Experiment I

RESULTS AND DISCUSSION

Experiment I:

4.1. Effect of GA₃or IAA at 10 ppm on Germination, Fresh and Dry Weights, Some Organic Components and Some Nutrient Contents of the Germinated cv. El-Hamawy Apricot Seeds.

The apricot cv. El-Hamawy has an economic value in Egypt due to its fruit quality. Besides, its seed is free from the toxic organic compound that known amygdalin (seeds may be used as a Nut). This local cultivar is mainly propagated by seeds and rarely by grafting.

Generally seeds of this cultivars exhibited very low germinability even though placed under favorable conditions such as water and temperature. Therefore it was thought advisable to investigate the possibility of improving germination of El-Hamway seeds by using the two growth regulators Gibberellic acid (GA_3) and Indole-acetic acid (IAA) separately at the rate of 10 ppm and were used as soaking materials. Seeds of El-Hamawy apricot were carefully mechanically de-coated (without endocarp), then were soaked in the assigned growth regulators for 24 hours or in distilled water as control. Sowing took place under controlled technique as previously described in material and methods.

The following determination and chemical analysis were carried out:

- * Germination percentage and its rate index .
- * Seedling fresh and dry weights.
- * The organic components i.e. carbohydrate & protein fractions and free & total amino acids .
- * Some micro- and macro-nutrients .

4.1.1 Effect on Germination Criteria:

As shown in table (1) it could be stated that GA₃ at 10 ppm enhanced the germination percentage of apricot seeds cv. El-Hamawy. The highest stimulation existed during the first 13 days.

The same conclusion was also noticed by using IAA, but with less enhancing effect than GA₃. This indicates that GA₃ at 10 ppm may influence the internal processes leading to acceleration of germination and seedling emergency. Many other workers reported the same conclusions as they cocluded that GA3 stimulated seed germination of many plants (Alden & Hermann, 1971; Palevitch and Thomas, 1976; Corbineau and Come, 1981; Zagorski and Lewák, 1984; Abdou and El-Banna, 1989 and Wanas, 1992). The stimulatory effect of GA3 on germination percentage may be discussed partially on the bases that GA, induces de novo enzyme synthesis (Devlin and Witham, 1983). In addition, GA3 seemed to affect sterols and phospholipids (Amrhein, 1983) and that are responsible for providing or performing and mobilization of all required compounds as energy source for embryos during all germination processes. Moreover, stimulation of the germination process required not only sufficient energy supply but also presence of the major phytohormones (i.e. auxin, gibberellin and cytokinin) for maintaining the highest activity of cell division assosiated with this process (Devlin and Witham, 1983). The importance of GA, for improving the germination was also detected by many workers (Paul, et al., 1973; Arias, et al., 1976; Pinfield and Davies, 1978; Von Schirach-Szmigiel, 1979; Bianco, et al., 1984 and Pinfield & Sanchez-Torres, 1984). That is why the GA, or IAA treatments in the present study stimulated germination process (Koller and Hadas, 1982 and Pharis & Reid, 1985).

Table (1): Effect of GA₃ or IAA at 10 ppm on germination criteria of apricot seed cv. El-Hamawy.

Treatments	day	ys afte	r soaki	ng	total%	germina-
Treatments	13	17	24	30	ination	tion ra- te index
Control	56.7	10.0	3.3	6.7	76.7	15.48
GA3	70.0	10.0	10.0	3.3	93.3	15.21
IAA	60.0	13.3	3.3	3.3	80.0	13.75

4.1.2. Effect on the fresh and dry weights:

There is no doubt that fresh weight must be increased gradually from starting sample (before sowing) to reach the maximum rate during plumule emergency stage (Table,2). However, this rate was different according to the treatments. Meanwhile, in spite of the decrease in dry weights the absorption of water rates increased during both radical developing and plumule emergency stages, but such absorption rate was judged by the application of GA₃ or IAA under their used concentrations. Also it was found that GA₃ at the rate of 10 ppm greatly increased the rate of water absorption during both stages over the control and *vice versa* was true with using IAA. This finding may be discussed on the bases that GA₃ and IAA affected the permeability of the developing seedling to water. In other words, as the absorption of water depending upon the water and osmotic potentials of the tissues, thus GA₃ seemed to have a positive effect on such potential while IAA seemed to have a negative effect in this respect comparing to control one. This effect seemed to have

positive correlation with germination percentage and acceleration of seedling emergency (Aharoni, et al.,1977; Taylor and Railton, 1977; Horton, 1979 and Reid & Wample, 1985). In other words, the stimulatory effect of GA₃ on germination percentage, which recorded more than 93% (Table,1) was related partiall to its acceleration effect on water absorption rate. However, such treatment slightly decreased the dry weight (Table 2).

It must be mentioned here that during early germination stage many stored of organic components are consumed and utilized through respiration such as carbohydrates and lipids, as the germination processes depend upon the stored food in cotyledons. It could be stated that during the development of radical stage great decline in dry weight was observed. Such reduction was less by using GA₃ comparing to IAA or control treated seedlings. Also the reduction was continued during plumule emergency stage in control treated seedlings. However, GA₃ and IAA treated seedlings showed a positive increase in dry weight especially when IAA was used. Again both of GA₃ and IAA seemed to affect the different germination processes. The increase of dry weight during plumule emergency stage was due to the photosynthetic activity after the formation of photosynthetic pigments. In addition, both of GA₃ and IAA seemed to affect the consumption of organic matters during respiration of the seedlings.

The effect of GA₃ on dry matter content was also reported by many workers working on many plant species (*Ibrahim and Khafaga*, 1986; *Khafaga* <u>et al</u>., 1986; *Ibrahim and Khafagy*, 1990 and Wanas, 1992). As both of fresh and dry weights per

Table (2): Effect of either 6A, or IAA at 18 ppm. on fresh and dry weights per seedling during different stages of germination .

			Fresh weight	eight.					Dry weight	ight		
Ireatments	gr	gr./ seedling	increase o	increase or * % increase * decrease	x incre or dec	increase *	gr./ seedling	 ling	increase or decrease	increase or *	% increase % or decrease	dase *
	R.d.s	P.B. F	R.d.s	R.d.s P.e.s R.d.s	R.d.s		P.e.s R.d.s P.e.s	P.e.s	R.d.s P.e.s	P.e.s	R.d.s	P.e.s
Controle	1.2758	2,1556	1.2758 2.1556 8.6875+ 1.4863+ 98.5+	1.4863+		222.5+	222.5+ 8.6838 8.6171 8.8288- 8.8155- 4.6-	8.6171	B.8288-	8.8155-	4.6-	2.5-
GA3	1.4594	1.4594 2.3488	8.7981+ 1.6887+ 118.8+	1.6887+		251.1+	251.1+ 8.6139 8.6365 8.8187- 8.8839+	8,6365	8.8187-	8.8839+	3.8-	9.6+
IAA	1.8563	1.8563 1.5838	8.3878+8.9145+ 57.8+ 136.6+ 8.6836 8.6529 8.8298- 8.8283+ 4.6-	8.9145+	57.8+	136.6+	8.6836	8.6529	8.8298-	8.8283+	4.6-	3.2+
s.s	8.6693	8.6693 gr/seed					8.6326 gr./seed	gr./see	-			

* = as related to starting sample .

R.d.s = Radical developing stage (9 days after sowing).

P.e.s = Plumule emergency stage (38 days after sowing).

S.s = Starting sample (seeds immediately before soaking).

seedling were changed during germination stages and that may be related partially to the absorption rate of different nutrients.

4.1.3 The effect on some organic components:

4.1.3.1 Carbohydrates:

As shown in Tables: (3 a & b) it is clear that non-reducing sugars are the dominant sugars during different stages of germination, followed by polyhydroizable carbohydrate while reducing sugars are the lowest. Reducing sugars and poly-hydrolizable carbohydrates increased gradually till it reached their maximum during plumule emergency stage. On the other hand, non-reducing sugars were mostly decreased during germination stages.

It must be mentioned here that different carbohydrate fractions were in complete dynamic changes, as many are consumed during the release of vital energy. Many changed from type to another due to the enzymatic activity, while others formed from fats during the glyoxalate cycle (Devlin and Witham, 1983). As mentioned before there is slight drop in dry weights during radical developing stage, and slight increase during plumule emergency stage.

The drop in dry weight may be related to the consumption of carbohydrates and lipids, while the increase was mainly due to the accumulation of either mineral nutrients and carbohydrate formation during photosynthesis of the developed plumule. In other words, the reduction in total carbohydrates during radical developing stage may be related to their consumption, while the increase during

plumule stage was due to their formation from lipids or photosynthetic activity.

It could also be revealed that both GA₃ and IAA at the rate of 10 ppm. changed the accumulation of carbohydrate fractions, as both seemed to have a role on their consumption or utilization and formation as both reduced greatly the total amount of carbohydrates during radical developing stage and enhanced their accumulation during plumule emergency stage. The reduction or stimulatation effects were more pronounced with IAA as compared to the corresponding ones GA₃ of treated seedlings.

Weaver and Mc Cune, (1959) revealed that a correlation between exogenous applications of growth regulators and the increase in sink strength. Patrick and Wareing, (1982), reported that utilizing decapitated plants with exogenous supplied of growth regulators, have clearly demonstrated that growth regulators influenced assimilate distribution. Many workers were also reported that application of GA₃ affected the carbohydrate contents of the different tested plants (Leopold and Kriedemann, 1975; Sansavini, et al., 1988; Gehlot, et al., 1989; Sakr, et al., 1989; Ibrahim and Khafagy, 1990; Hussein, 1990 and Wanas, 1992), while others showed that IAA changed the accumulation of carbohydrate (Weaver and Johnson, 1985).

4.1.3.2 The effect on protein fraction:

Before discussing the changes in protein fractions, it must be mentioned that different types of proteins are in complete dynamic changes during germination stages as *de novo* protein formation may be formed due to the enzymatic activities

Table (3,a):Effect of GA or IAA at 18 ppm. on concentration and total amount of carbohydrate fractions during diferent stages of germination .

-	T. Canada de Cara			Conc	entrati	Concentration (Mg / gr. dry matter)	/ gr. d	ry matt	(re.)					Ä	Total amount (mg / seedling	ount (mg / set	edling	•		
		Redu	Reducing	Non-reduci	ducing	Non-reducing Total soluble hydrolizable sugars carbohydrate	soluble	hydrolizable carbohydrate	-	Total carbohydrate	al	Reducing	sing	Non-reduc sugars	Non-reducing Total soluble Hydrolizable sugars sugars carbohydrate	Total solu sugars	soluble	Hydrol		Total carbohydrate	Total cohydrate
		R.d.s	P.0.8	R.d.s	6) (0)	R.d.s	P.o. 9	R.d.s	P. B. B.	R.d.s P.e.s	P.e.s	R.d.s	P.e.s	R.d.s	P.0.9	R.d.s	10 B.	R.d.s	D. 0. 0	R.d.s	Р. в. я
3	Control	31.88	32.25	116.88	67.58	147.88	39.75	17.25	63.88	31.88 32.25 116.88 67.58 147.88 99.75	162.75	18.72	19.98	78.84	41.65	88.76	61.56	28.53	38.88	117.29	188.4
	GA.*	31.88	36.89	68.75	63.75	99.75	39.75	42.88	63.88	31.88 36.89 68.75 63.75 99.75 42.88 63.88 141.75 162.75 19.83 22.91 42.21 48.77 61.24 63.44 25.78 48.89 87.82 183.59	162.75	19.83	22.91	42.21	48.77	61.24	63.44	25.78	48.89	87.82	183.5
	IAA	31.88	33.88	58.25	61.58	89.25	94.58	36.75	84.88	31.88 33.88 58.25 61.58 89.25 94.58 36.75 84.88 126.88 178.58 35.61 48.15 35.61 48.15 53.87 61.69 22.18 54.84 76.85 116.54	178.58	18.71	21.55	35.61	48.15	53.87	61.69	22.18	54.84	76.85	116.5
S	S. sample	21.58		88.75		118.25		42.88		152.25		13.68		56.14		69.74		26.57		96.13	

Table (3, &): Effect of GA or IAA at 18 ppm. on concentration and total amount of carbohydrate fractions during diferent stages of germination .

		Inc	Increase or decrease as related to strting sample	decrea	ise as r	elated	to strt	ing sar	"ple			% incr	ease or	% increase or decrease as related to starting sample	ASC AS	related	to star	ting s	imple	
Ireatments	Reduc	Reducing	Non-reducing Total soluble Hydrolizable sugars carbohydrate	fucing	Total solu sugars	soluble	Hydrolizable carbohydrate	zable	Total carbohydrate	al	Reducing		Non-reduc sugars	Non-reducing Total soluble Hydrolizable sugars sugars	Total solu sugars	soluble	Hydrol	izable	Hydrolizable Total carbohydrate	Total
	R.d.s	P.e.s	R.d.s P.e.s	0.0	R.d.s	P. a.s	R.d.s	P.e.s	R.d.s	P. G. S.	R.d.s	P.e.s	R.d.s	N. 0.	R.d.s	10.0 0.0	R.d.s	8.0.V	R.d.s	р. 0. N.
Control	5.12+ 6.38+ 13.98+ 14.49- 19.82+ 8.18- 1.96+ 12.31+ 28.98+ 4.12+ 37.6+ 46.3+ 24.8+ 25.8- 27.3+ 11.7- 7.4+ 46.3+ 21.8+	6.38+	13.98+	14.49-	19.82+	8.18-	1.96+	12.31+	28.98+	4.12+	37.6+	46.3+	24.8+	25.8-	27.3+	11.7-	7.4+	46.3+	21.8+	4.3+
GA.	5.43+	9.31+	5.43+ 9.31+ 13.93+ 15.37- 8.58- 6.25- 8.79- 13.52+ 9.29- 7.28+ 48.8+ 68.5+ 24.8+ 27.4- 12.2- 9.8- 3.8- 58.9+ 9.6- 7.6+	15.37-	8.58-	6.25-	B.79-	13.52+	9.29-	7.28+	48.8+	+5.89	24.8+	27.4-	12.2-	9.8-	3.8-	58.9+	9.6-	7.6+
IAA	5.11+	465.2	5.11+ 7.59+ 28.98+ 15.99- 15.87- 8.85- 4.39- 28.27+ 28.25- 28.32+ 37.6+ 58.5+ 37.4+ 28.5- 22.8- 11.5- 16.5- 186.4+ 21.8- 21.8+	15.99-	15.87-	8.85-	4.39-	28.27+	28.25-	28.32+	37.6+	58.5+	37.4+	28.5-	22.8-	11.5-	16.5-	186.4+	21.8-	21.8+

(Devlin & Witham, 1983).

It was shown that water, salt and alkaline buffer soluble proteins increased during different stages of germination Tables: (4 a,b,c & d). The only exception was the reduction in water soluble fraction at the plumule emergency stage, while alcohol and hard non-soluble proteins are mostly decreased. This means that some protein fractions are formed while others are broaken and that depend on the stage of germination, i.e. radical developing and plumule emergency stages.

During germination it could be stated also that the dominant and abundant protein fraction is the hard non-soluble protein, followed in descending order by water, salt, alkaline-buffer soluble proteins, while alcohol fraction is the lowest in this respect.

It is clear also that GA, or IAA at the rate of 10 ppm stimulated the relatively high accumulation of water and alkaline soluble proteins, while other fraction seemed to be less than the corresponding ones of control. This again may be related to proteases enzymes activities (Devlin & Witham, 1983) and that seemed to play more or less an important role in the germination processes especially during radical developing stage (Higgins, et al. 1982). The difference in the effect of growth regulators on protein fractions during different stages of germination indicates that the mechanism of actions on germination percentage were quite variable. These differences could be attributed partially to the changes of endogenous hormones during the different stages of development (Burrows and Carr, 1970 and Eeuwens & Schwabe, 1975) or to the nutrient status; Millerd, et al., 1978; Randall, et al., 1979;

Table : (4 a & b) Effect of GAs or IAA at 18 ppm. on concentration and total amount of protein fractions during different stages of germantion.

					Concen	tration (mg/gr. d	Concentration (mg/gr. dry matter).	·-					
Ireatments	Water	Water Soulble proteins	Salt S prot	Salt Soulble proteins	Alcohole Solu proteins	Soluble	Alcohole Soluble Alkaline-buffer proteins	e-buffer proteins	Total S	Total Soulble proteins.	Residual (Non- Soulble protein	Residual (Non- Soulble proteins)	Total Prote	Total Protein contents
	R.d.s	0 0 0	R.d.s	P. 6.	R.d.s	р. 8.	R.d.s	ο. 0.	R.d.s	ο. ο.	R.d.s	р. В	R.d.s	6. 6.
Control	83.33	41.67	25.56	31.67	3.33	8.33	9.72	28.28	121.94	181.95	159.58	145.58	288.94	247.45
GA»	188.88	47.78	35.56	46.67	3.61	5.83	13.86	17.22	152.23	117.58	126.25	141.58	278.48	259.88
IAA	94.44	45.88	42.78	21.67	2.58	12.58	18.88	26.67	149.72	185.84	131.88	152.88	288.72	258.72
Starting samble	47.22		17.78		7.22		6.94		79.16		156.88		235.16	

.. 9

					Tota	lamount	Total amount (mg/ Seedling).	dling).						
Treatments	Water Soull proteins	Water Soulble proteins	Salt Soulble proteins	alt Soulble proteins	Alcohole Soluble proteins	Soluble	Alkaline-buffer Soulble proteins	Alkaline-buffer Soulble proteins	Total Soulk	Total Soulble proteins	Residua	Residual (Non- Soulble proteins)		Total Protein contents
	R.d.s	ο. ο.	R.d.s	υ, ε,	R.d.s	P.e.s	R.d.s	0, 0,	R.d.s	р. п.	R.d.s	р. 0. 0.	R.d.s	P. G. S.
Control	58.31	25.71	15.43	19.54	2.81	5.14	5.87	12.51	73.63	62.91	96.31	89.79	169.94	152.69
GAx	61.39	38.41	21.83	29.71	2.22	3.71	8.82	18.96	93.45	74.79	77.58	98.86	178.95	164.85
IAA	57.88	29.38	25.82	14.15	1.51	8.16	6.84	17.41	98.37	69.18	79.87	99.82	169.44	168.92
Starting samble	29.87		11.25		4.52		4.39		58.88		69.86		148.77	

Table: (4 c & d.) Effect of GA* or IAA at 18 ppm. on increase or decrease (c) and its % inrease or decrease during different stages of germantion(d).

	The state of the s													
Ireatments	Water Soull proteins	Water Soulble proteins	Salt Soulble proteins	oulble	Alcohole Solu proteins	Soluble	Alcohole Soluble Alkaline-buffer proteins Soulble proteins	s-buffer proteins	Total Soull proteins	Total Soulble proteins	Residual (Non-Soulble protein	Residual (Non- Soulble proteins)	Total Protein contents	Protein
	R.d.s	N. 0. N	R.d.s	0. D.	B.d.s	P. 0. 0.	R.d.s	0 0	R.d.s	6. 0.	R.d.s	о. 0. 0.	R.d.s	о. 0.
Control	28.44+	28.44+ 4.16-	4.18+	8.29+	2.56-	8.57+	1.48+	8.12+	23.55+	12.83+	2.38-	8.98-	21.17+	3.92+
GA3	31.52+	31.52+ 8.54+	18.58+	18.46+	2.35-	8.86-	3.36+	3.57+	43.37+	24.71+	24.71+ 21.19-	8.63-	22.18+	16.88+
IAA	27.13+	27.13+ 8.49-	14.57+	2.98+	3.86-	3.59+	1.65+	13.82+	48.29+	19.82+	19.82+ 19.62- 1.13+	1.13+	28.67+	28.15+

÷

Ireatments	Water	Water Soulble proteins	Salt S prot	Salt Soulble proteins	Alcohole Soluble proteins	Soluble	Alkaline-buffer Soulble proteins	e-buffer proteins	Total Soull proteins	Total Soulble proteins	Residual (Non- Soulble protein	Residual (Non- Soulble proteins)	Total Prot	Total Protein contents
	R.d.s	р. 8.	R.d.s	0. 0.	R.d.s	0. 0.	R.d.s	ρ. υ.	R.d.s	0. 0.	R.d.s	р. В.	R.d.s	ъ. п.
Control	68.4+	13.9-	37.2+	73.7+	56.8-	12.5+	33.7+	185.8+ 47.8+	47.8+	25.6+	2.4-	9.8-	14.2+	2.6+
GA 3	185.5+	1.8+	94.8+	164.1+	51.4-	18.8-	82.7+	149.7+ 86.6+	86.6+	49.3+	21.5-	-2.8	14.9+	18.8+
IAA	+8.84	1.6-	129.5+ 25.8+	25.8+	-8.73	78.6+	37.6+	296.6+	89.5+	38.8+	19.9-	1.1	13.9+	13.5+

Thomson, et al., 1979; Schroeder, 1982; Sponsel, 1982 and Schroeder, 1984).

As the changes of protein fraction are greatly variable, thus it was thought advisable to extend our study to include the changes in conjugated and free amino acids.

4.1.3.3: The effect on amino acid fractions:

As shown in Tables (5 & 6 a, b & c) free and bound amino acids are greatly variable during seedling emergency stages of cv. El-Hamawy apricot, and the applied growth substances affected such changes.

Generally it is clear that glutamine is the more dominant bound amid mostly followed by leucine & isoleucine, aspartic, valine, alanine, arginine, phenylalanine, histidine, and the lowest one is proline. It is also clear that free amino acids are mostly in trace amounts during different germination stages while the bound ones are greatly dominant. In addition, arginine and histidine were notdetected in free amino acid in the seeds while both are present in proteinous (bound) amino acids. The presence of these two amino acids during later germination stages indicated that both are released from bound ones. This may lead to the assumption that free arginine and histidine seemed to play an important role in the processes of nitrogenous compounds metabolism including these enzymes which may be related to seedling emergency (Devlin and Witham, 1983). The effect of growth substances on such free two amino acids was greatly differed. In other words, the increase in the germination and seedling emergency percentage by GA₃ was associated by the

decline in total free amino acids during radical developing stage and relatively higher ones during plumule emergency stage as compared to corresponding ones of control. However, such stimulatory effect of GA₃ on germination percentage was associated by stimulatory effect on total bound amino acids especially glutamine, alanine and valine (Table 5 b).

The very slight increase in total free and bound amino acids may be related to the limiting absorption of nitrogen. However the great variations in the individual amino acid either free or bound ones are involved with the process leading to seedling emergency. Results of the present study show that some amino acids as mentioned above were increased while others were decreased under GA_3 or IAA treatments. The most pronounced decrease was that bound proline. It is reported by many workers that GA_3 affected the picture of amino acids, as (Singh, $et\ al.$, 1973).

On the other hand, the increases of amino acids existed in the present study may be attributed to the increase in enzymes activities responsible for amino acids biosynthesis. Also, it is well established that IAA application stimulate de novo synthesis of both RNA and protein in many plant tissues (Devlin and Witham, 1983).

Besides the effect of GA₃ on protein synthesis as mentioned before; de novo enzymes are synthesized under treatment (Varner, et al., 1965 and Jacobsen & Varner, 1967). In addition, GA₃ reactivate the repressed genes that control enzymes metabolism (Evins and Varner, 1972).

Table: (6 a) Effect of GA3 or IAA at 18 ppm. on the total amount of free amino acid fractions duri

Alanine Ualine Lucine + Asy R.d.s P.e.s R.d.s R.			Œ	Acidic Amino Acids	ino Acid	, m			ic Acidic Amino Acids Basic Aromatic Amino Ads		Aromatic Amino Acids	Am ino A	cids	Tot	Total Buss
R.d.s P.e.s 8.42 8.34 8.43			-						Amino Acids	ds			V		DOLL IN
B.4s P.e.s B.95 B.42		Aspartic	Glut	Glutamine	Argi	Arginine	Aminop	Aminoputaric	Histidine		Phenoil-1-1	_		Paine	Amino Acids
8.34 8.43			-								giaianin		Proline	3	2
8.34 8.43 8.21 8.57 8.28	P.e.s R.d.	N .0.0	R.d.s	P.0.8	R.d.s	P. 0. 9	R.d.s	P.e.s R.d.s P.e.s R.d.s	_	α ο	p	;			
8.34 8.43 8.21 8.57 8.28	i	-					İ	İ	-	M. D. 7	,	A. A. W	P. B. S	R.d.s	P.a.s
8.34 8.43 8.21 8.57 8.28	8.32 B.89	9 8.42	1.16	8.28	8.88	8.56	8.14	9.14	8.68	80 80	-		<u>'</u>		
6.34 6.43 6.21 8.57 8.28					Ì				_	_	4 0.14	89.89	8.89	6.26	3.72
	8.65 8.55	5 8.57	8.28	8.57	8.28	2	9 40		!-	†		<u> </u>			
÷	i	+	1				_	2.0	8.34 B.94	94 8.87	8.79	8.15	8.85	2.98	5.23
0.00 0.00	8.54	4 8.67	8.54	8.52	8.41	8.67	8.21	8.22	A 40 + 40	i	÷				
	-	-					-		_	10 0.14	8.22	8.89	8.18	3.84	5.23
Starting Sample 8.35 8.15 8.15	8.35		8.71		Non-detected	cted	8.87		Non-datasta	-	-				

Table: (6 b) Effect of GAs or IAA at

		Intakia A			200 800		-				de de de de de de de de de de de de de d	0	20	- HINGETON		(Expressed as mg/ seedling)	s /Bw st	seedling	()			
Treast sent		Hispinatic Hmino Heids	mino Aci	ds	Hydre Amino	Hydroxylic Awino Acids			ď	Acidic Amino Acids	ino Aci	sp			Basic	0	Aroma	Aromatic Amino Acids	no Acid		10401	
	Ala	Alanine	Ua	Valine	Luci	Lucine +	1	-141							Amino Acids	heids				!	Desire Ocide	bound
					Isolu	Isolucine	нара	HSpartic	Glutz	Glutamine	Arg	Arginine	Aminor	Aminoputaric	Histidine		Phenylalanine	mine	Proline	5	Contents	meias
	R.d.s	R.d.s P.e.s	R.d.s	R.d.s P.e.s	R.d.s	P.e.s R.d.s	R.d.s	P.0.4	P.e.s R.d.s	0.0	0 7 2				-	-	L	1				
	:	_			-		1						8. D. A. B. B. A.	F.o.s R.d.s		P.e.s R.d.s P.e.s R.d.s	d.s. P	S 8.8.	s. p.	P.e.s R.d.s		P. B.
Control	11.66	13.86	14.15	14.15 16.73	22.84	28.22	28.86	21.53	32.25	28.29	11.84	11.84	62 4	000	;	!	1	1	T	1	÷	
		_	1		-			-			-		_	2.03	6.14	7.73	8.19	8.57	8.92	1.14	148.59 143 15	43 15
5	15.25	12.86	19.55	19.91	28.24	28.24 26.31	25.88	23.87	35.87	32 BC	12 54		<u>'</u>				1	1	1	1		
TAG	45 02	42 60	100	100	1	-					10.34	0.03	2.0g	5.67	6.59	9.48 9.29	_	9.63	1.32	8.28	159 31 140 00	40 02
	20.04	200	00.07	17.84	33.95	27.73	21.27	23.85	34.22	27.58	13.22	8.91	100	6 70	1	t	+	1		1	40.	30.05
													3	0	7J.BT	8.86	9.85	13.85	8.88	8.16 16	162.48	146.45
Starting Sample	9.62		15.56		27.71		22.28		36.44		7.86		2.87		- 3	- '	-	-			-	

Table:(6 c) Effect of GA» or 1AA at 18 ppm. on the total amount of total amino acid fractions during different stages of ge

P.e.s R.d.s P.e.s P.e.s R.d.s P.e.s P.e.			200	Hilphatic Heimo Heids	ds	Hydr-	Hydroxyllc Amino Acids			•	Acidic Amino Acids	ino Aci	qs			Basic	io	idic Amino Acids Basic Amanatic Amino	Aromatic Online				
Appartic Clutamine Arginine Ireatments					1	1	-								Amino Acids	Acids	!		ING HC1d	69	Total	al	
P.e.s R.d.s P.e.s R.d.s <th< th=""><th></th><th>119</th><th>nine</th><th>Oa</th><th>line</th><th>Isolu</th><th>icine</th><th>Asp</th><th>artic</th><th>Glut</th><th>awine</th><th>Arg</th><th>inine</th><th>Amino</th><th>xutaric</th><th>Histidine</th><th></th><th>Phenolal alanda</th><th>- and and</th><th>,</th><th></th><th>Amina Acid</th><th>Amino Acids</th></th<>		119	nine	Oa	line	Isolu	icine	Asp	artic	Glut	awine	Arg	inine	Amino	xutaric	Histidine		Phenolal alanda	- and and	,		Amina Acid	Amino Acids
1 14.29 17.88 23.52 28.57 28.95 21.95 33.41 28.57 12.28 3 13.29 19.76 28.48 29.12 26.96 26.34 24.44 35.35 33.42 12.82 3 13.27 19.89 18.43 33.39 28.82 29.81 23.59 34.76 28.82 13.53		R.d.s		B.d.	-	2													alling	Froline	ne.		3
1 14.29 17.88 23.52 28.57 28.95 21.95 33.41 28.57 12.28 9 13.29 19.76 28.48 29.12 26.96 26.34 24.44 35.35 33.42 12.82 5 13.27 19.89 18.43 33.39 28.82 29.81 23.59 34.76 28.82 13.63					0	N. D. L	N. 0. N	R.d.s	0. 0	R.d.s	P. a. s	R.d.s	P.e.s	R.d.s	P. B. 9		P. 0.	D 8.0.0	0	-		-	
9 13.29 19.76 28.48 29.12 26.96 26.34 24.44 35.35 33.42 12.82 13.63 9.58 8.27 5.54 6.19 6 5 13.27 19.89 18.43 33.39 28.82 29.81 23.59 34.76 28.82 13.63 9.58 5.79 7.81 1	Control	12.61		14.99	17.88		20 52	200	1		-			-			-			n. n.	N. D. M. D. W. D. W.		P.0.8
9 13.29 19.76 28.48 29.12 26.96 26.34 24.44 35.35 33.42 12.82 8.27 5.54 6.18 5 13.27 19.89 18.43 33.39 28.82 29.81 23.59 34.76 28.82 13.63 9.58 5.79 7.81				-			10.02	56.83	21.35	33.41	_	12.28		4.72	3.83	6.82	8.71	23	20		1	İ	
2 13.27 19.89 18.43 33.39 28.82 29.81 23.59 34.76 28.82 13.63 9.58 5.79 7.81	3	15, 59	13 20	19 26								-					100 CO	2		26.0	1.23	146.85 146.87	146.87
5 13.27 19.89 18.43 33.39 28.82 29.81 23.59 34.76 28.82 13.63 9.58 5.79 7.81	•		20.00	77.10			56.96	26.34	24.44	35.35	33.42	12.82	8.27	2 24	40	-		<u> </u>		1	İ	İ	
23.59 34.76 28.82 13.63 9.58 5.79 7.81	IAA	16.36	13.27	19.89	18 43		20 00	18				1			2		10.47 9.36	1000	18.42	1.47	8.25	162.29 154.85	54.85
					2		79.97	18.67	23.59	34.76	28.82	13.63	9.58	5.79		1	18 32 0 40	÷	÷	1	İ		
																-	70.07		13.27	8.97	8.26	166.24 151.77	51.77
Starting Sample 18.88 15.71 27.86 22.55 37.15 7.86 2.14	Starting Sample	18.88		15.71		27.86		22.55		37.15		7.86		2 14				-	-			-	

4.1.4 The effect on macro- and micro-nutrients:

The present study was extended to show the different nutrient status during germination stages in the terms of concentration (mg/gr. or μ g/gm dry weight) and the total amount per seedling.

It was shown that during early germination stages, (i.e.) radical developing and plumule emergency stages, the developing seedlings absorbed variable rate of different nutrients as the stored amounts are not sufficient to perform the natural development.

It is clear that most nutrients, as a general, either on concentration or total amounts per seedling increased during the germination stages as related to the initial stored amounts in the embryo. This increment reached the maximum rates during plumule emergency stage as the primary root development was increased during the plumule emergency stage and the requirement of such nutrients increased for the vital processes of germinated seedlings. However, the absorption rate was differed from one nutrient to another. In addition, it was shown that the rate of nitrogen absorption during different periods of germination stage was in its lowest values, as the stored nitrogenous compounds seemed to be more less sufficient for supplying the germinated seeds (Table 7 a). The same conclusion was also observed in other elements such as Cu (Table 8 b). On the other hand, relative higher absorption rate may occur in many other elements such as P (Table 7 b), K & Ca (Tables 7, 8 b), Mg (Table 7 c), Fe & Mn (Table 8 a & b) and Zn (Table 8 c), however, these rates were the highest during plumule emergency stage. The highest absorption rate was

shown with Fe, Mn and Zn while the moderate rates were observed by p, k, ca and Mg. This leads us to the assumption that many nutrients may be found in stored seed organ of apricot with relative high amounts while others are found with relatively less amounts and that affected the germination processes. However, the supplying of apricot seeds with many nutrients is essential for good germination.

The higher germination rate of GA, treated-apricot seeds over the control is associated with the higher absorption rate of N, K and Mg over the control or IAA treated ones. Thus it could be assumed that such element may stimulate the seedling emergency. However, the absorption rate of other elements with GA, treated seeds may be more that IAA treated ones such as P, Ca, Fe, Mn, Zn or Cu and that may also interfere with the highest germination rate of GA, treated seeds. At any way, GA, and IAA play an important role in the absorption rates of different nutrients either macro-or micro ones. The need of different nutrients for developing apricot seedling seemed to be more during the plumule emergency stage than during the radical developing stage. The highest proportion (Table, 9 a) of macro-nutrients was observed by N followed by k, p, ca, and the lowest was found in Mg during different periods of germination stages. It was found also that Fe was the most prevalent element in seedling followed by Mn and Cu while Zn was the lowest one (Table, 9 b).

The proportion of micro-elements in apricot seeds and seedling were as follows: Fe was more than the double of Mn and Zn was about the half of Mn and Cu. Different treatments with growth regulators seemed to regulate the proportional

Table (7,a,..& e):Effect of GA or IAA at 18 ppm. on some makro-nutrients status .

	, 0,	',a , mirrogen							1 '0'	aniourdsoud (g')	en					
Treatments				Nitrogen	ogen				_			Phosphorus	horus			
	concen mg/gr	eg/gr. D.W. mg/s	80	amount	increase ore	SC OFF	x increase *	increase *	concent mg/gr.	concentration total amount mg/gr. D.W. mg/seedling	total a	otal amount	increase or*		x increase *	decrease
	R.d.s	P. a. s	R.d.s	P.d.s	R.d.s	P.d.s	R.d.s	P. a. s	R.d.s	P.0.8	R.d.s	P.e.s	R.d.s	P.a.8	R.d.s	P.e.s
Control	44.68	48.88	26.93	25.23	3.21+	1.51+	13.5+	96.4+	4.38	5.63	2.46	3.47	8.58+	1.33+	23.4+	62.1+
€A3	45.81	41.11	27.63	26.17	3.91+	2.45+	16.9+	18.3+	4.25	5.38	2.61	3.42	8.47+	1.86+	22.8+	49.5+
IAA	49.91	41.87	26.58	26.81	2.78+	3.89+	11.7+	13.8+	4.38	5.75	2.64	3.73	8.58+	1.61+	23.4+	75.2+
S. sample	37.58		23.72						3.38		2.14					
	7,03	7, c) potassium							7, 4)	7, d) Calcium						
Treatments				Pota	Potassium							Cal	Calcium			
		mg/gr D.W. mg/s	0	amount	increase or*	crease or*	z incr	% increase * or decrease		concentration total amount mg/gr. D.W. mg/seedling	total mg/se	otal amount	increa	increase or*	×	increase *
	R.d.s	P.a.s	R.d.s	P.e.s	R.d.s	P.e.s	R.d.s	P.a.s	R.d.s	P. O. 9	R.d.s	P.c.s	R.d.s	P.G.N	R.d.s	P. G. S
Control	15.76	19.78	9.52	12.86	1.42+	3.96+	17.5+	48.9+	4. 88	4.88	2.42	2.47	8.53+	9.58+	28.8+	38.7+
GA*	16.86	28.94	9.86	13.33	1.76+	5.23+	21.7+	64.6+	3.88	4.88	1.84	2.55	8.85-	9.66+	2.6-	34.9+
IAA	15.94	15.94 18.28	9.62	11.94	1.52+	3.84+	18.8+	47.4+	3.88	4.88	1.81	2.61	8.88-	8.72+	4.2+	38.1+
S. sample 12.81	12.81		8.18						3.88		1.89					
									1							

	-	The second second		I Hage	way ince turn			
0 1	oncen mg/gr	concentration total amount increase or* x increase # mg/gr. D.W. mg/seedling decrease or decrease	total mg/se	total amount	increase or decrease	58 OF#	x incr	increase *
24	3. P.	R.d.s P.e.s R.d.s P.d.s R.d.s P.d.s P.e.s	R.d.s	P.d.	R.d.s	P. d.s	R.d.s	₩. B. W
Control	2.13	2.71	1.29	1	1.67 8.81+ 8.39+	8.39+		8.8+ 38.5+
GA.	2.78	3.86	1.71		1.95 8.43+ 8.67+ 33.6+ 52.3+	8.67÷	33.6+	52.3
IAA	2.96	2.99	1.79		1.95 8.51+ 8.67+ 39.8+ 52.3+	+29.8	39.8+	52.3
S. sample 2.83	2.83		1.28					

7, 8) magnezium .

Table (8,a,..,d): Effect of GAs or IAA on some micro-nutrients status .

Treatments	7-			Iron	- =							Man	gai	Manganese	ganese	ganese
	Ug/gr	Ug/gr. D.W.	3	Ug/seedling		increase or* % increase *	or de	increase *	concentratio	trat	ion	ion total a	n total amount			increase or*
Para	rd L	_ 1	- 1	- 1	1		1		73. 3.	1:	Ŀ	L	Ser Transfer	Ser recent Tild	L	Ser recent Tild
	1 2.0.8	0	X.d. 8	P.d. 8	R.d.s	P.d.s	R.d.s	P. c. s	R.d.s	P.0.0				R.d.s P.e.s R.d.s	R.d.s P.e.s R.d.s P.e.s	R.d.s P.e.s R.d.s
Control	422.88	8 625.8	422.88 625.88 254.88 385.69 16.86+ 192.8+ 32.1+	385.69	9 16.86	192.8+	32.1+	99.9+	198.88	287	.58	.58 141.72	.58 141.72 177.42	.58 141.72 177.42 19.83+	.58 141.72 177.42 19.83+ 82 53+	+ 52 53+
GA3	468.88	8 638.8	468.88 638.88 282.39 488.99 89.54+ 288.1+ 46.4 + 187.8+ 218.88	9 488.99	89.54	288.1+	46.4 +	187.8+	218.88	382	58	58 128.92	58 128.92 192 54	58 128.92 192 54 34 83+	58 128.92 192.54 34 83+ 97 65+	382.58 128.92 192.54 34 83+ 97 65+ 35 9+
IAA	498.88	8 688.8	498.88 688.88 295.76 443.97 66.82+ 251.8+ 34.6+	5 443.97	7 66.82+	251.8+	34.6+		232.58	414	58	58 149 34	58 149 34 279 63	58 148 34 278 63 45 45+	58 148 34 278 63 45 45+ 175 7+	138.1+ 232.58 414.58 148.34 278 63 45 45 175 7+ 47 9+ 185 2+
S. sample	385.88	۵		192.94					158 88		-	04 00				

8, c) zinc		4	
	Zinc	o .	
ncentrati	concentration total amount	increase or* % increase *	
Ug/gr D.W.	/Jg/seedling	decrease	or decrease
R.d.s P.e.	R.d.s P.e.s R.d.s P.e.s R.d.s P.e.s R.d.s P.e.s R.d.s P.	R.d.s P.e.s	R.d
88.88 125.	125.88 48.38 77.14 8.85+ 29.69+ 1.8+ 62.6+ 148.88 13	8.85+ 29.69+	14

0 d) copper

Treatments				Zinc								Copper	ber			
	Ug/gr D.W.	Ug/gr D.W. Ug/seedling	total Jug/se	Ug/seedling	increa	increase or* % increase * decrease or decrease	% incr	increase *	concen	concentration total amount	total	amount	Increa	80 OT*	increase or* % increase *	ease *
	2 2	ם	0	3	-	1			100		Se se	Surrenge 180	decrease	ease	or de	or decrease
	N. a. s	K.d.s P.e.s	R.a.s	P. C. S	R.d.s	P.e.s	R.d.s	R.d.s P.e.s R.d.s P.e.s	R.d.s P.e.s R.d.s P.e.s R.d.s P.e.s R.d.s P.e.s	P.c.s	R.d.s	P.e.s	R.d.s	P.O. 8	R.d.s	P.e.s
Control	88.88	125.88 48.38	48.38	77.14	8.85+	29.69+	1.8+	62.6+	148.88 132.88 84.53	132.88	84.53	81.46	9 71+	81.46 9.71+ 73.6- 9.8+	1 4 2 4 2	2 8-
GA3	98.88	145.88 55.25	55.25	92.92 7.88+	7.88+	44.84+ 16.4+	16.4+	94.6+	118.88 118.58 67.53	118.58	ES. 59	79 33	16 29	100	79 33 16 29 13 40 19 4 16 1	10
100	ממממ	101 20	20 02									1	10:00	10.10	1	10.1
	100.00	במיםם דבד מם פם יפף	80.35		12.91*	142.78 12.91+ 77.25+ 27.2+	27.2+	152.8+ 142.58 225.88 86.81 146.98 2.19+ 63.88+ 2.6+ 75.3+	142.58	225.88	18.88	146.98	2.19+	+38.63	2.6+	75.3+
S. sample	75.88		47.45						132.58		83.82					
D.W. = Dry weight							-									

balance between different nutrients and that may play an important role in many endogenous processes leading to seeding emergency and its development.

The effect of GA₃ on different nutrient status was also reported by many workers using different plant species among them (El-Zawily and Zayed, 1985; Zayed, et al., 1985 b; Kafaga, et al., 1986; Ibrahim and Kafaga, 1986; Ibrahim, 1987 and Mohsen, et al., 1987). This difference was related mainly to the effect of either GA₃ or IAA on the absorption rates of such nutrients (Seth and Wareing, 1967 and Saks & Ilan, 1984).

Table (9,a): Effect of GA> or IAA at 10 ppm. on the proportion of the macro-nutrients N, P,K,Ca & My as related to their total amounts per seedling.

Troatmonts		К		P		К	С	a	н	a
	R.d.s	P.o.s	R.d.s	P.o.z	R.d.s	P.o.z	R.d.z	P.o.s	R.d.s	P.e.s
Control	62.9	56.2	6.2	7.7	22.2	26.9	5.7	5.5	3.0	3.7
GA »	63.3	55.2	6.8	7.2	22.6	28.1	1.2	5.4	3.9	1.1
IAA	62.6	57.8	6.2	8.8	22.7	25.4	1.3	5.5	4.2	1.1
S. sample	63.9		5.8		21.8		5.1		3.4	

Table (9,b): Effect of GA: or IAA at 18 ppm. on the proportion of the micro-nutrients Fo, Mm, Zn & Cu az related to their total amounts per seedling.

Troatmonts	F	o	M	ln	Z	n	C	u
	R.d.z	P.o.z	R.d.s	P.o. x	R.d.z	P.o. =	R.d. =	P.o.s
Control	58.7	53.4	22.8	24.6	9.6	18.7	16.8	11.3
GA3	52.9	53.0	24.1	25.5	18.3	12.2	12.6	9.3
IAA	50.8	45.8	24.1	27.4	18.4	12.6	14.8	14.9
S. samplo	46.8	in a little	22.6		11.3		20.0	

Experiment II

F.2. Effect of soaking apricot seeds cv. El-Amar in some growth regulators on germination and seedling growth behaviour:

As has been discussed in the first experiment the growth regulators gibberellic acid (GA₃) and Indole-acetic acid (IAA) greatly affected different aspects of germination of apricot cv. El. Hamawy. These effects were more or less related to the effects of growth promoters (i.e. GA₃ & IAA) on different reactions leading to starting the germination and the appearance of both the radicle and plumule. In other words, the metabolic activity was altered during germination process of El-Hamawy apricot seeds.

Accordingly, it is of interest to extend the previous study to include El-Amar apricot. The common local cultivar is mainly propagated by seeds. Germination of this cultivar seeds generally needs long period in addition to low percentage of germinated seeds under local natural conditions in the apricot cultivated regions. Also, with this cultivar two other growth regulators were used, i.e. Maleic hydrazide (MH) and cycocel (CCC). Growth regulators were used separately or in combinations as previously described. Seeds were soaked for 24 hours in different assigned growth regulators and in their combination, as well as other group of seeds was soaked in distilled water as control. Then treated and untreated seeds were sown in the previously described sand culture and the following data were recorded:

- 1- germination percentage and rate index .
- 2- seedling growth including root & stem length and number of leaves as well as fresh and dry weights.
- 3- Organic components i.e. total carbohydrates, total soluble sugars and

protein fractions, total amino acids and content of some Macro- and micro-nutrients.

4.2.1. Germination criteria (Table 10):

It could be revealed that different growth regulators affected the germination percentage during different periods of seedling emergency, and the total of germination percentage as well as germination index (mean days required for germination).

It could be noticed from the data that some treatments greatly minimized the total germination percentage (GA_3 , 5 ppm CCC, 5 ppm). Many other treatments slightly lowered such percentage (IAA, 5 and 10 ppm; MH 5 ppm and ccc + MH, 5 + 5 ppm). The most reduction effect was gained by soaking apricot seeds in 5 ppm GA_3 . On the other hand, many treatments slightly enhanced the germination percentage (GA_3 , 10 ppm; GA_3 + IAA, 5 + 5 ppm). Many others greatly stimulated such percentage (GA_3 + IAA, 10 + ppm or 5 + 10 respectively).

These data indicate that different growth regulators affected the germination percentage through their effects on the metabolic process of the germinated seeds. The retardant effect of some treatments exhibits their effect on both the metabolic and seedling emergency, while others stimulated both processes. As most treatments minimized germination rate index, the most pronounced one in this respect was GA₃, 10 ppm. The role of GA₃, IAA, CCC and MH on germination process was also recorded by many workers previously mentioned by *Makarem*, 1978 and Khalil, 1978 in some fruit varaieties.

Table (10): Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on germination criteria .

Ireathents	ents	A	Days after soaking	r soakin	מ	Total x	Germina-
Substance	pp.	13	16	23	333	of germination	tion rate index
Control	0	16.7	18.8	28.6	10.8	56.7	20.05
89	rs —	11.7	01.7	28.0	8.50	38.4	20.57
r	10	33.3	18.3	63.3	6.58	58.2	15.49
IAA	rs .	28.0	15.6	11.7	82.8	51.7	17.77
	10	13.3	15.0	20.0	92.8	53,5	19.19
	5+5	18.3	16.7	15.0	88.3	58.3	18.88
GA + 1AA	5+18	15.0	16.7	31.7	5.63	70.1	19.86
n	18+5	15.0	23.3	15.0	83.3	56.6	17.88
	18+10	15.0	13.3	35.8	83.3	9.99	19.78
222	S	16.7	2.90	13.3	85.8	41.7	18.72
Æ	S	16.7	2.98	18.3	88.3	50.8	19.98
CCC+MH	5+5	15.0	ล. รอ	28.3	ย. 23	53.3	20.18

4.2.2. Root length and number of lateral roots: (Table, 11)

The followings could be revealed:

- a) many treatments reduced root length and number of lateral roots, while others increased such parameters as related to the control treated seedlings.
- b) IAA at 10 ppm or $GA_3 + IAA$, 5 + 5 ppm increased root length and the formation of lateral roots.
 - c) GA_3 + IAA, 5 + 10 ppm greatly stimulated lateral root formation.
- d) CCC + MH, 5 + 5 ppm reduced the root length and the number of lateral roots. Also IAA affected the initiation of root and the elongation of root cell.
- e) It could be noticed that GA₃ at the rate of 5 ppm combined with IAA at 10 ppm has a synergistic effect on lateral root formation.

Table (11): Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on root length and number of lateral roots per seedling at the plumule emergency stage.

Treatments	Control	G	A∍	- I	AA		GA∍	+ IAA		ccc	MH	CCC+MH
	5	5	10	5	10	5+5	5+10	10+5	10+10	5	5	5+5
Root length	9.6			6.9	10.6	10.6 +0.97	9.1	8.8 +0.17	8.6 +0.75	9.4	7.9 +1.83	5.5 +1.66
No.of late- ral roots	25 +5.13		22 +4.16	22 +6.16	30 +5.45	27 +4.48	36 +3.37	27 +3.53	29 +2.42	24 +4.76	18 +4.75	15 +4.72

Concerning the effect of different growth regulators on the root length and the lateral root formation as shown in Table (11) it could be shown that the auxin was the most effective in this respect. It gives the highest length and more lateral root formation followed by its combination with GA₃. While the growth inhibitors CCC and MH separately or in combinations significantly decreased both the two characters.

These recorded observations could be attributed to variable changes in the endogenous hormones under the exogenous application of experimented growth regulators. For example the exogenous applied IAA is known to increase the endogenous cytokinins (Hradilik, 1973 & 1974). In turn, increase of endogenous cytokinins led to increase in the lateral root formation (Devlin and Witham, 1983 and Wanas, 1992).

4.2.3. Effect of the growth regulators GA₃, IAA, CCC and MH in the assigned concentration and different combinations on seedling growth of apricot cv. El-Amar.

4.2.3.1. Stem length (Table 12) and number of internodes: (Table, 13)

It could be stated that different treatments with GA₃, IAA, CCC and MH or the combinations with each other affected seedling stem length during different periods of growth. Most treatments enhanced the stem length over the control ones during most periods of growth. After 72 days from soaking, CCC 5 ppm treated seedlings possessed the taller stems over any other treatments. At such date most treatments stimulated the elongation of stems as compared to control ones, as most treatments regulate the rate of stem growth during different periods of growth.

As stem length was affected by different treatments, the internodes number was also changed. It could be mentioned that most treatments lowered the number of internodes. Thus, it could be mentioned that different treatments seemed to stimulate the internode length rather than increase the number of internodes. The only exceptions are those treated with CCC at 5 ppm and MH at 5 ppm. This indicates that CCC affected both internode number and the length of internode

Table (12): Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on stem length and its percentage increase during different periods of of seedling growth.

	2000		HO10	a length		(0.00)			z in	% increase	of S.	length
			Days	after		soaking			Days	us after	soak	ing
Substance	ppm	98	45	10	10	65		72	38		1	22
Control	0	7.6 ±8.67	15.6	±0.86 18.6	18.6	11.85	22.3	1-1.14	4 34.0	69.9	83.4	188
GA	S	7.3 ±6.7	±6.99 21.8 ±	+2.14	14 26.4	11.81	29.8		+1.60 24.4	-	66.5	1 88
A	15	13.2 18.	±8.37 28.3 ±	1.85 22.3	22.3		23.6	10.9	10.96 23.6 10.98 43.2		94 4	7 2 2
IAA	2	9.2 ±3.	10.55 17.6 1	1.21 19	19.9		28.1	⁺ 2.3	12.34 45.7	1		188
	10	8.5 -0.64	15.2	11.30 17	17.4	±1.64 2C.7	[zc.7		11.24 41.0	1	84.8	188
	5+5	8.1 ±0.	±0.58 16.8 ±	1.31 21.2	21.2	+1	37 22.0		7 36.8			188
GA + IAA	5+10	8.3 +0.	44 18.4	10.96 28.9	28.9	18.89 24.7	24.7	1	±0.88 33.6		84.6	188
R	18+5	8.2 +8.	±8.74 16.8 ±	10.98 20.6	20.6	1.22 24.0	24.8		3 34.1		85.8	188
	15+16	7.7	+0.46 16.7 +	1.82	19.9		23.0	18.97	33.	-	86.5	188
000	S	8.5 ±1.4	+1.42 28.5 +	+3.43 26.3	26.3		39.5	+4.33	3 21.5	_	65.8	2 2 2
HH	25	7.2 ±0.9	19.92 19.8 1	+2.51 27	27.4	+2.97	31	+1.52	12	159	86.1	2 2 2
CCC+MH	S	7.4 +0.7	+0.76 23.8 +	1.01 26.6	26.6	1.38	30.5		+1.43 24.2	178.9	87.2	188

Table (13): Effect 8f soaking of cv. El-Amar apricot seeds in some growth regulators on intermode number and its percentage increase during different periods of seedling growth.

Treatments	ents			ı	Internode		number			inc	increase	of int	intern.n.
				Da	Days after		soaking			Days	s after	r soaking	ing
Substance	bb#		38		45		65		22	38	45	65	22
Control	60	6	±8.66	116	±8.52	17	±8.72	13	±8.67	47.4	84.2	89.5	188
63	rs	2	+8.84	14	11.48	16	±8.34	17	±1.63	41.2	82.4	94.1	188
А	18	12	±8.31	17	±8.59	117	±8.47	17	11.85	178.6	188	188	188
IAA	S	111	±8.55	15	±8.59	15	±8.89	16	11.57	68.8	93.8	93.8	188
	18	11	±8.41	14	11.85	14	+1.89	17	11.83	64.7	82.4	82.4	188
	5+2	111	±8.52	15	±8.61	116	±8.57	18	±8.81	61.1	83.3	88.9	188
GA + IAA	5+18	118	±8.46	115	±8.74	116	±8.64	18	±8.79	55.6	83.3	88.9	188
	18+5	9	±8.72	115	±8.91	116	±8.88	19	11.89	47.4	[78.9	84.2	188
	18+18	6	±8.48	15	±8.57	17	±8.76	118	+8.88	58.8	83.3	94.4	188
222	S	6	±8.87	116	+2.71	23	±8.71	25	11.83	36.8	64.8	92.8	188
HH	rz	2	±8.75	116	11.79	119	+3.37	22	11.88	31.8	72.7	86.4	188
CCC+MH	rs.	9	±8.63	17	±8.79	28	±8.97	28	+1.88	38.8	85.8	188	188
													_

on internode length and its percentage increase during different periods Table (14): Effect of soaking of cv. El-Amar apricot seeds in some growth regulators of seedling growth .

Treatments	ents			Internode	node	length		5	_			<u>×</u>	Incr	increase	of int	intern.1
				Days	s after		soaking	Ing					Days	after	r soaking	ing
Substance	ppm	38	3		45		65	I.D		2	72	38	- C	45	65	22
Control	8	8.83	18.87	18.96	+8	84 1.	83	±8.84	14.	11	+8.8	84 74.	æ	86.5	98.2	188
3	22	1.88	±8.89	1.44	±8-	85 1.	.68	#B.88	4	1.77	±8.1	12 61.8		81.4	98.4	188
•	18	8.81	±8.83	1.15	+8	84 1	.28	±8.83	1	49	±8.83	8 54	41	77.2	85.9	188
1		8.79	±8.83	11.11	±8.85	4	38	±8.85	1	23	+8.8	89 63.2		88.8	184.8	188
	18	8.82	±8.83	1.82	±8.85	15 1.	1.16	±8.85	5 1.	13	18.8	±8.88 68.9		85.7	97.5	188
77	2+2	5+5 8.77	±8.83	1.84	+8-	85 1.	34	±8.89	44	22	+8.8	87 63.	41	85.2	189.8	188
CA + 1AA		5+18 8.79	±8.83	1.19	±8.85	4	. 29	±8.85		1.38	+8.8	87 57	.2	86.2	93.5	188
*		18+5 8.84	±8.83	1.81	±8.85	+	24	±8.84	#	28	±8.8	87 65.6	9	78.9	6.69	188
	18+18	18+18 8.89	±8.88	1.88	±8-	85 1.	.15	±8.85	10	1.29	+B.8	96 68.9		83.7	89.1	188
2000	2	1.85	18.87	1.89	±8.	18 1.	.14	±8.88	-	.52	±8.1	±8.12 69.1		71.7	75.8	188
至	ro.	8.96	±8.86	1.16	±8.	85 2	82	±8.62	2 4	49	±8.83	64	4	77.9	135.6	188
HH+000	S	1.22	±8.16	1.37	+8.84	4 1	1.31	±8.84		1.59	±8.8	48.87 78.7		86.2	82.4	188

4.2.3.2. Number of leaves: (Table, 15)

It could be stated that leaves number showed the same trend of internodes number, as most treatments slightly retarded leaf formation under the control level after 72 days from soaking. However, some treatments stimulated such production, as CCC at 5 ppm seemed to increase leaves formation. MH also gave the same stimulatory effect.

It could be also mentioned that different treatments influenced the rate of leaves formation during different periods of seedling growth, as many treatments stimulated early formation of leaves (GA₃, 10 ppm; IAA, 5 & 10 ppm), while other treatments retarded such early formation of leaves (CCC or MH at 5 ppm or the combination of them). At present, ongoing research in this field has shown that the stem length as well as all other vegetative characters were markedly by affected the experimented growth regulators (i.e. GA₃, IAA, CCC & MH).

The stimulating effect of GA₃ on stem height, internode length, leaf area, etc. of apricot cv. El-Amar seedling obtained in the present study was also recorded by many workers in other plants e.g. Omar, et al., 1985 a,b; El-Zawily, et al., 1985 b; El-Zawily and Zayed, 1985; Okasha, et al., 1985; Zayed, et al., 1985 a & b; Sakr, et al., 1986; Ibrahim & Khafagy, 1990; Wanas, 1992 and El-Desouky, 1992).

The effect of GA, on internode length may be clearly and intimately explained by studies carried out by Schwabe, 1976; Potts, et al., 1982; Ingram, et al., 1983; Reid, et al., 1983; Potts and Reid, 1983 and Ingram, et al., 1984. They reported that there are at least five major loci, Le, La, Cry, Na and Lm. Genes at these loci are interacting to determine the internode length in the garden pea. Genes at the first

four Loci produce the variations in internode length. Their effects were similar to that of the applied GA_3 . The genes Le and Na directly influence GA_3 metabolism. Le gene allows the conversion of GA_1 and results in the tall phenotype while le plants are dwarf. The Na gene block the production of the biologically active GA_3 resulting in the extremely short nana (genetic line of pisum) phenotype being produced.

On the other hand, the obvious significant reduction of growth (i.e. stem length, internode length & internode numbers) which is recorded in the present study with the application of CCC (one of anti-gibberellins) was formerly recorded by *Potts*, <u>et al.</u>, (1985) using three phenotypes of pisum. CCC is known to inhibit the biosynthesis of gibberellin (Dalziel and Lawrence, 1984; Rademacher, <u>et al.</u>, 1984 and Hedden & Graebe, 1985).

The dominant effect of IAA was generally stimulation of measured growth parameters. It is not surprising that IAA stimulated stem length in addition to increase of internodes length and numbers. IAA, has been reported its effects on cell wall structures and the osmotic and water potential in the cells of IAA-treated organs. These established effects among them are the substitution or alteration of bonds between different components of the cell wall. Since, after IAA treatment the weak hydrogen bonds would be the dominant bonds in cell walls, hence, the elasticity of walls would be increased. In addition to the synthesis of de novo enzymes of modifying cell walls; the increase of osmotic potential in IAA-treated cells has been reported, (Devlin and Witham, 1983).

As for the anti-gibberellin CCC affected the growth process; also MH, the antiauxin showed its inhibitory effects on apricot seedling growth. From numerous experiments, it is known that the initial growth inhibition later disappears or changes into stimulation (Dostàl, 1967). It could also be shown in the present study

Of increase and periodic increase percentage of leaves at different periods of seedling growth. Table (15): Effect of soaking Of cv. El-Amar apricot seeds in some growth regulators on number, percentage

Ireatments	ents			Mumber of leaves	of le	aves	v	x in	X increase of leaves	of lea	Jes n.		Periodic increase	increa	S@ %
			Ã	Days after		soaking		Da	Days after	r saking	Ing	Days	s afte	after soaking	ing
Substance	bodd		38	45	_	65	22	38	45	65	22	8-38	38-45	45-65	22-59
Control	60	18	±8.66 17	±8.52 17	2 12	±8.76 28	8 _ 48.69	9 58	88	88	188	58	8	60	15
GA	S	8	±8.84 15	11.48 17	3 17	11.42 18	8 ±1.63	3 44	83	94	198	44	39	11	9
•	18	13	±8.31 18	±8.59 18	3 18	±8.47 18	8 +8.94	4 72	188	188	188	22	28	æ	8
IAA	2	12	±8.55 16	±8.62 16	2 16	±8.88 18	8 ±1.47	99 2	88	88	188	99	22	æ	12
	18	12	±8.39 15	±1.86 15	5 15	1.88 18	B ±1.89	99 6	83	83	188	99	17	60	17
	5+5 12	12	±8.52 16	±8.61 17	1 17	±8.56 19	9 ±1.87	2 63	84	83	188	63	21	ເກ	11
GA + IAA	5+18 11	11	±8.46 16	18.74 17	1 17	1.88 15	9 +8.78	8 57	84	88	188	52	22	S	11
•	18+5 18	18	18.72 16	±8.91 18	1 18	±8.87 19	9 ±1.27	25 52	84	94	188	25	32	18	9
	18+18 18	18	18.47 16	±8.75 18	5 18	±8.68 19	9 +8.88	3 52	84	94	188	25	32	18	9
200	rs	6	11.12 17	±2.71 24	1 24	±8.78 26	5 ±1.83	3 34	65	92	188	34,	31	22	8
王	ro	8	18.75 17	±1.79 28	9 28	±2.89 Z3	3 ±1.88	3 34	23	88	188	34	33	13	14
CCC+MH	2	2	±8.68 18	±8.79[22	3 22	11.18 22	2 11.18	3 31	81	188	188	31	58	19	63

that where the application of both CCC or MH in the all assigned concentrations used showed a tendency to reduce the rate of the morphological growth of apricot seedlings, during early periods of growth, however, this retarding effect was desappeared completly and replaced by stimulatory effect later periods of growth.

Also, various aspects of vegetative development of many plants are controlled by growth regulators in the environment, other plant growth regulators are widely applied to induce favorable changes in germination, vegetative and reprodutive characters of many plants (Lang, 1957; Lang & Reinhard, 1961; Phinney & West, 1961; Stuart & Cathy, 1961; Rikin, et al., 1978; Webber, et al., 1979; Seele & Powell, 1981; Walser, et al., 1981 and Mousdale, 1983).

4.2.4.1. Fresh and dry weights of seedlings at 30 days: (Table, 16):

As the different treatments affected the germination process their effect was extended to the growth criteria of the resulted seedlings. Many treatments retarded the growth of different seedling parts, while others stimulated the growth of such seedlings. Most treatments with GA3, IAA, CCC, MH or the combination with each others reduced root fresh and dry weights under the level of control one, while such treatments increased fresh & dry weights of cotyledons, but shoots showed unregular trends in this respect.

This could be discussed on the bases that most treatments seemed to have a regulatory effect on the reserved food in cotyledons and that affected the translocation of such foods to the developing roots and shoots. Also, it was concluded that most treatments with growth substances affected root growth by minimizing the translocation of nutrients from cotyledons into the developing radical. It must be mentioned that fresh weight took the same trend of dry weight.

Table (17) : Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on frish and dry weights, distribution as related to the whole seedling and root/shoot ratio at late stage of seedling growth .

Treatsents	ents					Fres	Fresh weight							Dry weight					
				gr.	gr./ seedling				×	distribution	tion		gr./ seedling			×	distribution	tion	Boot
Subst-	pps.	Ř	Root		Stew	7	Leaves	W.seed.	Root	Sten	Leaves	Root	Stem	Leaves	W. seed.	Root	Stem	Leaves	
Control	60	1.14	1 8.14	8.34	1 8.84	1.84	± 8.11	2.52	45.2	13.5	41.3	8.1586 _8.8249	8.8968 +8.8889	8.2273 +8.8277	8.4747	31.7	28.4	47.9	ratio 82.6
8	ıs	8.95	± 8.12	8.95	+ B.96	1.57	± 8.23	3.86	31.8	17.6	51.3	8.1119 18.8413	8.1483 +8.8228	8.3569 +8.8588	9.6171	18.1	24.8	57.8	45.8
ş* .	81	1.18	± 8.12	8.33	± 8.82	8.78	± 8.15	2.21	49.8	14.9	35.3	8.1175 ±8.8127	8.1883 +8.8116	8.2381 +8.8253	8.4479	26.2	2.4	51.4	99.1
200	ıs	8.99	± 8.12	8.38	+ 8.87	1.81	+ 8.1S	2.38	41.6	15.9	42.4	8.8982 _8.8119	8.8956 _8.8158	8.2892 18.8386	8.3958	22.8	24.2	83.8	71.2
	138	1.14	1 8.14	8.35	1 8 83	1.18	1 8.11	2.67	42.7	13.1	4.2	8.1852 _8.8119	8.8892 -8.8888	8.2299 18.8214	8.4243	24.8	21.8	54.2	74.5
	2+3	1.32	+ 8.13	8.41	+ B · 83	1.26	+ 8.89	2.99	44.1	13.7	42.1	8.1264 18.8192	8.1828 18.8183	8.2486 -8.8169	8.4778	28.5	21.5	52.8	63.5
g* ·	5+18	1.38	1 8.87	8.42	1 8 .84	1.27	+ 8.87	3.87	44.9	13.7	41.4	8.1689 _8.8119	8.1186 ±8.8862	8.2754 ±8.8164	8.5549	38.4	19.9	49.6	81.7
IPA	18+5	1.33	1 8.11	8.39	± 8.82	1.33	± 8.11	3.85	43.6	12.8	43.6	8.1956 _8.8258	8.1888 ±8.8895	8.2755 ±8.8215	8.5791	33.8	18.6	47.6	7.3
	18+18	18+18 1.25	+ 8.88	8.36	+ 8.82	1.38	+ 8.88	2.91	42.9	12.4	4.7	8.1612 _8.8149	8.1824 18.8871	8.2543 ±8.8165	8.5179	31.1	19.8	49.1	8.3
200	ın	1.12	+ 8.32	1.83	± 8.21	2.47	1 8.47	4.89	22.9	21.1	56.8	8.1575 _19.8588	8.3862 18.8773	8.6127 ±8.1299	1.8764	14.6	28.4	56.9	29.7
Ŧ	s	1.25	+ 8.12	8.88	+ B.88	2.29	± 8.29	4.34	28.8	18.4	52.8	8.1325 18.8154	8.2388 18.8333	8.5837 18.8673	8.8742	15.2	27.2	57.6	48.5
8.₹	5+5	8.98	± 8.11	8.58	± 8.84 1.62	1.62	1 8.17	3.18	29.8	18.7	52.3	8.1171 _8.8138	8.1582 _8.8167	8.3486 _8.8483	8.6879	19.3	24.7	56.8	48.9

* W. seedling

According to the above mentioned results percentage distribution of fresh and dry weights of different seedling parts as related to whole seedling was also changed. Thus different treatments regulate seedling growth in addition to their effects on various seedling parts.

4.2.4.2 Fresh and dry weights: at 72 days (Table, 17).

It could be stated that many treatments minimized fresh weight of whole seedling (GA, & IAA at different rates) while others greatly increased such weight (CCC or MH at 5 ppm). This indicates that different treatments affected the growth of seedling after 72 days from sowing. This regulatory effect was related to themodification in the growth of individual seedling organs (root, stem or leaves). Many treatments increased root, stem and leaves fresh weights (GA, + IAA, 5 + 5 and 5 + 10; CCC or MH at 5 ppm). It could be revealed that CCC or MH at the rate of 5 ppm reduced the percentage of root fresh weight and increased those of stem and leaves proportions as related to whole seedling. This indicates that CCC or MH at 5 ppm increased fresh weight of different seedling parts at 72 days from soaking, but such increments associated with a regulatory effect on the percentage distribution in different seedling organs, as the most proportion of fresh weight was due to the higher increments in stem and leaves.

Accordingly, it could be stated that CCC or MH at 5 ppm exhibited their stimulatory effect leaves on stem and leaves more than other on root. Very slight effect was noticed with other treatments on root, stem and leaves fresh weight proportions, as the changes in fresh weight proportion of different seedling organs were limited as compared to corresponding ones of control in most cases.

The same conclusions were also shown with regard to dry weight, as most

Table (16) Effect of soaking of cv. El-fmar apricot seeds in some growth regulators on frish and dry weight, distribution as related to the whole seedling of didfferent seedling organs and root/shoot ratio at plumule emergency stage .

Ppa. Root 8 8.72 ±8.15 18 8.53 ±8.18 5 8.71 ±8.28 5 8.63 ±8.81 5 8.51 ±8.89 18+5 8.57 ±8.89 18+5 8.57 ±8.89		Fresh weight	ight							Dry weight					
24 B 8.72	gr./ seedling				×	distribution	tion		gr./ seedling			×	distribution	ion	Root
8 8.72 ±8.15 18 8.29 ±8.86 18 8.42 ±8.28 18 8.42 ±8.81 5+5 8.63 ±8.81 5+18 8.67 ±9.89 18+5 8.51 ±8.18	Cotyledons	Leaves		W.seed.	Root	Stem	Leaves	Root	Cotyledons	Leaves	W. seed.	Root	Cotyle-dons	Leaves	shoot
5 8.29 +8.28 18 8.53 +8.18 5+5 8.63 +8.91 5+18 8.67 +8.89 18+5 8.51 +8.18 18+5 8.54 +8.89 18+5 8.54 +8.89	1.88 ±8.88	8.43 18	±8.8¢	2.23	32.3	48.4	19.3	8.1828 19.8513	8.2861 18.8229	8.8716 _8.8331	8.5397	33.7	53.8	13.3	167.4
5+18 8.53 +8.18	1.46 -8.89	8.34 ±8	±8.88	2.89	13.9	6.69	16.2	8.8586 ±8.8152	8.3644 _8.8288	8.8542 _8.8137	8.4772	12.3	76.4	11.3	85.3
5+5 8.63 ±8.89 5+18 8.67 ±8.89 18+5 8.51 ±8.18 18+18 8.56 ±8.86	1.53 _8.87	8.38 ±8	-8.84	2.44	21.7	62.7	15.6	8.1842 _8.816	8.3988 _8.8489	8.8713 _8.8888	8.5743	18.1	69.4	12.4	139.5
5+5 8.63 ±8.81 5+18 8.67 ±8.89 18+5 8.51 ±8.18 18+18 8.66 ±8.86	1.47 ±8.14	8.51 ±8	18.84	2.69	26.4	54.6	18.9	8.1216 18.8229	8.3945 ±8.8392	8.8977 _8.8888	8.6138	19.8	64.3	15.9	139.2
S+5 8.63 +8.81 S+18 8.67 +8.89 18+5 8.51 +8.18	1.82 +8.18	8.44 ±8	±8.8¢	1.88	22.3	54.3	23.4	8.1826 19.8272	8.2346 ±8.8273	8.8754 18.8897	8.4126	24.9	56.9	18.2	95.5
5+18 8.67 ±8.89 18+5 8.51 ±8.18 18+18 8.66 ±8.86	1.39 ±8.18	8.53 ±8	±8.8¢	2.55	24.7	54.5	28.8	8.1289 ±8.8179	8.3356 +8.8392	8.8997 ±8.8129	8.5562	21.7	68.3	17.9	118.9
18-5 8.51 ±8.18	1.41 ±8.18	8.48 ±8	±8.82	2.56	29.3	55.1	18.7	8.1489 18.8223	8.3624 18.8378	8.8926 _8.8844	8.6839	24.7	68.8	15.3	139.6
8.86 +8.86	1.43 18.18	8.48 ±8	±8.88	2.42	21.1	59.1	19.8	8.1884 18.8286	8.3538 18.8481	8.8955 ±8.8184	8.5489	18.3	64.3	17.4	186.3
	1.27 ±8.18	8.42 ±8	-8.83	2.35	28.1	54.8	17.9	8.1159 ±8.8142	8.3667 ±8.8328	8.8798 _8.8888	8.5624	28.6	65.2	14.2	157.1
occ s 8.34 ±8.84 1.3	1.33 *8.26	8.52 ±8	18.18	2.19	15.5	5.89	23.7	8.8945 ±8.8249	8.4827 _8.8478	8.8936 _8.8184	8.5988	15.9	68.2	15.8	65.4
MH 5 8.26 ±8.88 1.4	1.43 _8.18	8.31 18	18.81	2.88	13.8	71.5	15.5	8.8589 18.8142	8.3287 _8.8323	8.8548 18.8978 8.4256	8.4256	11.9	k.	12.7	83.9
CCC 5.5 8.19 ±8.83 1.6	1.61 18.14	8.32 ±8	±8.8±	2.12	6.8	75.9	15.1	8.8484 -8.8889	8.4648 _8364	8.8578 _8.8875	8.5614	7.2	82.7	18.2	59.4

treatments regulate dry weight (as gr/seedling) or the distribution proportion of dry weight in different seedling organs as related to the whole seedling. Accordingly, root shoot ratio was also changed.

From the different foregoing results, it could be revealed that different treatments with growth regulators exhibit their regulatory effect on plant growth through their effect on different organs which changed from one to another. In other words, GA₃, IAA, CCC and MH or combination with each other have a great regulatory effect on the formation of different seedling organs and that affected the growth of whole seedling.

The effect of some growth regulators on dry matter accumulation in some other plants was reported by many workers (e.g. Ibrahim and Khafaga, 1986; Khafaga et al., 1986; Ibrahim and Khafagy, 1990 and Wanas, 1992).

4.2.5. Carbohydrate fractions in different seedling organs: (Tables, 18 a & b).

The followings could be revealed:

- a) The change in total carbohydrate concentration in whole seedling after 72 days was more or less very limited in most treatments. However, many treatments reduced such accumulation ($GA_3 + IAA$, 5 + 5 ppm).
- b) It must be mentioned that all treatments greatly reduced the concentration of reducing sugars, however, many other treatments increased non-soluble ones (CCC, MH or CCC + MH at 5 or 5 + 5 ppm). CCC or MH at 5 ppm of each increased the total hydrolyzable carbohydrate (polysaccharides).

This result indicates that all treatments exhibit their regulatory effect on plant growth through their effects on plant metabolism, as CCC at 5 ppm greatly

Table (18, a) : Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on carbohydrate fraction contents in different organs as well as to the whole seedling at the late stage of seedling growth .

Treatments	ents		Reducing	sugars		ž	Non-reduc	icing sugars		Total	sed as mg tal solub	essed as mg. glucose/ Total soluble sugars	É	dry matter	olizable	watter) Hydrolizable carbohydrate	irate		otal car	Total carbohydrate	
Subst- ance	pps.	Root	Stem	Leaves	Whole* seedli.	Root	Stew	Leaves	Whole" seedli.	Root	Stem	Leaves	Whole*	Root	Stem	Leaves	Whole*	Root	Stew	Leaves	Whole*
Control	œ	36.75	126.88	26.25	49.91	63.88	47.25	42.88	49.74	99.75	173.25	68.25	99.64	57.73	42.88	141.75	24.75	157.58	215.25	218.88	194.42
5	w	36.75	18.58	36.75	38.45	31.58	136.58	42.88	62.79	68.25	147.88	78.75	93.26	185.88	89.25	118.25	184.26	173.25	236.25	189.80	197.58
•	18	26.25	15.75	42.88	31.97	73.58	52.58	31.58	74.22	27.66	68.25	73.58	79.21	52.58	175.58	185.88	187.81	152.25	243.75	178.58	186.22
18	un	31,58	31.58	42.88	37.89	47.25	31.58	31.58	35.11	78.75	63.88	73.58	72.15	63.88	141.75	99.75	181.52	141.75	284.75	173.25	173.67
	18	36.75	15.75	26.25	26.39	57.75	57.75	31.58	43.15	94.58	73.58	57.75	69.55	8.3	115.58	173.25	127.83	131.25	189.88	231.88	196.61
	zt zt	28.25	31.58	26.25	27.39	42.88	28.25	38.75	35.87	68.25	57.75	63.88	63.27	63.88	136.58	173.25	136.17	131.25	194.25	236.25	199.43
§ .	5+18	18.58	42.98	21.88	21.99	57.75	47.25	36.75	45.23	68.25	89.25	57.75	67.22	52.58	8.8	195.88	87.98	128.75	189.88	162.75	155.18
E.	18+5	21.88	42.88	26.25	27.42	68.25	52.58	42.88	52.82	89.25	94.58	68.25	88.25	36.73	128.75	128.75	92.38	126.88	215.25	189.88	172.66
	18+18	85.25	15.75	36.75	22.88	63.88	63.88	36.75	58.13	68.25	8.87	73.58	72.89	57.73	126.88	57.66	91.87	126.88	284.75	173.25	164.78
28	ıs .	36.75	15.75	85.25	12.85	73.58	63.88	73.58	78.51	118.25	78.75	78.75	83.35	31.58	115.58	136.58	115.16	141.75	194.25	215.25	198.52
I	w	21.88	21.88	15.75	17.96	52.58	63.88	63.88	61.48	73.58	84.88	78.75	79.39	68.25	131.25	85.78	183.55	141.75	215.25	178.58	182.93
8.=	rù rò	21.88	21.88	15.75	18.83	57.72	47.25	136.5	99.26	78.75	68.25	152.25	117.34	85.75	131.25	88.23	83	157.58	199.58	157.58	167.86
		Total	Water I amount	mount /need 1 in	*****											-	-				

Whole seedling = Dry weight/ seedling

Table (18, b) : Effect of scaking of cv. El-Amar apricot seeds in some growth regulators on the total amount of carbohydrate fraction in different organs as well as to the whole seedling at the late stage of seedling growth.

The state The		,	-									(expressed	8 48	mg/seedling	g)							
Phys. No. Stem Lohaves Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem Briefill. No. Stem	Treats	eents		Reducing			ž	on_reduc	egns buj	ırıs	Į.	tal solu	ble suga	2	Hydra	olizable	carbohy	irate	F	otal car	bohydrat	
8 5.53 12.13 5.74 13.24 15.51 17.53 8.69 4.87 23.25 14.19 23.25 14.19 23.25 14.19 23.25 14.14 15.51 14.73 13.24 14.19 23.75 14.18 23.11 17.55 11.75 13.75 11.75 13.75 14.17 13.24 14.19 23.75 14.18 23.11 17.56 14.17 13.25 14.17 13.25 14.17 13.25 14.17 13.25 14.17 13.25 14.17 13.25 14.17 14.18 14.17 14.18 14.17 14.18 14.17 14.18 </th <th>Subst- ance</th> <th>ppa.</th> <th>Root</th> <th>Stem</th> <th>Leaves</th> <th>Whole seedli.</th> <th>Root</th> <th>Ston</th> <th>Leaves</th> <th>Whole seedli.</th> <th>Root</th> <th>Stea</th> <th>Leaves</th> <th>Whole seedli.</th> <th>Root</th> <th></th> <th>Leaves</th> <th>Whole seedli.</th> <th>Root</th> <th>Stem</th> <th>Leaves</th> <th>Whole seedli.</th>	Subst- ance	ppa.	Root	Stem	Leaves	Whole seedli.	Root	Ston	Leaves	Whole seedli.	Root	Stea	Leaves	Whole seedli.	Root		Leaves	Whole seedli.	Root	Stem	Leaves	Whole seedli.
4 4 1.56 4.11 1.56 4.12 4.15 4.11 1.56 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.13 7.54 4.13 7.55<	Control		5.53	12.19		23.69	9.49	4.57	9.55	23.61	15.82	16.77	15.51	47.38	8.69	4.87	32.22	44.98	23.72	28.84	47.73	92.29
1.0 3.0 3.0 4.5 4.5 4.2	8	w	4.11	1.56	13.12	18.79	3.53	28.24	14.99	38.75	7.64	21.88	28.11	57.55	11.73	13.24	39.35	64.34	19.39	35.84	67.45	121.88
18 3.77 1.48 6.83 11.28 5.92 5.15 7.24 18.31 9.69 6.56 13.28 29.51 3.77 18.38 29.53 39.83 53.98 13.45 12.79 19.57 38.24 2.48 3.77 1.48 6.83 11.28 5.92 5.15 7.24 18.31 9.69 6.56 13.28 29.51 3.77 18.38 39.83 53.98 13.45 16.55 19.77 38.39 17.46 18.53 29.87 15.66 39.23 7.96 14.83 39.83 53.98 13.45 16.59 19.77 18.38 39.87 15.88 13.39 39.87 39.87 13.89 39.87 39.87 13.89 39.87 39.87 39.87 39.89 39.67 39.89 39.67 39.89 39.67 39.87 19.79 39.30 39.87 3		18	3.88	1.58	9.66	14.23	8.64	5.27	7.24	21.15	11.72	6.85	16.91	35.48	6.17	17.68	24.16	47.93	17.89	24.45	41.87	83.41
5-6 3.32 3.77 1.48 6.63 11.28 5.95 5.15 7.24 18.31 9.69 6.56 13.28 29.51 3.77 18.38 39.83 39.83 39.83 39.83 13.45 16.86 13.24 17.14 8.63 5.94 15.66 38.23 7.96 14.83 43.87 65.86 16.59 19.97 53.11 18-18 1.27 4.65 5.78 12.28 9.74 17.14 8.63 5.94 15.86 37.39 14.87 65.86 16.59 19.97 58.73 19.87 58.79 17.86 37.75 9.71 17.89 28.37 18.89 48.47 7.19 13.84 33.27 28.39 28.99 14.88 5.94 18.89 48.47 7.19 13.89 28.37 47.88 28.37 47.88 28.39 28.99 14.88 28.37 47.89 28.39 28.99 13.89 14.88 28.37 47.96 28.37 47.88 28.31	287	w	2.84	3.82	8.79	14.65	4.26	3.82	6.59	13.87	7.18	6.82	15.38	28.58	5.68	13.55	28.87	48.18	12.79	19.57	36.24	68.68
5-6 3.32 3.24 6.53 13.89 5.31 2.69 9.14 17.14 8.63 5.94 15.66 39.23 7.96 14.83 43.87 65.86 14.83 7.99 14.82 5.29 19.97 19.97 19.97 19.97 19.73 19.74 15.98 37.38 8.87 11.83 28.29 48.82 28.93 48.82 19.97 28.93 48.82 19.97 28.93 48.82 19.97 19.99 29.31 19.94 48.82 19.75		83	3.77	1.48	6.83	11.28	5.92	5.15	7.24	18.31	69.6	6.56	13.28	29.51	3.77	18.38	39.83	53.98	13.45	16.86	53.11	83.42
5+18 4.55 5.78 12.28 9.75 5.23 18.12 25.18 11.53 9.87 15.98 37.38 8.87 11.03 28.92 48.82 28.93 28.99 44.82 18-18 4.11 4.54 7.23 15.88 13.35 5.67 11.57 38.59 17.46 18.21 18.08 46.47 7.19 13.84 33.27 53.58 24.65 23.28 9.87 11.88 8.86 18.69 37.75 9.31 12.98 25.37 47.58 23.31 28.97 44.86 18-18 8.85 11.89 8.86 18.69 37.75 9.31 12.99 25.37 47.58 23.31 28.97 44.86 18-18 4.82 4.82 9.77 4.96 35.27 47.58 22.33 59.84 131.88 23.23 59.84 131.88 23.23 59.84 131.88 23.23 29.94 23.23 29.94 23.23 29.84 23.23 29.84 </td <td></td> <td>st ct</td> <td>3.32</td> <td>3.24</td> <td>6.53</td> <td>13.89</td> <td>5.31</td> <td>2.69</td> <td>9.14</td> <td>17.14</td> <td>8.63</td> <td>5.94</td> <td>15.66</td> <td>38.23</td> <td>7.96</td> <td>14.83</td> <td>43.87</td> <td>65.86</td> <td>16.59</td> <td>19.97</td> <td>58.73</td> <td>95.29</td>		st ct	3.32	3.24	6.53	13.89	5.31	2.69	9.14	17.14	8.63	5.94	15.66	38.23	7.96	14.83	43.87	65.86	16.59	19.97	58.73	95.29
18-5 4.11 4.54 7.23 15.88 13.35 5.67 11.57 38.59 17.46 18.21 18.88 46.47 7.19 13.84 33.27 53.58 24.65 23.25 22.87 18-18 1.6.19 1.6.1 9.35 2.96 11.88 8.86 18.69 37.75 9.31 12.98 25.37 47.58 28.31 28.97 44.86 5 5.79 4.82 3.75 4.96 35.37 49.25 35.37 49.56 35.37 47.86 35.37 49.86 35.37 49.56 35.37 44.86 35.37 49.56 35.37 44.86 35.37 49.56 35.37 44.86 35.37 49.56 35.34 131.88 25.37 44.86 35.34 131.88 25.37 49.52 18.71 49.52 18.73 39.22 19.71 17.79 39.72 19.71 17.79 39.72 19.71 17.79 39.72 19.71 17.79 39.72 <td< td=""><td>s ·</td><td>5+18</td><td>1.77</td><td>4.65</td><td>5.78</td><td>12.28</td><td>9.75</td><td>5.23</td><td>18.12</td><td>25.18</td><td>11.53</td><td>9.87</td><td>15.98</td><td>37.38</td><td>8.87</td><td>11.83</td><td>28.92</td><td>48.82</td><td>28.39</td><td>28.98</td><td>44.82</td><td>86.11</td></td<>	s ·	5+18	1.77	4.65	5.78	12.28	9.75	5.23	18.12	25.18	11.53	9.87	15.98	37.38	8.87	11.83	28.92	48.82	28.39	28.98	44.82	86.11
18-18 8.085 1.61 9.35 11.81 18.16 6.45 9.35 11.80 8.086 18.69 37.75 9.31 12.90 25.37 47.58 28.31 28.37 44.86 5 5.79 4.82 3.73 4.96 17.36 24.11 48.25 89.72 4.96 35.37 89.72 4.96 35.37 89.72 4.96 35.37 89.72 4.96 35.37 89.72 4.96 35.37 89.72 18.78 59.84 131.88 2 5 2.78 4.99 7.93 15.78 53.68 9.74 19.99 39.67 96.48 9.84 9.85 18.78 51.23 89.91 1 5-4 2.36 18.25 51.86 71.33 9.22 19.71 17.79 38.72 18.44 29.96 53.64 1	I P	18+5	4.11	4.54	7.23	15.88	13.35	5.67	11.57	38.59	17.46	18.21	18.89	46.47	7.19	13.84	33.27	53.58	24.65	23.25	52.87	99.99
5 5.79 4.82 3.22 13.83 11.58 45.83 75.98 17.36 24.11 48.25 89.72 4.96 35.37 83.63 123.96 22.33 59.84 131.88 5 2.78 4.99 7.93 15.78 6.96 14.99 31.73 53.67 96.48 9.84 31.24 58.24 98.52 18.78 51.23 89.91 5-5 2.36 3.15 5.36 46.49 68.34 9.22 18.25 51.86 71.33 9.22 19.71 1.79 38.72 18.44 29.96 53.64		18+18		1.61	9.35	11.81	18.16	6.45	9.35	2.96	11.88	8.86	18.69	37.75	9.31	12.98	25.37	47.58	28.31	28.97	2.8	85.34
5 2.78 4.99 7.93 15.78 6.96 14.99 31.73 53.68 9.74 19.99 39.67 96.48 9.84 31.24 58.24 98.52 18.78 51.86 71.33 9.22 19.71 1.79 38.72 18.44 29.96 53.64	999	un	5.79	4.82	3.22	13.83	11.58	19.29		75.98	17.36	24.11	48.25	89.72	4.96	35.37	1	23.96	22.33	59.84	131.88	213.69
5-5 2.36 3.15 5.36 18.36 6.76 7.89 46.49 68.34 9.22 18.25 51.86 71.33 9.22 19.71 1.79 38.72 18.44 29.96 53.64	I	s	2.78	4.99	7.93	15.78	96.9	14.99	31.73	53.68	9.74	19.99	39.65	96.48	9.84	31.24	58.24	98.52	18.78	51.23	89.91	159.92
	90+±	rç.	2.36	3.15	5.36	18.96	6.76	7.89	46.49	68.34	9.22	18.25	51.86	71.33	9.22	19.71	1.73	38.72	18.44	28.82	1	182.94

decreased the reducing sugars while such substances greatly increased non-reducing sugars and total carbohydrate in most seedling parts.

- c) All treatments regulate the concentration of carbohydrate fractions in different seedling parts.
- d) The same trend was also concluded in the case of total amounts per seedling organs.

Also, the effect of some growth regulators on total carbohydrate and / or total soluble sugars was previously reported (Sansavini, et. al., 1988 and Gehlot, et al., 1989).

4.2.6. Protein fractions in different seedling at 72 days after soaking in different growth regulators: (Table,19,a).

The following conclusions could be revaled:

- a) Different treatments seemed to control the protein concentrations in different seedling organs. Thus it could be concluded that the treatments with various rates of growth substances affected protein synthesis in different apricot seedling organs.
- b) As a general the non-soluble protein was the highest in whole seedling followed mostly by water soluble, salt soluble, alcohol soluble, while alkaline-buffer soluble was the lowest one in this respect.
- c) Leaves possessed the highest concentration of water soluble protein followed by root while stem ranked the third in this respect.
- d) Root possessed the highest levels of salt and buffer soluble proteins followed by stem and leaves which ranked the third in this respect.

The same conclusion was also noticed in the case of alcohol soluble proteins,

but leaves possessed the higher levels than stem. With regard to the non-soluble protein; leaves possessed the highest concentration of such protein fraction followed mostly by stem and roots which ranked the third in this respect.

e) The treatments with growth regulators greatly affected the protein fractions in different apricot seedling organs, as it was shown that many treatments increased water soluble protein in whole seedling (GA3, 5 ppm; IAA, 5, 10 ppm; GA₃ + IAA, 5 + 5 ppm; GA₃ + IAA, 10 + 5; CCC, 5 ppm and CCC + MH, 5 + 5 ppm). However, many other treatments reduced the concentration of water soluble protein in whole seedling (GA₃, 10 ppm; GA₃ + IAA, 5 + 10 ppm; GA₃ + IAA, 10 + 10 ppm and MH 5 ppm). IAA at 10 ppm possessed treated seedling organs the highest water soluble protein in seedling different organs as well as whole seedling while the lowest ones were gained by GA₃ + IAA, 10 + 10 ppm treated seedling. This indicates that GA3 at 10 ppm depressed the stimulatory effect of IAA at 10 ppm on water soluble protein in different seedling organs when GA, applied with IAA. The same conclusion was also noticed in the case of salt soluble protein as the application of IAA at the rate of 10 ppm greatly increased salt soluble protein in different seedling organs. However, GA3 at the rate of 10 ppm + IAA at the same rate greatly reduced the salt soluble protein and buffer soluble one in different seedling organs as well as whole seedling. At the same time GA3 at the rate of 10 ppm greatly increased the alcohol soluble protein, GA3 + IAA at the rate of 10 + 10 ppm stimulated the concentration of non-soluble protein in different seedling organs. In other words, while it was found that GA_3 + IAA at the rate of 10 + 10ppm reduced the concentration of water, salt, alcohol and buffer soluble proteins, it was found that such treatment increased the non-soluble protein. Again different treatments controlled the protein fraction accumulation in different seedling organs

Table (19, a): Effect of soaking of cv. El-Amar apricot moods in some growth regulators on the protein fraction contents in different organs as well as to the whole moodling at the late stage of seedling growth.

Treatments	wents		Water soluble proteins	Water e prot	sins		solub	Salt soluble proteins	teins		solub	Alcohol soluble proteins	sujo	-	Alkli	Alkline-buffer soluble proteins			1 100	Total soluble proteins		3	Res	Residual				Total	-	- 1
Subst-	pp.	Root	Ston	Loav	seed.	* Root	Ston	-	3	W. * Root	Stem	Loa	j = 3	* Root	Ston		5	Root	Stea	Loaves	s	Root	Stem	oot Stem Leaves U		*	protein	0 -		1 *
Control	80	38.43		7 41.	28.47 41.11 37.68	68 28.83	83 15.	15.28 87.	1 8	13.19 24.87		PK 25 83				-		. 1		1	seed.				ũ l			Leaves	reed.	
		_				1								28.1.87	8	8.83	18.76	6 893.85	55 68.42	59.16	78.17	861.31	878.88	215.25	136.88	154.36	6 138.42	2 274.41	11 236.95	X
5	ıs	51.39	9 25.69	9 42.78		48.24 24.31	31 13.19		87.78 12.	12.89 44.44	44 81.39	.39 87.78	78 12.89	4.4	44 81.39	39 87.78	78 12.89	9 136.11	1 58.33	78.28	78.43	878.88	891.88	218.75	161.29	286.11	158.21	82	.83 248.63	1 2
	19	32.46	32.46 34.83 33.89	33.6		33.51 28.83	16.67	67 88.61	61 13.62	.62 31.94	94 84.86	.86 18.83	83 15.83	33 31.94	94 84.86	86 18.83	33 15.83	3 892.87	7 78.14	22.23	72.85	875.88	181.25	288.25	149.43	167.87	171.39	9 278.47	7 21.37	2
IAA	w	38.89	9 35.42	2 51.11	11 44.53	53 43.86	86 89.83	83 89.17	17 16.86	86 15.28	28 84.17	17 86.39	39 87.87	77 15.28	28 84.17	17 86.39	9 87.87	7 185.56	6 57.47	73.86	8.68	878.75	898.88	227.58	168.23	184.31	147.47	388.56		7
	18	48.61	48.61 34.83		55.88 48.69 56.94	59 56.5	34 89.72	72 12.58	58 22 .58	58 18.86	86 87.64	64 88.33	33 18.49	18.86	1 82	.64 88.33	3 18.49	131.94	64.53	89.16	53.73	866.23	189.38	164.58	128.14	198 19				
	2+2	32.64	1 25.42	2 49.44		39.83 26.39	39 18.42	42 88.86		13.42 24.31	31 84.86	B6 96.94	34 11.87	7 24.31	11 84.86	36 86.94	4 11.87	888.82	2 49.73	71.94	14.17	E	B83 43	-	- 5			_		D 1
5	5+18	18.61		43.3	29.17 43.33 32.98 86.11	18 86.1	11 87.64	64 18.83	83 88.47	47, 12.22	22 86.25	25 89.17	8	52 12.2	22 88.2	.25 89.17	7 89.52	846.56	8	78 27	50	8				181.77	132.86	266.19	9 215.17	N 1
IAA	18+5	27.88	39.58	3 55.88		42.67 14.58	12.58	58 88.86	96 11.89	827.73	78 83.47	47 B6 39	1 6	1 8	8	1 8	1 5				10:00	3:	99.951	715.25	165.24	146.91	191.39	285.52	224.56	.0 1
	0,10	20 00 0000		1 3		1 9										66.5	13.89	B75.69	63.88	78.12	73.67	189.38	887.58	283.88	149.84	185.87	151.38	279.12	223.58	
	חדיםו	95.99		11.94		38.13 18.88	B 69.72	72 87.78	78 88.94	34 28.28	28 84.86	86 86.39	18.39	9 28.28	8 84.86	6 86.39	9 1839	963.81	55.55	57.78	58.82	181.58	883.13	211.75	151.99	161.51	138.68	269.53	218.84	
999	ıs	65.28	22.92	4.4	44.44 41.37	7 33.33	3 22.92	12.7	12.78 18.67	57 48.28	18 87.22	22 88.33	3 12.68	3 48.28	8 87.22	2 88.33	12.68	148.61	62.78	84.16	87.58	878.75	865.63	288.75	149.81	27.36	128.41	292.91	236.53	
H	n	56.49	24.31	33.33	34.39	9 38.89	9 18.42		89.17 14.81	11 45.83	3 86.25	25 85.83	3 12.81	45.83	3 86.25	5 86.25	8.83	153.71	52.73	68.53	72.55	88.23	878.88	281.75	149 89	749 94	52 33	2		
30 · E	2+2	49.31	49.31 28.47	48.56	39.25		29.17 11.81	1 12.5	12.58 15.55		8 82.8	48.28 82.88 88.61	1 13.89	48.25	82.88	8 88.61	13.89	134.84	54.17	78.34	78.61	878.88						95.39		
		To	Total amount/ seedling	mount	seed!	Ing		-	-	-	-	-	_							_	-		-			284.84	124.17	287.59	231.11	

* Whole seedling = ____

Dry weight/ seedling

as well as whole seedling.

In this connection the regulatory effect of IAA & GA₃ on protein synthesis was also demonstrated by many workers working on many plant species among them are Burrous & Carr, 1970; Eeuwens and Schawabe, 1975; Millerd et al., 1978; Randall et al., 1979; Thomson et al., 1979, Higgins et al., 1982; Schroeder, 1982, Sponsel, 1982; Devlin and Witham, 1983; Schroeder, 1984 and Gehlot, 1989.

Protein fractions (mg / seedling): (Table, 19, b)

As the different treatments greatly affected seedling growth, thus, it was thought advisable to study the protein fraction as mg / seedling organs to explain their effects as related to their growth behaviour.

As for CCC at 5 ppm. increased seedling growth, this increment was associated with higher total protein accumulation in different seedling organs, also CCC, at 5 ppm. treated seedling possessed the highest protein fractions either soluble ones or non-soluble. All of treatments with various growth regulators stimulated the various protein fractions in different seedling organs. It may be also concluded that the effects of different tested growth regulators which applied seperatly or with combinations with each other on seedling growth associated with the great variation in accumulation of different protein fraction in various seedling organs when determined at 72 days from soaking.

As a general, leaves possessed the highest amounts of water soluble, buffersoluble and non-soluble proteins followed mostly by those were found in roots, while stems ranked the third in this respect. On the other hand roots possessed the highest amounts of salt soluble proteins followed mostly by those of leaves, while stems ranked the third in this respect. This means that the distribution of different protein

Table (19,b): Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on the total amount of protein fraction in different seedling organs as well as to the whole seedling at the late stage of seedling growth.

													(expressed		as mg/seedling	filling ,						The second second								
1 1 1 1 1 1 1 1 1 1	Treatm	nts	108	Ua.	ter	2	sol	Sal uble p	rotein		solu	Alcoh ble pr	ol		soluk	line-bu	ffer	-	\$10 July	Total le pro	toins		(non-sk	Residua Juble p	rotein	G	pr	Tot otein c	ontents	
S S S S S S S S S S	Subst-	pps.		Ston			Root	1			1	1	4 1		1	11				1				1		hole eedl.	Root	Sten	Leaves	Whole seedl.
15 5.77 5.81 5.27 5.27 5.27 5.81 5.27 5.	Control	83		2.76	9.34	17.89													_								23.23	12.62	62.37	98.24
18 3.81 3.41 7.79 15.81 2.45 1.67 1.98 6.18 3.75 0.49 2.49 6.73 3.69 1.46 2.95 5.25 5.49 13.23 22.27 8.81 19.16 47.59 65.99 13.41 7.79 15.81 2.84 2.95 3.24 1.95 2		ls.	1	3.81	15.27	24.83	2.72		1		1	1	1		1	4	1	1		1	1	1		1	1	1		22.28	183.15	148.49
1.0 1.0	3	18	1	3.41	2.79	15.81	1	1-	1	1	1	1	1	1	1		1	1	-	1	1	'	1	1	1	1	1	17.19	62.24	99.15
5.5 4.13 2.61 12.29 19.83 3.34 1.87 2.86 6.41 3.87 0.49 1.73 5.29 0.59 1.86 5.89 13.25 5.76 28.49 39.77 6.79 9.76 5.79 27.28 13.56 6.41 3.87 0.49 1.72 5.29 0.59 1.86 3.39 1.86 5.89 13.25 5.76 28.49 39.77 6.79 9.76 5.79 15.99 13.81 2.61 12.29 19.83 3.34 1.87 2.88 6.41 3.87 0.49 1.72 5.29 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.8		LO.	1	3.39	18.69	17.59	3.88		1		1	1	-		1	+4	1				1	-	-	1	53	1	29.9	14.89	62.88	93.59
S-6 4.13 2.61 12.29 19.03 3.34 1.07 2.08 6.41 3.07 1.73 5.23 8.59 9.93 1.86 3.38 11.13 5.11 17.88 34.12 11.88 34.12 11.89 34.12 34.1	IA	671	1	3.84	12.64		1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	-	-	1	1 .	37			58.32	94.15
18-5 5.29 4.27 15.15 24.71 2.85 1.28 6.84 2.98 4.85 2.86 8.69 2.53 5.28 1.64 8.92 1.91 4.47 7.88 5.68 19.35 32.91 16.93 15.48 59.28 11.69 1.69 1.69 1.69 1.69 1.60		5+5	1	2.61	12.29		1	1	1	1	1	1	1	.23	1	1			-	1	1	1		1	1	1	2.98	13.66	66.17	182.81
18+5 5.29 4.27 15.15 24.71 2.85 1.35 2.22 6.42 5.43 8.37 1.76 7.58 1.22 8.89 1.84 3.95 14.88 6.89 28.97 42.66 21.39 9.45 55.93 66.77 36.19 16.36 86.77 36.19 15.89 1.84 1.89 6.89 1.84 1.81 <td>3</td> <td>5+18</td> <td>3.14</td> <td>3.23</td> <td>11.93</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>28</td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>l w</td> <td>1 13</td> <td>1 Kg</td> <td>1 45</td> <td>93</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>78.63</td> <td>124.61</td>	3	5+18	3.14	3.23	11.93		1	1			1	1	1	28	1	1	1	-	l w	1 13	1 Kg	1 45	93	1	1	1	1	1	78.63	124.61
18-18 3.31 3.27 9.18 15.76 1.61 8.99 1.98 4.58 3.27 8.49 1.62 5.38 1.48 8.92 1.91 4.31 9.67 5.69 14.69 38.85 15.36 8.51 53.85 78.72 54.89 13.65 13.65 13.65 13.65 13.61 13.65 13.61 13.65 13.61 13.65 13.61 13.65 13.61 13.65 13.61 13.65 13.61 13.62 13.61	+ Æ	18 +5	5.29	4.27	15.15	24.71	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	-	1	1	1	1	1	76.89	129.43
5 18.28 7.82 7.23 44.53 5.25 7.82 7.82 7.82 7.82 7.82 7.82 7.82 7.82		18+18	3.31	3.27	9.18	15.76	1.61		1	1	1	1		38	1		4		-			1	-		1		2	14.28	68.54	188.78
5 7.48 5.79 16.79 38.86 5.15 2.48 1.52 12.25 6.87 1.49 2.94 18.58 1.66 2.81 6.16 18.63 28.37 12.56 38.49 63.42 12.75 16.66 181.62 131.83 33.12 29.22 132.12 132.12 13.81 23.86 3.42 1.77 4.25 9.45 4.72 8.31 2.93 7.96 1.77 2.95 6.51 15.69 8.14 23.96 47.79 8.19 18.51 73.99 92.69 22.89 18.65 97.95	99	so.	18.28	7.82	27.23	44.53	5.25		1	28.18	1	1		3.65 1	1				1	1	1	1	1	-		191 1911	1	39.32	179.47	254.68
5+5 5.77 4.28 13.81 23.86 3.42 1.77 4.25 9.45 4.72 8.31 2.93 7.96 1.77 2.95 6.51 15.69 8.14 23.96 47.79 8.19 18.51 73.99 92.69 23.89 18.65 97.95	×	· w	7.48	5.79	16.79	38.86	5.15	1		12.25	1	1			1	1			1	1	1	1				Charles of the boundary	1	23.62	132.12	194.46
	8+=	S S		4.28	13.81	23.86			1		1									1	1				1	1				148.49

pole seed. = Whole seedling

fractions in various seedling organs were greatly differed according to the function of the organ, and that may play a role in various physiological processes and finally the seedling growth behaviour. In addition, the use of growth regulators affected such accumulation and that reflected on the seedling growth behaviour through their regulation effect on protein fraction assimilations.

4.2.7 Picture of total amino acids fractions (free + bound) in seedling of apricot as affected by some growth regulators: (Tables, 20, a & b).

The following conclusions could be revealed:

- a) Aspartic acid was by far the more abundant component in different seedling organs followed by glutamine, leucine & isoleucine, alanine, arginine, valine and histidine, while other amino acids (phenylalanine, aminobutaric and proline) were the lowest. In addition, methionine was the lowest in this respect, as it was found in very trace amount in roots only.
- b) Leaves possessed the highest concentration of total amino acids followed by those found in roots, while stems ranked the third in this respect.
- c) The great variable in the concentration of amino acids in different seedling organs may be dependent on the role and the function of the organ which may be lead to the variable metabolic processes.
- d) It could be concluded as a general that growth regulators controlled the accumulation of amino acid fractions in apricot seedling organs. Thus, it may be stated that the tested growth substances under the conditions of this experiment regulate the metabolic process of amino acids metabolism in different apricot seedling. (Singh et al., 1973 and Devlin and Witham, 1983 came to the same conclusion). This regulation may play a role in seedling growth, or associate with

Table (28,a): Effect of monking of cv. El-Amar apricot meeds in mome growth regulators in amine acid fraction contents in different organs as well as to the whole meedling at the late stage of meedling growth.

(expressed as mg/gr. dry matter)

						expresse	d as mg/	gr. ary	matter					
Amino	Acids	Seedling	Aliphat	ic	n.n.	Sulpher A.A.]	Acidic	A.A.		Basic n.n.	Arom	atic A.	Total
Treatment		organs	Alanine	Ualine	Lucine & isolucine	Methionine	Aspartic	Glutamine	Arginine	Aminobutric	Histidina	Phonylal.	Proline	amino acids content
Substance	ppm.		Œ	ž	3 =	E .	- E	6	Æ	£ .	Ŧ	2 E	F.	
		Root	15.81	11.29	21.45	1.13	39.52	24.84	22.58	82.26	13.55	03.39	3.28	159.82
Control	8	Stem	12.42	18.16	14.68		38.39	18.06	12.42	83.39	09.03	96.78	4.00	129.33
		Loaves	29.36	22.58	45.17	2	51.19	36.13	18.07	05.65	16.94	10.19	2.67	237.95
		W.seedling"	21.59	16.45	31.43	8.36	44.89	28.86	18.35	04.11	14.24	07.35	3.12	198.75
		Root	15.81	11.29	21.84	2.26	56.46	27.10	24.84	82.26	11.29	04.52	6.40	187.87
	5	Stem	12.42	10.16	19.19	*	47.43	16.94	12.12	05.65	11.29	84.52	4.00	144.82
	1	Leaves	41.48	28.61	58.44		56.46	46.67	18.82	07.53	18.07	07.15	2.13	277.28
GA»		W.Seedling"	29.70	21.03	38.29	0.41	54.24	35.99	10.30	96.13	15.20	96.94	3.55	229.81
		Root	21.40	89.83	21.45	2.25	39.52	24.84	19.19	03.39	21.45	82.26	3.20	159.00
	10	Stem	87.98	05.65	15.81		47.43	21.45	24.84	05.65	11.29	84.52	2.48	146.94
		Loaves	31.62	23.71	42.91		57.59	40.65	14.12	89.59	15.81	89.59	2.88	248.39
		W.Seedling"	21.28	15.83	31.21	0.50	50.55	32.19	17.84	07.08	16.20	06.54	2.81	282.19
		Root	16.94	13.55	20.33	2.26	41.78	28.23	25.97	03.39	13.55	04.52	4.00	174.52
	5	Stom	07.90	85.65	15.81		56.46	15.81	25.97	83.39	11.29	81.13	4.80	148.21
		Leaves	36.13	24.84	42.91	9.83	49.65	42.91	18.87	11.29	27.10	11.29	4.88	278.82
Inn		W.Seedling"	24.94	17.95	31.39	5.29	49.49	33.01	21.77	87.57	20.18	87.29	4.61	222.94
		Root	18.87	15.81	28.33	1.13	41.78	28.23	21.45	83.39	20.53	83.39	4.00	178.11
	10	Stom	13.55	96.78	18.87	×	56.46	20.33	19.19	05.65	12.42	02.26	4.80	159.51
		Leaves	05.65	33.88	44.84		49.68	25.97	21.45	11.29	25.97	07.90	4.88	230.63
		W.Soodling"	18.37	23.69	32.69	0.28	49.14	25.34	28.98	98.13	21.78	85.61	4.59	282.59
		Root	20.33	18.87	24.84	*	29.36	33.88	11.29	04.52	15.81	06.87	5.75	178.63
	5+5	Stem	15.81	19.91	14.68	3.39	14.68	19.19	22.58	*	10.16	84.52	3.20	128.12
		Leaves	38.49	22.58	37.83	*	42.36	33.31	12.99	10.16	12.42	12.99	2.00	217.13
GA.		W.Seedling*	24.63	20.00	29.41	0.73	32.96	30.41	14.61	06.49	12.81	89.52	3.24	185.62
4		Root	89.03	11.29	24.04	9.83	27.18	18.87	13.55	04.52	11.29	04.52	4.8	138.84
IAA	5+18	Stem	13.55	12.42	18.87	3.39	65.49	16.94	25.97	*	12.42	84.52	4.00	176.77
Armi	3.10	Loavos	28.23	22.82	48.89	*	51.94	30.94	20.33	09.59	20.89	17.50	2.40	243.93
		W.Seedling"	19.44	16.83	31.33	3.42	47.07	24.22	19.37	06.13	16.27	10.93	3.44	198.18
		Root	11.29	16.94	28.23	2.26	39.52	24.84	18.07	02.26	11.29	04.52	3.20	162.42
	10+5	Sten	10.16	96.78	11.29	2.26	56.46	13.55	28.23		96.76	01.13	4.88	141.44
	20.0	Leaves	31.05	25.41	42.35		49.68	28.89	18.63	10.16	18.63	09.59	2.00	228.39
GA +IAA		W.seedling*	28.46	19.06	31.79	1.17	47.50	20.86	20.22	05.50	13.94	06.29	2.94	189.81
,		Root	13.55	13.55	20.33	6.78	38.49	16.94	19.19	06.78	10.16	03.39	3.20	144.36
	10+10	Stem	07.90	86.78	11.29		47.43	16.94	24.84	03.39	10.16	4.52	4.80	138.85
	20.20	Leaves	31.62	24.84	43.47	*	44.84	23.71	19.19	96.78	20.33	10.16	2.80	226.94
		W.Seedling"	21.29	17.74	29.91	2.10	48.47	20.25	20.29	06.10	15.16	06.93	3.32	183.59
		Root	22.58	18.87	31.62	9.03	48.65	22.58	24.84	09.03	18.87	09.03	6.48	211.90
CCC	5	Stem	13.55	05.65	13.55	5.65	38.43	15.81	18.87		11.29	04.52		126.52
		Leaves	33.88	22.58	56.46	*	47.43	31.62	21.45	13.55	29.36	07.90	4.00	268.23
		W.Seedling"	26.45	17.10	40.62	2.93	43.88	25.79	20.98	09.03	22.58	87.89	3.21	219.67
		Root	16.94	20.33	47.43	6.78	47.43	22.58	24.84	06.78	20.33	18.07	3.28	234.71
HH	5	Stem	89.83	87.98	12.42	9.83	36.13	14.68	22.58		07.90	04.52	3.20	127.39
		Leaves	36.16	16.37	36.13		44.84	46.29	16.37	07.34	21.45	18.73	2.40	237.28
		W.Seedling"	25.85	14.66	31.38	3.48	42.38	34.09	19.34	85.24	17.58	10.15	2.73	206.89
	1	Root	13.55	23.71	31.62	9.83	31.26	18.07	15.81	96.78	13.55	19.94	3.28	186.89
000-141		Stem	11.29	87.98	11.29		38.43	13.55	18.87	05.65	96.78	04.52	2.40	119.88
CCC+HH	5+5	Leaves	17.82	34.42	38.11	*	55.31	51.63	17.21	87.99	20.28	14.75	4.00	261.52
	1				The state of the s									The second second second

A.A. = Amino acids

Hydro. = Hydroxylic

* Whole seedling = Total amount/seedling Dry weight/seedling

= Non-detected

Table (28,b): Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on total amount of amino acid fraction contents in different organs as well as to the whole seedling at the late stage of seedling growth.

(expressed as ng/seedling)

								as mg/s	eedling)			ago or a		
fmino	Acids	Seedling .	Aliphat	le	n.n.	Sulpher A.A.		Acidic	۸.۸.		Basic A.A.		Atic	Total
Treatment		organs	Alanino	Ualina	Lucine & Isolucine	Mathionine	Aspartic	Glutaming	Arqinina	Aninobutric	Histidine	Phenylal	Proline	amino
Substance	ppm.		E S	Š	Luc	To To	A N	15	A.	 2	H S	Pheny	Pro	conter
		Root	02.30	81.78	03.23	00.17	05.95	83.74	83.48	8.34	02.04	88.51	00.48	23.94
Control	8	Ston	81.28	88.98	81.42	*	03.72	81.75	01.20	88.33	00.07	88.66	00.39	12.52
		Loaves	86.67	85.13	10.27	×	11.64	88.21	84.11	01.20	03.85	82.32	88.61	54.09
		W.seedling	18.25	07.01	14.92	00.17	21.31	13.78	88.71	01.95	06.76	03.49	01.40	90.55
		Root	01.71	81.26	28.78	00.25	86.32	83.83	82.78	00.25	10.26	88.51	88.72	20.87
	5	Stem	81.84	01.51	82.85	*	87.83	82.51	81.84	00.04	81.67	00.67	87.71	21.4
		Leaves	14.78	18.21	18.88		20.15	16.67	86.72	82.69	06.45	02.55	88.76	98.9
GA*		W.Seedling	18.33	12.98	23.63	00.25	33.58	22.21	11.34	83.78	9.38	83.73	82.19	141.3
		Root	81.46	81.86	82.52	88.26	84.64	82.92	82.25	00.39	02.52	00.27	88.38	18.67
	19	Ston	88.79	88.57	01.59	*	84.75	82.15	82.49	00.57	01.13	00.45	88.24	14.74
		Loaves	07.28	85.46	09.87	*	13.25	09.35	03.25	02.21	03.64	02.21	88.64	57.19
		W.Seedling	09.53	87.89	13.98	00.26	22.64	14.42	87.99	03.17	87.29	82.93	81.26	90.56
		Root	01.53	81.22	81.83	88.28	03.77	82.66	82.34	00.31	01.22	88.41	00.36	15.74
	5	Stem	00.76	00.54	01.51		85.39	81.51	82.49	00.32	01.00	88.11	88.46	14.16
		Leaves	07.56	85.19	00.90	81.89	18.39	88.98	83.78	02.36	05.67	02.36	01.00	58.16
Inn		W.Seedling	09.85	96.95	12.32	82.89	19.55	13.84	00.60	82.99	07.97	82.88	81.82	88.86
		Root	81.90	91.66	82.14	80.12	04.39	02.97	92.26	00.36	92.16	88.36	88.42	18.74
	18	Stem	81.21	88.68	81.61		85.84	91.81	81.71	00.50	01.11	88.28	88.43	14.22
		Leaves	81.29	87.79	10.12	*	11.42	85.97	84.93	02.59	05.97	81.82	81.18	53.88
	<u>. </u>	W.Seedling	84.45	10.05	13.78	88.12	28.85	18.75	88.90	03.45	89.24	82.38	01.95	85.96
		Root	02.57	82.28	83.14	*	03.71	84.28	01.43	88.57	01.99	88.86	00.73	21.56
	5+5	Stom	81.62	02.05	81.51	88.35	81.51	01.97	82.32		81.84	99.46	00.33	13.16
		Leaves	87.58	95.61	89.48	*	10.53	08.28	03.23	02.53	03.09	83.23	84.49	53.97
GA»		W.Seedling	11.77	89.94	14.05	00.35	15.75	14.53	86.98	03.10	96.12	84.55	01.55	88.71
		Root	01.53	81.91	84.19	81.53	04.50	03.05	02.29	00.76	81.91	81.76	88.81	23.32
Inn	5+18	Stom	81.49	81.37	81.99	88.37	87.24	81.87	82.87	*	81.37	88.49	88.49	19.58
	1	Leaves	87.77	96.96	11.84		14.38	88.52	05.59	82.64	05.75	84.82	88.66	67.15
		W.Seedling	18.79	09.34	17.22	81.90	26.12	13.44	18.75	83.48	89.83	86.87	81.91	189.97
		Root	82.21	83.31	85.52	88.44	87.73	84.86	83.53	88.44	82,21	88.68	88.63	31.76
	18+5	Stom	81.89	88.73	81.22	88.24	96.89	81.46	83.85		88.73	88.12	88.52	15.25
		Leaves	08.55	87.88	11.67		13.69	05.76	05.13	82.79	05.13	82.64	00.55	62.91
cn + Inn		W.moedling"	11.05	11.84	18.14	88.68	27.51	12.00	11.71	83.23	80.87	83.64	81.78	189.92
•		Root	82.18	82.18	83.20	01.09	04.91	82.73	03.89	01.19	81.64	88.55	00.52	23.26
	18+18	Stom	00.01	88.69	B1.16		84.86	01.37	82.54	00.35	81.84	88.46	00.49	14.13
		Loaves	88.84	96.32	11.05		11.19	86.83	04.00	01.72	85.17	02.58	88.71	57.79
		W.Seedling"	11.83	89.19	15.49	81.89	28.96	18.49	10.51	83.16	87.85	03.59	81.72	95.00
		Root	03.56	82.85	84.98	81.42	86.48	83.53	83.91	81.42	82.85	81.42	81.81	33.37
ccc	5	Stem	94.15	91.73	84.15	81.73	11.77	94.84	05.53		83.46	81.38	*	38.47
	-	Leaves	28.76	13.83	34.59		29.06	19.37	13.14	88.38	17.99	84.84	82.42	164.34
		W.Seedling"	28.47	18.41	43.72	03.15	47.23	27.77	22.58	89.72	24.38	87.64	83.46	236.45
		Root	82.24	82.69	96.28	88.89	96.28	82.99	83.29	88.89	82.69	82.39	88.42	31.05
н.н.	5	Stem	82.15	91.88	82.96	82.15	09.59	83.49	85.37	8	91.88	91.88	88.76	30.31
		Leaves	18.21	88.25	18.19		22.18	23.32	88.25	83.69	18.88	95.40	81.21	119.58
		W.Seedling"	22.68	12.82	27.43	83.84	37.85	29.88	16.91	84.58	15.37	09.87	82.39	188.86
		Root	81.52	82.78	83.78	81.86	83.78	82.12	01.05	88.79	81.59	02.33	00.37	21.88
CCC+M.H.	5+5	Stem	81.69	91.19	81.69		85.77	82.84	02.71	88.85	81.82	88.	88.36	18.00
		Leaves	86.87	11.72	12.89		18.48	17.59	05.86	82.72	86.91	85.82	01.36	89.87
	1	W.Seedling"	89.35	15.69	18.37	81.86	28.31	21.75	18.42	84.34	89.52	88.83	2.89	128,95

A.A. = Amino acids

Hydr. = Hydroxylic

* W.seedling = Whole Seedling

= Non detected

the control of seedling growth behaviour. CCC at the rate of 5 ppm stimulated higher accumulation of total amino acids in seedling tissues. Accordingly, the stimulatory effect of such treatment on seedling growth may be related to the highest synthesis of amino acids especially in seedling leaves and roots. Such effect was greatly variable within amino acid fractions, as some amino acids increased, while others were decreased as compared to those corresponding ones of control seedlings.

- e) Other substances, i.e. GA₃, IAA, or MH at different rates either alone or in combinations with each other controlled also the synthesis of amino acids as GA₃ & IAA at 5 ppm have the same stimulatory effect on total amino acid concentrations. However, such stimulatory effect was greatly different in the amino acid fractions when compared with the corresponding ones of CCC treated seedling. But, when GA₃ was applied beside IAA such accumulation greatly depressed. Accordingly, GA₃ and or IAA suppressed the stimulatory effect of every one on the synthesis of different amino acid fractions.
- f) The same conclusions were also revealed when the concentration of amino acids (mg/gr.) were turned out into the total amounts (mg/seedling organs).
- g) The great variations in protein fractions as the result of the substance treatments were due to the great variations in the synthesis and the accumulation of amino acid fractions, and the balance between such vital acids.

4.2.8. Nutrient changes during different periods of seedling growth:

Nutrient status in apricot seedling during different periods of growth as affected by different treatments with growth regulators in terms of concentration per one gram, actual amount per seedling, percentage distribution in different seedling organs at 72 days from soaking and percentage increase or decrease as related to the

maximum amount attained during the period of growth is shown in Tables (21,a,..&e; 22,a,...&d and 23). It must be mentioned that during early periods of growth, the first 30 days (i.e. 7 days was considered as early stage of radical emergency and 30 days was considered as the stage of plumule emergency) the status of the nutrients was estimated in whole seedling as it was difficult to separate its organs, also the main organ in such period was the large cotyledons, the stored organ. During the later period of growth 72 days (i.e. late stage of leaves and branching formation) the seedling was differentiated into root, stem and leaves, while the cotyledons were either decayed in many treatments or in many other treatments were still attached to the seedling without complete changing. Thus, the total dry weight of seedling at 72 days after soaking may be decreased, or increased as related to those were found during early periods of growth (7 or 30 days after soaking) and that affected the whole amounts which were found in whole seedling according to the amounts in the disintegrated cotyledons.

Also, the effect of some growth regulators on the uptake and accumulation of different nutrients in other plants was previously reported by other workers (e.g. Seth and Wareing, 1967; Saks and Ilan, 1984; El-Zawily and Zayed, 1985; Zayed et al., 1985 b; Khafaga et al., 1986; Ibrahim and Khafaga, 1986).

Nitrogen: (Table,21,a)

Nitrogen concentration seemed to slightly decrease from 7 to 30 days after soaking and greatly decreased during 72 days. This decline was mainly due to the dilution of the initial N amounts with the growth of the developing seedling. In addition, during the later periods of growth such great decline was partially related to the redistribution of N in different seedling organs and partially to the loss

amounts in decayed cotyledons which discussed before.

With regard to the N concentration in different seedling organs during 72 days after soaking, as a general, leaves possessed the highest amounts of N followed by roots while stem possessed the lowest amounts. This is true with the actual amount per seedling organ as well as the percentage distribution. It could be stated also that different treatments with the tested substances greatly changed the N concentration, actual amount per seedling, percentage distribution and percentage increase during different periods of growth. It must be mentioned also that variable tested growth regulators under the conditions of such experiment affected the absorbed amount of N and that affected the nitrogen status in apricot seedling during the various periods of growth. The most stimulatory effect on nitrogen absorption was found when seeds were soaked in the growth retardant CCC at the rate of 5 ppm. Also, MH (antiauxin) at the rate of 5 ppm had the same stimulatory effect on N uptake by the developing seedling but that was less than the effect of CCC. Such phenomenon was based on the total amount in whole seedling which found during 72 days.

On the other hand, most treatments with growth substances seemed to decline such absorption into very limited amounts, as whole seedling nitrogen content during 72 days was less than those found at 30 days and that related to the losses of cotyledons. This leads us to the assumption that either IAA or GA₃ not only decreased the absorption of N but also retarded the translocation of nitrogenous compounds from the stored organ, the cotyledons, then to the developing parts of the seedling. In addition, such growth regulators, as a general, seemed to disturb the accumulation proportion of N in different seedling organs during 72 days after soaking, when compared to the corresponding ones of the control seedling.

Table (21,a,b,c &d): Effect of soaking of cv, El-Amar apricet seeds in some growth regulators on some macro-nutrient status during different periods of growth.

er's fire	-	-														-		batalan as assessed	ated to
Treatments	2		Concent	Concentration mg/gr.dry weight	/gr.dry	eight			Tota	Total amount mg/seedling	mg/seedli	Du .		×	X distribution		the	the highest walue	lue
			88		22	72 days		~	38		72 days	ays			72 days		Days	Days after sowing	ing
Substances	. wdd	days	days	Root	Stem	80 5	W.seedl.	shop	days	Root	Stea	Leaves	W.Seedl.	Root	Stem	Leaves	~	38	22
Control	80	45.5	45.5	24.8	28.3	42.6	32.4	18.8	24.6	3.7	1.9	9.2	15.3	24.2	12.4	63.4	76.4	188.8	62.2
	Ŋ	47.8	46.8	32.6	22.7	45.5	37.7	21.7	21.9	3.6	3.4	16.2	23.2	15.5	14.7	69.8	93.5	24 .3	188.8
ŝ	18	46.8	45.5	26.5	25.4	41.9	34.2	23.4	26.1	3.1	2.5	9.7	15.3	28.3	16.3	63.4	89.7	188.8	58.6
	ıs	54.3	58.8	28.1	23.1	46.9	36.2	22.3	31.2	2.5	2.8	9.8	14.3	17.5	13.9	68.5	71.5	188.8	45.8
IAA	18	47.3	45.5	38.8	27.8	48.1	35.8	15.9	18.8	3.2	2.4	9.2	14.8	21.6	16.2	62.2	84.6	188.8	78.7
	\$ \$	49.1	48.8	29.8	21.1	41.8	33.9	22.3	22.7	3.7	2.2	18.4	16.3	22.7	13.5	63.8	2.86	188.8	71.8
\$	5+18	58.5	8.1	2.4	38.3	43.7	34.6	25.5	97.92	3.8	3.4	12.1	19.3	19.7	17.6	62.7	95.9	188.8	52.5
IA	18+5	45.3	4.2	28.5	23.2	42.8	34.3	23.8	24.3	5.6	2.5	11.8	19.9	28.1	12.6	59.3	94.7	188.8	81.9
	18+18	51.8	48.1	24.6	21.2	42.1	32.5	25.9	27.1	3.9	2.2	18.7	16.8	23.2	13.1	63.7	9.5.6	188.8	61.9
0 0 0	ın	46.8	41.3	33.5	28.2	45.9	36.8	22.6	24.4	5.3	6.2	28.1	39.6	13.4	15.7	78.9	57.1	61.6	188.8
£	ın	4.5	44.3	38.1	19.1	48.8	34.4	18.3	18.8	5.1	5.4	5.82	38.1	16.9	14.9	68.1	K.	81.1	188.8
HM+000	5+5	49.5	46.8	31.5	19.1	43.7	35.3	. 22.9	25.8	3.7	2.9	14.9	21.5	17.2	13.5	69.3	88.8	186.8	83.3

W.zeedl. = Whole seedling

^{* =} Total amount /seedling Dry weight / seedling

Phosphorus: (Table,21, b)

The following conclusions could be revealed:

- a) As a general, phosphorus status increased gradually during different periods of seedling growth. Thus, the highest proportion was found at 72 days after soaking in different treated seedlings. This indicates that the developing seedlings required additional amount of P beside that which found in cotyledons. In other words, the stored phosphorus in cotyledon of apricot was not sufficient for maintaining the developing seedling and additional amounts must be present in the germinated medium of apricot. This also indicates that phosphorus application in the medium of apricot plays an important role in germination processes of such oily seeds. The absorption of P seemed to occur during early periods of growth (the first 30 days), as it was found, higher proportion of P in seedling from 7 to 30 days after soaking. During such periods the absorption of P seemed to reached into the maximum mostly and reached sometimes into more than 90 % under some treatments.
- b) As in the case of N the highest proportion of P was found in leaves followed by those found in roots, while the lowest one was found in stem at 72 days.

As phosphorus plays an important role in photosynthesis beside respiration, thus the amount of P in leaves was higher than that found in roots, while that in roots plays an important role in the energy transport which affected the absorption of different elements during the active salt absorption phenomenon, thus, the amount in roots exceeded those found in stems. According to the above mentioned information different treatments with growth regulators affected the growth behavior of apricot seedling through their effects on the control of P uptake and distribution in different seedling organs.

21.b) Phosphorous .

Treatments	ıt.		Concent	Concentration mg/gr.dry weight	/gr.dry	eight			Tota	l amount	Total amount mg/seedling	ing		×	x distribution	lon	x incres	increase as related the highest value	lated to
		2	8		22	72 days		2	38		22	72 days			72 days		Days	Days after sowing	guie
Substances	. wdd	days	days	Root	Sten	Leaves	W.seedl.	shap	days	Root	Stem	Leaves	W.Seedl.	Root	Stem	Leaves	2	38	22
Control	80	6.8	7.9	11.6	4.5	11.3	18.8	2.7	6.4	1.8	4.0	2.6	8.4	37.5	8.3	54.2	56.3	9.68	198.8
	N	9.8	8.6	12.8	6.8	12.4	11.1	4.2	4.7	1.4	1.8	4.4	6.9	28.6	14.7	64.7	61.8	69.1	188.8
3	81	6.9	6.8	18.5	18.1	7.9	9.1	3.4	3.9	1.2	1.8	1.8	4.8	38.8	25.8	45.8	82.8	97.5	188.8
	LO.	9.8	6.5	11.6	9.8	11.8	18.7	3.7	3.9	1.1	8.9	2.3	4.3	25.6	28.9	53.5	86.8	2.86	188.8
IAM	118	6.8	8.8	11.3	5.6	18.1	9.5	2.3	3.6	1.2	8.5	2.3	4.8	38.8	12.5	57.5	57.5	96.8	188.8
	5+5	4.	8.8	11.3	11.8	18.3	18.7	1.5	3.2	1.4	1.1	2.5	5.8	28.8	22.8	58.8	38.8	8.19	188.8
ŝ ·	5+18	3.4	5.5	18.8	18.8	11.8	18.9	2.8	3.9	1.8	1.2	3.8	6.8	38.8	28.8	58.8	33.3	65.8	188.8
Iè.	18+5	6.8	8.5	11.11	11.3	14.1	12.6	3.4	4.7	2.2	1.2	3.9	7.3	38.1	16.4	53.4	48.6	2.	188.8
	18+18	4.5	9.8	12.5	12.5	11.3	11.9	2.3	5.1	2.8	1.3	2.9	6.2	32.3	28.9	46.8	37.1	82.3	188.8
0 0 0	ın	8.9	9.5	13.6	4.5	12.6	18.5	3.3	5.6	2.1	1.4	7.7	11.2	18.8	12.5	68.7	29.5	58.8	198.8
Ŧ	ıs	5.6	7.9	12.1	18.1	11.4	11.2	2.3	3.4	1.6	2.4	5.2	9.7	16.5	24.7	58.8	23.7	35.1	188.8
HII+333	5+5	4.5	5.6	16.8	6.8	14.6	12.9	. 2.1	3.2	1.9	1.8	6.4	7.8	24.4	12.8	62.8	26.9	41.8	188.8

W. seedi. = Whole seedling * = Total amount/seedling Dry weight /seedling

c) As in N, phosphorus status in CCC treated seedling greatly exceeded those found in other treatments. Accordingly, the effect of CCC at the rate of 5 ppm on the acceleration of seedling growth may be related to the higher absorption of P which seemed to be more than the double of those found in control one which accumulated in roots or leaves, i.e. affected both of photosynthesis and the absorption of other elements and that led to exceeding of growth. MH also accelerates the accumulation of P but in less amounts. However, other growth substances disturb the accumulation of P in seedling without clear trend in this respect.

The higher absorption P proportion occurred during the period extended from 30 till 72 days in CCC treated seedling or CCC + MH treated ones. Most of such absorption was directed mainly into the developing leaves.

Potassium: (Table,21, c)

The behaviour of K was seemed to be more or less like those found in P trend. Again the stored amounts of K in seeds was not sufficient to the germination process of seedling, thus, it must be found in the germinated medium of apricot. CCC and MH increased the uptake of K and that plays an important role in the developing growth of seedling. The highest absorption rate occurred during the period extended from 30 till 72 days under such treatments. In addition, other treatments seemed to disturb the accumulation of K in seedling of apricot and that play an important role in the control of seedling growth. The highest accumulation proportion of K in leaves under different treatments indicates the higher needs of K for the different processes in leaves beside its role in the cell and tissue turgidity and leaf water balance.

21,c) Potassium .

Ireatments	\$		Concent	tration m	Concentration mg/gr.dry weight	weight			Tota	Total amount mg/seedling	mg/seedli	bu		×	x distribution	lon	x incres	increase as related	ated to	
		~	88		2	72 days		~	88		22	72 days			72 days		Days	Line nignest value Days after sowing	ing	
Substances	. sedd	days	days	Root	Sten	Leaves	W.seedl.	days	days	Root	Stem	Leaves	W.Seed1.	Root	Stem	Leaves	2	88	2	
Control	60	9.6	13.1	13.5	19.1	27.5	21.3	3.6	7.1	2.8	1.8	6.3	18.1	19.8	17.8	62.4	35.6	78.3	188	
. 65	ın	8.5	14.7	16.7	18.3	38.5	25.1	3.9	7.8	1.9	2.7	18.9	15.5	12.3	17.4	78.3	22.2	45.2	188	
ì	18	8.3	13.6	18.2	17.3	38.2	21.8	4.2	7.8	1.2	1.7	6.9	9.8	12.2	17.3	78.4	42.9	9.62	188.	
	LO .	6.8	13.9	11.9	14.8	29.6	22.8	2.8	8.5	1.1	1.4	6.2	8.7	12.6	16.1	71.3	32.2	5.79	188	
NA IN	18	9.3	14.6	13.2	16.9	31.1	23.6	3.1	6.9	1.4	1.5	7.1	18.8	14.8	15.8	71.8	31.8	6.83	188	
	5+5	6.6	13.8	18.2	15.2	38.4	21.9	4 .S	7.7	1.3	1.6	5.6	18.5	12.4	15.2	72.4	42.9	73.3	188	
š •	5+18	9.8	9.5	18.4	14.6	33.3	22.7	5.4	5.2	1.8	1.6	9.2	12.6	14.3	12.7	73.8	42.9	45.2	188	
ГАМ	18+5	6.1	11.8	12.9	18.4	32.9	23.3	3.1	6.5	2.5	1.9	9.1	13.5	18.5	14.1	67.4	22.9	48.1	188	
	18+18	9.6	15.2	14.4	16.4	32.9	23.9	4.9	8.5	2.3	1.7	#. B	12.4	18.5	13.7	2.73	39.5	68.5	188	
000	s	7.9	13.5	28.9	15.3	29.8	24.4	3.8	6.7	3.3	4.7	18.3	26.3	12.5	17.9	9.69	14.4	38.8	188	
Ŧ	ro.	11.6	14.3	16.7	28.1	38.1	25.4	8.4	6.8	2.2	8.4	15.2	22.2	9.9	21.6	58.5	21.6	8.72	188	
HH+300	2+5	9.8	18.5	19.6	29.8	28.9	27.3	4.5	5.9	2.3	4.5	9.8	16.6	13.9	27.1	59.8	27.1	35.5	188	
			To	tal amoun	Total amount / seedling	Ind														

W. seedl. = Whole Seedling. * = Dry weight / seedling

83

	H	
	lci	
Will Control	3	
	^	
	P, 1	
	21	

Subtriances Fig. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	Treatments	nts		Concent	Concentration mg/gr.dry weight	J'gr.dry	weight	1	•	Tota	l amount	Total amount mg/seedling	. Bu		×	% distribution	6	x increa	% increase as related the highest walue	ated to
Phin. days days <t< th=""><th></th><th></th><th>2</th><th>88</th><th></th><th>22</th><th>days</th><th></th><th>2</th><th>38</th><th></th><th>22</th><th>she</th><th></th><th></th><th>72 days</th><th></th><th>Days</th><th>after so</th><th>guin</th></t<>			2	88		22	days		2	38		22	she			72 days		Days	after so	guin
S S S S S S S S S S	ubstances	. sdd	days	days	Root	Sten	Leaves	W.seedl.		days	Root	Stea		W.Seedl.	Root	Stem	Leaves	2	38	22
See 9.8 9.8 12.8 13.9 13.9 2.8 4.3 1.3 1.2 6.1 6.1 6.5 13.7 13.9 78.9 32.6 59.8 13.9 13.9 2.8 4.3 1.3 1.2 6.1 6.2 17.7 16.1 66.1 40.3 69.9 32.6 39.9 32.6 39.9 32.6 39.9 32.6 39.9 32.6 32	Control	60	6.9	8.8	11.8	11.8	14.8	12.4	2.5	4.3	1.7	1.1	3.2	6.9	28.3	18.3	53.3	41.7	71.7	188
5.6 6.8 6.8 9.8 19.8 13.8 13.8 2.5 1.1 1.9 4.1 6.2 17.7 16.1 66.1 40.3 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 83.9 13.8 13.2 2.2 1.1 1.9 4.1 1.2 2.3 4.1 1.2 1.3 1.2 2.3 4.1 1.3 1.2 3.2 4.1 1.2 4.9 8.9 2.3 4.7 17.8 14.9 62.5 92.5 92.5 92.5 1.2 <th< td=""><td>,</td><td>LO LO</td><td>6.9</td><td>9.6</td><td>12.8</td><td>8.8</td><td>17.8</td><td>13.9</td><td>2.8</td><td>4.3</td><td>1.3</td><td>1.2</td><td>6.1</td><td>8.6</td><td>12.1</td><td>13.9</td><td>6.87</td><td>32.6</td><td>58.8</td><td>188</td></th<>	,	LO LO	6.9	9.6	12.8	8.8	17.8	13.9	2.8	4.3	1.3	1.2	6.1	8.6	12.1	13.9	6.87	32.6	58.8	188
5 6.8 6.8 6.8 6.9 2.3 4.7 1.3 1.2 3.2 4.7 1.7 1.4 4.9 8.9 21.7 28.8 28.3 42.6 78.7 78.7 42.8 42.8 4.7 4.9 8.9 21.7 28.8 58.3 42.6 78.7 78.7 42.8 42.8 43.7 43.8	ŝ	18	5.8	9.8	9.8	18.9	18.8	13.8	2.5	5.2	1.1	1.8	4.1	6.2	17.7	16.1	66.1	48.3	63.9	188
18 6.8 9.8 9.8 9.8 9.7 3.2 4.7 17.8 14.9 63.8 42.6 78.7 78.7 5-5 5.8 9.8 18.8 12.8 14.8 12.5 2.3 4.1 1.3 1.2 3.5 6.8 71.7 28.8 58.3 38.3 68.3 78.7 78.7 78.8 78.9 78.9 42.6 78.7 78.7 78.8 78.9 42.6 78.9 48.9 78.9 42.8 58.3 48.9 78.9 48.9 71.7 4.9 8.8 21.3 41.4 55.6 4.2 1.6 4.7 4.7 8.7 77.6 18.4 45.9 88.3 41.4 59.9 41.4 59.3 41.4 59.9 41.4 59.9 41.8 41.4 59.9 41.8 41.4 59.9 41.8 41.8 41.8 41.8 41.8 41.8 41.8 41.8 41.8 41.9 41.8 41.9 41.9<		ın	6.8	6.9	9.8	9.8	11.8	18.1	2.5	3.7	8.8	8.9	2.3	4.8	28.8	22.5	57.5	62.5	92.5	188
5+5 5,8 9,8 18.8 12.8 14.8 12.5 2.3 4.1 1.3 1.2 3.5 6.8 21.7 28.8 58.3 38.3 68.3 38.3 68.3 38.3 68.3 38.3 68.3 38.3 68.3 68.3 58.3 38.3 68.3 58.3 58.3 38.3 68.3 68.3 58.3 38.3 68.3 58.3 58.3 58.3 58.3 58.3 58.5 58.3 59.3 <td>IPP</td> <td>18</td> <td>6.8</td> <td>9.8</td> <td>8.8</td> <td>8.8</td> <td>14.8</td> <td>11.2</td> <td>2.8</td> <td>3.7</td> <td>8.8</td> <td>8.7</td> <td>3.2</td> <td>4.7</td> <td>17.8</td> <td>14.9</td> <td>63.8</td> <td>42.6</td> <td>78.7</td> <td>188</td>	IPP	18	6.8	9.8	8.8	8.8	14.8	11.2	2.8	3.7	8.8	8.7	3.2	4.7	17.8	14.9	63.8	42.6	78.7	188
5+18 6.8 7.8 19.8 13.9 14.6 3.6 4.2 1.7 1.4 4.9 8.0 21.3 17.5 61.3 45.8 52.5 18+5 7.8 9.8 12.8 13.8 14.5 3.6 4.2 1.7 1.4 4.7 8.7 27.6 18.4 54.8 41.4 59.3 18+18 7.8 12.8 15.8 11.9 3.6 5.4 1.6 1.2 3.3 6.1 26.2 19.7 54.1 59.8 91.8 18+18 7.8 18.8 18.8 18.8 18.8 18.8 14.7 1.4 3.1 9.8 14.3 9.8 21.7 68.5 23.8 32.9 5 7.8 8.8 18.8 18.8 18.8 18.8 14.7 1.4 3.1 9.8 14.3 9.1 16.8 74.1 14.7 23.8 5+5 7.8 8.8 18.8 12.8 12.8 <td></td> <td>5</td> <td>5.8</td> <td>9.8</td> <td>18.8</td> <td>12.8</td> <td>14.8</td> <td>12.5</td> <td>2.3</td> <td>4.1</td> <td>1.3</td> <td>1.2</td> <td>3.5</td> <td>6.8</td> <td>21.7</td> <td>28.8</td> <td>58.3</td> <td>38.3</td> <td>68.3</td> <td>188</td>		5	5.8	9.8	18.8	12.8	14.8	12.5	2.3	4.1	1.3	1.2	3.5	6.8	21.7	28.8	58.3	38.3	68.3	188
18+5 7.8 9.8 12.8 15.8 17.8 14.9 3.6 4.9 2.4 1.6 4.7 8.7 27.6 18.7 27.6 18.4 54.8 41.4 59.8 41.4 59.8 18+18 7.8 18.8 18.8 18.8 12.8 11.9 3.6 5.6 1.6 1.2 3.3 6.1 25.2 19.7 54.1 59.8 91.8 5 7.8 8.8 18.8 18.8 18.8 16.8 15.8 16.3 2.1 4.7 1.4 3.1 9.8 14.3 9.8 21.7 68.5 23.8 32.9 5 5.8 8.8 18.8 18.8 16.8 15.8 16.3 2.1 3.4 1.3 2.4 18.6 14.3 9.1 16.8 74.1 14.7 23.8 5+5 7.8 8.8 12.8 15.8 13.7 3.2 4.5 1.4 1.8 5.1 8.3	ę.	5+18		7.8	18.8	13.8	18.8	14.6	3.6	4.2	1.7	1.4	4.9	8.8	21.3	17.5	61.3	45.8	52.5	188
18+18 7.8 18.8 18.8 12.8 13.8 11.9 3.6 5.6 1.6 1.2 3.3 6.1 26.2 19.7 54.1 59.8 91.8 5 7.8 8.8 18.8 18.8 16.8 13.3 3.4 4.7 1.4 3.1 9.8 14.3 9.8 21.7 68.5 23.8 32.9 5 5.8 8.8 18.8 18.8 16.8 21.8 16.3 2.1 3.4 1.3 2.4 18.5 14.3 9.1 16.8 74.1 14.7 23.8 5+5 7.8 8.8 12.8 15.8 15.8 13.7 3.2 4.5 1.4 1.8 5.1 8.3 16.9 21.7 61.4 38.6 54.2	IM	18+5		9.8	12.8	15.8	17.8	14.9	3.6	4.9	2.4	1.6	4.7	8.7	27.6	18.4	54.8	41.4	59.3	188
5 7.8 8.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.9		18+18		18.8	18.8	12.8	13.8	11.9	3.6	5.6	1.6	1.2	3.3	6.1	29.3	19.7	54.1	59.8	91.8	188
5 5.8 8.8 18.8 18.8 15.9 15.9 21.7 61.4 38.6 54.2	0 0 0	ın	7.8	8.8	9.6	18.8	16.8	13.3	3.4	4.7	1.4	3.1	9.8	14.3	9.8	21.7	5.89	23.8	32.9	188
5+5 7.8 8.8 12.8 15.8 13.7 3.2 4.5 1.4 1.8 5.1 8.3 16.9 21.7 61.4 38.6 54.2	Ē	ın	8. 23	8.8	18.8	18.8	21.8	16.3	2.1	3.4	1.3	2.4	18.6	14.3	9.1	16.8	74.1	14.7	23.8	188
	CCC+IIII	5+5	7.8	8.8	12.8	12.8	15.8	13.7	3.2	4.5	1.4	1.8	5.1	8.3	16.9	21.7	61.4	38.6	54.2	188

W. seedl.= Whole Seedling. * = Dry weight / seedling

84

3
-
N
b
~
FR
2
-
-
-
•
-
60
-3
77
~

Treatments	,		Concent	Concentration mg/gr.dry weight	g/gr.dry	weight			TOT			,					the	the highest walue	the highest walue
		2	38		, 2	72 days		2	38		72 days	lays			72 days		Days	Days after sowing	ing
Substances	ppm.	days	days	Root	Stem	Leaves	W.seedl.	days	days	Root	Stem	Leaves	W.Seedl.	Root	Stem	Leaves	2	38	22
Control	60	2.1	2.6	3.1	2.4	3.9	3.3	8.9	1.4	8.5	8.2	6.8	1.6	31.2	12.5	56.3	56.3	87.5	188
	s	2.3	2.7	e. e.	2.5	3.8	3.4	1.1	1.3	4.6	4.	1.4	2.2	18.2	18.2	63.6	58.8	59.1	188
\$	18	2.3	2.5	2.9	2.5	3.8	3.3	1.2	1.4	6.3	8 .3	6.8	1.5	. 28.8	28.8	68.89	88.8	93.3	188
	ın	1.4	1.6	2.9	1.2	2.8	2.4	9.6	6.8	8.3	9.1	9.6	1.8	38.8	18.8	68.89	68.89	98.8	188
IAA	18	2.4	2.5	2.2	2.1	2.9	2.6	8.8	1.8	8.2	8.2	8.7	1.1	18.2	18.2	63.6	72.7	6.86	188
	5+5	2.8	2.8	2.2	2.1	2.5	2.3	6.9	1.1	8.3	8.2	9.8	1.1	27.3	18.2	54.5	81.8	188	188
ŝ ·	5+18	2.2	2.3	2.2	2.2	3.1	2.6	1.3	1.4	8.4	8.2	8.9	1.5	26.7	13.3	68.89	86.7	93.3	188
. We	18+5	2.1	2.2	2.1	1.7	2.4	2.2	1.1	1.2	4.6	8.2	8.2	1.3	38.8	15.4	53.8	84.6	92.3	188
	18+18	2.8	2.2	2.1	1.9	2.7	2.4	1.8	1.2	6.3	8.2	8.7	1.2	25.8	16.7	58.3	83.3	188	188
0 0 0	ın	2.2	2.9	2.3	2.8	2.7	2.5	1:1	1.7	4.	9.6	1.7	2.7	14.8	22.2	62.9	48.7	62.9	188
Ŧ	ın	2.9	2.9	2.1	1.9	3.8	2.6	1.2	1.3	8.3	4.0	1.5	2.2	13.6	18.2	68.2	63.6	59.1	188
HI4-300	2+2	2.5	2.6	2.4	2.2	2.6	2.4	1.2	1.4	6.3	8.3	8.9	1.5	28.8	28.8	68.8	88.8	93.3	188

W. moedl.= Whole Seedling. * = Tôtal amount / seedling Dry weight / seedling

Calcium: (Table,21, d)

The behaviour of Ca in developing seedling of apricot seemed to be more or less the same of P and K under different treatments. As Ca is immobile element, therefore any absorbed amount is translocated directly into the new formed developed tissues. Accordingly, the absorbed Ca was accumulated in leaves which possessed highest amount of Ca than roots, while stem was the lowest. The continuous increase in Ca with advancing age indicates that Ca continues to be absorbed with increasing the growth of apricot seedling. The presence of Ca in the medium is very important for the development of the seedling. The variable need for such development was controlled by subjecting the seeds under soaking of the used growth regulators.

Magnesium: (Table, 21, e).

Changes in Mg status in seedling of apricot took the same trend of P,K and Ca.

Fe,Mn,Zn and Cu: (Tables, 22,a,..& d).

Changes in Fe, Mn, Zn and Cu status in seedling of apricot during different stages of growth were more or less the same trend of different macro elements. CCC treated seedling was superiour in Fe accumulation. leaves possessed the highest Fe followed by roots and the least was found in stem. Different treatments regulate such accumulation greatly and that affected the growth behaviour of apricot seedlings during different periods of growth. The higher of the growth rate is associated with the higher Fe need by the seedlings.

It is revealed from the different foregoing results that different elements were greatly changed by using various treatments. The balance between different elements in apricot tissues takes a role for the control of their growth behaviour. Accordingly, our study was extended to include the proportion accumulation of such elements under discussion in the term of percentage proportion as related to the total amounts of either macro- or micro-nutrients during different periods of growth of whole seedling (Table, 23).

Ratio between members of macro-nutrients:

The following conclusions may be stated:

- a) Nitrogen was the most dominant element with macro-nutrients, mostly followed by K,P,Ca and the lowest one was Mg during different periods of growth.
- b) Proportion of nitrogen decreased continuously from 7 days till it reached the lowest after 72 days from soaking. At the same time continuous increase in P,K,Ca and Mg occurred with advancing age. The highest increase was shown in K as its proportion was more than the double at 72 days as its proportion found during 7 days. The change in the proportion of P,K,Ca and Mg was mainly due to the absorption of such nutrients which differ in their rates. Accordingly, we considered that the absorption of K exceeds any other element. The lowest rate of absorption seemed to be in Mg as the increase of the proportion of it was in its lowest amount.
- c) Different treatments greatly affected macro-nutrients proportion as related to each other and that related to the control of absorption rate by such nutrient. This takes a part in the control of plant growth behaviour.

Micro-nutrients:

Fe proportion was the highest followed by Mn, Cu and Zn was the lowest one in this respect. This indicates that the need for Fe was the highest followed by Mn, Cu and the lowest one was Zn. This leads us to the assumption that the balance between micro-nutrients in apricot seedling may be as follows:

Mn was about the half of Fe,

Cu was about the half of Mn,

Zn was about the half of Cu

In other words, Cu was about the double of Zn, Mn was about the double of Cu and Fe was about the double of Mn in seedling of apricot.

With regard to the changes in the proportion of micro-nutrients as related to their total amount, it could be revealed that this change was very limited as those found in macro-nutrients. This leads us to the assumption that the need or the absorption rates of such elements during different periods of seedling growth seemed to be more or less the same during various stages of growth.

Different growth regulators slightly affected the proportions of different micronutrient to each others, as very limited changes were observed without clear trends. However, such limited changes may take part in their controlling effect of seedling growth behaviour.

Table (22,a,b,c & d): Effect of soaking of cv.El-Amar apricot seeds in some grpwth regulators on some micro-nutrients status during different periods of growth .

Treatments	\$		Concent	Concentrations g/gr.dry weight	/gr.dry	elight			Tota	Total amounts g/seedling	Vg/seed1	lng		×	% distribution	ion	x increa	% increase asrelated the highest walue	ted to
		2	38		22	72 days		2	38		1 72 4	72 days			72 days		Days	Days after sowing	ing
Substances	. mdd	days	days	Root	Stew	Leaves	W.seedl.	days	days	Root	Stem	Leaves	W.Seedl.	Root	Stow	Leaves	2	88	22
Control	60	518.8	522.8	875.8	555.8	625.8	6.969	218.3	281.7	131.8	53.7	142.1	327.6	48.2	16.4	43.4	64.2	85.9	188
8	S.	428.8	787.5	788.8	9.592	787.5	712.8	194.3	337.6	87.3	188.1	252.5	439.9	19.8	22.8	57.4	4.2	76.7	188
3	18	448.8	6.55.8	925.5	762.5	988.8	875.9	6.822	376.2	188.8	76.5	287.1	392.4	27.72	19.5	52.8	56.3	95.9	188
	ı,	457.5	581.8	8.878	6.569	858.8	817.8	188.8	387.5	78.5	. 4.99	177.8	322.7	24.3	28.6	55.1	58.3	95.3	188
Æ	18	582.5	612.5	997.5	727.5	998.8	936.7	168.6	252.7	184.9	64.9	97.22	397.4	26.4	16.3	57.3	42.4	63.6	188
	2+5	592.5	617.5	872.5	487.5	838.8	267.6	269.6	341.2	118.3	58.1	286.3	366.7	38.1	13.7	56.3	73.5	93.8	188
ŝ·	5+18	528.8	578.8	945.8	645.8	915.8	878.3	314.6	344.2	159.6	71.3	251.9	482.9	33.1	14.8	52.2	65.1	71.3	188
IAA	18+5	578.8	578.8	882.8	638.8	632.8	717.8	289.9	312.9	173.1	68.89	174.1	415.2	41.7	16.4	41.9	8.69	4.25	188
	18+18	547.8	5.762	985.8	712.5	728.8	888.9	8.772	336.8	158.8	72.9	183.1	414.8	38.3	17.6	4.1	6.99	81.8	188
0 0 0	ın	765.8	647.5	957.5	625.8	888.8	818.8	326.3	382.5	158.8	191.4	539.2	881.4	17.1	21.7	61.2	37.8	43.4	189
Ē	ın	542.5	5.782	827.5	6.879	718.8	716.9	222.4	258.8	189.6	159.5	357.6	626.7	17.5	25.4	57.1	38.5	39.9	189
HH+300	5+5	462.5	588.8	982.8	682.5	647.5	874.1	213.7	325.6	185.6	285.2	228.5	531.3	19.9	38.6	41.5	48.2	61.3	188

W. seedl. = Whole Seedling. * = Dry weight / seedling

Ppm. days days Root 18 195.8 258.5 342.5 5 167.5 218.8 352.5 18 177.5 258.8 342.5 18 177.5 218.8 342.5 18 177.5 218.8 342.5 18 228.8 295.8 442.5 18+5 222.5 312.5 525.8 18+18 256.8 282.5 547.5 5 255.8 272.5 542.5 5 255.8 272.5 542.5 5 255.8 272.5 542.5 5 255.8 272.5 542.5 5 187.5 258.8 288.8 54-5 258.8 288.8	Treatments	3		Concen	Concentration 1979r.dry weight	g/gr.dry	weight			Tota	Total amount Ng/seedling	Vg/seedli	Bu	*	×	x distribution	ь.	x increa	x increase as related the whole seedling	seedling
Ppw Augs A			2	- 88		22	days		-	88		72 4	sins			72 days		Days	Days after sowing	guing
156.8 258.5 342.5 345.6 372.5 352.4 88.4 135.2 51.6 29.8 77.2 153.6 33.6	Substances	. mdd	days	days	Root	Sten	Leaves	W.seedl.	days	days	Root	Stem		W.Seedl.	Root	Stem	Leaves	2	38	22
5 167.5 218.8 352.5 345.8 372.5 352.8 77.5 189.2 39.4 45.3 122.9 217.6 18.1 18 177.5 228.8 342.5 387.5 422.5 388.9 89.1 143.6 46.5 38.8 99.5 177.5 177.5 128.9 34.8 75.3 134.9 75.9 128.9 34.8 75.3 134.9 75.9 179.5 179.5 177.5 128.9 34.8 75.3 134.9 25.8 36.8 34.4 72.9 128.9 34.8 75.3 134.9 25.8 36.8 34.4 72.9 128.9 34.8 75.3 134.9 75.9 179.5 36.8 36.8 341.4 72.9 128.9 34.8 75.3 134.9 25.9 134.9 25.9 134.9 25.9 134.9 25.9 134.9 25.9 134.9 25.9 134.9 25.9 134.9 25.9 141.9 25.9 141.9 26.9 <td>Control</td> <td>60</td> <td>195.8</td> <td>258.5</td> <td>342.5</td> <td>387.5</td> <td>317.5</td> <td>323.4</td> <td>89.4</td> <td>135.2</td> <td>51.6</td> <td>29.8</td> <td>72.2</td> <td>153.6</td> <td>33.6</td> <td>19.4</td> <td>47.8</td> <td>52.3</td> <td>88.8</td> <td>188</td>	Control	60	195.8	258.5	342.5	387.5	317.5	323.4	89.4	135.2	51.6	29.8	72.2	153.6	33.6	19.4	47.8	52.3	88.8	188
18 177.5 228.8 342.5 387.5 432.5 388.9 89.1 143.6 46.2 38.8 99.5 178.5 23.6 18 177.5 218.8 385.5 259.8 361.8 341.4 72.9 128.9 34.8 75.8 134.9 25.8 134.9 25.8 367.5 369.3 141.4 72.9 128.9 34.8 74.8 75.9 134.8 24.8 75.3 134.9 25.8 134.9 25.8 134.9 25.9 134.9 25.9 134.8 73.9 135.9 34.8 43.8 134.9 34.8 34.8 45.9 34.8 45.9 34.8 45.9 44.8 135.9 135.9 34.8 45.9 34.8 45.9 44.8 44.8 44.8 44.8 44.4 188.6 151.5 39.7 141.8 188.6 151.5 39.7 141.7 38.9 39.1 441.2 39.3 441.8 188.6 141.6 188.1 153.9 <td></td> <td>ın</td> <td>167.5</td> <td>218.8</td> <td>352.5</td> <td>345.8</td> <td>372.5</td> <td></td> <td>77.5</td> <td>188.2</td> <td>39.4</td> <td>45.3</td> <td>132.9</td> <td>217.6</td> <td>18.1</td> <td>29.8</td> <td>61.1</td> <td>35.6</td> <td>46.8</td> <td>188</td>		ın	167.5	218.8	352.5	345.8	372.5		77.5	188.2	39.4	45.3	132.9	217.6	18.1	29.8	61.1	35.6	46.8	188
5 177.5 218.8 385.5 259.8 368.9 341.4 72.9 128.9 34.8 24.8 75.3 131.5 46.6 25.9 121.9 341.4 72.9 133.5 46.6 25.9 121.9 341.4 72.9 133.5 46.6 25.9 121.9 341.4 72.9 133.5 46.6 25.9 121.9 341.4 72.9 46.6 25.9 121.9 341.4 23.1 46.6 25.9 121.9 341.4 36.3 133.5 36.3 133.5 36.3 133.6 36.3 133.6 46.6 25.9 111.5 134.7 36.9 341.4 36.3	ŝ	18	177.5	258.8	342.5	387.5	432.5		89.1	143.6	48.2	38.8	99.5	178.5	23.6	18.1	58.3	52.3	84.2	188
18 228.8 475.8 457.9 73.8 113.5 46.6 25.9 121.9 194.4 23.9 5+18 258.8 428.8 265.8 367.5 359.3 118.3 163.8 53.1 27.2 91.4 171.7 38.9 5+18 179.5 267.5 265.8 367.5 359.3 118.3 163.8 53.1 27.2 91.4 171.7 38.9 18+18 266.8 267.5 277.5 485.8 414.8 188.6 161.5 88.7 29.5 111.5 229.7 38.6 18+18 266.8 362.5 392.8 426.5 113.2 171.5 189.1 29.9 187.9 247.8 44.2 18+18 266.8 272.5 347.5 425.4 132.8 158.9 88.3 28.4 189.6 247.8 44.2 18+18 266.8 272.5 342.5 335.8 333.2 353.9 353.9 353.9 353.9 36		v	177.5	218.8	385.5	259.8	368.8	341.4	72.9	128.9	34.8		. Sr.	134.9	25.8	18.4	55.9	54.8	92.6	188
5+5 268.8 295.8 428.8 265.8 367.5 359.3 118.3 163.8 53.1 27.2 91.4 171.7 38.9 5+18 179.5 266.8 428.8 265.8 465.8 414.8 188.6 161.5 88.7 29.5 111.5 229.7 38.6 18+5 222.5 312.5 557.5 277.5 392.8 426.5 113.2 171.5 189.1 29.9 187.9 247.8 44.2 18+18 268.8 282.5 347.5 277.5 487.5 425.4 132.8 158.9 88.3 28.4 183.6 247.8 44.2 5 255.8 272.5 342.5 352.8 385.8 385.8 385.9 385.9 385.9 369.9 459.9 489.3 481.5 193.9 384.7 17.7 5 187.5 238.8 385.8 385.9 76.9 97.9 59.3 81.5 193.9 193.4 17.7 <	IPM	18	228.8	872.8	442.5	298.8	538.8	457.9	73.8	113.5	46.6	25.9	121.9	194.4	23.9	13.3	62.7	37.9	58.4	188
5+18 179.5 267.5 525.8 267.8 485.8 414.8 188.6 161.5 88.7 29.5 111.5 229.7 38.6 18+5 222.5 312.5 557.5 277.5 392.8 426.5 113.2 171.5 189.1 29.9 187.9 247.8 44.2 18+18 268.8 282.5 547.5 277.5 487.5 125.4 132.8 158.9 88.3 28.4 189.6 228.3 48.1 5 255.8 277.5 362.5 335.8 373.2 123.3 168.9 85.4 118.9 285.3 48.1 5 187.5 238.8 447.5 385.8 385.8 382.9 76.9 97.9 59.3 81.5 193.9 334.7 17.7 6.45 256.8 286.9 128.1 159.9 67.9 116.6 119.9 384.4 22.3		5+5	268.8	295.8	428.8	265.8	367.5	359.3	118.3	163.8	53.1	27.2	91.4	171.7	38.9	15.9	53.2	68.9	94.9	188
18+5 222.5 312.5 557.5 277.5 392.8 426.5 113.2 171.5 189.1 29.9 187.9 247.8 44.2 18+18 268.8 282.5 547.5 277.5 487.5 425.4 132.8 158.9 88.3 28.4 189.6 228.3 48.1 5 255.8 277.5 542.5 335.8 373.2 123.3 168.9 85.4 118.9 228.3 481.6 21.3 5 187.5 238.8 447.5 385.8 382.9 76.9 97.9 59.3 81.5 193.9 334.7 17.7 5 269.8 285.8 382.9 76.9 97.9 59.3 81.5 193.9 334.7 17.7	ŝ·	5+18	-	267.5	525.8	267.8	465.8	414.8	188.6	161.5	88.7	29.5	111.5	7.622	38.6	12.9	48.6	47.3	78.3	188
18+18 268.8 282.5 547.5 277.5 487.5 425.4 132.8 158.9 88.3 28.4 189.6 228.3 48.1 5 255.8 272.5 542.5 362.5 335.8 373.2 123.3 168.9 85.4 118.9 285.3 481.6 21.3 5 187.5 230.8 447.5 385.8 385.9 76.9 97.9 59.3 81.5 193.9 334.7 17.7 5 269.8 342.5 352.8 588.9 128.1 159.9 67.9 116.6 119.9 384.4 22.3	IAA	18+5	-	312.5	557.5	277.5		426.5	113.2	171.5	189.1	29.9	187.9	247.8	44.2	12.1	43.7	45.9	69.4	188
5 255.8 272.5 542.5 362.5 335.8 373.2 123.3 168.9 85.4 118.9 285.3 481.6 21.3 5 187.5 238.8 447.5 365.8 365.8 362.9 76.9 97.9 59.3 81.5 193.9 334.7 17.7 5 187.5 288.8 342.5 352.8 588.9 128.1 159.9 67.9 116.6 119.9 384.4 22.3		18+18		282.5	547.5	277.5		425.4	132.8	158.9	88.3	28.4	183.6	228.3	48.1	12.9	47.8	59.9	72.1	188
5 187.5 238.8 447.5 432.5 385.8 382.9 76.9 97.9 59.3 81.5 193.9 334.7 17.7 5+5 269.8 285.8 342.5 352.8 588.9 128.1 159.9 67.9 116.6 119.9 384.4 22.3	U	s	255.8	272.5	542.5	362.5		373.2	123.3	168.9	85.4	118.9	285.3	481.6	21.3	9.72	51.1	38.7	48.1	188
5-5 268.8 285.8 288.8 342.5 352.8 588.9 128.1 159.9 67.9 116.6 119.9 384.4 22.3	Ē	- LO	187.5	238.8	447.5	432.5		382.9	76.9	97.9	59.3	81.5	193.9	334.7	17.7	24.4	57.9	22.9	29.3	188
	H#+ 200	S +5	268.8	285.8	289.8	342.5		588.9	128.1	159.9	6.79	116.6	119.9	384.4	22.3	38.3	39.4	39.5	52.5	198

V. seedl. = Whole Seedling. * = Dry weight / seedling

nc	
Ñ	
^	
0	
ri	

Treatments	3		Concent	Concentration Mg/gr.dry weight	Ug/gr.dry	weight			Tota	Total amount Mg/seedling	Mg/seedli	bu		×	x distribution	wo	x increa	x increase as related to the highest walue	ated to
		2	88		2	72 days		2	38		72 days	ays			72 days		Days	Days after sowing	ing
Substances	· sadd	days	days	Root	Stew	Leaves	W.seedl.	days	days	Root	Stea	Leaves	U.Seedl.	Root	Stem	Leaves	2	88	22
Control	50	45.8	82.83	188.8	81.8	6.83	76.9	18.6	26.9	15.1	7.8	13.6	36.5	41.4	21.4	37.3	58.9	73.7	188
	ıs	47.5	72.5	92.5	188.8	57.5	74.1	21.9	34.6	18.4	14.8	28.5	45.7	22.8	32.4	44.9	47.9	75.7	189
ŝ	18	58.8	58.8	75.5	92.5	67.5	68.5	25.1	28.7	8.9	6.3	15.5	38.7	28.9	28.5	58.5	81.8	93.5	188
	ın	38.5	48.8	78.8	82.5	58.8	62.4	15.8	24.6	6.3	7.9	18.5	24.7	25.5	31.9	42.5	63.9	9.66	188
IAM	18	42.5	58.8	8.25	67.5	57.5	63.9	14.3	28.6	7.9	6.8	13.2	27.1	29.5	22.1	48.7	52.8	76.8	188
	5+5	47.5	58.8	82.5	57.5	58.8	68.2	21.6	8.72	18.4	6.3	12.4	28.7	36.2	28.6	43.2	75.3	96.9	188
ŝ ·	5+18	49.8	58.5	88.8	57.5	45.8	58.1	29.6	38.5	13.5	6.4	12.4	32.3	41.8	19.8	38.4	91.6	4.4	188
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	18+5	48.8	53.8	88.8	58.8	58.8	68.2	24.4	29.1	15.7	5.4	13.8	34.9	6.4	15.5	39.5	6.69	83.4	188
	18+18	4.5	51.5	82.5	58.5	58.5	68.1	22.6	28.6	13.3	5.1	12.7	31.1	42.8	16.4	48.8	72.7	91.9	188
000	ın	67.5	68.89	92.5	92.5	58.8	68.3	32.6	35.5	14.6	28.3	38.6	73.5	19.9	38.5	41.6	4.4	48.3	188
Ŧ	ın	65.8	75.8	188.5	57.5	58.8	59.7	26.7	31.9	13.3	13.7	25.2	52.2	25.5	26.2	48.3	58.9	61.1	188
HI- COC	5+5	58.8	55.8	82.5	67.5	57.5	85.9	23.1	38.9	9.7	22.9	19.6	52.2	18.6	43.9	37.5	44.3	59.2	188

W.seedling = Whole Seedling.

* = TOtal amount /seedling Dry weight / seedling

22, d) Copper .

Substances ppm. days days Root Stem Leak Comtrol 8 115.8 127.5 155.8 148.8 282 GA: 5.18 12.5 128.8 158.8 165.8 192 GA: 5.18 12.5 128.8 158.8 165.8 192 CA: 5.18 125.5 158.8 158.8 125.8 192 TH 112.5 158.8 128.8 125.8 192 CCC CC 5 177.5 185.8 285.8 167.5 177 TH 5 185.8 285.8 187.5 178.5 152 CCC 5 177.5 185.8 285.8 167.5 177 TH 5 185.8 285.8 187.5 178.5 152 CCC 5 177.5 185.8 285.8 167.5 177 TH 5 185.8 285.8 187.5 178.5 152	Concentration Jg/gr.dry weight			Total	Total amount Ug/seedling	g/seed111	5ı		g X	X distribution	uo	the h	X increase as related to the highest walue	lue
Ppm. day# day# Root Stem 8 115.8 127.5 155.8 148.8 18 115.8 127.5 137.5 127.5 18 118.5 172.5 137.5 127.5 18 118.5 128.8 162.5 142.5 18 112.6 128.8 188.8 155.8 5+6 112.5 166.8 232.5 185.8 18+5 118.8 158.8 167.5 18+6 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 167.5 5 177.5 185.8 285.8 167.5 5 177.5 185.8 285.8 167.5 5 126.8 242.5 174.5	72 days		~	38		72 days	sh			72 days		Days	Days after sowing	ing
8 115.8 127.5 155.8 148.6 5 187.5 172.5 137.5 127.5 18 188.5 128.8 162.5 142.5 5 187.5 128.8 162.5 142.5 5+5 112.6 128.8 158.8 125.8 18+5 112.5 168.8 232.5 185.8 18+18 122.5 165.8 285.8 167.5 18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 177.5 185.8 242.5 174.5	Stem Leaves	W.seedl.	days	days	Root	Stem	Leaves	W.Seedl.	Root	Stem	Leaves	2	88	22
5 187.5 172.5 137.5 127.5 18 188.5 128.8 162.5 142.5 18 112.8 128.8 168.8 165.8 5+5 112.5 168.8 128.8 125.8 18+18 125.5 165.8 285.8 197.5 18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 177.5 185.8 285.8 182.5 5 177.5 185.8 242.5 174.5	148.8 282.5	174.7	47.4	8.89	23.3	13.9	46.8	82.9	28.1	16.3	52.5	57.2	82.9	188
18 188.5 128.8 162.5 142.5 18.8 188.8 165.8 155.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.8 125.5 125.8 125.5	127.5 198.8	165.5	49.7	82.3	15.3	18.9	67.8	182.8	15.8	18.5	66.5	48.7	88.7	198
5 187.5 188.8 188.8 168.8 165.8 5+5 112.6 128.8 158.8 125.8 5+18 125.5 168.8 232.5 185.8 18+5 112.5 168.8 285.8 197.5 18+6 118.8 158.8 187.5 178.8 18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 185.8 242.5 174.5	142.5 187.5	175.5	54.5	6.89	19.1	16.3	43.1	78.5	24.3	28.7	54.9	69.3	87.8	198
18 112.8 128.8 158.8 125.8 5+5 112.5 168.8 232.5 185.8 5+18 125.5 165.8 285.8 197.5 18+5 118.8 158.8 187.5 178.8 18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 145.8 242.5 174.5	165.8 192.5	183.8	44.2	E99	16.2	15.8	48.3	72.3	22.4	21.9	55.7	61.1	91.7	188
5+5 112.5 168.8 232.5 185.8 5+18 125.5 165.8 285.8 197.5 18+5 118.8 158.8 187.5 178.8 18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 185.8 242.5 174.5	125.8 182.5	162.4	37.6	49.5	15.8	11.2	41.9	6.89	22.9	16.2	6.89	54.6	71.8	188
5+18 125.5 165.8 285.8 197.5 18+5 118.8 158.8 187.5 178.8 18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 185.8 145.8 242.5 174.5	185.8 288.8	285.4	51.2	6.88	29.4	19.8	49.7	98.1	29.9	19.4	58.7	52.2	98.6	198
18+5 118.8 158.8 187.5 178.9 18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 185.8 145.8 242.5 174.5	197.5 195.8	198.5	6.52	9.66	34.6	21.8	53.7	118.2	31.4	19.8	48.7	68.9	98.4	188
18+18 122.5 155.5 285.8 167.5 5 177.5 185.8 285.8 182.5 5 185.8 242.5 174.5	178.8 145.8	164.8	- 6.53	82.3	38.7	18.4	39.9	94.9	38.7	19.4	42.8	58.9	86.7	188
5 177.5 185.8 285.8 182.5 5 185.8 145.8 242.5 174.5	167.5 177.5	184.1	62.2	87.5	33.1	17.2	45.1	95.4	34.7	17.9	47.3	65.2	91.7	88
5 195.8 145.8 242.5 174.5 152	182.5 152.5	168.7	85.8	189.3	32.3	55.9	93.4	181.6	17.8	38.8	51.4	47.2	5.89	98
	174.5 152.5	172.1	43.1	61.7	32.1	41.5	76.8	158.4	21.3	27.6	51.1	28.7	41.8	88
CCC+#H 5+5 177.5 195.8 288.8 155.5 122	155.5 122.5	194.3	82.8	189.5	23.4	52.9	41.7	118.8	19.8	44.8	35.3	5.69	92.8	198

W. secedl.= Whole seedling

* = Total amount / seedling
Dry weight / seedling

Table (23): Effect of soaking of cv. El-Amar apricot seeds in some growth regulators on the balance of different nutrients in the terms of percentage to the total amounts/seedling during different periods of growth .

		to th	101	tal an	Wounts	Sysee	filing	auri	to the total amounts/seedling auring allie	I GLOUP		ber roas	46 10	37 76		Ī											
								Mac	Macromutrient	rient	1 1										Mic	Micromutrient	lent				
Treatments	ts			2				1	38				2	72 days	U			2				38	-		22	days	
Substance	bbw	z	ρ,	×	3	Mg	z	A -	×	3	E B	z	ρ.	×	3	F.	0	£	uZ	3	- P	m Zn	3	E4	£	Z	3
Control	1	62.9	89.5	5 12.6	12.6 88.8 3.2	3 3.2		9 18.	58.9 18.3 17.8	8 18.3	3.4	48.7	12.7	26.8	15.6	4.2	58.9	22.5	5.2	13.3 5	54.9 2	26.4 5.2	2 13.4	4 54.6	6 25.6	6.8	13.8
	ro	64.4	12.5	11.6	11.6 88.3 3.3	3.3	1	9 11.	55.9 11.9 17.9	9 18.9	3.3	41.3	12.2	27.5	15.3	7.1	56.6	22.6	6.4	14.5 68.9		18.1 6.2	2 14.8	8 54.6	6 27.8	3 5.2	12.7
s ^	18	67.4	89.6	8 12.3	67.4 89.8 12.1 87.2 3.5	3.5	58.8	8 88.	58.8 88.8 17.6 1	6 11.7	3.2	41.4	11.1	1 26.6	16.8	1:1	56.7	22.9	6.4 1	13.9 68	8.9 23	3.3 4.6	11	.2 58	4.	3 4.6	
	ıs	69.8	11.5	5 88.8	3 87.8	3 1.9	64.	2 88.	1 17.	69.9 11.5 88.8 87.8 1.9 64.7 88.1 17.6 87.7	7 1.4	44.6		13.8 26.9 12.4 3.1	12.4	1	58.3	22.7	4.9	13.8 58.3	8.3 24	4.4 4.7	7 12.6	23	.2 24.	3 4.5	13.8
IAA	18	65.9	89.5	5 12.	65.9 89.5 12.9 88.3 3.3	3.3	56.8	8 18.	56.8 18.8 18.1 1	1 11.2	3.8	42.8	11	5 28.7	13.8	3.2	57.3	25.1	4.9	12.8 5	57.9 26	6.8 4.7	7 11.3	53	.8 28.	.3 3.9	18.8
	5+5		184.	8 14.	3 87.3	3 2.9	58.	5 88.	78.8 84.8 14.3 87.3 2.9 58.5 88.2 19.8	8 18.6	5 2.8	-	41.7 13.1	1 27.8	15.4 2.8	2.8	58.5	25.7	4.7	11.1 54.9	54.9 26	€. 4.	.5 14	3 25	.1 25.	8.4.3	14.8
8	5+18		88	3 14.	67.5 85.3 14.3 89.5 3.4 63.6 9.3	13.4 4.6	63.1	6 9.3	3 13.6	6 18.8	3 3.3	48.5	12.7	7 26.6	17.1	3.1	59.5	28.5	5.6	14.4 54.1 25.4	14.1 2	5.4 4.8	15	2 26	.5 26.	9 3.7	12.9
I- H	18+5	67.3	89.	9 89.	1 18.5	5 3.2	58.	4 11.	67.3 89.9 89.1 18.5 3.2 58.4 11.3 15.6	6 11.8	8 2.9	39.3	14.4	4 26.6	17.2	2.5	68.1	23.5	5.1	11.4	52.5 2	28.8 4.	.9 13	.8 52	4 31.	2 4.4	12.8
	18+18	18+18 68.7 86.1 12.9 89.5 2.7 57.1 18.7 17.9	1 86.	1 12.	9 89	5 2.7	52.	1 18	7 17.	9 11.8	8 2.5	39.2	14	5 29.8	.8 14.5	2.8	56.2 26.7	26.7	4.6	12.6 54.9 26	34.9 2	8.	.7 14	.3 54	5 28.	9 4.1	12.5
33	ro -	166.1	189	6 11.	1 89.	9 3.2	53.	1 12	66.1 89.6 11.1 89.9 3.2 55.1 12.6 17.8	8 11.1	1 3.8	42.8	12	.8 27.9	9 15.2	2.9	57.5	21.7	5.2	15.1	55.6 2	23.4 5.	2 1.	9 57	.3 26.	1 4.8	11.8
至	s -	163.8	1 88	8 16.	7 87.	3 4.2	57.	1 18	63.8 88.8 16.7 87.3 4.2 57.1 18.3 18.2	2 18.3	3 3.9	38.1	12	5 26.2	.2 18.3	2.9	68.3	68.3 28.8 7	12	11.7	56.6 2	11.7 56.6 22.2 7.2	2 13	.9 53	8 28.	8 4.5	12.9
CCC+MH	5+52	9.79	. 98	2 13.	3 89.	4 3.5	63.	2 87	67.6 86.2 13.3 89.4 3.5 63.2 87.8 14.5	5 11.8	3.4	38.5	4	.2 29.9	9 14.8	2.6	48.7	27.4	5.3	18.6	52.8 2	25.5 4.9	9 17.	.5 52.8 38	8 38	.3 5.2	11.7
			-	-	-	-	-	-		-	-	-	-														

Experiment III

Experiment III:

4.3. Effect of Zn, Mn and Fe Deficiencies on Germination, Growth and Some Chemical Composition of Apricot cv.El-Amar Seedlings.

There is no doubt that micro-nutrients play an important role in plant metabolism which leads to the production of healthy growing plants. However, very little is Known about the presence or absence of Zn, Mn and Fe in the media on the germination or on the seedling growth behaviour of apricot, as the problem of micro-nutrients deficiency under the natural Egyptian conditions increased from year to year during the last few decades. It was also concluded from the previous experiment that many nutrients uptake was varied greatly under different treatments with growth regulators. Accordingly, the present experiment aimed to getting some information about the response of apricot cv. El-Amar to the presence or absence of Zn, Mn and Fe during germination and seedling growth. The sand culture techniques were used under controlled conditions.

Irrigation with Hoagland & Arnon solution of different treatments was as follows:

- 1- Irrigation with complete Hoagland's solution (C.S).
- 2- Irrigation with Hoagland's solution without Zn (-Zn).
- 3- Irrigation with Hoagland's solution without Mn (-Mn).
- 4- Irrigation with Hoagland's solution without Fe (-Fe).

During this experiment germination percentage and rate were recorded. Also, different aspects of seedling growth (included roots, stems and leaves) were measured as well as the photosynthetic pigments. In addition, carbohydrate & protein fractions; total amino acids (at 120 days after sowing) and some nutrient

contents were estimated.

4.3.1. Germination Process:

Germination of apricot cv. El-Amar seeds in the terms of percentage and rate index as affected by the presence or absence of Zn, Mn and Fe are tabulated in Table (24).

There is no clear variation in the percentage of germinated seeds with the presence or absence of the tested micro nutrients. Since, slight reduction of germination percentage was existed in -Zn and in -Mn treatments while, slight increase of germination percentage in -Fe treatment was observed.

The stimulation effect of -Fe on germination may indicate that the presence of Fe in the media may have some toxic effect on the germination process, thus its absence seemed to stimulate the germination process. With regard to -Mn and -Zn, it must be mentioned that both of these heavy metals are essential nutrient elements but the absence of any one may cause the unbalance between different nutrient elements in seed tissues. Thus such unbalance may bring an inhibiting effect on germination percentage.

Table (24): Effect of Zn, Mn and Fe deficiency on germination process of apricot cv. El-Amar seeds in terms of germination percentage and rate index.

Irrigation	8	of ger	minatio	on	Total % of	Germination rate
with or with out	12	17	21	30 days	germination	index
c.s	15.0	30.0	30.0	5.0	80.0	18.38
-Zn	12.5	32.5	30.0	2.5	77.5	18.16
-Mn	10.0	32.5	28.8	7.5	78.5	19.03
-Fe	15.0	53.0	27.5	5.0	82.5	18.21

A mineral nutrient can function as a constituent of an organic structure, as an activator of enzyme reactions, or as a charge carrier and osmoregulator (Marschner, 1986). Of the micronutrient transition metals (manganese, iron, copper, zinc and molybdenum) manganese has the lowest complex stability constant and this forms the weakest bonds (Clarkson and Hanson, 1980). It can therefore replace Mg²+ in many reactions- for example, its role as a bridge between ATP and enzyme complexes (e.g. in phosphokinases and phosphotransferases). From numerous studies it has been established that germination is enzymes controlled process. Manganese activates a number of enzymes in vitro, particularly decarboxylases and dehydrogenases of the tricarboxylic acid cycle. The specific requirement for manganese as mineral nutrient, however, is presumably related to its tightly bound form in metalloproteins, where it acts as a structural constituent, as an active binding site, or, like iron, as a redox system (Marschner, 1986).

In general zinc, manganese and iron are required for the activity of various types of enzymes primarily including those key enzymes of germination process. Therefore, it is not surprisingly that Zn, Mn and Fe deficiencies are associated with an impairment of carbohydrate, protein and oil metabolism. Thus different reactions and subsequent steps leading to germination should be affected under deficiency of these micro-nutrients.

4.3.2. Seedling Growth:

4.3.2.1. Main Stem Length: Table (25):

It could be revealed from the data that the presence of all nutrient elements is very important for getting the highest stem length of seedling during most periods

of growth. The absence of any micro-nutrient from the media slightly decreased the main stem length under the values of those supplied with all nutrients. This may indicates that seeds cotyledon have a good reserve of many micro-nutrients such as Zn, Mn and Fe for maintaining the growth of main stem. However, the absence of any one may slightly decrease the main stem length under those treated with complete nutrients.

It could also be revealed that the presence or absence of any tested nutrient regulated the rate of main stem length.

During the early periods of seedling growth the variation between the length of main stem was not clear, however, during the late two periods the variation was more obvious between those supplied with all nutrients or without any one of micronutrients. This could be discussed on the basis that the reserve nutrients during the early periods were sufficient for maintaining the natural growth of main stem, however, such nutrients were not sufficient during the last two periods of growth. Thus, the supplying of different elements during the later period is essential for the growth of main stem.

4.3.2.2. Internode Number of Main Stem: Table (26)

It could be revealed that changes of internode number behaved the same trend of main stem length. This adds more information about the behaviour of stem length as stem length is the expression of internode number and the main length of internode itself. Accordingly, our study was extended to estimate the average of internode length: Table (27).

It could be revealed that both internode number and length affected the

Table (25): Effect of Zn, Hn and Fe deficiency on main stem length and its percentage increase in relation to the highest value at different periods of apricot cv. El-Amar seedlig growth .

Irrigation				!		stom le							×inc:			in s		eng tl
without		30	1	5	6	55		30	10	90	13	20	30	45	65	88	100	120
C.S	8.6	±0.69	16.9	10.94	23.2	11.41	31.7	±1.33	42.5	11.58	50.7	11.88	16.9	33.3	45.8	62.5	83.8	100
-Zn	7.4	±0.50	16.6	±0.54	22.1	±0.6 8	30.9	±1.22	40.1	11.44	48.8	±1.64	15.4	34.6	46.8	64.4	83.5	100
-Hn	8.1	±0.49	16.2	10.81	21.5	<u>*</u> 8.92	29.4	±0.80	37.5	11.12	46.8	±1.36	17.6	35.2	46.7	63.9	81.5	100
-Fe	8.5	±0.51	16.9	10.74	23.4	11.08	38.4	11.13	38.2	11.39	49.7	11.61	17.1	34.0	47.1	61.2	76.9	100

Table (26): Effect Zn, Mn and Fe deficiencey on the internodes number of main stem and its percentage increase at different periods of apricot cv. El-Amar seedling growth .

Irrigation	1			Inter		es numb		f main	ton				×Incr		of ir		ing	
with or without	-	30	ī	45		65	1	88	1	100		120	30	45	65	88		120
	140	±0.68	115	±0.63	19	±0.78	24	±0.98	30	±0.89	43	11.05	29.4	44.1	55.9	78.6	88.2	100
	1				19	±0.61	26	10.90	38	±0.85	36	10.89	30.6	44.4	52.B	72.2	83.3	100
-Zn	1	10.61							28		-	10.85	33.3	48.5	45.5	72.7	84.8	100
-Hn			!	18.62			-		38		-	11.41	36.4	48.5	57.6	72.7	98.9	100
-Fe	12	10.46	16	10.48	19	±0.55	24	_0.60	30	_0.00	155		1		1	1	1	-

Table (27): Effect of Zn, Hn and Fe deficiency on the invernode length of main stem and its percentage increase at different periods of apricot cv. El-fmar seedling growth .

Irrigation			Days afte				xincr			terno		ingt)
without	38	45	65	88	100	128	38	45	65	88	100	128
C.S	0.80 10.85	1.09 10.04	1.18 10.84	1.31 10.07	1.42 10.05	1.47 10.07	54.4	73.5	80.3	89.1	96.9	100
-Zn	0.66 10.02	1.01 ±0.02	1.09 10.02	1.19 10.03	1.31 10.03	1.32 10.02	50.0	76.5	82.6	98.2	99.2	100
-Hn	0.73 10.02	0.97 10.02	1.13 18.84	1.22 10.03	1.34 18.84	1.40 10.04	52.1	69.3	80.7	87.1	95.7	100
-Fe	8.69 ±8.83	1.84 18.82	1.19 18.83	1.24 10.05	1.29 ±0.05	1.47 18.82	46.9	70.7	88.9	84.4	87.8	100

length of main stem as these parameters showed the same trend.

4.3.2.3. Number of branches per seedling at 120 days from sowing:

Table (28 and Figs. (1, 2 & 3) show that, the presence or absence of any micro-nutrient seemed to affect the production of lateral branches, i.e. affected the development of lateral buds. Absence of Zinc stimulated the development of lateral buds over any other treatments Fig. (1). It is well known that zinc affected IAA formation and that control lateral bud development, i.e. may have a role in apical dominance.

4.3.2.4. Main stem diameter at 120 days from sowing (Table 28).

It could be revealed that the presence or absence of any micro-nutrient affected seedling stem diameter. However, the absence of any of them slightly minimized the stem diameter, as Fe or Zn deficiency in the growing media was superior than - Mn in this respect.

Accordingly, the presence or absence of one of the tested nutrients play a part in seedling stem diameter, and their effects were extended to stem thickness, beside other vegetative growth criteria.

Data of the present study showed also that Zn deficiencies decreased the apical dominance of main stem of apricot seedlings and the outgrowth of lateral buds took place table (28) and Figs. (1,2 & 3). These results were previously established by (Skoog, 1940) who found that the auxin content of the shoot apices of Zinc-deficient plants is extremely low. Low auxin levels in zinc-deficient plants may be the result of high IAA oxidase activity (Skoog, 1940). Furthermore, the

Fig.: (1)

Shows the effect of Zn deficiency on the growth of cv. El-Amar apricot seedlings at 120 days after sowing.

- a) Control plant (irrigated with complete nutrient solution).
- b) -Zn treatment (irrigated with complete nutrient solution without Zn).

Fig. :(2)

Shows the effect of Mn deficiency on the growth of cv. El-Amar apricot seedlings at 120 days after sowing.

- a) Control plant.
- b) -Mn treatment (irrigated with out Mn).

auxin level decreases before the appearance of deficiency symptoms, and after the supply of zinc is restored. Also, in maize mild Zinc-deficiency symptoms can be corrected by supplying either Zinc or tryptophan (Salami and Kenefick, 1970).

Table (28) Effect of Zn, MN and Fe deficiency on branches number and diameter of main stem of cv. El-Amar apricot seedling at 120 day after sowing.

- Treatments	c.s	-Zn	-Mn	-Fe
Branches number	2 ± 0.62	5 ± 0.67	3 ± 0.48	4 ± 0.60
Diameter of main stem (cm)	0.35 ± 0.01	0.48 ± 0.01	0.51 ± 0.01	0.48 ± 0.01

According to the results of *Morgan* <u>et al</u>. (1966) and (1976) IAA oxidase activity is much higher in both manganese deficient tissues and those tissues with excessive manganese levels.

In addition, iron deficiency is caused by both inhibited uptake of iron (Isermann, 1975) and competition (or an imbalance) between manganese and iron at the cellular level. So, Fe-deficiency may bring the same effect of decreasing the apical dominance in Fe-deficient apricot seedlings.

4.3.2.5. Leaves number per seedling:

Data of (Table, 29) revealed that different treatments affected main stem length, number of internodes, also their effect extended to the number of leaves on main stem. Whole plant leaves number was also be controlled under different treatments. Absence of zinc stimulated higher leaves production. As this treatment

Fig.: (3)

Shows the effect of Fe deficiency on the growth of cv. El-Amar apricot at 120 days after sowing.

- a) Control plants.
- b) -Fe treatment (irrigated without Fe).

Table (29): Effect of Zn, Mn and Fe deficiency on the number of leaves, percentage increase and periodic increase percentage at different periods of apricot cu. El-Amar scedling growth .

Irrigation			Nun	aber	Number of leaves on main stem	o son	n main	st :	E :				Perc	Percentage increase	re in	creas	p	-	Period	Periodic increase percentage	ise perce	entage .	
with or				4	Days after soulng	ter s	bu I mo					-			-					(1) 11	(65-59)		188-128
without	1	38	45		65		88	_	188	77	128 days	38	45	65	88	188	128	(8-38)	(38-45)	(42-p2)	50 58		
						1		1		1		1	-	1	1	1	1	-		44 4	14.3	17.1	11.5
000	12	1 12 +8.49 16 +8.63 28 28.78 25 28.98 31 28.	+8.63	28	±8.78	25	48.98	31	£8.83	35	.89 35 1.85 34.3 45.7 57.1 71.4 88.5 188	34	3 45.	52	1 71.	4 88	5 188	34.3	11.4	1777	2		
	1	-	1	1				-				1	1	1	1	1	1	÷	1	0	16.4	18.9	16.2
	12	12 +8 61 17 18.53 21 18.51 27 18.95 31 18.	+8.53	21	±8.51	22	±8.95	31	±8.82	32	37 ±8.89 32.4 45.9 56.8 72.9 83.3 188	32.	45.5	3.99	3 72.	9 83	3 188	32.4	13.5	10.3	1.01		
u7_	77	1							H				1		-	1	1	÷				44	14.7
	42	12 +8 54 17 +8.65 28 28 28 28 25 29 37 29 28.66 34 28.85 35.3 58.8 58.8 73.5 85.3 188	±8.65	28	±8.96	25	±8.37	29	\$9.8€	34	±8.85	32.	3 58.8	58.	3 73	5 85	3 188	32.3	14.7	88.8	13.6	0.11	
	77											1	1	1	1	1	1			1	6 77	47.2	11.4
E	13	13 18.46 17 18.48 28 18.58 25 18.68 31 18.	+B.48	28	±8.58	23	±8.68	3 31	. ±8.88	38	35 ±1.82 37.1 48.6 57.1 71.4 88.6 188	37.	1 48.6	5 57.	1 71	4 88	.6 188	37.1	11.5	2.88	74.3	1	

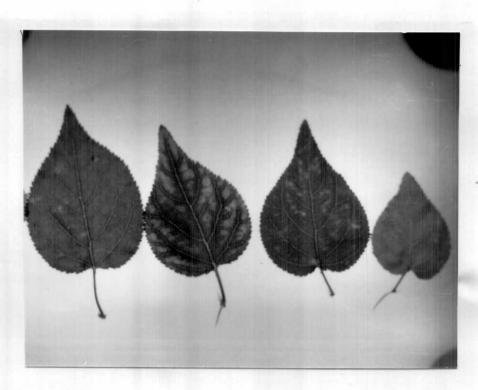


Fig.: (4) a b c d

show different symptoms of Zn, Mn and Fe deficiencies on leaves of cv. El-Amar apricot seedling at 120 days as a comparison with complete nutrient solution.

- a) Control.
- b) -Zn.
- c) -Mn.
- d) -Fe.

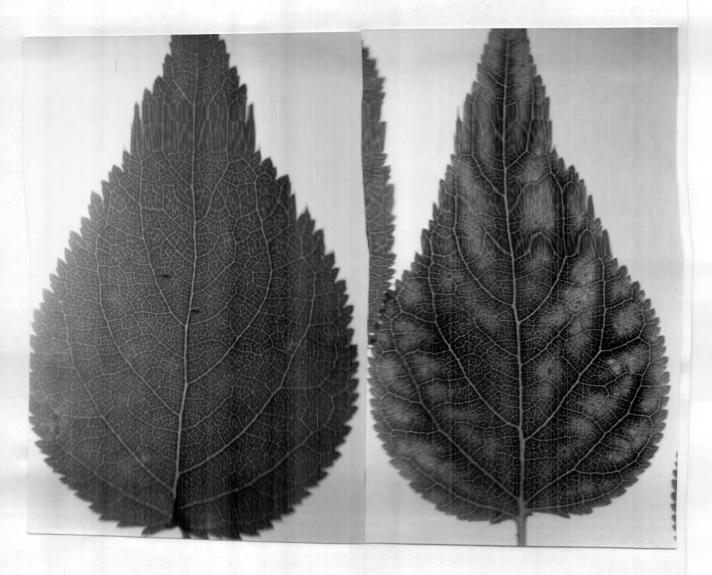


Fig.: (4)

a

b

- a) Control.
- b) -Zn.

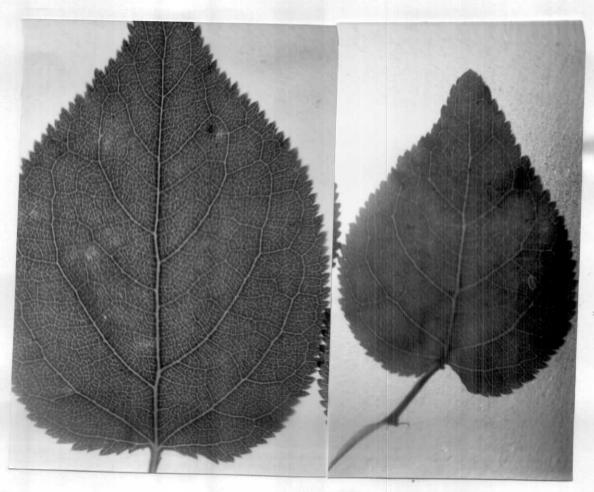


Fig (4)

c

d

- c) -Mn.
- d) -Fe.

greatly declined the apical dominance and stimulated more lateral branch production. The same conclusion was also noticed with regard to the absence of Fe.

The highest percentage of leaf formation occurred during the first period of growth (30 days after sowing) as more than 30% of leaves were expanded during such period. In addition, the rate of leaf production was slightly increased during the first period, then greatly declined during the last three periods (i.e. 80, 100 and 120 days).

The decrease of stem length resulted under Zn deficiency could be attributed to the stunted growth due to shortening of internodes and the drastic decrease in leaf area. This effect on growth was accompanied with chlorosis symptoms on the apricot leaves of Zinc-deficient seedlings Fig. (4). The above mentioned results were also recorded with many other plants, in cereals such as maize, chlorotic bands along the midrib and a red, spot like discoloration on the leaves often occurred (Rahimi and Bussler, 1979). Also Schmidt et al., 1972) found the same symptoms in hop leaves (Humulus scandens).

In the case of Mn deficiency, (Fig., 4 c) reduction of main stem length of apricot seedlings were also found in other plants (Abbott, 1967 and Neumann and Steward, 1968). Also, the resulted effect of Fe deficiency gained with apricot seedlings (Fig., 4 d) was formerly registered with many plant species. The most pronounced effect of Fe deficiency includes inhibition of elongation and increase of stem diameter (Römheld and Marschner, 1981 a).

4.3.3. Photosynthetic Pigments:

As shown in Table (30) the absence of Zn, Mn or Fe greatly depressed

photosynthetic pigments formation, and that plays an important role in the growth of seedlings. The most depressive effect was gained when plants grown under Fe deficiency as Fe plays an important indirect role in chlorophylls formation. In addition, different omission of Zn, Mn or Fe stimulated the higher proportion of chlorophyll a to chlorophyll b over those corresponding ones which received complete nutrients.

The depressive effect was extended to the photosynthetic assessory pigments, i.e. carotenoids. The role of Zn, Mn or Fe on photosynthetic pigments was gained from their role as thy function as activators for different enzymes leads to chlorophylls and carotenoids synthesis and activities. For example bound zinc combined in carbonic anhydrase (CA) enzyme which catalyzes the hydration of CO₂. The enzyme is localized both in the cytoplasm and in the chloroplasts (Sandmann and Böger, 1983). The function of CA, particularly that of chloroplast CA, in photosynthetic CO₂ assimilation was investigated by Randall and Bouma (1973) and Edwards & Walker (1983). They reported that under conditions of extreme zinc deficiency CA activity is negligible and the CO₂ assimilation per unit leaf area is affected.

In the case of Mn; the most well known and extensively studied function in green plants is its involvement in photosynthetic O_2 evolution. Under the critical deficiency levels of manganese, net photosynthesis and chlorophyll content decline rapidly, whereas rates of respiration and transpiration remain unaffected (Ohki, et al., 1981).

With regard to Fe it is combined in the well-defined iron-containing protein, the cytochromes (Sandmann and Böger, 1983). Cytochromes are constituents of the redox systems in chloroplasts and mitochondria. Therefore, the inhibition of

Table (38): Effect of Zn, Mn and Fe deficiencyon the photosynthetic pigments of apricot cv. El-Amar seedling at 128 days after sowing (expressed as mg/gr. fresh weight or as mg/seedling.

4	Chloro	phylls m	Chlorophylls mg/gr. fresh w. Carot.	sh w.	Carot.			Total ;	Total pigments mg / seedling	mg / se	. (3
Treatments	Ch1.	Ch1.	Total Chl. Chl. chl.	Chl.	mg/gr.	chl./	Ch1.	ch1.	Chl. Chl	Chl.	Carot.
c.s	1.978	8.684	2.662 2.892	2.892	1.824	2.599 11.116	11.116	3.844	3.844 14.968	2.892	5.755
-Zn	1.298	8.378	1.676	3.434	8.724	2.315	2.315 7.985	2.382	2.382 18.287 3.434	3.434	4.489
-Mn	1.372	8.343	1.715 4.688	4.668	8.761	2.254	7.766	1.941	1.941 9.787 4.881	4.881	4.387 2.254
-Fe	8.873	8.266	1.139	3.282	3.282 8.567 1.948 5.631 1.716 7.347 3.281	1.948	5.631	1.716	7.347	3.281	3.786 1.948

Chl. = Chlorophyll Carot. = Carotinoides

chlorophyll formation under conditions of iron deficiency is, at least in part, the result of impaired protein synthesis. The requirement for iron in protein synthesis is reflected in leaves by a drastic decline in the number of ribosomes—the sites of protein synthesis (Lin and stocking, 1978) and an increase in the amino acid concentration of chlorotic leaves (Gilfillan and Jones, 1968). A peculiarity of iron deficiency is a greater decline in protein synthesis in the chloroplasts of leaf cells than in the cytoplasm. In this respect, Perur et al. (1961) found that in maize leaves suffering from severe iron deficiency, the total protein content was 25% lower than the normal value, whereas the chloroplast protein content was 82% lower. These differences indicate that the synthesis of certain chloroplast proteins, most likely structural proteins of the grana, in particularly impaired (Machold, 1972 and Funkhouser and Price, 1974).

4.3.4. Dry weight in different plant organs at 120 days:

As shown in table (31) it could be concluded that leaves possessed the highest proportion of dry weight followed mostly by roots while stems were mostly the lowest in this connection.

Absence of Zn or Mn seemed to decrease the dry matter formation in different plant organs and hence plant growth especially root growth. The effect of Mn, Zn and Fe absence on dry weight was extended to the dry weight distribution in different plant organs. This means that the absence of Zn or Mn seemed to affect the growth and dry matter distribution in different plant organs.

Table (31) Effect of Zn, Mn and Fe deficiency on the dry weight average of different seedling organs of apricot cv. El-Amar seedling at 120 days after sowing.

Treatm- ents		Average gm/	dry weig seedling		seedli	l.w.of di ng organ seedling	s to the
	Root	Stem	Leaves	Whole seedling	Root	Stem	Leaves
c.s.	1.7889	1.5123	1.8207	5.1219	34.9	29.5	35.5
-Zn	1.6516	1.5316	1.8587	5.0419	32.8	30.4	36.8
-Mn	1.6559	1.4521	1.8164	4.9244	33.6	29.5	36.9
-Fe	1.8015	1.9516	2.0541	5.8072	31.0	33.6	35.4

On the other hand, absence of Fe seemed to stimulate slightly different plant organs dry weight. In spite of that, Fe deficiency disturbed dry weight distribution in different plant organs. Since, root dry weight proportion was less than the corresponding ones of complete nutrient treated plants, while dry weight proportion was higher. It must be mentioned that the omission of micro-nutrients, as a general, is not complete under sand culture technique, also the large seed like apricot contains some amounts of micro-nutrients as well as the used sand is also considered as a source of some micro-nutrients beside the used pure nutrient chemicals (Table 31).

As previously mentioned and as will be discussed later the absence of Zn, Mn and Fe greatly affected the growth of apricot seedlings; hence this obviously affected mineral accumulation, net photosynthates and in general metabolism processes. In agreement with this, dry matter accumulation is also affected with the omission of these micro-nutrients the decline of dry matter accumulation under deprivation of Zn and Mn obtained in the present study with apricot seedling was also found in

many plants (Marschner, 1986).

With regard to be deficiency the increase of dry matter accumulation in iron-free treatment as shown in (Table, 31) may be related to the developed branches under such conditions. In addition, the accumulation of many organic compounds such as organic acids (Brown et al., 1971; Venkat-Raju et al., 1972) riboflavin (Schlee et al., 1968; Nagarajah and Ulrich 1966 and venkat-Raju et al., 1972) phenolic and lignin compounds (Mueller and Beckman, 1978; Römheld and Marschner 1981 b; Olsen et al., 1981) is a well-documented general phenomenon under conditions of iron deficiency.

4.3.5. Carbohydrate fractions:

Tables (32, a, b & c) show that absence of Zn, Mn or Fe stimulated slightly reducing sugars, and the most pronounced effect was gained when Fe was lacking, when compared with those received complete nutrient solution, and the *vice versa* was gained with regard to non-reducing ones. Polysuccarides, i.e. hydrolyzable carbohydrate was at its lowest amounts when plants received complete nutrients. However, total carbohydrate concentration was superior under complete nutrient treated plants. The absence of Fe reduced greatly this accumulation.

As mentioned before different treatments affected photosynthetic pigments formation and that plays an important role in the accumulation of photosynthetic products, i.e. sugars and its related compounds.

It must be mentioned here that the transformation of different carbohydrate fractions is in complete dynamic changes, as they may be translocated, consumed, utilized in different plant metabolic processes. Under the absence of any micronutrient seemed to disturb or alter any one of the above mentioned dynamic process and hence regulate plant growth behaviour.

The above mentioned interpretation; when different carbohydrate fractions were calculated as concentration (mg/gr dry weight) or as the absolute amounts per plant organ (mg / seedling).

With regard to the percentage distribution in different plant organs it could be revealed that the proportion of different fractions was an expression of the net accumulated fraction at the sampling date. However, the absence of Zn, Mn or Fe disturbed greatly the accumulation proportion of different fractions.

Also, it is well documented that zinc is required for the activity of various enzymes including those combined in carbohydrate metabolism. Therefore, it is spectable that zinc deficiency only greatly affected carbohydrate metabolism. A direct connection between zinc nutritional status and starch formation has been found only in bean (Jyung et al., 1975), where zinc deficiency led to a decrease in both starch contents and starch synthase activity. As a rule, however, the carbohydrate content of leaves is either unaffected or even increased by zinc deficiency as a result of the concentration effect caused by impaired growth (i.e. lower sink activity). Furthermore Rahimi and Bussler (1978) reported that in extreme cases of zinc deficiency this can lead to excretion of sugars at the leaf surface. Generally sugars and starch accumulation in zinc deficient plants supports the view that zinc deficiency induced changes in carbohydrate metabolism is not primarily responsible for either growth retardation or the visible symptoms of zinc deficiency.

Although, manganese deficiency has the most severe effect on the level of soluble carbohydrates, which is drastically reduced, particularly in the roots

Total (32,a):Effect of Zn, Hm and Fe deficiency on the carbohydrate fraction content in different seedling organs as well as whole seedling of apricot cv. El-Amar at 128 days after sowing . (expressed as mg/gr. dry matter)

in the from	-	Reducin	Reducing sugars		Non	Non-reducing	ing sugars	Lr.S	Tot	Total soluble	ble sugars	ars	Hydro	Hydrolizable carbohydrate	carboh	drate	Tot	Total car	carbohydrate	te
Irrigation			0													1				
with or	Root	Sten	Leaves	Root Stem Leaves W.see,"	Root	Stem	Leaves W. see, Root	V.see.	Root	Stea	Leaves	E. see.	Root	Stem	Leaves	V.see.	Stem Leaves W. see, Root Stem Leaves W. see, Root Stem Leaves W. see,	Sten	Leaves	. 200
			-		-		-	-		1		1	100	300	405 00	14 630	22/ 25 20 00 002 44 204 25 473 25 339 75 248 24	473 25	339 75	248 24
c.s	42.88	28.25	42.88 26.25 65.25 46.68		141.75	128.75	157.58	141.15	183.75	147.86	25.63	187.83	141.75 128.75 157.58 141.15 183.75 147.88 225.75 187.83 21.88	62.629	103.00	11.200	107			
		-	-								200		07 000	35 00+	445 59	103 34	x 22	199 58	262 58	214.13
-Zn	57.75	36.75	57.75 36.75 68.25 55.24	55.24	842.88	842.88	878.75	855.55	899.75	a.8.6	147.00	118.03	873.50	120.13	200	10.507	942.88 942.88 978.75 855.55 899.75 878.75 878.75 878.50 116.75 873.50 426.75 426.50 426.75			
			-	1	-						1	100	2000	Je 000	00 +00	CF 600	204 75	218 88	109 99	299 49
F	52.58	28.25	52.58 26.25 78.75 54.44	54.44	842.88	863.88	889.25	965.62	894.58	889.2	168.82	128.86	27.811	128.65	92.1.20	21.000	942.98 963.88 989.25 965.62 994.58 989.25 158.88 128.65 118.25 128.68 128.65 128.68 128.65 128.68 128.65 128.68 128.65 128.68 128.65 128.68 128.65 128.65 128.68 128.65 128.68 128.65 128.68 128.65 128	0.044		
	-	-		-	-	1						-	-	-	20 000	62 220	300 300	104 25	20 57+	104 59
-Fo	78.75	52.58	78.75 52.58 78.75 69.93	69.93	894.58	842.88	847.25	868.14	173.25	894.5	128.8	138.87	95.26	57.55	647.750	76.000	894.58 842.88 847.25 868.14 173.25 894.58 128.88 138.87 52.58 8959.75 857.50 805.52 805.50 17.55 857.55 857.55	77.5		

* Whole seedling - Total amount/seedling

Dry weight/seedling

Total (32,b): Effect of Zn,Mm and Fe deficiency on the total amount of carbohydrate fractions in different seedling organs as well as whole seedling of apricot cu. El-Amar at 128 days after sowing .

Invidation	_	Reducing sugars	g sugar	şı.	Mo	Non-reducing	ing sugars	ars	Tota	al solu	Total soluble sugars	ars	Hydro	lyzable	Hydrolyzable carbohydrate	drate	IC	Total carbonydrate	Domyar	ate
				24.5							1						1			:
with or	Root	Stem	Leaves	Stem Leaves W.see.	Root	Ston	Leaves W. see	N. 300	Root	Stea	Leaves	Stem Leaves W. see.	Root	Sten	Stem Leaves W.see.	V. see.	Root	Sten	Leaves	. 100
				-	-	1	1	-				10	1	0,000	***	CF 030	06 336	262 84	692 49	1729 48
c.s	875.13	839.69	124.28	38.622	3 253.58	182.6	875.13 839.69 124.26 239.88 253.58 182.61 286.76 722.95 328.91 222.31 411.82 962.94 837.57 839.89 124.26 239.88	722.95	328.91	222.31	411.82	962.84	837.57	839.69	131.16	200.13	200:00	10.202	1	
				1	-	-	-	-					1			-	**	200	402 04	4970 69
u2-	85.38	856.29	125.86	5 278.5	3 869.37	7 864.3	895.38 856.29 125.86 278.53 869.37 864.33 146.37 288.87 164.75 128.61 273.23 558.59 121.39 184.94 211.68 52.13 869.37	288.87	164.75	128.61	23.23	558.59	121.39	184.34	214.68	10.126	11.007	200.00	101.101	100
					-	-	-	1									-	, ,	200	00000
-Fr	886.93	838.12	143.8	1 268.85	9 869.5	5 891.4	886.93 838.12 143.84 268.89 869.55 891.48 162.11 323.14 156.48 129.59 385.15 591.22 182.56 175.34 838.14 396.84 339.25 384.94 343.23 838.1	323.14	156.48	129.55	385.15	591.22	182.56	175.34	838.14	396.84	339.85	384.94	343.63	3287
				-	-	-	-	-	-						-	-	0, ,0,	00 000	200	37 1711
-Fe	141.87	182.46	161.78	\$ 486.8	9 178.2	4 881.9	141.87 182.46 161.76 486.89 178.24 881.97 897.86 349.27 312.11 184.43 258.82 755.36 894.58 194.67 897.86 386.31 486.69 373.69 373.69 353.67	349.27	312.11	184.43	258.82	755.36	894.58	194.67	837.86	386.31	400.03	373.83	333.00	

W. see. = whole seedling

Table (32,c):Effect of Zn, Mn and Fe deficiency on the percentage distribution of carbohydrate fractions in different seedling organs as well as whole of apricot cv. El-Amar at 128 days after sowing.

Irrigation		Reducing sugars	sugar.		Nor	-reduc	Non-reducing sugars	Lrs .	Total	ıl solu	soluble sugars	ars	Hydrol	izable	Hydrolizable carbonydrate	drate	101	al cari	iotal carbonyarate	,
with or				-		1	1		1000	0.40	Tasine	I con II	Boot.	Stem	Leaves W.see.	V. see.	Root	Stem	Leaves	W.see.
without	Root	Root Stem Leaves W. see.	Leaves	V. see.	Root	Sten	Stem Leaves W. Sed.	. see.	roor	500	Tog Act		1					-		
c.s	28.5	28.5 15.1 28.6 19.4	28.6	19.4	69.2	2.69	47.6	58.8	89.7	84.8	6.8.3	78.2	18.3	15.1	31.7	21.8	188	188	188	188
	-					-				1		1	, ,	2 62	0 07	40 3	488	199	188	188
uZ-	33.3	33.3 18.4 26.8 25.8	28.8	25.8	24.2	21.1	29.9	25.9	57.5	33.5	8	21.6	17.7	6.59	2	2:01				
		-					-			1		1000	0	-		7 07	*00	*00	400	188
-FF	25.6	25.6 12.5 41.7 27.2	41.7	27.2	28.5	29.9	47.2	32.7	46.2	42.5	5.88	59.3	2.2	57.5	111	1:01	Par	700	204	
	-	-		-	-		-		1		8	6 22	200	7 13	2 4 2 3	33.8	188	188	188	188
-Fe	34.9	34.9 27.8 45.5 35.6	45.5	32.6	41.9	21.6	21.6 27.3	38.6	e.e	18.	18.6 (2.6	8	3	27.7	2	2				

(Marschner, 1986), considering the role of manganese in photosynthesis as previously mentioned, this decline in carbohydrate level is to be expected.

With regard to Fe-deficiency as previously mentioned greatly affected different aspects of growth and photosynthetic metabolism pigments e.g. increasing of dry matter accumulation and many organic compounds. Considering such role of iron deficiency, the alteration of carbohydrate contents and percentage distribution of each component also is to be expected.

4.3.6. Protein fractions:

As different treatments greatly affected the formation of carbohydrate fractions, and that affected different endogenous physiological activities, thus our study was extended to study the effect of Zn, Mn or Fe omission on protein fractions, in the terms of water, salt, alcohol, buffer and non soluble fractions in different plant organs. These data are tabulated in Tables (33, a, b & c) as concentration actual amount per plant and percentage distribution.

In general the highest concentration of protein fraction was the water soluble protein followed mostly by the non soluble in any used solvent, i.e. alcohol soluble, salt soluble and buffer soluble in descending order.

The absence of Zn, Mn or Fe disturb the accumulation of different protein fractions in different plant organs, as the absence of Zn or Mn relatively stimulated by higher accumulation of water soluble, alcohol soluble and buffer soluble fractions in some plant organs as well as whole plant. On the otherside, absence of Fe depressed some protein fractions in some plant organs and that affected greatly the concentration of total protein fractions.

The depressive effect of Fe, Mn and Zn omissions on plant growth was associated with the troubleness in protein fraction formation in plants beside the troubleness in carbohydrate fraction accumulations.

With regard to the total amounts as mg/seedling or the percentage distribution the results behaved the same trend as discussed before in the case of calculation concentration base.

As described above deficiency tested micro-nutrients clearly affected both protein synthesis and distribution in different plant organs. Considering the well established fact Zn, Mn and Fe are responsible for the activities of many enzymes including different enzymes of protein synthesis is therefore, the severe effect of the absence of these micro-nutrients on protein content is expected.

In many literatures, the rate of protein synthesis and the protein content of Zinc-deficient plants are drastically reduced (e.g. prask and plocke 1971; Falchuk et al., 1977; Marschner, 1986)

At least three distinct mechanisms are responsible for the adverse effect of zinc deficiency on protein synthesis and protein content. It is well established that zinc is an essential component of RNA polymerase and if zinc is removed, the enzyme is inactivated. Furthermore, zinc is a constituent of ribosomes and is essential for their structural integrity. Also, Sharma et al. (1982) reported that the decrease in protein content of zinc-deficient plants is also the result of enhanced rates of RNA degradation. Although, manganese seems to be a structural constituent of ribosomes (lyttleton, 1960) and also activates RNA polymerase (Devlin and Witham, 1983; Marschner, 1986).

Results of our study confirmed results of Lerer and Bar-Akiva (1976) who reported that the protein content of deficient plants is either similar to or somewhat

all (33, a): Effect of Zn , Hn and Te deficiency on total amount of protein fraction contents in different seedling organs as well as the intact seedling of apricot cv. El-Amar at

	ent		1 000	Ster Laaday	1	** 1865.21		2000	1132.00		73.31 219.82 23.48 11.86 (5.33 120.82 23.48 11.86 (5.33 120.82 120	C1.00TT		20 4444	1741.20				168.14 85.66 131.27		
	Total protein content			Lagarda	1	688.84		1	618.17		73.31 219.82 23.48 11.86 (5.33 125.82 23.48 11.86 (5.33 125.82 125.82 125.	5/5.53		1	512.97						
	il prote			Store		188.49			178.84			181.59			197.72						
	Tota			Root		127C BB	2.0.0		357.39		-	382.61			434.27						
	otein)		1	U.sec.		1001 60	334.00		263 28	2		348 KK	20.00		278 B4		-				
The second second second	n-e. Dr.		-	Teaues			274.82		2000	213.13		244 60	241.30		245 69	212.00	-				
	[pesidus] (non-s protein)			100	2		3 76.75		10	2 50.93		000	9 64.33		2000	3 30.6	-				
	1			Root			63 43.8	_		32 32.6		1:	14 38.8		1:	11 32.3	_				
	te lun	201070		-	N. NG	-	83 678.	_	1	44 369.			82 799.			29 866.	_				
	:	rele pr		۱. ۲	Leav	-	74 334	-	1	11 338.	_	1	59 334	_	 	98 279.					
ter.	1	tal sol			Ste	-	581 183	2	 	2 119		1	53 128	-	1	84 156	:	-			
To Mark	(expressed as ny y.	ien Io		1	Boot Sten Leave W. see. Root	_	celm	10.	1	000 310	200	1	22 344		1	48 4B1		-			
10/10	ההה	s.prot			S. W. Pas	_	and an	0.00	1	400	2.33 10		100	2.27	1	2 22 100	77.7	-			
- 3	Syda	Tall For			ten Le	=	-	16.38 6			11.06 6	1	0	17.31 0			15.18 6	-			
	Cexpre	A11.11	HINTING		Boot	-	-	06.46			23.48			28.69			27.53	_			
			teins		1	w. wed.		156.69		1	219.82			284.82			265.89				
			able pro		1	Load		C 28 81		-	3 73.31	-	1	2 66 61	1	1	M 66.18	-	-		
			hol solt			t Sten	-	1 11/10	7.72 71		20 77 2	1	1	30 30	33 61.0	1	12 48 7	77.	-		
			la la		1	Boo Boo	_	100100	. 33 044.		22			077	971 87		00.	DCT DC.	-		
			and a day	proteins	1	AV- V.SC			232 287		100	7.81 B8-		1	3.36 858		1	7.89 118			
· ·				solubia	1	Stem Le			88 .82 32			12.76 3		1	18.88 4			17.35	_		311
1	128 days at ter sound				j	Boot Stem Leav- V.sed. Root Stem Leav- W.	,	ADD. 12 12 12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1 41.74		-	3 39.46		-	1 47.84		1	4 64.86		-	111
	days at		-	tains	Water soluble pro-		BOX A		4 145 0	277.	1	A 220 L		1	C 593 2	0	1	B 175		-	
	128		-	. 1 1 mm	ad pron	1	Leave		1	8 164.8		1.00	6 143.		1	6 161.	The second	1	6 131.4		
Talla (55,00			The state of the s	1	ter sol		Sten	,	1	44 37.3	-	1	63 68.8	-	1	59 66.1	_	1	14 85.		-
200				1			1 0-0	200	-	430	-	1	137		1	165		-	168	1	
				1	Tuningtion		with or	without		-	c.s	-	-	u2-		,	E			0 11	
					1		1	3		1			1			1			1		

* Uhola saedling = Total amount/seedling pry weight /seedling

Table (33,b): Effect of En, An and Fe deficiency on total amount of protein fraction contents in different organs as well as the intact seedling of apricet cu. El-Anar at 128 days after souling.

2000000		Taring U.sod.		1	.84 1865.21		156.69 86.46 16.38 55.77 603.01	CO: 7011 11.		219.82 23.48 11.88 (3.33) 120.03	20077 60.	1		.97 1144.30							
בייים ביותם ביותר	$\frac{1}{1}$	1	104	1	8.49 628		100	B.84 510		100	1.59 575		1	7 72 512	-	-					
10+0			Root	1	775 88 18	-	1	352,39 17		1	382.61 18	_	1	24 77 46	17:17:	-					
The Indian	Certified of	1	V. see.	İ	. ny 100	271.00		363.28		İ	24B 66	2		20 000	20.03						
	rd.s-nou	-	Leaves		100	5 217.04		2 279 73	2 417		244 60	217.30			4 215.65	_					
	Residual (non-s.proteins)		Store to	,	1	1.83 76.7		0 02 07	05 20.		000	. 89 EB.			.43 38.7						
		1	Stem Leaves U. see. Root		1	78.63 43		20 00	69.31 32			36 111 36			366.18 32		-				*
	a protai		11	TOVOOR	1	334.83 6			338.44			334.82		1	8 66 666						
	laulos la		-	o tox		483.74		-	7 119.11			128.59	1	-	BB 33+ F	2001					
	In Tota	_	I	d. Root		C1 727 A	10	1	7.915 00		1	C2 344 G	20.		0 101	.48 401.0	_		•		
,		3	-	U sen. Root Sten Leav U.sed. Root		000	200 11.0	1	00 20	2.22		201	207 100		1	2.77 135	_				
ים אלו הבים ים	n July - ou	2	1	Sten	•	100	16.38 6		2000	11.00		1	17.34			15.18		-			
רמאטי	LAILLE	HINIT		Root.	;	1	69 86.46			82 23.46		1	82 28.69	-	1	27 5		-			
		protein		2 7	90	1	.81 156.		1	31 219.		1	61 294		1	330 00	2.14 203	-			
	-	soluble		1	Ston Lo	1	41 15 78		1	7 23 7	-	1	20 00	70:17		100	48.0		-		
		Alcohol		1	. Root		2 944 77			2 419 78	21.011		00	118.39			8 158.12		-		
		out at a	100000		DOS. N. SCO		0 000	.36 552.3		000	- 1 C2 TA.		1	.36 98.28		1	. Bq 118.5		-		
			prenios	1	Sten La	:	18	88.87 37		18	12.78 32		1	19 88 48	200	1	7 36 74	2000	-		
			_	1	Root		1	48 41.74		1	43 39 .46		1	21 47 84		1	20 64 00	00.10 10.	1		
Al tor some		1	luble proteins			1008 W. 350	20 20 20 20 20 20 20 20 20 20 20 20 20 2	. DR 341.	2000	73.31	226 26	2.17	-		.cr cq 66.16 161.4b 333.44		1	2 4 131.24 377.84 51.05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:05 11:33 31:35		-	
4		1	aldula.		1	Ston Los		24 00 446	37,38 17	1	100	68.85 11		1	66.16 16		1	00 66 13		-	
				Uator	1	Boot !			139.14		-	1437.63		-	02 277	100.001	1		169.17		
			-	Irrigation	144 02		ulthout	1	0 0	2:3	1		62-		1	CEL		-	Ta I		
			-	Irr	+1	3	1		-			1			1			1			

Total soluble proteins Jable (33,c): Effect of Zn, Mn and Fe deficiency on the percentage of protein fraction distribution in different seedling organs as well as the intact seedlig of apricot cv. El-Anar at 128 days after souing .

ains					188			188		000	100			100						
Total soluble proteins			Leaves	-	188	2	1	188		1	188			188						
Lealuh			Sten		400	100		188			188		-	188						
		-	Root			188		188	207		+ 22	707		488	2		3			
	otein		U.see.			37.B		* 00	37.7			23.3		24 4 188	7.1.7					
	ms. pr		Tasinon	70000		45.8		1	45.B			41.3			47.0					
	Residual (nom-s. protein)		100	Taxe U.see. Noot Stem Leaves V.see. Noot Stem Leaves	-	62 9 15.9 42.5		1	67.9 89.3 29.9	_		33.8		1	57.9 75.6 87.5 15.5 42.0	_				
	Resid		40	. NOOL		45.9	-		89.3			89.9			87.5	_				
	ains			V. sca		62 9	:					78.1	_		3.5		-			
	le prot			Leaves			0.10		54.2	!		23.8	-		6.72	:	-			
	Total soluble proteins		1	Stem		1	26.30		78 8	-		4 27	_		24 5	:				
				Root		1	84.1		0 00	20.00		000	0.00		8	24.3				
	manta (n	alrohol soluble proteins Alkling-buildr s.p.o.c.	-	U.sco.		-	8.4		_	7.6		1	n. n			7.7	_			
	1	101	-	Toset			9.1 18.9		1	6.6 6.5 12.4			9.5 11.4		1	7.7 12.2				
		Ind_bul		10+01	W.see. Root Stor	1	_	_	1	6.5	_	1	9.5		1	3 7.7		-		
	-	S AIKI	100	1	. Noor		2 3		1			1	5.4	_	1	6.3	_	-		
		protein		1	- W.see	The second second		1.2.1		19.4		-	47 9		1	23 2		-		
	-	luble		 -	Leav	**	1	3 11.6		42 9	0		**	0.11		100	- 7	_		
		a lodo		1	t Ster		I	2 2		1	10.		1	.7 7.		1	.b 23.	_		
		1010		1	Roo		1	8 16.		1	7		1	87 9		1	34			
		1	rotains		ul ul		1	3 87.		1	2 87	-	1	. BB		1	2 18		-	
			lubia	-		100	1	5		1	2 5		1	5.6 7	-	1	2 2 2		-	
,		1	Salt roluble proteins		101	oot o	1	4 4	4	1	. 2		1	2 5	-	-	0 71	0.11	-	
		1-	-		1	. sed .	1	+ 500	34.4	1	, ,,	31.1	İ	2 4 5	2:5	1	0	34.3	-	200
179 days m		-	- mote	Water soluble process	1	JA VES !	_		27.1		1	24.5		1	78.1		-	25.6	_	31100
12			1.1.1	ronios	-	T meto		1	28.7		1	48.8		1	36.4		1	43.3		1
			1	Water	Not Sten Leave	1	Root	11.8	4 82	9 55	1	1 00	0.11	1	2 5	1.7	-	25.6 32.3 [25.6]	20.00	1
			1	-	_	-					-		u2-	-1		- Ju			Dil	
				Tambert lon	61 111	ulth or	ulthout		1	S.S.			1		-	-		1	1	

higher than that of plants adequately supplied with manganese.

With regard to Fe-deficiency it may attributed to the principal and essentially role of Fe in the two groups of well-defined iron-containing proteins called hemoproteins and Iron-sulphur proteins (Sandmann and Böger, 1983).

4.3.7. Total amino acids at 120 days in different seedling organs:

As shown in Tables (34, a,b & c) it could be noticed that leaves possessed the highest amino acid content followed by roots while stem was the lowest in this respect. This could be detected, as concentration total amino acids per seedling and percentage distribution.

As a general, the main dominant amino acid was aspartic followed by glutamine, valine, histidine, leucine & isoleucine, proline or arginine, while others were found in trace amounts such as methionine and aminobutaric acids. This could be noticed as concentration or total amount per seedling or percentage distribution.

Also, the absence of Zn, Mn or Fe greatly affected the concentration of different amino acids in various seedling parts as great variable changes in such parameters were detected.

The absence of Zn, Mn or Fe seemed to increase slightly the total concentration of amino acids in whole seedling. In addition, the presence or absence of Zn, Mn or Fe seemed to regulate the accumulation of variable amino acids in different plant parts. Accordingly, the absence of any studied element seemed to affect the accumulation and the distribution of the major amino acids as well as the minor ones during the seedling stage of apricot and that takes a part in the growth behaviour of such seedling.

Table (34 , a) : Effect of Zn, Mm and Fe deficiency on amino acids fraction contents in different organs as well as the intact seedling of apricot cv. El-Amar at 128 days after sowing. (expressed as worder, dru matter)

Seed			A115	Aliphatic A.A	Hydro.	Sulph- er A.A		Acidic	A.A		Basic A.A	Aromatic	tic a.a	Total
Stem BB. BB 19.28 B9.68 3.28 42.24 B9.69 BS.43 1.32 11.52 B3.49 13.71 Stem BB. BB 12.28 B9.68 4.89 23.84 B9.69 BS.49 3.31 34.56 B3.45 13.71 Lawurs 19.28 35.28 32.89 3.28 44.76 22.11 12.33 1.64 21.94 85.49 18.75 19.78 18.79	Treatments			nullau		Mothloning	altraqaA	onlmodul2	hrginina	Aminobutric	onibitalii	onlandalunoda	Proline	A.A content
Store BB.BB 12.8B B9.6B 4.8B 23.84 B9.6B B5.49 B5.49 B5.49 B5.24 B9.8B B9.6B B9.6B B2.8B B9.6B B9.6B B9.6B B9.6B B9.8B B9.6B B9.8B B9.8B B9.6B B9.8B B9.6B B9.8B B9.8B B9.6B B9.8B		Root		13	89,68	3.28	42.24	89.68	88.32	1.32	11.52	83.49	13.71	131.88
Laaves 19.28 35.28 32.86 \$ \$ \$ \$ \$ \$ \$ \$ \$	0.0	Stom	88.88	12	89.68	4.88	23.84	89.68	85.49	**	19.28		18.98	188.75
Hands 12.54 22.86 17.56 2.53 44.76 22.11 12.33 1.64 21.98 65.87 69.88 30.04 11.28 22.48 12.88 3.28 23.76 28.88 13.71 1.32 23.84 66.98 18.97 18.97 23.24 23.24 23.28		Loaves		×	32.88		65.28	44.88	21.94	3.31	34.56		85.49	278.51
Stein BB.BB B9.68 B8.88 3.28 53.76 28.88 13.71 1.32 23.84 86.98 18.97 Laavez 24.88 35.28 25.68 *		w.w seedl.		22.86	17.56	-	44.76	22.11	12.33	1.64			88.98	174.28
Stem BB.8B B9.6B B8.8B 3.2B Z3.84 19.2B BB.23 2.65 11.52 B6.9B BS.49 BS.49 BS.49 BS.49 BS.49 BS.48 I6.46 4.63 38.46 BS.79 BS.49		Root	11.28	22.48	-		53.76	28.88	13.71	1.32		86.98	18.97	188.18
No. 14.94 23.23 16.86 2.82 44.88 16.46 4.63 38.48 88.73 85.49 88.64 16.86 2.82 44.88 16.46 2.65 23.24 87.28 87.63 87.63 87.64 12.88 16.88 25.68 3.28 46.88 28.88 16.46 2.65 23.84 83.49 13.71 12.88 16.88 23.84 22.48 33.28 23.84 22.48 33.28 23.84 22.48 33.68 23.84 22.48 33.68 23.84 22.48 23.87 23.85 24.74 89.28 89.28 23.84 23.84 22.48 23.85 24.74 89.28 89.28 24.84 24.88 24.88 23.84 23.8	u2-	Ston	88.88		88.88		23.84	19.28		2.65	11.52	86.98	BS.49	185.91
Not 14.94 23.23 16.86 2.82 48.68 31.78 13.86 2.95 25.28 87.28 87.63 1 Root 12.88 16.88 25.68 3.28 46.88 23.84 16.46 2.65 23.84 83.49 13.71 1 Stem 88.88 89.68 88.88 3.28 23.84 22.48 88.23 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Leaves	24		25.68	**	65.28	44.88	16.46	4.63	38.48	88.73	85.49	268.59
Stork 12.88 16.88 25.68 3.28 46.89 28.88 16.46 2.65 23.84 83.49 13.71 12.36 14.88 23.84 22.48 88.23 8 19.28 12.22 85.49 13.71 12.36 13.88 13		W.* seedl.	14.94		16.86	.82	48.68	31.78	13.86	2.95	23.28	87.28	87.63	192.83
Ston BB.8B 89.68 88.8B 3.28 23.84 22.48 88.23 \$ 19.28 12.22 85.49 1 Laaves 22.48 35.28 33.68 \$ 42.24 41.68 16.46 3.97 38.72 12.22 88.23 W.* 14.93 21.19 23.36 2.82 37.87 31.68 14.83 2.36 24.74 89.28 89.26 1 Root 11.28 28.8B 89.68 \$ 38.4B 19.28 38.17 5.29 25.88 27.93 88.23 2 Stom 89.68 86.48 86.48 1.68 26.88 16.88 88.23 8.66 15.36 83.49 85.49 1 Leaves 16.8B 35.28 33.68 \$ 46.8B 38.48 18.97 4.63 39.72 88.73 82.74 2 W.* 12.36 23.53 17.81 8.45 37.25 24.92 16.88 3.58 24.37 12.93 85.37 1		Root	12.88	16.88	25.68	.28	46.88	28.88	16.46	2.65	23.98	83.49	13.71	191.83
Laaves 22.40 35.20 33.60 \$ 42.24 41.60 16.46 3.97 30.72 12.22 88.23 W.* 14.93 21.19 23.36 2.82 37.87 31.68 14.83 2.36 24.74 89.28 89.28 1 Root 11.28 28.89 89.68 \$ 38.40 19.28 38.17 5.29 25.88 27.93 88.23 2 Stom 89.69 86.48 1.68 26.88 16.88 38.23 86.53 33.49 85.29 38.58 33.49 85.49 18.97 4.63 38.75 88.23 85.49 1 Leavest 16.88 35.20 35.28 35.29 36.73 88.77 88.77 88.77 27.49 27.49 27.49 27.37 1	F	Ston	88.88	89.68	88.88	82.	23.84	22.48			19.28	12.22	BS.49	119.38
W.* 14.93 21.19 23.36 2.82 37.87 31.68 14.83 2.35 24.74 89.28 89.25 Root 11.28 28.88 69.68 * 38.48 19.28 38.17 5.29 26.88 27.93 88.23 Stom 89.68 86.48 1.68 26.88 16.88 88.23 8.66 15.36 83.49 85.49 Leaves 16.88 35.28 33.68 * 46.88 38.48 18.97 4.63 38.73 80.73 82.74 W.* 12.36 23.53 17.81 8.45 37.25 24.92 16.88 3.58 24.37 12.93 85.37		Leaves	22		33.68		42.24	41.68	16.46	3.97	38.72	12.22	88.23	24.64
Root 11.28 28.88 89.68 # 38.48 19.28 38.17 5.29 26.88 27.93 88.23 Stom 89.68 86.48 1.68 26.88 16.88 88.23 8.66 15.36 83.49 85.49 85.49 Leaves 16.88 35.28 33.68 # 46.88 38.48 18.97 4.63 38.72 88.73 82.74 W.* 12.36 23.53 17.81 8.45 37.25 24.92 16.88 3.58 24.37 12.93 85.37		v.*	14.93		23.36	-	37.87	31.68	14.83	2.38	24.74	89.28	89.28	198.68
Stow 89.68 86.48 1.68 26.88 16.88 88.23 8.66 15.36 83.49 85.49 Leaves 16.88 35.28 33.69 * 46.88 38.48 18.97 4.63 38.72 88.73 82.74 V.** 12.36 23.53 17.81 8.45 37.25 24.92 16.88 3.58 24.37 12.93 85.37		Root			89.68			19.28	38.17	5.29		27.93		285.78
16.88 35.28 33.68 * 46.88 38.48 18.97 4.63 38.72 88.73 82.74 227 12.36 23.53 17.81 8.45 37.25 24.92 16.88 3.58 24.37 12.93 85.37 177	-Fa	Ston	89.68		86.48			16.88		8.66		83.49	49	188.11
12.36 23.53 17,81 8.45 37.25 24.92 16.88 3.58 24.37 12.93 85.37		Leaves			33.68		88	38.48	18.97	4.63		88.73	82.74	78.722
		V.* seed1.		23.53	17.81	-			16.88	3.58	24.37	12.93	85.37	177.77

A.A. = Amino acids # = Non-detected

Hydro. = Hydroxylic *Whole seedling = Total amount /seedling
Dry weight /seedling

Table (34 ,b): Effect of Za,Mm and Fe deficiency on total amount of amino acids fraction contents in different organs as well as the intact seedling of apricot cv. El-Amar at 128 days after sowing.

(expressed as mg/scedling)

content Total 164.46 892.74 235.76 162.21 492.52 A.A 318.79 499.23 9772. A.A 16.61 51.13 24.53 88.41 89.99 18.12 18.28 36.73 22.78 827.88 17.74 87.97 14.95 45.62 14.83 Prolina Aromatic 86.24 829.48 87.92 862.92 15.89 112.57 38.85 838.85 11.53 16.23 38.45 817.64 18.69 838.15 85.78 22.19 121.82 45.71 848.42 58.32 Phenylalanine 828.61 127.86 Basic A.A 871.37 855.79 Histiding 82.36 88,39 82.18 84.86 88.61 86.83 84.39 11.68 14.85 87.21 89.53 StatudoninA ** # 888.79 847.57 22.64 14.88 834.84 814.52 88.38 118.86 881.56 39.95 229.26 113.26 63.13 835.29 829.41 12.61 245.42 168.25 65.84 121.34 883.27 38.59 876.38 847.69 27.26 833.46 832.53 11.95 876.72 875.56 29.89 186.48 155.78 69.18 Acidic A.A oulul Bay 834.5 54.35 817.17 Glutamina 875.56 869.1 Aspartic Sulph-er A.A 85.72 87.26 85.29 84.98 12.98 18.19 85.29 84.65 89.94 Hethionine * * ** Hydro. 817.2 17.17 58.26 lsolucine 21.14 115.84 819.36 14.52 117.88 98.95 12.25 88.97 42.39 813.94 11.62 865.43 47.58 61.83 Lucine & 836.99 117.12 834.35 864.89 814.78 828.49 863.94 851.88 Aliphatic A.A 184.37 Ual Ina 64.22 17.17 12.98 18.49 12.29 44.61 11.62 .eaves 34.96 75.35 Root 21.19 Leaves 48.69 W.* 73.58 Root 28.18 Alanina u.w W.* seed1. Root Sten -04 008 Sten Seed 1 Root organ Stem Treatments c.s u2-F

Hydro. = Hydroxylic

A.A = Amino acids

= Non-detected Whole seedling

216.29 144.78 92.94

136.67 898.88 83.12

W.* 71.79

818.71

829.98 86.81

81.29 89.51

852.46 831.23 16.86

83.12

812.49

812.49

18.74

Sten

PE

85.63

17.93

863.18

894.65 872.88 22.53

**

872.38 869.82

Leaves 32.87

28.33 141.58 75.86 31.13

Table (34,c): Effect of Zn,Mn and Fe deficiency on the percentage of amino acids fraction distribution in different organs as well as the intact seedling of apricot cv. El-Amar at 128 days after sowing.

		- F	Aliphatic A.A	Hydro.	Sulph- er A.A		Acidic	6. A. A		Basic A.A	Aromatic	tic A.A	Total
Iroatments	Seed1.	oninsia	ent faú	Lucine å	Hethlonine	alfragaa	Glutanina	eninigaA	Animobutric	enlblizill	Phenylalanine	Prollna	A.A content
	Root	7.3	14.6	83.7	2.4	32.8	87.3	86.3	1.8	88.7	2.6	18.4	188
c.s	Stem	7.4	11.8	88.8	1	21.2	88.8	82.8	*	17.7	8.4	18.1	188
	Leaves	7.1	13.8	11.8		24.1	16.1	88.1	1.2	12.8	3.2	82.8	188
	seed1.	7.2	13.2	18.1	1.5	25.7	12.7	87.1	8.9	12.6	4.6	85.7	188
	Root	5.9	11.9	8.9	1.7	28.6	15.3	87.3	8.7	12.2	3.7	82.8	188
u2-	Ston	7.6	1.68	9.78	3.8	21.8	18.1	87.8	2.5	18.9	6.6	85.2	188
	Leaves	8.9	13.1	89.5	**	24.3	16.7	86.1	1.7	14.3	3.3	82.8	188
	V.*	7.8	12.8	88.3	1.8	25.2	16.5	86.3	1.5	13.1	3.9	83.8	188
	Root	6.7	88.3	13.3	1.7	24.8	15.8	88.6	1.4	12.8	1.8	87.1	188
ŧ	Stem	6.7	8.8	86.7	2.7	19.3	18.8	96.9	**	16.1	18.2	84.6	188
	Leaves	9.1	14.3	13.6		17.1	16.9	2.98	1.6	12.5	84.9	83.3	188
	v.*	8.7	11.1	12.3	1.1	19.9	16.6	87.4	1.2	12.9	84.9	94.9	188
	Root	4.2	14.8	84.7		18.7	89.3	14.7	2.5	13.1	13.6	84.8	188
94-	Ston	9.6	6.4	96.4	1.6	26.9	15.9	88.2	6.6	15.3	83.5	85.5	188
	Loaves	7.8	15.5	14.8	*	28.3	16.9	84.8	2.8	13.5	83.8	81.2	188
	W.*	6.9	13.2	9.68	8.3	28.9	14.8	89.8	1.9	13.7	87.3	8	1

* Non-dedected.

Hydro. = Hydroxylic *Whole seedling

A.A = Amino acids

As discussed in the case of protein content, the rate of protein synthesis and the protein content of zinc-deficient plants are drastically reduced. The accumulation of amino acids and amides in these plants demonstrates the importance of zinc for protein synthesis, as does the fact that a similar degree of deficiency of other micronutrients such as manganese did not result in an accumulation of these precursors (Marschner, 1986). Also, Takagi (1976) and Fushiya et al., (1982) reported that in iron deficient grasses nonproteinogenic amino acids accumulate in and are released from the roots. Some of them including avenic acid, have been identified.

4.3.8. The effect of Zn, Mn and Fe deficiency on macro- and some micro-nutrients status in apricot cv. El-Amar seedlings:

1- Macro-nutrients: Tables (35, a,b, c, d and e), show that:

a- Nitrogen:

Nitrogen concentration decreased with advancing age, while the total accumulated amount increased. The continuous increase of total nitrogen is related to the continuous absorption amounts.

The absence of Zn, Mn or Fe greatly affected the concentration of N in seedlings of apricot (c.v.El-Amar) as its concentration at total accumulated amounts decreased during the early period of germination (7 & 21 days after sowing) as compared to those corresponding ones supplied with complete nutrient solution. However, such values were relatively higher either as concentration or total accumulated amount under the conditions of such micro nutrient lacking. In other words, the absence of Zn, Mn or Fe reduced the absorption rate of N at early periods of germination stage while increased such absorption at the late period of

Table (35,a,...å e): effect of Zn, Mm and Pe deficiency on the macro-mutrients status during different periods of seedling growth of apricot SS,a) nitrogen .

Xincrease as related	to highest value	The state of the s	Days after sowing	after sowing	21 128 22.5 188	21 128 22.5 188	21 128 22.5 188 188	21 128 22.5 188 13.8 188	21 128 22.5 188 13.8 188 14.6 188	21 128 22.5 188 13.8 188 14.6 188
xincrea	to high	Days a		~	-i	21.7	21.7	21.7	21.7	21.7 21.7 12.9 12.5
ution		82		128	-		I			
x distribution		128 days		21	1 "					
×			- -	2	26.5					
					8 4					
(guilbe		128 days		reanes						
(mg/ser		128	***							
amount			Root		38.5	38.5	38.5	38.5	38.5 53.8 54.9	38.5 53.8 54.9
. Total amount (mg/seedling)	-	12	days		32.7	32.7	32.7	32.7	22.7	32.7
	-	~	days		31.6					
(er)			w.*	A STANCE OF THE PERSON OF THE						
iry matt		128 days	Stem Leaves		43.8	43.8	43.8	43.8	43.8	43.8
mg/gr.		128			19.8					
Concentration (mg/gr. dry matter)	_		Root	-	21.5		-	-		
oncentr	-	77	days		48.8	-				
ಶ			days		52.8	8.2.8	52.8	52.8	52.8	52.8
	Treatments				8:3	s.s	C.S	S. 27	c.s	s: 27 # 4

35, b) phosphorous

	3	ncentra	tion (m	Concentration (mg/gr. dry matter)	lry matt	(ar)		Total	Total amount (mg/seedling)	(mg/see	dling)			X distribution	+ (01)	%incre	Zincrease as related	related
Treatments		-				-		-								to high	to highest value	lue
		77		128	128 days		~	21		128	128 days			128 days	69	Days	Days after sowing	owing
	days	days	Root	Stem	Stem Leaves	W.*	days	days	Root	Stem	Leaves	_	Root	Stea	Leaves	2	21	128
c.s	8.8	9.6	11.4 4.5	2.5	6.8	7.7	5.6	6.5	28.4	6.8	12.3	39.5	51.6	17.2	31.1	14.2	2, 2,	88
-2-	0 07		1	-														2
ij	0.01	7.01	11.4	6,8	2.9	8.7	4.3	8.8	18.8	18.3	14.7	43.8	42.9	23.5	33.6	8.9	18.9	183
-Mn	7.9	8.1	0		1													
			:	0.0	8.0	7.1	2.9	4.7	13.1	9.8	, 12.3	35.2	37.2	27.8	34.9	8.2	13.4	188
Fa	6.8	6.9	75.57	3.4	9.8	5.2	3.1	4.2	8.1	9	1 0 0	1 6	;					
										:	2	23.66	4.47	19.9	55.7	9.3	12.7	188

124

dry weight / seedling

seedling growth,i.e. 120 days. This indicates that the presence or absence of such micro-nutrient affected the absorption rate of N and that is varied according to the stage of seedling development. This effect was clearly shown when the data were converted into percentage increase of N. Similar results were reported by *Iwata*, *et al.*, (1959) and *El-Motaz*, (1963).

Also, it must be mentioned that some of nitrogenous compounds are stored in embryo but such amounts were not sufficient for maintaining the developing seedling as some of nitrogen was absorbed during the early periods of germination by those received complete nutrient solution. However, very rare changes in the total accumulated amounts of N when seedling were subjected to any micro nutrient deficiencies.

Leaves always possessed the highest N accumulation followed by roots, while stem ranked the third in this respect. In addition the absence of any studied micronutrient affected the distribution of nitrogenous compound in different seedling organs. This could be observed in the bases of N concentration, N total accumulated amounts or percentage distribution. The concentration of N, its total amount or its percentage distribution was always higher when seedlings were subjected to microdp-nutrient deficiency (as compared to those ones of control seedling).

At the same time unregular trend was observed in the case of stem and leaf amounts. This leads us to assume that the absence of any micronutrient may affect the translocation of nitrogen from the root to another organs, as the roots possessed higher nitrogen amount and proportion as compared to the corresponding ones of control seedling.

b- Phosphorous:

In general there is no clear difference between the P concentration during 7 and 21 days. However, such concentration slightly decreased when the seedling reached 21 days after sowing. At the same time, the uptake of phosphorous greatly increased from 21 to 120 days.

The absence of Zn, Mn or Fe greatly affected the accumulation of phosphorous. It was observed that absence of Zn seemed to be more or less slightly minimized the total phosphorous accumulated in seedling (as any other absence of Mn or Fe) during the early periods of germination as compared to those corresponding ones of the complete nutrients. However, such accumulation was higher than the control ones at 120 days under the deficiency of Zn, while such accumulation was lower when seedling was subjected under the deficiency of Mn or Fe. This result indicate that the absence of either Zn, Mn or Fe affected the absorption of phosphorus by the roots of apricot. Also it was found that the accumulation of phosphorus in the roots less under the deficiency of such micronutrients than those of control seedling. Also, Mawardi, 1969 mentioned that the absence of Fe or other micro-nutrients reduced the absorption of phosphorous.

With regard to the distribution of phosphorus in different seedling parts, it could be stated that the absence of any tested micro-nutrient affected the proportion distribution of phosphorus in different seedling organs. Root of control seedling possessed the highest phosphorus followed by leaves, while stem ranked the third in this respect. The same conclusion was also observed under the deficiency of Zn or Mn, however, both treated seedling their roots possessed lower amount and proportion of phosphorous than the control. At the same time-Fe treated leaves

Concentration (mg/gr. dry matter) Total amount (mg/seedling)		_				Total amo	Total am	A. W.	unt	(mg/see	dling)		×	% distribution	1 5	Xincre	Kincrease as related	related
							-	1			.					3	luest wa	ant
7 21 128 days 7 21	128 days 7	7	7	7	7 21	7 21	21			128	128 days			128 days		Days	Days after sowing	owing
days days Root Stem Leaves W.* days days Ro	Root Stem Leaves W.* days days	Root Stem Leaves W.* days days	Stem Leaves W.* days days	Leaves W.* days days	days days	days	J	8	Root	Stem	Leaves	3 T	2	21	128	~	12	128
18.1 14.2 15.1 14.9 16.2 15.2 6.8 9.5 26.1	15.1 14.9 16.2 15.2 6.8 9.5	14.9 16.2 15.2 6.8 9.5	14.9 16.2 15.2 6.8 9.5	15.2 6.8 9.5	6.8 9.5	9.5	i –	26.	-	22.4	29.4	77.9	33.5	28.8	37.7	7.7	12.2	188
	11.5 14 7 13 7 000 7 21	13.7					i		1									.
	03.2 12.4 4.5 5.4	03.2 12.4 4.5 5.4	93.2 12.4 4.5 5.4	12.4 4.6 5.4	4.6	5.4		24.	m	28.9	17.2	62.4	38.9	33.5	27.6	7.4	8.7	188
87.4 18.1 16.2 13.1 89.8 12.6 2.7 5.8 26.9	16.2 13.1 89.8 12.6 2.7 5.8	13.1 89.8 12.6 2.7 5.8	89.8 12.6 2.7 5.8	12.6 2.7 5.8	2.7 5.8	8.8	1	26.	6	18.9	16.4	62.2	43.2	38.4	26.4	84.3	89.3	188
			-				1		1									
11.0 12.6 19.2 11.9 5.3 7.4 25.4	14.1 12.6 89.2 11.9 5.3 7.4	12.6 89.2 11.9 5.3 7.4	89.2 11.9 5.3 7.4	11.9 5.3 7.4	5.3 7.4	7.4	-	25.4		24.6	18.9	68.89	36.9	35.8	27.5	7.7	18.8	188
								2		230								

35,d) Calcium

days days Root		concentration (mg/gr. dry matter)	(ra		Total	Total amount (mg/seedling)	(mg/see	dling)		ν.	% distribution	tion	zincre	%increase as related	related
days days Root	128 days	days		2	21		129 days	days			129 days	6	Days	to highest value Days after sowing	lue
-	Stem	Stem Leaves	W. *	days	days	Root	Stem	Leaves	3	Root	Stem	Leaves	~	21	128
C.S 9.8 9.8 15.8	14.8	23.8	17.6	4.0	6.8	26.8	21.2	41.9	89.9	29.8	23.6	46.6	6.8	6.7	188
-Zn 5.8 9.8 18.8 1	15.8	17.8	14.1	2.1	6.3	16.5	22.9	31.6	71.8	23.2	32.3	24 7	9 6	-	8
-Mn 8.8 9.8 13.8 1	13.8	15.8	13.7	2.9	5.2	21.5	18.9		5	6					2
-Fe 6.8 8.8 14.8 1	16.8	15.8	15.8	27	0 4	k		1	-	31.8	27.9	40.3	4.3	7.7	183
					::	7:67	31.2	33.8	87.2	23.9	35.8	35.3	3.1	5.6	198
W. seedl. = Whole seedling * =	Tota	al amoun	Total amount/seedling	ling							Ī				

35,e) Magnezium .

	3	ncentra	tion (m	g/gr. d	Concentration (mg/gr. dry matter)	35)		Total	amount	Total amount (ng/seedling)	dling)		×	x distribution	tion	Zincre	Mincrease as realted	realted
Treatments	-	24		00,												to hig	to highest value	lue
		1		RZI	128 days		2	21	,	128 days	days			129 days	69	Days	Days after sowing	ow ing
	days	days	Root	Sten	Stem Leaves	U.*	days	days	Root	Stem	Leaves	. T	2	21	128	2	21	128
c.s	2.2	3.5	4.2	3.1	٠. A.	3.9	1.6	2.3	7.6	4.6	8.2	28.4	37.3	22.5	48.2	7.8	1	188
1	0	0	1		1													
u2-	N.9	3.2	2.4	6. 4.	4.4	3.9	1.2	1.5	7.8	5.3	5.6	19.9	35.2	26.6	38.2	6.8	7.5	188
7	0	0.	2 4	0	0	1												
		2	0.1	6.3	n n	m.	1.8	1.7	7.6	4. E.	8.9	18.7	48.6	22.9	36.4	5.3	9.1	188
100	0	2 2	L		1					1	Ī							
	0	3	n.	מ	B. F	e9.	1.4	1.9	8.1	5.9	7.8	21.8	37.2	27.1	35.8	6.4	8.7	188
]			-					,						

W. seedl. = Whole seedling * = total amount /seedling dry weight / seedling

possessed the highest phosphorous content and proportion as compared to other treatments, and the *vice versa* was true in roots. This indicates that Absence of any nutrient not only affected the phosphorous absorption by apricot seedlings but also their effect extended to the proportion distribution of phosphorus in different seedling parts, i.e. may affect the phosphorous translocation from the roots into the shoots.

c- Potassium

It could be concluded that the absence of any micro-nutrient mostly minimized the accumulation of potassium in seedling of apricot under the level of those corresponding ones received complete nutrient solution. This leads to the assumption that absence of Zn, or Fe reduced the absorption of potassium. Their effect was extended to the distribution of potassium in different organs, as the lacking of such nutrient greatly reduced the potassium concentration and total amounts in leaves as compared to the control ones.

d- Calcium:

The same trend was observed in the case of calcium as discussed in the case of potassium, as the less in root calcium amounts of such immobile element was associated with the great less in leaves calcium. In addition, the absence of Fe stimulated the great accumulation of calcium in stem and greatly lowered accumulation in leaves.

e- Magnesium:

The absence of any tested micro-nutrient slightly affected the accumulation and absorption of magnesium as compared to the great differences in other element such as nitrogen, phosphorus, potassium and calcium.

2- Micro-nutrient: Tables (36, a,b,c & d).

Before discussing the effect of different tested micro-nutrients on the accumulation of some micro-nutrients in different seedling tissues of apricot, it must be mentioned that in spite of the complete care to prevent contamination with any tested micro-nutrient in the media, but that seemed to be impossible under sand culture technique. The amount of such nutrients which founded during early periods of germination was mainly related to the stored amounts in seeds. However, such amounts were not sufficient for maintaining the growth of apricot seedlings. It must be mentioned also that the absence of Zn, Mn or Fe affected the absorption of the tested micro-nutrients. Their effects were extended to the distribution of such nutrients in different apricot seedling parts, and that indicates that the absence of such nutrients may affected the translocation of such nutrient from roots to the other seedling organs.

Proportion of the different nutrient to each other: Table (37).

As the different treatments affected the accumulation, the distribution and may be the translocation of different nutrients, accordingly our study was extended to the balance between macro or micro-nutrient as related to the total amounts, as considered that the normal balance found in seedlings received the complete nutrients. The following conclusion could be stated as follows:

Under the normal and healthy seedling which received complete nutrient solution, the major and dominant nutrient was N during different periods of seedling development. However, such proportion decreased during seedling development, as the proportion of K and ca greatly increased during 120 days.

Table (36,a,...å d): Effect of Zn, Mm and Fe deficiency on some micro-mutrients status during different periods of seedling growth of

36,a) Iron .

		oncentr	Concentration (Ug/gr. dry matter)	Ug/gr.	dry mat	ter)		Total	Total amount (Ug/seedling)	(Ug/see	dling)		*	x distribution	tion	zincre	Mincrease as related	relate
Ireatments	7	24					-	-								7		2
		1		3	128 days		~	21		128	129 days			128 days		Days	Days after sowing	ow ing
	daus	datis	Root	0.4.0			-			-	-			.				
			- 1	- !	Leaves	seed1.	days	days	Root		Stem Leaves		2	21	128	2	21	128
C.S	462 5	778 5	462 E 778 E 04E a	1,0								seed 1.						
			B.CTO	512.8	562.8	635.8	276.9	517.1	1457.9	774.3	517.1 1457.9 774.3 1824.1 3256.3	3256.3	44.8	23.8	31.4	Lr.	1 t	200
	1	-				1											:	2
m2-	425.5	638.5	425.5 638.5 757.5 575.8	575.8	888.8	747.2	198.8	298.7	1251.1 888.7	888.7	1635.7 3767.5	3767.5	33.2	23.4	43.4	l r	6	4 80
-	547 5	547 5 C92 E	1 070	1											:	!	:	2
	?	2:30	0.22.3	B. 88	815.8	768.9	283.2	341.4	1395.1	871.3	1395.1 871.3 1488.4 3746.8	3746.8	37.2	23.3	39.5	4.5	8	1 20
	0 000	2000				1											!	
	979.8	220.0	5.782	275.5 272.5	272.5	287.2	151.1	178.1	517.9	537.7	151.1 178.1 517.9 537.7 559.7 1615.3	1615.3	32.1	33.3	34 6	9	0	000
															_		0.01	199

36,b) Manganese.

Treatments 7 21 128 days days days Root Stem Leaves C.S 337.5 352.5 352.5 588.8 462.2 -Zn 218.8 371.5 362.5 518.8 337.2 -Mn 158.8 138.2 162.8 148.8 148.8			Total	Total amount (Ug/seedling)	(Ug/seec	iling)			% distribution	201	Zincre:	Zincrese as related	elated
days days Root 337.5 352.5 352.5 218.8 371.5 362.5 158.8 138.2 162.8		2	21		128 daus	laus					6	o inguest oatus	ent
days Root Root	-			_		1			sca days	ra.	Days &	Days after sowing	owing o
218.8 371.5 362.5 588.8 158.0 138.2 162.8 148.8	ves U. *	days	days	Root	Sten	Leaves		Root	Sten	Leaves	2	21	128
218.8 371.5 362.5 518.8						-	seed 1.						
218.8 371.5 362.5 518.8 158.8 138.2 162.8 148.8	.2 435.1	282.1 236.6	236.6	9.869	756.2 841.5		2228.3	28.3	33.9	37.8	9.1	18.6	188
158.0 138.2 162.8 148.8					.								
158.0 138.2 162.8 148.8	.2 397.9	9.888	158.4	2.863	781.1	626.8	2885.6	29.8	38.9	31.2	4.	7.5	183
148.8				-	1								
	.8 147.4	855.7 879.6	879.6	268.3	283.3	254.3	9725.9	36.9	28.8	35.8	7.7	18.9	189
			-		Ī	1							
		429.1 154.8 296.9	286.9	792.7	985.5	713.8	2492.8	31.8	39.5	28.6	6.2	58.3	169

Dry weight/ seedling

36,c) zinc.

	3	ncentra	tion (lg/gr.	Concentration (Ug/gr. dry matter)	(dr)		Total	Total amount (Ug/scedling)	(Ug/see	dling)		×	x distribution	1	xincre	xincrease as related	related	
Treatments	-	- 24	_				-	_								to hig	to highest value	Ine	_,
		1		27	128 days		~	77 .		£23	128 days			128 days	ы	Days	Days after sowing	guino	
	days	days	Root	Stem	Leaves	w.w	days	days	Root	Stem	Leaves		~	21	128	-	21	128	
0	1											seed I.							
3	. 57.5	59.9	117.5	57.8	57.8	78.1	34.4	48.2	218.2	86.2	183.8	488.2	52.5	21.5	25.9	8.6	18.8	188	
		-			-														
u2_	45.9	44.8	25.8	25.8	25.8	25.8	19.4	28.1	41.3	38.3	46.5	126.1	32.8	38.4	36.9	15.4	15.9	188	
,		-						-											
	9.65	62.8	58.8	58.8	58.8	58.8	21.9	35.1	82.8	9.22	98.86	246.2	33.6	. 29.5	36.9	8.9	14.3	188	
			1	1			1												
0	47.5	58.5	58.5	58.5	58.5	58.5	21.7	38.4	98.1	97.6	185.7	293.4	38.7	33.3	36.8	7.4	18.4	188	

36,d) Copper

Treatments 7		ation (Ug/gr.	Concentration (Ug/gr. dry matter)	er)		Total	Total amount (Ug/seedling)	(Ug/see	(dling)		7,	% distribution	tion	xincre	xincrease as related	related
	21		128	128 daus		1	2.								to hig	to highest value	lue
						_	17		128	128 days			129 days	Ø	Days	Days after sowing	Buino
days	days	Root	-	Stem Leaves	W.*	days	days	Root	Stem	Leaves	3.5	Root	Sten	Leaves	2	21	128
C.S 189.8	288.8		225.5 318.8 242.8	242.8	256.3	187.8	134.4	483.4	468.8	448.6	448.6 1312.8	38.7	35.7	33.6	8.2	2 8	1 20
2 17.5	1													?	!		
145.8	185.8	228.8	245.8	192.5	213.9	61.2	87.6	363.4	357.2	357.8	357.8 1878.4 33.7	33.7	33.1	33.2	5.2	8.1	180
-Kn 167 c	167 E 162 a 240 p	240		1		-											
	707	270.0	8.252	167.5	286.7	62.2	93.3	374.7	365.9	384.3	1817.9	34.2	35.9	29.9	6.1	9.2	163
-Fra 450 a 450 a	400	1 0		1													
	p.per	218.8	215.8	232.5	219.6	66.4	91.1	378.3	419.6	477.6	1275.5	29.7	32.9	37.4	5.2	7.1	189

While P proportion seemed to be more or less constant. In other words, the rates of different nutrients absorption were not constant during different periods of growth, as the requirement for each nutrient is dependent upon its role in growth. The requirement for nitrogen during early periods of growth was conspicuous, accordingly its accumulation proportion exceeded the sum of all other macronutrients, as it plays an important role in building out the new developing seedling tissues. At the same time the requirement for other macro-nutrients seemed to be more or less constant during such early periods of germinated seedling except K which proportion requirement slightly increased at 21 days. The proportion requirement of K, ca and Mn increased at 120 days while P requirement may be constant during different periods of seedling growth. At the same time the proportion need of N slightly decreased during 21 days and greatly decreased at 120 days.

From the available data, it could be revealed that the main dominant micronutrient was Fe followed by Mn, Cu and Zn was the lowest one. These proportions were greatly changed during different periods of seedling development, as the rate of their absorption was greatly changed from period to another according to their variable requirements.

It could be revealed that under the deficiency of Zn, Mn or Fe a disturbance in the accumulation proportion of macro-and micro-nutrients were observed, and that may be discussed on the bases that the absence of any micro-nutrient seemed to disturb the absorption balance of different nutrients and that affected the seedling growth behaviour. In other words, the absence of any micro-nutrient not only affected the seedling growth through the alteration in its role of metabolic processes, but also in the disturbance of the balance proportion of different nutrients which

may result from its role on the absorption of different nutrients macro or micro ones.

Table (37): Effect of Zn, Mm and Fe deficiency on the balance of different nutrients in the termsof percentage as related to the total amounts / seedling during different periods of growth .

				T	3	1	18.2		15.5		17 7	:	
			25			_	.6	1	8 1		1	-	1
			128 days	1		1	.9	1	.8	1	.6		
			77		Fo Mn	<u> </u>	.2 38	1	9 28	1	3 12		!
1		L		Ļ	<u> </u>	1	5 45	1	7 53	1	9 65.	_	2
	nrs			-	Zu Zu	1	14.	1	15.	1	16.	_	,
	Trie	1.	cl days	-	2	1	4.3	1	3.6	_	6.4		,
	incrond trients	1	77	1	E	1	3		27.8		14.5		7 + 1
Ĭ	1		2	F	D	1	3	1	23.6	1	62.1		+ 75
				3	3	1:	2	1	16.9	1	18.1	1	6 9
		2	2	22	- i	"	?	1	e.	T.	*	T	L,
		7 dans		T.	-	מו)	1	0	10	7.6	1	3
				Fo	_	18.5 4.8 38.9 18.6 28.9 24.1 5.5 44.6 37.5 5.5 6.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4	!	11.6 4.8 45.1 12.2 17.4 19.8 5.5 53 8 24 5 5	2	12.7 4.2 46.7 18.2 18.8 19.6 5.4 59 76.2 6.4	7	11.4 4.4 43 8 88 8 18 3 23 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 39
<u> </u>	-	<u> </u>	-	_	_	4		31	3	1 2	3	1	200
				Ľ	_	1 5.5		1 2	:	1 2		10	0.0
		shi	Į	రే		24		19.8		19.6		100	3
		128 days		×		28.9		17.4		18.8		18 2	2
		+		۵,		18.6	1	12.2		18.2		88.8	
			Ī	z		38.9	1	45.1		16.7		13.8	,
	Ī		1	D.	1	8.1	Ī	89	Ī	7		4	
ents			1	3	i	8.5	1	1.6	i	2.7	1	4.4	
	1.	Z1 days	Í,	_	<u>'</u>	5.7	1	1.6 1	1	1.2	1	£.	-
Macromutri	1	21	L	_	1	4.	1	.9	1	.5	1	.8 17	
Ľ			1,	_	1	4.	1	.9	1	5 11	1	8 89	_
	1] 2	-	11	25	1	26	1	2	1	22	_
			I		10	3.5	1	4. 	1	. m	1	4.2	_
	10	1	3		9	70.	1	90	18	83.	1	88.1	
	7 daire	nan	×		1.		1	7.5.0	1	1.60	1	15.9	
			Д		-	1:11	400	17:51	10	82.8	1	E. 53	
			z		62 9	0.30	0000	62.6 L3.1 L4.6 db.4 3.7 56.9 12.9 14.6	0	ba.8 89.8 89.1 89.8 3.4 57.5 11.5 14.2	1	62.6 89.3 15.9 88.1 4.2 57.8 89.8 17.3	
Irriga-	tion	with or	without		0	0.5 21.4 11.4 16.8 3.2 57.4 11.4 16.7	-4-		1	ur I		041	