ". Proceedings Third International Conference on Concrete under Severe Conditions, Vancouver, BC, Canada, pp.254-268, 2001.

26. Kodur, V.K.R., Wang, T.C., Cheng, F.P., "Effect of Strength and Fiber Reinforcement on the Fire Resistance of High Strength Concrete Columns", ASCE, Journal of Structural Engineering, 129(2), pp. 1-22, 2003.

27. Castillo Carios and Durrani A.J, "Effect of Transient High Temperature on the Strength and the Load Deformation Behaviour of High Strength Concrete", ACI Materials Journal, v. 87, n. 1, p. 47-53, 1990.

28. ECCS 203-2001"Egyptian Code for Design and Construction of Reinforced Concrete Structure"2001.

29. State-of-The Art Report on High Strength Concrete.ACI Committee 363 -92.

24. ASTM C 33-86, Standard Specification for Concrete Aggregate, Volume 04.02 (Concrete and Aggregate), Annual Book of ASTM Standards, Philadelphia, BA 19103, USA.

30. Beterman.M.B.and Carrasquillo.R.L."Production of High Strength Concrete.," Center for Transportation Research: The University of Texas at Austin.Noyes Publications: Mill road, Park Ridge, New Jersey, U.S.A., pp.278.

31. ASTM C494-86, Standard Specifications for Chemical Admixtures for Concrete, Vol 04.02(concrete and Aggregate), Annual Book of ASTM Standards, Philadelphia, BA19103, USA.

32. ASTM C109, Standard Test Method for Compressive Strength of Hydraulic cement Mortars, (using 2-in. or 50-mm cube specimens), Vol 04-02.01(Cement, Lime, Gypsum), Annual Book of ASTM Standards, Philadelphia, BA19103, USA.

33. ASTM C 94-86 B, Standard Specifications for Ready Mixed Concrete, Vol 04-02.01(Cement, Lime, Gypsum), Annual Book of ASTM Standards, Philadelphia, BA19103, USA.

34. ASTM C 331-87, Standard Specifications for Light weight Aggregate for Concrete Masonry Units, Vol 04-02.01(Cement,Lime,Gypsum), Annual Book of ASTM Standards, Philadelphia,BA19103,USA.

35. Terro, Mohamed, J., "Numerical Modeling of the Behavior of Concrete Structure in Fire Condition", ACI structural journal, V.95, No2, March. April, 1998, pp.183-193.

36. Kang, S.W., Hong, S.G., "Analytical behavior of reinforced concrete flexural member at elevated temperatures", Second International Workshop of "Structures in Fire", Christchurch, pp 243-252, March, 2002.
37. Gawin D., Pesavento F., Schrefler B.A, "Modelling of deformations of high strength concrete at elevated temperatures", *Concrete Sci Eng Materials Struct* 37(268):218–236, 2004.
38. Gawin D., Witek A., "Effect of surface reflection properties of concrete tunnel on its degradation during fire", (in Polish)", In: Proceedings of the National Conference on 'Contemporary problems of fire safety in civil and environmental engineering', Poland, Koszalin-Mielno, pp 126–135, 2004.
39. Dita Matesov'a · David Bonen · Surendra P. Shah, "Factors affecting the resistance of cementitious materials at high temperatures and medium[0] heating rates", *Materials and Structures*, 39:455–469, 2006.
40. Y. Msaad1 Y., and Bonnet G., "Analyses of Heated Concrete Spalling due to Restrained Thermal Dilation: Application to the "Chunnel" Fire", *Journal of Engineering Mechanics*, ASCE, October, 2006.