CONTENTS

	Page
LIST OF TABLES	i
LIST OF FIGURES	iii
LIST OF PHOTOS	iv
1-INTRODUCTION	1
2-REVIEW OF LITERATURE	3
3-MATERIAL AND METHODS	57
4-RESULTS AND DISCUSSION	71
5-SUMMARY AND CONCLUSIONS	139
6- LITERATURE CITED	147
ARABIC SUMMARY	

LIST OF TABLES

		Page
Table (1):	Murashing and Skoog MS (1962) basal medium components for both El – Kharoub and <i>Acacia</i> salicina plant.	61
Table (2):	Proliferation medium of Rosa polyantha plant	62
Table (3):	Effect of germplasm conservation treatments and storage durations on some physical characters <i>Ceratonia siliqua</i> explants <i>in vitro</i> after storage duration.	72
Table (4):	Effect of germplasm conservation treatments and storage duration on some chemical characters of <i>Ceratonia siliqua</i> .	79
Table (5):	Effect of germplasm conservation treatments and storage duration on viability and some growth characters of regenerated in vitro Ceratonia siliqua explants in vitro after storage duration	88
Table (6):	Effect of germplasm conservation treatments and storage duration on some physical characters of <i>Acacia salicina</i> explants <i>in vitro</i> after storage duration.	92
Table (7):	Effect of germplasm conservation treatments and storage durations on some chemical characters of <i>Acacia salicina</i> explants	99
Table (8):	Effect of germplasm conservation treatments and storage duration on viability and some growth character of regenerated <i>in vitro Acacia salicina</i> explants after storage duration	106
Table (9):	Effect of germplasm conservation treatments and storage durations on some physical characters of Rosa polyantha explants in vitro after storage duration	111
Table (10):	Effect of germplasm conservation treatments and storage duration on some chemical characters of <i>Rosa polyantha</i> explants.	117

1-		
Table (11):	Effect of germplasm conservation treatments and storage duration on viability and some growth characters of regenerated <i>in vitro Rosa polyantha</i> explants <i>in vitro</i> after storage duration.	122
Table (12):		
Table (13):	Effect of some pretreatment of cryopreservation on some chemical compositions of <i>Acacia salicina in vitro</i> explants after soaking in liquid	134
Table (14):	Effect of some pretreatment of cryopreservation on some chemical compositions of <i>Ceratoni siliqua in vitro</i> explants after soaking in liquid	135
Table (15):	Effect of some pretreatment of cryopreservation on some chemical compositions of Rosa polyantha in vitro explants after soaking in liquid nitrogen.	138

LIST OF FIGURES

		Page
Fig. (1):	Effect of germplasm preservation treatments on survival rate of <i>Ceratonia siliqua</i> explants <i>in vitro</i> after storage duration.	77
Fig. (2):	Effect of germplasm preservation treatments on survival rate of <i>Acacia salicina</i> explants <i>in vitro</i> after storage duration.	96
Fig. (3):	Effect of germplasm preservation treatments on survival rate of <i>Rosa polyantha</i> explants <i>in vitro</i> after storage duration.	114
Fig. (4):	Effect of cryopreservation pretreatments on survival rate of Ceratonia siliqua, Acacia salicina and Rosa polyantha explants in vitro after soaked in liquid nitrogen.	400
	nitrogen.	128

LIST OF PHOTOS

1	Page
Photo (1): Effect of low temperature (4°C) on viability of preserved <i>Ceratonia siliqua, Acacia salicina</i> and <i>Rosa polyantha</i> explants after storage duration	76
Photo (2): Effect of coumarin at 0.5, 1.0 and 1.5 mg/L on viability of preserved Ceratonia siliqua, Acacia salicina and Rosa polyantha explants after storage duration.	84
Photo (3): Effect of sorbitol at 5, 10 and 15 g/L on viability of preserved Ceratonia siliqua, Acacia salicina and Rosa polyantha explants after storage duration	85
Photo (4): Effect of polyethylene glycole (PEG-6000) at 10, 15 and 20 g/L on viability of preserved Ceratonia siliqua, Acacia salicina and Rosa polyantha explants after storage duration.	90
Photo (5): Conservation with liquid paraffin wax under normal conditions on solid media.	103
Photo (6): Conservation with capsulation under normal conditions on solid media.	108