CONTENTS

	Page
1. Introduction	1
2. Review of literature	3
2.1. Definition of water harvesting	3
2.2. Classification of water harvesting methods and	
techniques	5
2.3. Factor affecting selection of methods of water	
harvesting	7
2.3.1. Slope	7
2.3.2. Soil	8
2.3.2.1. Soil crust	8
2.3.2.2. Soil- hydrological	9
2.3.3. Crop water requirement	10
2.3.4. The ratio of the catchment area to	
cultivated area	10
2.3.5. Costs	12
2.4. Types of water harvesting techniques	13
2.4.1. Micro catchment	13
2.4.1.1. Ridges (Negarims)	13
2.4.1.2. Contour bunds	15
2.4.1.3. Semi- circular bunds	15
2.4.1.4. Contour ridges	16
2.4.1.5. Soil pitting	17
2.4.2. Macro catchment	18
2.4.2.1. Embankments (stone and earth	
bunds)	18

	Page
2.4.2.1.1. Permeable rock dams	18
2.4.2.1.2. Trapezoidal bunds	19
2.4.2.2. Water spreading bunds	20
2.4.2.3.Contour stone bunds	20
2.4.2.4. Cisterns	21
2.5. The methods which used to raise the efficiency of	
water harvesting	23
2.5.1. Soil-surface treatments	24
2.5.1.1. Stones cleaning	24
2.5.1.2. Soil surface-smoothening and	
soil surface compacting	24
2.5.1.3. Covering soil-surface with	
plastic (and similar) sheets	24
2.5.2. Chemical treatments	25
2.5.2.1. The paraffin wax	26
2.5.2.2. Asphalt	26
2.5.2.3. Sodium salts	27
2.5.2.4. Wheat straw	28
2.6. Water harvesting for plant production	28
2.7. Rainfall – run off relationships	32
2.7.1. Rainfall data analysis	39
3. Material and Methods	42
3.1. Design of the field Experiment	42
3.1.1. Assessment of water harvesting setups	
used by farmers in the region	44

	Page
3.1.2. Experiment setup and treatments	47
3.1.3. Soil sampling.	48
3.2. Field measurements	48
3.2.1. Slope of the land	48
3.2.2. Infiltration rate.	48
3.2.3. Rainfall amounts	52
3.2.4. Runoff volume	52
3.2.5. Soil moisture	52
3.3. Calculations for efficiency parameters	53
3.3.1. Runoff efficiency	53
3.3.2. Efficiency of runoff storage	53
3.3.3. Overall Efficiency of the micro-	
catchment area of the water-harvesting	
system	54
3.4. Methods of analysis	55
3.4.1. Soil analysis	55
3.4.2. Plant analysis	56
4. Results and Discussion	57
4.1. Assessment of meteorological data of the region	57
4.1. Meteorological data	57
4.1.1. Temperature	57
4.1.2. Humidity	57
4.1.3. Wind, sunshine and solar radiation	59
4.1.4. Rain	59
4.1.4.1. Assessment of rain data	60
4.1.5. Evapotranspiration	63

	Page
4.2. Assessment of water-harvesting efficiency	63
4.2.1. Efficiency of El-Qasr water harvesting	
systems (stones & earth embankment)	64
4.2.2. Non embankment water harvesting	64
4.2.3. Earth embankment	68
4.2.4. Stone embankment	68
4.2.2. Efficiency of the experimental water	
harvest systems (comparison of different	
catchment ratios)	71
4.2.2.1. Efficiency of runoff "ER"	71
4.2.2.2. Efficiency of runoff storage	
"ES"	75
4.2.2.3. Overall efficiency of the water-	
catchment systems "EO"	80
4.2.2.4. Conclusive assessment on the	
catchment ratios	84
4.3. Assessment of response of crop performance and	
soil fertility to the experimental water catchment	
ratios	84
4.3.1. Plant height	85
4.3.2. Yield of wheat grains	90
4.3.3. Yield of wheat straw	91
4.3.4. Concentration of micronutrients in straw	
of wheat	92
4.3.4.1. Fe concentration in straw of	
wheat	93

	Page
4.3.4.2. Mn concentration in straw wheat	97
4.3.4.3. Zn concentrations in straw	
wheat	98
4.3.5. Available micronutrients Fe, Mn and Zn	
in soil after crop harvest	99
4.3.5.1. Available Fe	99
4.3.5.2. Available Mn	103
4.3.5.3. Available Zn	104
5. Summary	106
6. References	110
7. Appendices	128
8. Arabic summary	-

LIST OF TABLES

Table No.	Title	Page
(1)	Soil properties of the study in El-Qasr area.	49
(2)	Meteorological data for the study area from	
	October 2002 to October 2004	58
(3)	Daily and monthly distribution of rain fall	
	during the study period.	61
(4)	Volumes of runoff water (RV) and water stored	
	in root zone (SV); and overall efficiency (EO)	
	measured in some embankment systems used	
	by farmers at Al-Qasr area during season 1.	65
(5)	Volumes of runoff water (RV) and water stored	
	in root zone (SV); and overall efficiency (EO)	
	measured in some embankment systems used	
	by farmers at Al-Qasr area during season 2.	66
(6)	Means of runoff efficiency (ER)% after rain	
	storms occurring during study periods under	
	various catchment areas and soil-surface	
	treatments.	73
(7)	Means of runoff storage efficiency (ES)% after	
	rain storms occurring during study periods	
	under various catchment areas and soil-surface	
	treatments.	76
(8)	Means of overall efficiency (EO)% after rain	
	storms occurring during study periods under	
	various catchment areas and soil-surface	
	treatments.	81

Table No.	Title	Page
(9)	Plant height (cm), grains weight and straw	
	weight (kg/fed) of wheat plants in the first	
	season 2002/2003 under different catchment	
	areas and different soil-surface treatments.	86
(10)	Plant height (cm), grains weight and straw	
	weight (kg/fed)of wheat plants at the second	
	season 2003/2004 under different catchment	
	areas and different soil-surface treatments.	87
(11)	Concentrations (µgg ⁻¹) of micronutrients (Fe,	
	Mn and Zn) in wheat plants in the first season	
	2002/2003 under various catchment areas and	
	soil-surface treatments.	94
(12)	Concentrations (µgg ⁻¹) of micronutrients (Fe,	
	Mn and Zn) in wheat plants in the second	
	season 2003/2004 under various catchment	
	areas and soil- surface treatments.	95
(13)	Available (DTPA extractable) micronutrients	
	(Fe, Mn and Zn) in soil under the first season	
	2002/2003 under different catchment areas and	
	different soil-surface treatments.	100
(14)	Available (DTPA extractable) of micronutrients	
	(Fe, Mn and Zn) in soil in the second season	
	2003/2004 under different catchment areas and	
	different soil-surface treatments.	101

LIST OF FIGURES

Figure No.	Title	Page
(15)	Location of the study area	43
(16)	Schematic diagram of the recording automatic	
	weather station mounted at the study area	45
(17)	Stone embankments used by farmers was	
	chosen in El-Qasr area	46
(18)	A skematic digram of the shape of the overall	
	area of the experimental plot, showing the	
	shape of each of the 3 cropped area:	
	catchment area (CR/CT) ratios 1/2 (R ₁); 1/4	
	(R_2) and $1/6$ (R_3) .	50
(19)	The distribution of rainfall during the two	
	winter seasons 2002/2003 and 2003/2004.	62
(20)	Efficiency evaluation of water harvesting	
	systems at Al-Qasr area after rain stroms	
	occurring in the seasons of 2002/2003 and	
	2003/2004.	67
(21)	Means of Runoff efficiency after rain storm	
	occurring in the first and second season	
	2002/2003 - 2003/2004 under various	
	catchment areas and surface treatments.	74
(22)	Means of Runoff storage after rain storm	
	occurring in the first and second season	
	2002/2003 - 2003/2004 under various	
	catchment areas and surface treatments.	77

Figure No.	Title	Page
(23)	Means of overall efficiency after rain storm	
	occurring in the first and second season	
	2002/2003 - 2003/2004 under various	
	catchment areas and surface treatments	82
(24)	Plant height (cm), grains weight and straw	
	weight (kg/fed) of wheat plants in the first	
	and second seasons 2002/2003 - 2003/2004	
	under different catchment areas and different	
	amendment.	88
(25)	Concentrations (mg kg ⁻¹) of micro nutrients	
	(Fe, Mn and Zn) in wheat plants in the first	
	and second seasons 2002/2003 - 2003/2004	
	under various catchment areas and soils	
	surface treatment.	96
(26)	Concentration (mg kg ⁻¹) of soil available	
	(DTPA extractable) of micronutrients (Fe, Mn	
	and Zn) on soil in the first and second seasons	
	2002/2003 – 2003/2004 under various	
	catchment areas and surface soil treatments.	102