4. RESULTS and DISCUSSION

4.1. Growth Behaviour:

4.1.1. Stem length:

Stem length of soybean plant during its growth cycle as affected by soil moisture levels and growth regulators in the two seasons is presented in Table (3). Mean of the two seasons as well as the periodic increase in stem length is recorded in Table (4). Results clearly indicate that stem length increased gradually from emergence up to the age of 100 days after sowing. After that time, stem length seemed to be constant. Such trend may show that the plant reached its maximum height at 100 days. The highest proportion of stem length was found to be during the first 100 days of its growth.

Regarding the effect of soil moisture levels on stem length, data showed that irrigation treatments have a significant effect on such character. Increasing water deficit did result in a significant decrease in stem length of soybean plant. This trend was found to be obvious in the all tested periods as well as in the two seasons. Such results may indicate the importance of soil moisture for the growth of plants. The highest stem length was scored from the wet treatments (85 % F.C.), while the shortest stems were gained from those plants grown under dry condition (55 % F.C.). However, medium soil moisture levels have intermediate values of stem length.

Water stress has a direct effect on cell turgor through two important phenomena, stomatal closure and cell enlargement. Complete

tration 3.6 3.8 3.1 Concen Growth Sub. 2.5 2.4 2.9 3.3 3.1 ä able (3): Effect of soil moisture levels and some growth regulators on soybean stem length (cm), throughout its growth cycle, during 1988 and 1989 seasons. L.S.D. noit 3.8 **4.** l lrriga-75.8 79.6 80.6 38.4 62.6 68.4 37.1 71.4 Krig. X 29.9 73.0 76.0 30.9 77.0 59.7 65.6 68.8 × alar (ppm) 29.3 73.0 77.7 78.7 30.3 2000 60.7 0.49 65.0 1000 74.3 79.0 29.3 78.0 33.0 0.99 74.3 75.3 F.C.) 78.7 83.1 44.3 84.1 71.3 65.4 55.3 46.0 74.1 (55 % × GA₁ (pp:m) 53.3 83.7 86.7 88.0 81.0 83.0 83.0 200 ٥ry 53.3 80.7 90.3 91.0 48.7 63.0 72.7 73.3 100 72.3 29.3 71.7 73.3 31.0 52.3 58.3 0.99 Control 85.8 9.06 91.6 43.8 43.1 0.69 75.0 75.5 Ϋ́, χ̈́ 31.7 81.1 9.98 87.8 33.6 63.3 70.8 71.4 ı× Season 1988 Alar (ppm) 30.3 Season 1989 81.7 88.0 89.3 1000 2000 31.7 61.0 0.99 66.3 34.0 30.3 81.0 88.3 0.06 68.0 75.0 76.7 Ж 52.6 9.06 55.9 9.46 95.3 74.7 79.2 9.6/ 2 × (bbm) 95.0 84.0 61.7 85.0 86.0 86.0 83.3 101.3 99.0 103.0 101.3 100.4 100.6 84.0 102.3 99.7 200 Medium GA_3 49.3 0.96 0.19 78.0 80.3 81.3 001 34.3 80.7 35.0 61.0 71.3 71.3 Control 37.7 48.9 91.9 93.3 95.2 97.3 80.2 74.7 82.6 44.1 Χ̃ ·giml 34.4 68.9 75.9 78.7 × 0.46 2000 30.7 92.0 32.7 0.02 76.0 Alar (ppm) 80.7 F.C.) 47.0 0.46 96.0 1000 34.0 73.0 80.0 81.0 ፠ 60.2 2.46 102.3 100.0 99.3 104.3 100.7 100.7 53.8 80.4 100.7 84.4 83 101.0 86.4 × GA₃ (ppm) Wet 96.3 62.7 98.0 57.3 88.0 200 98.0 62.0 81.0 79.7 84.0 9 35.3 95.7 89.7 71.7 97.0 36.7 63.7 74.3 Contr**ot** reatments days days days days days days days 00 days 8 75 CO 20 8

able (4): Effect of soil moisture levels and some growth regulators on soybean stem length (cm), throughout its growth cycle. (mean of two seasons and periodic increase).

-		-	Wet (85 % F.C.)	85 %	F.C.)			i	۷.	Medium (6 02)	70 % F.C.)	_	-			Dry	Dry (55 %	% F.C.)				-			
Treatments	trol	GA	GA ₃ (ppm)	~	Alar (ppm)	(mdd)	X.			GA ₃ (ppr	(mdo	Ala	Alar (ppm	e (e	Ϋ́	Jo.	A.G.	(man)		1		X		- 1	%	
	Соп	001	200	×	1000 2000	¥ 000	Irrig	nuo j	=	100 200	×	1000	1000 2000	×	اددنع.	ttno:D	100	200		1000 2000	Vindq)	rrig.	rigat- noi	up. .ow.th	oncen ation	
30 days 75 days 00 days 30 days	36.0 76.7 83.7 85.7	59.7 88.9 91.7	75.4 57.0 97.2 87.6 100.4 91.9 100.9 93.6		40.5 3 83.5 8 88.0 89	31.7 36.1 81.0 80.4 85.0 85.6 91.0 89.6	36.1 46.6 80.4 84.0 85.6 88.8 89.6 91.6	.6 34.7 .0 70.9 .8 77.3 .6 77.7		55.2 72.9 87.0 90.0 90.8 92.5 91.8 92.9	, , , , , , , , ,	an of tv 32.2 74.5 81.7 83.4	Mean of two seasons 34.3 32.2 31.0 32.6 82.6 74.5 71.5 72.3 65.9 81.7 77.0 78.7 77.5 83.4 77.8 79.6	i	43.5 77.5 (82.8 (83.6 (30.2 62.0 65.3 69.3	51.0 71.9 8 81.5 8	54.3 4 82.4 7 84.9 7 85.5 7	45.2 3 72.1 7 77.2 7 79.1 7	31.2 29.8 70.2 66.9 76.3 70.9 77.2 71.9	W 9 K K	1 4 6 7 7	1 22 22 83 85 85 85			
days days	42.0 6 47.5 8.2 2.3	63.4 7 31.0 3 3.0 2.6	74.7 21.6 3.2 0.5	60.9 32.7 4.6 1.8	44.0 34 46.7 54 4.9 4 4.4 6	34.8 40.3 54.2 49.4 4.4 5.8 6.6 4.5	40.3 50.9 49.4 40.8 5.8 5.2 4.5 3.1	9 44.7 8 46.6 2 8.2 1 0.5	7 60.1 6 34.6 2 4.1 5 1.2	.1 78.5 .6 18.4 1 2.7 2 0.4	62 32 4.	38.7 50.7 8.6 2.0	39.8 52.1 7.1 1.0	0 6 0 1	52.0 4 40.7 4 6.3 1.0	43.3 6 45.7 2 4.7 1 6.3	62.0 6 25.4 3 11.7	63.5 5 32.9 34 2.9 6 0.7 2	57.2 4 34.0 5 6.4 7 2.4]	40.4 41.4 50.5 51.6 7.8 5.6 1.3 1.4	4 41.7 5 49.4 5 6.0	49.7 41.4 6.2 2.7	1 1 1	l i 1 1	1	

or almost complete closure of stomata can therefore markedly reduce both processes and ultimately reduces plant growth. In this respect, Kramer (1977) mentioned that maximum level of turgor is essential for cell enlargement.

Concerning the effect of growth substances on stem length of soybean, results of Tables (3,4) proved that both growth regulators i.e. GA_3 or Alar had a significant effect on stem length. The use of GA_3 increased stem length significantly over the other treatments. Such findings can be ascribed to the stimulative effect of GA_3 on the growth of plants which was reflected on the stem length. The stimulative effect of GA_3 was reported by Jackson and Edela (1962), who attributed the increase in stem length of GA_3 treated plants to enhancing cell elongation or cell division and consequently internode length.

Also, Bensen et al. (1990) reported that Gibberellic acid plays a role in adjusting hypocotyl elongation rate. The changes observed are not of sufficient magnitude to suggest that they are the primary regulators of elongation rate.

The application of Alar (a growth retardant) resulted in a reverse trend to that observed with GA₃. In other words, the use of Alar reduced stem length of soybean plant. Such retarding effect was enhanced by increasing the rate of application i.e. 2000 ppm. This pattern can be ascribed to the retarding effect of such chemical on the growth of plants thereby, stem length. These results are in agreement with those reported by Karczmarczyk et al. (1980) who pointed out that Alar inhibits shoot and root growth of soybean plant at all

concentrations but particularly at 1000 ppm. The higher concentration of Alar also inhibits seedling growth.

With regard to the interaction between different treatments i.e. soil moisture levels, growth substances and their concentrations, results clearly indicate that the promoting or retarding effect of such chemicals seemed to be higher by increasing the application rate. Such effect was found to be significant. It is worthy to mention that the stimulative effect of GA3 was influenced by the level of soil moisture. In other words, decreasing soil moisture level (increasing water deficit), did result in reducing the enhancing effect of GA₃. This phenomena can be detected from the values of stem length under medium or dry irrigation treatments. Such findings may prove the importance of soil water for such chemical to express the enhancing effect on plant growth thereby on stem length. In this connection, Vaadia et al. (1961), Gates (1964) and Salter and Goode (1967) pointed out that cell division appears less senstive to water dificit than cell enlargement. Pitenov (1965) and Brouwer (1963) concluded that cell number is frequently of the same order in plants improved to water deficit when compared to those grown under wet conditions, however, cell size is greater in the later. The previous results are in full agreement with those reported by Nowakowski and Lubanska (1975) who pointed out that IAA and GA3 increased the photo synthetic intensity of plants under high soil moisture level while had no effect under dry conditions.

The retarding effect of Alar seemed to be related to the

level of soil water. Such effect was found to less under severe water stress. This trend can be explained on the basis that the effect of water deficit is more than any other hormonal influence. Alar is considered as anti-GA i.e. affects cell division or/and cell elongation, but soil water is important for the expression of retarding effect of such chemical.

In the light of the previous results, it can be concluded that soil moisture level proves to be one of the cheif constrains on soybean growth, thereby stem length. Growth promoter (like GA₃) stimulated stem length of soybean plant. Such stimulative effect needs soil water to be mentioned at a high level. However, Alar (a growth retardant) inhibits the growth of soybean plant which was reflected on stem length.

4.1.2. Leaf area/plant:

Total leaves area/plant of soybean under the different treatments i.e. soil moisture levels, growth regulators and their concentrations throughout its growth cycle in the two seasons is presented in Table (5). Mean values of the two seasons as well as periodic increase is recorded in Table (5).

Available data of Table (5) showed that values of leaf area/plant started with lower values early in the season (50 days after sowing) and increased gradually to reach a maximum when plant aged 100 days. This pattern is mainly due to the increase in plant vegetation. Leaf area/plant is connected with two factors: a) number of leaves/plant or the formation of new leaves and b) the expansion of leaves or the degree of leaf expansion. Thus any factor affects either the

tration N.S. 28.2 z.s. S.S. Concen ઋ •qns 23.0 22.0 at z.s. Crowth ∞ L.S.D. uon 13.0 28.0 27.0 Irriga-103 i · Birri (mdd) 74] -10 Alar Table (5): Effect of soil moisture levels and some growth regulators on soybean leaf area/plant (cm²) throughout its growth cycle. F.C.) × (bpm) S II (55 GA_3 . 788 $\overline{}$ 69/ Control 1411 1103 1348 1113 1262 X .Birri Periodic increase or decrease 2810 2305 2005 1830 1900 1001 1152 1589 1507 1731 1931 Mean of two seasons ı× 74! 96/ 69/ Alar (ppm) 71-F.C.) Season Season 2477 1963 2110 2087 1858 1554 -2 % × GA₃ (ppm) Medium Control 918 1017 1097 Yrrig. X 20 50 × Alar (ppm) F.C.) 2106 2347 1935 1904 7. 9# 247 1414 1503 1388 Ж (mdd) × (85 Wet GA₃ S Š Control **Treatments** days Š Ž. S

formation of leaves and/or its expansion, has a great influence on leaf area/plant. The above two factors may explain the increase in leaf area/plant from emergence up to 100 days after sowing. In this connection, Black (1963) concluded that leaf area rises to a maximum and then falls thereafter. Also, Sherif (1983) and Abbas (1988) pointed out that leaf area of soybean plant goes parallel to the increase in the vegetative growth of the plants. Sherif (1983) added that a decline in leaf area values occurred when plants aged 90 days from sowing.

Regarding the role of soil moisture levels on leaf area/plant, results Table (5) clearly indicate that soil water has a significant effect on such character. The wet treatment (irrigated at 85% field capacity) gave the maximum values of leaf area/plant followed by medium soil moisture level. However, the dry irrigation treatment (55% F.C.) produced the lowest values of leaves area/plant. These results may prove that prolonged irrigation intervals (dry treatments) did result in a significant reduction in total values of leaf area/plant. Such plants seemed to be grown under dry conditions and suffer from water deficit. In other words, maintaining soil moisture at higher level by frequent irrigations is important for higher values of leaves area/plant. These results are mainly due to the principle effects of water deficit on the reduction in turgor of cells. Reduction in turgor caused reduction in cell enlargement, which in turn decreases leaf enlargement.

In this connection; Wadleigh and Gauch (1948) demonstrated a close relationship between decreasing turgor and decreasing enlargement

of plant organs. Boyer (1968) reported that sunflower leaf enlargement ceased when leaf water potential fell below 3.8 bars and the turgor pressure below 6.8 bars. Also, Kramer (1969) concluded that plants subjected to water stress not only show a general reduction in size but also exhibit characteristic modifications in structure, particularly of the leaves. Leaf area, and all size are usually decreased. Similar results for the effect of water stress on soybean leaf area were reported by Adjei-Twun and Splittstoesser (1976), Sivakumar et al. (1977), El-Wakil (1979), Sherif (1983) and Abbas (1988).

Concerning the role of growth regulators i.e. GA₃ or Alar on leaves area/plant, results showed that such substances induced a significant effect on the values of leaves area/plant. This significant response was found to be true during the different periods of soybean growth i.e. 50, 75 and 100 days after sowing. GA3 application resulted in a significant increase in total leaf area/plant throughout the growth cycle of soybean. Such increase in leaves area/plant was found to be significant over the control treatment or those sprayed with Alar. These findings can be attributed to the stimulative effect of GA_3 on leaf expansion. The stimulative effect of GA3 seemed to be related to the concentration used. As GA3 concentration increased, leaves area/plant increased. This trend was found to be clear from results presented in Table (5). When GA₃ rate increased from 100 ppm to 200 ppm, the values of leaves area/plant increased. Such increase was found to be significant. The stimulative effect of GA3 on the growth of soybean plant has been mentioned previously on stem length. These findings mean that any factor affecting the stem length of

soybean may have a role on the expansion of leaves thereby total leaves area/plant. Many workers suggested that GA₃ affectes the growth of plants through either cell division and/or cell elongation (Jakson and Edela 1962).

Results of Alar showed a reverse trend to that observed with GA₃. In other words, the use of Alar caused a depressive effect on total leaves area/plant compared with the corresponding values of control treatment. Such depressive effect followed Alar application seemed to be increased by increasing the rate from 1000 to 2000 ppm. This trend may prove that growth retardants like Alar caused a reduction in the growth of the treated plants. Many workers showed that growth retardents may influence the biosyntheses of gibberellic acid (Livne and Vaadia, 1965). Such substances retard physiological processes thereby total leaves area reduction may be related partially, to the reduction in number of leaves as well as to less expansion of leaves of those plants treated with retardants.

In this respect, Anton (1991) showed that Alar application had a depressive effect on the values of leaves area/plant for those plants treated with Alar. He also added that such decrease was increased by increasing the rate of application.

Concerning the effect of soil moisture levels on the behaviour of growth regulators, results of Table (5), showed that the role of growth substances on leaves area/plant was more related to water difficit. The enhancing effect of GA₃ was found to be clear under wet condition. This means that soil moisture stress may reduce the stimulative effect of GA₃ on leaf expansion. Such pattern can be

detected from the values of leaves area/plant under the different soil moisture levels. In this connection, Miseha (1983) concluded that the promoting effect of GA₃ seemed to be clear under wet conditions, whereas, inhibited when plants were imposed to severe moistere stress. As for the interaction between growth retardant and water deficit, results showed that the depressive effect of such chemical was found to be greater under soil moistere stress rather than under wet conditions. These findings may prove that growth retardants act: very well under water deficit more than low soil moisture stress (wet soil moisture levels). It can be mentioned that low concentration of Alar stimulated slightly the values of leaves area/plant under low soil moisture stress compared with those obtained from dry treatments. These results indicate that soil moisture levels is very important for retardants to play its role in the growth of plants.

In the view of the previous results, soil moisture levels exhibit a measurable differences in leaves area/plant. For the maximum expansion of leaves, soil water must be maintained at a high level. Also, growth promoting substances stimulated the growth of plants which was reflected lected on their total leaves area/plant. This pattern can be acheived by growing plants under wet conditions and when water deficit was increased, the enhancing effect of GA₃ is reduced, growth retardants had a depressive effect on plant growth thereby leaf expansion. Such retarding effect can be increased either by high rate of growth retardants or by water deficit. Thus, it can be concluded that there is a complete correlation between the regulating effect of growth substances and

soil moisture levels. Such regulatory effect either stimulation or retardation was controlled by the soil moisture level.

In this respect, Kramer (1969) concluded that reduced synthesis of growth regulators such as cytokinins and gubberellins in the roots is an important factor in the reduction of growth observed in plants subjected to water stress.

4.1.3. Dry matter accumulation:

Dry matter content of different plant organs throughout its growth cycle can be considered as an indirect indication for the accumulation of minerals and physiological activities of the various tested parts. In addition, it is one of the main excellent expression for plant growth behaviour. Dry matter accumulation in different soybean plant organs and periodic increase as well as percentage distribution of such values with respect to the whole plant as affected by soil moisture levels and growth regulators throughout its growth cycle is recorded in Tables (6, 7, 8, 9, 10, 11 & 12).

4.1.3.1. Dry matter of roots:

Root dry matter accumulation started with low values at earlier periods. A continous increase in dry matter content of root was observed till the last sampling date (100 days after sowing). This trend is quite clear in both seasons of study. The highest rate of dry matter accumulation of roots falls in the period extended from 50 up to 75 days after sowing. However, at later periods the rate was found to be less than any other period of soybean growth. Such findings can be ascribed to that most of reserved food is translocated to

ible (6): Effect of soil moisture levels and some growth regulators on root dry matter content (g./plant) at different periods of soybean growth.

			≱	Wet (85 %	8 F.C.)	-					Mec	Medium (% 02	F.C.)			ľ		Dr.	Dry .(55 %		F.C.)				L.S.D.	at	5 '6
cati	catments	lo.	GA	GA, (ppm)	Œ)	Alar	Alar (ppm)		X .	lont	GA	GA ₃ (ppr	(E)	Alar	(mdd)		× .8	trol	GA ₃	GA ₃ (ppm)		Alar	(mdd)		X ⋅8i	iga- n	w.th	noim
S 20	s after ing	นายจฏ	8	200	×	1000	2000	×	giaal	noD	100	200	×	1000	2000	×	. }	Con.	001	200	×	1000	2000	×		oit		
!													,	Season	1988													
ر	2	1,2	2.0	4.1	1.5	1.2	1.3	1.3	1.4	1.2	1.1	1.0	1:1	1.3	1.3	1.3	1.2	0.9	1.0	1.2		1.2	0.7		0.1		N.S.	0.2
	days	2.9	5.1	1.7	0.4	3.0	3.4	3.1	3.6	1.5	2.2	2.3	2.0	1.8	1.9	1.7	6.1	 	2.1	2.0	1.7	2.3	1.2		9.1	0.2	0.2	0.2
	days	4.1	5.5	4.9	8.4	3.8	3.8	3.9	7.4	2.3	3.0	2.6	2.6	3.1	2.2	2.6	2.6	1.3	2.3	2.2	1.9	3.5	6.1	2.2	2.1 (4.0	s. S	0.4
													٠,	Season	1989	_												
		-	-	-		7	~	4	7,	5.	7.	<u>.</u>	5.	1.3	1.3	1.3	1.3	1.0	1.4	1.2	1.2	I. 1	1.2	1:	1.1	0.1	0.1	0.1
	days	- i (<u>:</u> ;		; ,		, ,	77	,	2.6	3.2	2.8	2.9	3.0			2.8	2.0			2.5	2.8	2.3	2.4	2.5	0.2	0.2	0.2
2 8	days days	6.7 0.4	5.3	4.3	4.5	4.8	4.2	4.3	4.4	3.6	4.3	3.0	3.6	4.0						4.3	3.0	3.0	2.5	2.6	2.8	0.2	Z.S.	0.2
													Mea	Mean of tv	two seasons	sons												
	,	-	-	-	4	4.	1.3	1.3	1.5	1.3	1.3	1.2	1.3	1.3	1.3	1.3	1.3	1.0	1.2	1.2		1.2	0.1	1.1	1.1	0.1	z.s.	0.1
	days		: -		9 0	,	, ,		3.6	2.1	2.7	2.6	2.5	2.4	2.1	2.2	2.4	1.6	2.5	2.3	2.1	2.6	lS	2.0	2.5	0.1	0.1	0:1
<u> </u>	days days	4.1	5.4	6.4	4.7	4.3	0.4	4.1	4.4	3.0	3.7	2.8	3.2	3.6	3.0	3.2	3.2	s 8:	2.8	2.8	2.5	3.3	2.2	2.4	2.5	0.2	S.S.	6.2
													Pe	riodic	Periodic increase	ıse												
	3, 7. T	. 7 1%	35.2	32.6	34.0	32.6	32.5	31.7	34.1	43.3	35.1	42.9	9.04	36.1	43.3	9.04	9.04	55.6	42.9	42.9	0.44	36.4	45.5	45.8	0.44	ı	1	j
2 ×	6	39.0								26.7			37.5	30.6	26.7	28.1	34.4	33.3	4.94	39.3	40.0	42.4	36.4	37.5	26.0	1	1	t
	days	29.3											21.9	33.3	30.0	31.3	25.0	11.1	10.7	17.8	16.0	21.2	18.2	16.7	0.00	ı	1	ì
								1	1		f							:			 	1		;				i i i
		:	:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	:		i i						•														

reproductive organs. The above mentioned results are in line with those reported by Abbas (1988).

Water regime exhibits a significant effect on root dry matter throughout its growth cycle. This trend was found to be true during the different periods of soybean growth. Increasing water defect did result in a significant decrease in dry matter of soybean root. On the other hand, maximum root dry matter was gained under wet conditions i.e. 85 % field capacity. However, intermediate values of root dry matter was observed from the medium soil moisture levels. Such findings may prove that dry matter accumulation is favoured by abundance of soil water and plant growth is inhibited under dry conditions. The previous findings may prove the importance of maintaining soil water at a high level for maximum accumulation of dry matter in roots. Such trend can be related to the multiple effects of water stress on plant growth thereby on dry matter production.

Regarding the effect of growth substances i.e. GA₃ on Alar on root dry weight results indicate that both substances had a significant response on such character during different periods of growth. In other words, GA₃ application seemed to enhance dry matter accumulation soybean plants treated with GA₃ have higher dry matter content compared with the corresponding values of the untreated plants (Control) through the different periods of growth. The most pronounced concentration was found to be 100 ppm. This concentration gave higher root dry matter production either over the control or the other GA₃ concentration. In this respect, Gosheh et al. (1963) concluded that the direct

effect of GA_3 was its influence on increasing fresh and dry weight of plant tops. Castro (1980) and Saza (1985) concluded that increasing applied GA_3 decreased the dry weight of plant organs compared with the lower concentration.

As for Alar, results of Table (6) showed that it had a depressive effect on dry matter of soybean root throughout its growth cycle. Such reduction was found to be clear with higher concentration (2000 ppm) than the lower one i.e. 1000 ppm.

These finding can be attributed to the retarding effect of such substances on the growth of plants which was reflected on root dry matter.

The dry matter of soybean root seemed to be connected with soil moisture levels. It can be mentioned that the stimulating effect of GA₃ was found to be more under high soil moisture levels and decreased by increasing water deficit. Such pattern may prove that soil water is an important factor controlling the behaviour of growth promoting substances. The reverse pattern was found to be true with Alar (growth retardent). In other words, dry conditions induced the retarding effect of Alar. In this respect Hubick et al. (1986) concluded that the effect of drought on GA₃ and ethylene was minimal, however, abscisic acid was markedly higher in stressed plants.

4.1.32. Stem dry matter:

Stem dry matter production was lower early in the season when the plants are small, then increased gradually to reach its maximum

Table (7): Effect of soil moisture levels and some growth regulators on stem dry matter content (g./plant) at different periods of soybean

Treatr	Freatments		Wet	(85 %	% F.C.)	ا ا				ļ	Med	Medium (70	%	(c.C.)					Dry	y (55	%.	F.C.)				L.S.D.	J. at	8
Days after	after	ioni	GA_3	GA ₃ (ppm)	<u></u>	Alar	(mdd)	_	Ÿ.	trol	GA ₃	(g)	Ê	Alar	r (ppm)	(F	X.	lon	GA ₂	(mdd)	(E	Alar	r (ppm)	(a	Ϋ́	-1] '	¦ -ua
sowing	p0		100	200	×	1000	2000	×	lrrig	Con	100	200	×	1000	2000	×	Irrig.	Cont	100		×	1000	1,4	\sim	Irrig.	lrriga ion	Growt Sub.	Conce tratio
	•			4		6	(•	•					Season	8861 ر	∞												
	days	/ '7		7. 7	7:5	3.3	2.5	2.8	3.8	2.5	2.6	3.3	2.8	2.9	2.4	2.6	2.7	2.1	2.0	3.3	2.5	2.3	2.0	2.2	2.3	0.3	0.3	0.3
	days		[::]	13.1	13.5	13.1			12.5	4.9	8.9	7.1	6.3	7.7	5.1	5.9	6.1	3.4	4.1	5.0	4.2	3.9	3.7	3.7	0.4	9.0	6.5	9.0
0 F:	days	3.8	19.2	16.8	16.6	15.4	13.5	14.2	15.4	7.3	12.0	8.4	9.2	11.0	5.6	8.0	8.6	3.6	8.9	5.3	5.9	6.3	3.9	9.4	5.3	8.0	9.0	80
						•							•	Season	1989	σ.		-										
	days		3.6	3.7	3.4	3.3	3.0	3.1	3.2	2.7	3.1	3.4	3.1	3.2	2.8	2.9	3.0	2.3	2.5	2.3	2.3	2.4	2.2	2.3	2,3	_	~	-
Σ φ	days	10.7	18.8	18.6	16.0	13.5	9.5	11.2	13.6	8.2	15.8	13.2	12.4	11.8	7.0	0.6	10.7	3.5	9.6	8.2	7.0	7.7	<u>~</u>	2 4	6.7	: :		; ;
:00	days	20.4	28.9	29.7	26.3	24.0	21.6	22.0	24.2	8.6	15.2	7 .	15.4	124	-	11.0	12.2	0	r <u>c</u>	1		. (·	1	;	† 5	†
									! :)	1			1.2.1		11.2	0.01		10.2	6./	» O	9.6	8.9	7.5	7.8	0.7	9.0	9.0
	•												Mea	Mean of two seasons	Vo se	Sons												
	days					3.3	2.8	3.0	3.4	5.6	2.9	3.4	3.0	3.1	2.6	2.8	2.9	2.2	2.3	2.8	2.4	2.4	2.1	2.2	2.3	0	0.1	7.0
	days				× 7	13.3	10.2	11.3	13.1	9.9	11.3	10.2	9.4	8.6	6. 1	7.5	8.5	3.5	8.9	9.9	5.6	5.8	7. 7	4.6	7.	. 4	, ,	
90 00	days	17.1	24.1	23.3	21.5	19.7	17.6	18.	19.8	8.6	13.6	14.8	12.3	11.7	8.5	9.6	11.0	¢.8	9.6	9.9	7.0	8.0	5.4	6.1	9.9)	† v
						•							ď	; ;		,									•	\ 5	;	}
50 da	days	16.4	19.1	17.6 17.7		16.8 15.9		16.6	17.2	30.2	21.3	23.0	24.4	renouncincrease	merea 30 6	1Se 29.2	76 11	0 5 7	2,00	 	, ,	C C	6					
75 da	days	45.0 5	55.6	50.6		50.8				46.5	× ×	6 5 4	52.0	57.3	2 -	7.07		3 - 6	0.4.	+7·+	74.7	0.00	58.9	. 5 6. l	34.8		ı	,
- Os										. (· ·	0.4	?	41.5	7.0		1./2	40.7	9./6	45.7	42.5	42.6	39.3	42.4	,	t	t
	ddys		C*/7	51.8		4.76	1.74	37.5	53.8	23.3	16.9		23.6	16.2	28.5	21.8	22.7	27.1	29.1	0.0	20.0	27.5	3.5	74.6	27.8			

- 14 -

at the age of 100 days. These results were found to be true in both seasons as well as the mean of them. It is worthy to mention that the grand period of dry matter accumulation in soybean stem was found to be from 50 up to 75 days after sowing. At such period about 50 % of total dry matter of stem was gained Table(7). After that period, dry matter accumulation was less compared with the former period. This period can be considered as the elongation period of stem. Also, the less dry matter accumulation observed in later stages of soybean growth is mainly related to that the plant directed its effort for the formation of pods and seed fillings.

As for the effect of soil moisture levels on stem dry matter, results showed a similar trend to that observed with root dry weight. In other words, water deficit has a significant effect on the stem dry matter of soybean plant during the tested periods of growth. Stem dry matter showed higher values under wet conditions (high soil moisture level) and decreased as soil moisture stress increased. These results may show that growth of plants is enhanced by wet conditions and ceased as soil moisture approached wilting.

Regarding the role of growth substances on stem dry weight, data showed a trend similar to that observed with root. The use of GA_3 stimulated significantly the accumulation of dry matter in stem. Such stimulative effect was obvious under both levels of GA_3 . However, the lower rate was found to be more in this respect. Also, the use of Alar seemed to enhance the accumulation of dry matter in soybean stem. On the contrary, the higher level of Alar (2000 ppm) seemed

to reduce slightly dry matter accumulation in soybean stem. Such reduction may be ascribed to the retarding effect of Alar on growth. The retarding effect of Alar seemed to be enhanced under dry conditions rather than under wet soil moisture levels. The previous results indicate that the promoting effect of GA₃ seemed to be higher under wet soil moisture level, however, Alar, needs dry conditions to ensure its effect.

4.1.3.3. Leaf petiol and blade dry matter:

Leaves dry matter values were low then increased till the last sample (100 days after sowing). Such results were found to be the same in both seasons. The period from 50 up to 75 days after sowing seemed to be the greatest period of dry matter accumulation with respect to periodic increase. After such period the plant directed its effort to the formation of pods and seeds. This may explain the less relative increase in such period.

Regarding the effect of soil moisture stress on dry matter accumulation in soybean leaves, data of Tables (8, 9) showed a similar trend to that observed either with root or stem. Dry matter accumulation was enhanced by wet soil moisture levels and decreased significantly by water deficit.

Concerning the effect of growth regulators on leaves dry matter, results showed a similar pattern to that observed with root and stem. The use of GA₃ increased dry matter of leaves significantly over the control or Alar. The most pronounced concentration was 100ppm.

Table (8): Effect of soil moisture levels and some growth regulators on leaf petiol dry matter content (g./plant) at different periods of soybean growth.

The atments																			į			 - -	i ! !	j > (1	5	:			
The color The	Treatment	1		Wei	(85	% F.((;)				Mec		%	F.C.)					2	1	8	()				-	'	J w	1
Hays 2.1 2.9 1.6 2.2 2.4 1.7 2.1 2.1 1.7 1.9 1.3 1.4 1.8 1.6 1.7 1.7 1.2 1.6 1.3 1.4 1.6 1.3 1.4 1.6 1.3 1.4 1.6 1.3 1.4 1.6 1.8 1.6 1.7 1.7 1.8 1.6 1.7 1.7 1.8 1.6 1.7 1.7 1.8 1.6 1.7 1.7 1.8 1.6 1.3 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Days after	 trol		S	ւ <mark>3 (pp</mark> ո	n) Ala	ır (ppr	(F	X .2		GA ₃	립		Alaı		(E	Ϋ́	lo	, AS		- 1	Alar	ì	1	X	-1	a . ∤u	, tu	- 1
days 2.1 2.9 1.6 2.2 2.4 1.7 2.1 2.1 1.7 1.9 1.3 1.7 1.8 1.6 1.7 1.7 1.2 1.6 1.3 1.4 1.6 1.3 1.4 1.6 1.3 1.4 1.6 1.3 1.4 1.6 0.2 N.S. days 4.9 8.5 6.0 6.5 7.7 6.3 6.3 6.4 2.2 4.2 3.7 3.4 4.0 3.6 3.3 3.3 2.1 4.1 2.3 2.8 3.3 2.0 2.5 2.6 0.3 N.S. days 8.4 1.6 1.8 1.6 1.7 1.7 1.6 1.6 1.7 1.4 1.6 1.3 1.4 1.6 1.3 1.4 1.6 1.2 1.4 1.4 1.0 1.2 1.1 1.1 1.1 0.9 1.0 1.1 0.1 N.S. days 8.4 1.7 1.7 1.6 1.6 1.7 1.4 1.6 1.3 1.4 1.6 1.3 1.4 1.5 1.2 1.4 1.4 1.0 1.2 1.1 1.1 1.1 0.9 1.0 1.1 0.1 N.S. days 8.4 1.9 2.4 1.6 2.0 2.1 1.7 1.9 2.0 1.6 1.8 1.3 1.4 1.5 1.2 1.4 1.4 1.5 1.2 1.1 1.1 1.1 1.1 1.1 0.9 1.0 1.1 0.1 N.S. days 8.4 2.1 8 1.8 2.7 2.8 2.3 2.9 2.9 2.9 4.5 7.0 4.0 5.2 5.1 3.9 4.2 4.3 3.9 2.3 2.8 2.8 2.8 2.7 2.0 2.4 2.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	sowing	Cot	100			7001	2000		gianl		100	200	i× i	1000	1 ' '	×	·gi ^j i	Conti	991		×	0001	1 (7	×	.ginal	lrriga1 ion		at ed. Dix g	
days 5.7 8.4 12.7 10.1 10.4 10.2 7.4 8.7 9.5 4.5 7.0 4.0 5.2 5.1 3.9 4.5 4.5 1.4 1.4 1.0 1.2 1.1 1.1 1.1 1.1 0.9 1.0 1.1 10.1 0.1 N.S. days 5.7 8.3 7.1 7.0 6.2 5.4 5.8 6.4 3.9 5.0 3.2 4.0 4.2 3.1 3.7 3.9 2.5 3.0 2.8 2.8 2.7 2.0 2.4 2.6 0.3 0.3 days 1.9 2.4 1.6 2.0 2.1 1.7 1.9 2.0 1.6 1.8 1.3 1.4 1.5 1.4 1.6 1.6 1.1 1.4 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 0.3 days 6.7 11.0 8.7 8.8 9.2 7.0 7.6 8.2 3.9 6.3 3.9 4.7 4.9 3.9 4.5 2.8 4.5 3.6 2.8 3.0 2.8 3.0 2.4 2.6 0.2 N.S. days 6.7 11.0 8.7 8.8 9.2 7.0 7.6 8.2 3.9 6.3 3.3 4.0 4.7 4.9 3.9 3.1 37.5 34.3 34.3 34.0 34.7 35.9 38.1 35.6 39.3 31.1 37.5 34.3 34.3 34.0 34.7 35.9 38.1 35.6 39.3 34.3 34.3 34.0 34.7 35.9 38.1 35.6 39.3 31.1 37.5 34.3 31.0 50.0 37.5 37.3 3.9 4.2 4.2 2.0 2.8 2.3 2.0 2.8 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3		2.1 4.9 4.9 5.0									1.9 4.2 5.5	1.3 3.7 3.8	1.7	Seaso 1.8 4.0 4.7	n 1988 1.6 3.6 3.9		3.3	2.1 2.1 2.3	1.6	1.3 2.3 2.5	1.4 2.8 3.1	1.6 3.3 4.3	1.3	1.4 2.5 2.9	1.4 2.6 3.0	0.2	N.S. N.S.	0.2	T.
days 1.9 2.4 1.6 6.8 7.0 5.9 6.1 6.5 3.1 4.6 3.7 4.1 1.6 1.6 1.1 1.4 1.2 1.3 1.3 1.2 1.2 1.3 1.2 1.2 1.3 1.2 1.2 1.3 1.6 1.7 1.4 1.6 1.6 1.7 1.4 1.6 1.6 1.7 1.4 1.6 1.2 1.2 1.3 1.2 1.2 1.3 1.2 <td></td> <td>1.6 5.7 8.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.4 3.9 4.5</td> <td>1.6 5.0 7.0</td> <td>1.3 3.2 4.0</td> <td></td> <td>Seasor 1.5 4.2 5.1</td> <td> ,</td> <td></td> <td>.1.4 3.9 4.8</td> <td>1.0 2.5 3.2</td> <td>1.2 3.0 4.4</td> <td>1.1 2.8 3.9</td> <td>1.1 2.8 3.8</td> <td>1.1 2.7 4.0</td> <td>0.9 2.0 3.0</td> <td>1.0 2.4 3.4</td> <td>1.1 2.6 3.6</td> <td>0.1</td> <td>N.S. 0.3</td> <td>0.1</td> <td></td>		1.6 5.7 8.4								1.4 3.9 4.5	1.6 5.0 7.0	1.3 3.2 4.0		Seasor 1.5 4.2 5.1	,		.1.4 3.9 4.8	1.0 2.5 3.2	1.2 3.0 4.4	1.1 2.8 3.9	1.1 2.8 3.8	1.1 2.7 4.0	0.9 2.0 3.0	1.0 2.4 3.4	1.1 2.6 3.6	0.1	N.S. 0.3	0.1	
days 28.4 21.8 18.4 22.7 22.8 24.3 25.0 24.4 41.0 28.6 33.3 34.0 34.7 35.9 38.1 35.6 39.3 31.1 37.5 34.3 31.0 50.0 37.5 35.3 - days 50.7 54.5 57.5 54.5 53.3 60.0 55.3 54.9 38.5 44.4 56.4 44.7 49.0 51.3 45.2 44.4 42.9 48.9 43.8 45.7 40.5 26.9 37.5 41.2 - days 25.9 23.7 24.1 22.7 23.9 15.7 19.7 20.7 20.5 27.0 10.3 21.3·16.3 12.8 16.7 20.0 17.8 20.0 18.7 20.0 28.5 23.1 25.0 23.5		6.3 6.7	_			2.1 7.0 9.2	5.9	1.9 6.1 7.6	2.0 6.5 8.2	3.1	1.8	1.3 3.5 3.9	Meai 1.6 3.7 4.7	n of tr 1.7. 4.1 4.9	vo sea 1.4 3.4 3.9	3.5 4.2	1.6 3.6 4.5	1.1 2.3 2.8	1.4 3.6 4.5	1.2 2.6 3.2	1.2 2.8 3.5	1.3 3.0 4.2	1.3 2.0 2.6	1.2 2.4 3.2	1.2 2.6 3.4	0.1 0.2 0.2	N.S. N.S.	0.1	
	· ·	28.4 50.7 25.9	Į.					25.0 55.3 19.7					Pei 34.0 44.7 21.3 ·	£ 1	increa 35.9 51.3	- 2 -									35.3 41.2 23.5	1 1 1	e 1 1	8 21 21	

Table (9): Effect of soil moisture levels and some growth regulators on yeaf blade dry matter content (g./plant) at different periods of soybean growth.

,			14.4	40,		(
Treatments	١,		*et	wet (8) %		۲. ان				ž	Medium	(70 %	6 F.C.)	~ i				Δ	Dry (55	%	F.C.)				L.S.D.	D. at	5 %
Days after	troi	٠,١	GA ₃ (ppm)	Œ.	Ala	Alar (ppm)	ے ا	X -8		ט	GA3 (ppr	(E)	Alar	(mdd)	2	X.	lo1	Ġ	GA, (p	(mdd)	Alar	r (ppm)	2	X	-1	q	-u
Burwos	CON	8	200	×	001	1000 2000	×	lrri	Con	100	200	×	1000	2000	×	l Irrig	Cont	100	101	×	1000	1,,	×	lrrig.	Irriga tion	Growt Sub.	Sono S Iration
50 days 75 days 100 days	5.1 10.1 11.2	6.7 15.4 16.4	4.3 13.8 15.2	5.4 13.1 14.3	6.2 12.1 1 12.3		5.0 5.4 10.0 : 10.7 10.9 11.5	4.5 11.9	6 4.0 5.3 8.5	5.6 8.5 10.8	3.7 6.3 6.4	4.4 6.7 8.6	Season 4.2 8.2 9.5	n 1988 3.6 5.7 6.6	3.9 6.4 8.2	4.2 6.6 8.4	3.5 4.6 5.0	4.1 5.0 6.2	3.6 5.2 6.0	3.7 4.9 5.7	3.7.5.0	3.0 5.0 5.8	3.4	3.6	0.4 0.5 0.6	N.S. 0.4	0.4
50 days 75 days 100 days	6.0 8.5 15.1	7.5 13.1 18.2	6.7 9.0 16.0	6.7 10.2 16.4	6. 4 9.3 16.6	5.6 8.0 13.0	6.0 8.6 14.9	6.4 9.4 15.7	4.2 6.0 9.2	5.1 9.0 11.2	4.9 6.5 7.3	4.7 7.2 9.2	Season 4.8 7.8 8.3	3.6 5.7 5.7	4.2 6.5 7.7	4.5 6.8 8.5	3.4 4.8 5.2	4.1 6.0 8.1	3.7 5.5 7.0	3.7 5.4 6.8	3.9 5.3 6.8	3.0	3.4 4.9 5.6	3.6 5.2 6.2	0.2	0.2	0.2
50 days 75 days 100 days	5.5 9.3 13.2	7.1 14.3 17.3	5.5 11.4 15.6	6.0 11.7 15.4	6.3 10:7 14.5	5.3 9.0 12.0	5.7 9.7 13.2	5.9 10.7 14.3	4.1 5.7 8.9	5.4 8.8 11.0	4.3 6.4 6.9	Mean 4.6 7.0 8.9	m of th	of two seasons 4.5 3.6 4.1 8.0 5.7 6.5 8.9 6.2 8.0	4.1 6.5 8.0	4. 6. 8 8. 8. 8 7.	3.5 4.7 5.1	4.1 5.5 7.2	3.7 5.4 6.5	3.8 5.2 6.3	3.8 5.2 6.7	3.0	3.4 5.9	3.6 5.1 6.0	0.2	0.1	0.2 4.0.0
50 days 75 days 100 days	41.7 28.8 29.5	41.0	35.3 37.8 26.9	39.0	43.4 30.3 26.3	44.2 30.8 25.0	43.2 30.3 26.5	41.3 33.6 25.1	46.1 18.0 35.9	49.1 30.9 20.0	62.3 30.4 7.3	Pe 67.4 11.2 21.4	Periodic .4 50.6 .2 39.3 .4 10.1	increase 58.1 51 33.9 30 8.0 18	51.3 30.0 18.7	60.0 20.0 20.0	68.6 23.5 7.9	56.9 19.4 23.5	50.9 26.2 16.9	60.3 22.2 17.5	56.7 20.9 22.4	55.6 33.3 11.1	59.6 26.3 14.1	60.0 25.0 15.0	1 1 1	ing services and the services of the services	

However, the highest level of GA₃ 'seemed to decrease slightly dry matter accumulation in soybean leaves. As for Alar, data of Tables (8 and 9) indicate that the lower concentration enhanced the dry matter accumulation in leaves. However, the higher rate seemed to decrease the values of leaves dry matter. Such reduction was found to be significant either over the control or the lower rate.

As for the interaction between soil moisture levels and growth substances, data indicate that the stimulative effect of GA₃ was found to be higher under wet soil moisture level. However, water deficit seemd to inhibit such effect. On the contrary, growth retardant behaves good under dry conditions rather than wet soil moisture.

4.1.3.4. Pod dry matter:

Data of Table (10) indicate that the formation of pods started after the first sample (50 days after sowing). Pod dry matter increased till the last sampling date. This is mainly due to the formation of new pods as well as the accumulation of reserved foods in soybean seeds.

Soil moisture levels affected the dry matter content of soybean pods. Such effect was found to be significant. The values of pods dry matter/plant were higher under high soil moisture levels and decreased by increasing soil moisture stress (prolonged) irrigation intervals. Also, it can be concluded that soil moisture stress not only affects pod dry matter but also the proportion of pod productivity during different periods of growth. The early formation of pods was gained under high

Table (10): Effect of soil moisture levels and some growth regulators on pod dry matter content (g./plant) at different periods of soybean growth.

																		;	1	מו זכני	different periods of Soybean growth.	Dean (3rowth				
Treatments		Wet	(85 %	6 F.C.)	73					Me	Medium (% 0/)	F.C.)					Ì	(55)	9							
Days after	lor	. GA3	GA ₃ (ppm)		Alar	Alar (ppm)		Χ	10-	YS	GA. (ppr	(E	Alar	Alar (nam)		X	I	<u> </u>		.	١.ز.)				L.S.D.	at 5	8
sowing	, Juc	5	900	12	9		- 1	Bi	អ្នកស		7	- 1		<u> </u>	,	2	tro	6A3	(mdd)	_	Alar	(mdd)	_		-11	•с Чұ,	-U(
	cc	9	700	×	0001	2000	×	ILL	co	100	200	×	1000	2000	×	Irrig	Con.	100	200	×	1000	2000	×	lrrig.	Irriga noi	Grow Ssub	Sonce Sitant
50 days 75 das 100 days	0.0 8.3 18.5	0.0	9.4	0.0 9.6 19.9	0.0 9.6 21.6	0.0 4.3 14.0	7.4	0.0 8.5 19.0	0.0 3.1 14.8	0.0 6.9 19.2	0.0 5.8 15.3	0.0 5.3 16.4	Season 0.0 4.5 4.5	1988 0.0 3.5 9.3	3.7 13.7	0.0 4.5 15.1	2.7	0.0 4.1 13.0	0.0	0.0 2.9 9.8	4.0	0.0 2.9 7.8	3.2	3.1 (9.1 (9.1 (9.1 (9.1 (9.1 (9.1 (9.1 (9	0.0	0.0	0.0
50 days 75 days 100 days	0.0 9.0 14.9	0.0 12.3 22.7	0.0 10.9 1 20.8 1	0.0 10.7 19.5	9.9 9.3 17.2	0.0 4.9 13.9	0.0 7.7 15.3	0.0 9.2 17.4	2.9	0.0 7.5 20.0	0.0 4.1 17.4	0.0 4.8 15.8	Season 0.0 5.0 14.2	1989 0.0 3.5 8.9	3.8	0.0 4.3 13.4	0.0	0.0 2.3 9.7	0.0 1.6 8.0	0.0	0.0	0.0	0.0 (0.1.5 1.5 8.7.5 8.7.5	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0
50 days 75 days 100 days	0.0 8.7 16.7	0.0	0.0 10.2 19.5	0.0 10.2 19.7	0.0 9.5 19.4 1	0.0	0.0 7.6 16.7	8.9 18.2	0.0° 3.0	0.0 7.2 19.6	0.0 5.0 16.4	Mean 0.0 5.1 16.1	Mean of two seasons 0.0 0.0 0.0 5.1 4.8 3.7 3.8 6.1 15.7 9.1 12.4	o seas 0.0 3.7 9.1		0.0 4.5 14.3	0.0 2.0 8.0	0.0 3.2 11.4	0.0	0.0 2.3 9.1	0.0 3.0 8.7	2.2	0.0 0 2.4 2 8.0 8	0.0 0 2.4 0 8.6 0.	0.0 0	0.0	0.0
50 days 75 days 100 days	0.0 52.1 47.9	50.9 5	52.3 5	51.8 4 48.2 5	0.0 49.0 3 51.0 6	0.0 32.9 4 67.1 5	0.0	0.0 48.9 2 51.1 7	0.0 24.2 75.8 6	36.7	0.0 30.5 3	9.0 31.7 68.3	Periodic increase . 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	increas 0.0 40.7 3 59.3 6		0.0 31.5 2 68.5 7	0.0 25.0 2 75.0 7	0.0 28.1 2 71.9 7	0.0 22.5 77.5	0.0 25.3 74.7 6	0.0 (34.5 2)	0.0 0.2 29.7 30	0.0 0.0 30.0 27.9 70.0 72.1	6	1 1 1		

soil moisture level while with increasing soil moisture stress the early formation of pods declined.

The use of GA_3 seemed to stimulate the dry matter of pods/plant. Such stimulative effect was found to be more pronounced at the rate of 100 ppm. However, the higher rate of GA_3 i.e. 200 ppm seemed to be less in this respect. Soil moisture stress interacted with the promoting effect of GA_3 , as this stimulative effect decreased with increasing soil moisture stress.

The application of Alar caused a retarding effect on pod dry matter production. Such retardation seemed to be enhanced by higher concentration, while the lower rate slightly increased dry matter of pods/plant. The retarding effect following Alar application seemed to be stimulated by increasing soil moisture stress and disappeared under high soil moisture level.

It can be concluded that there is an interaction between the regulating effect of the tested growth regulators and soil moisture levels, as the effect of growth substances either stimulation or retardation was controlled by the level of soil moisture.

4.1.35. Whole plant dry matter:

Total dry matter accumulation in whole soybean plant under the various treatments is presented in Table (11). As a general pattern, data showed a continous increase in dry matter content from emergence till the last sample. It is worthy to mention that about 50 % of total dry matter of whole soybean plant accumulated through the period from 50 up to 75 days after sowing (Table 11). However

Table (11): Effect of soil moisture levels and some growth regulators on whole plant dry matter content (g./plant) at different periods of soybean growth.

							ļ											,		1	227	ָהָ מַל	Death 1	directions of soyucall growing			
Treatments		À	Wet (85 %		F.C.)					Me	Medium (70	% 02)	F.C.)) a	(55 %	() H	-				l i		1
Days after	 trol	S A	GA3 (ppm)	(h	Alar	(mdd)		X.	lon	GA	GA3 (ppm)	- (a	Alar	(mdd)		X	10	i.			1	0.00	X		L.S.D. a		1
sowing	Con	100 100	200	×	1000	2000	×	lrrig.	Cont	80	200	×	1000	2000		Irrig.	Contr C	3 100 Z	g g			Z0002	ı	lrrig. Irriga-	tion Growth	Sub. Concer ration	
50 days 75 days 100 days	36.4 36.4 52.6	17.1 57.2 73.7	46.4	13.3 46.7 62.9	13.2 45.5 61.3	10.5 34.9 48.7	11.6 38.9 54.2	12.5 42.8 58.6	9.4 17.0 36.2	11.2 28.6 50.5	9.3 25.2 36.5	\$ 10.0 23.6 41.1	Season 10.2 26.2 45.4	1988 8.9 19.8 27.6	9.5 21.0 2 36.4 3	9.8 7.22.3 . L. 38.8 20	7.7 13.9 1 20.5 3	8.7 9 19.4 16 34.9 24	9.4 8 16.4 16 24.0 26	8.6 8 16.6 18 26.5 29	8.8 7 18.5 14 29.9 21	7.0 7.8 14.8 15.7 21.5 24.0	7.8 8.2 5.7 16.2 4.0 25.3	2 0.7 2 1.6 3 1.0			.1
50 days 75 days 100 days	11.9 36.8 62.8	14.6 57.1 87.8	13.5 49.1 80.9	13.3	12.8 42.5 72.8	11.5 31.0 60.1	12.1 36.8 65.2	12.7 42.2 71.2	9.6 23.6 37.0	11.2 40.5 57.7	10.9 29.8 52.8	Seaso 10.5 10.8 31.3 31.8 49.2 44.0	Ę	8.9 8.9 21.6 2.33.5 38	9.8 II 25.7 2, 38.2 4;	10.2 7 28.5 14 43.7 24	7.7 9 14.1 2: 24.2 3;	9.2 8 23.6 20 35.7 30	8.3 8.4 20.6 19.4 30.2 30.0	נא פין		7.3 7.8 15.4 16.6 24.2 26.6	8 8.1 6 18.0 6 28.3	1 1.2 0 0.6 3 1.2	1.0	1.2 0.6 1.2	•
50 days 75 days 100 days	11.5 36.7 57.8	16.0 57.3 80.8	12.7 47.9 71.7	13.4 47.3 70.1	13.1 44.1 67.1	11.1 33.0 54.6	37.9 37.9 59.8	12.7 42.6 65.0	9.6 20.5 36.8	11.4 34.6 54.2	14.5 27.7 44.8	Mean 11.8 27.6 45.3 4	of two 10.6 29.1 2 44.8 3	ean of two seazsons .8 10.6 8.9 9.7 .6 29.1 20.8 23.5 .3 44.8 30.7 43.2		10.8 7 25.6 14 44.3 22	7.8 9 14.1 21 22.5 35	9.0 8.9 21.6 18.7 35.5 27.1	8.9 8.6 8.7 18.1	.6 8.7 .1 19.6 .4 30.9	7 7.4 6 15.2 9 22.5	4 8.0 2 16.3 5 25.3	3 8.3 3 17.2 3 26.9	3 0.2 2 0.6 9 0.8	0.5 8,5 0.6	02	
50 days 75 days 100 days	19.9 43.6 36.5	19.8 51.1 29.1	17.7 49.1 33.2	19.1 48.4 32.5	19.5 46.2 34.3	20.3 40.1 39.6	19.9	19.5 ; 46.0 ; 34.5 ;	26.1 29.6 <i>t</i>	21.0 42.8 36.2	32.4 2 29.5 3	Peri 26.0 2 34.9 4 39.1 3	riodic ir 23.7 2 41.3 3 35.0 3	Periodic increase .0 23.7 29.0 22 .9 41.3 38.8 31 .1 35.0 32.2 45	ئ و ئ	24.4 34.7 33.4 28.0 42.2 37.3		25.4 32.8 35.5 36.2 39.1 31.0	.8 30.3 .2 33.5 0 36.2	3 28.2 5 35.3 2 36.5	2 32.9 3 34.7 5 32.4	9 31.6 7 32.8 4 35.6	5 30.9 8 33.1 5 36.0	, , ,	1 1 1	1 1 4	

other periods showed less dry matter accumulation. These results indicate that the period from 50 to 75 days is considered as the grand period of dry matter accumulation in whole soybean plant.

Soil moisture levels had a significant effect on dry matter accumulation by whole soybean plant. Such significant effect was found to be clear throughout the growth cycle of the crop under study. The highest dry matter content of soybean plant was produced from the high soil moisture level followed by the medium water regime. However, the lowest values of dry matter were gained from the dry treatment (severe water deficit). These results may prove the importance of soil water for the growth of soybean plant thereby dry matter accumulation. It can be concluded that the availability of water proves to be one of cheif constrains on dry matter productivity. It is well known that total net photosynthesis is determined by the availability of light, CO2, water and nutrients, and the growth pattern of the plant that determines both photosynthesis rate and the reinvestment rate and the response of the plant to stress. Soybean plant seemed to be grown well under wet conditions rather than either under moist or severe water deficit.

Regarding the role of growth substances on dry content of soybean plant, results of Table (11) showed that it had a significant response on dry matter accumulation. Such significant effect differs according to the role of the used regulater i.e. either promoter or retardant.

The use of GA₃ with different concentration did result in a significant increase in dry matter production by soybean plant as compared with the control. Such findings showed that growth promoting substances stimulated the accumulation of dry matter. The most effective rate was found to be 100 ppm. Such rate enhanced dry matter production either over the control or the other used level i.e. 200 ppm. In this connection, Devlin and Witham (1983) concluded that low concentration of plant hormones stimulated plant growth. Increasing the rate of applied hormone resulted in a similar increase in the stimulative effect to reach a maximum at the optimal level. However, such increase more than that level reduced the induction rate. This induction in the rate of stimulation does not mean the death of cells but the inhibition caused by hormone concentration. Thus, the response of plants to hormones may be a stimulative effect or turning on and inhibiting effect or turning off.

As for Alar treatments, results gained showed that the lower rate of Alar (1000 ppm) increased dry matter content of soybean. Such increase in dry matter was found to be significant compared with control. This trend was found to be true in the successive periods of growth. It is worthy to mention that the stimulative effect caused by low rate of Alar did not reach that caused by GA₃ at any rate. On the contrary, higher level of Alar (2000 ppm) did result in a significant reduction in dry matter accumulation, compared with the control. Thesefindings can be attributed to the retarding effect of Alar on the growth of plants, thereby dry matter accumulation.

These results were explained by Devlin and Witham (1983) who concluded that growth retardants inhibit plant growth through their interference with the action of Gibberellin more than the inhibition of biosynthesis of GA₃.

Concerning the behaviour of growth substances under different soil moisture levels, different phenomena were observed. Growth promoter i.e. GA_3 enhanced dry matter accumulation more under wet conditions. However, such promotive effect of GA_3 was inhibited under lack of soil moisture (severe water deficit). On the contrary, growth retardants like Alar seemed to work very well under dry conditions rather than wet soil moisture levels.

41.3.6. Dry matter distribution:

Dry matter distribution of the different plant parts of soybean during its growth cycle under the various treatments, is illustrated in Table (12). Data showed that leaves (blades + petiols) comprise the main dry matter component through the first 50 days followed by stem, while root ranked the third in this respect. Moreover, when plants aged 75 days, stem dry weight was supperior in this respect as it seemed to have the highest proportion followed by leaf blade, pods and petiols while root was the lowest one. Lat er on (at 100 days) stem and pods dry weight were the domenant organs followed by leaf blade, leaf petiol and root was the lowest in this respect. From the previous results, it can be mentioned that there are a variable developmental changes in dry matter of individual plant parts and that affected the final growth changes of the entire plant. Such results

Table (12): Effect of soil moisture levels and some growth regulators on dry matter distribution at different periods of growth as relates to the whole soybean plant (mean of two seasons).

Treat	Treatments		Š	et (8)	Wet (85 % F.C.)	.c.					Med	Medium (70	% 02	F.C.)							1				
Days of sowing	Organs	lon	3	GA ₃ (ppm)	(md	Alar	1	(mdd)	$ _{\bar{X}}$.	lor	GA ₃	(mdd)		Alar	r (ppm)	5	Χ̈	lo	Sign of the state		% (C)				
,		က၁	00	200	×	00 I	1000 2000	×	Birrig	Cont	100		×	1000	1 ''	×	.gi	Tino Contr	8	3 (4)	×	1000	2000	- /×	
syeb Oč	Root Stem L. petiols L. blades	11.3 24.3 16.5 47.8	28.8 15.0 44.0	11.8 32.3 12.6 43.3 (11.7 28.5 14.7 45.0	11.7 10.7 28.5 25.2 14.7 16.0 45.0 48.1	9.0 25.2 15.3 47.7	10.3 24.9 15.9 47.9	11.0 26.7 15.3 46.5	13.5 27.1 16.7 42.7	11.4 25.4 15.8 47.4	8.3 23.4 9.0 59.3	11.1 25.3 13.8 49.8	12.3 29.2 16.0 42.5	14.6 29.2 15.7 40.4	13.5 28.5 16.1 11.9	12.3 26.9 15.0 45.9	4 - 2 - 4	13.3 25.6 15.6 45.6	13.5 31.5 13.5 41.6	13.2 28.4 14.4 44.0	13.8 27.6 14.9 43.7	1	4 7 7	13.3 28.3 15.0 43.5
· skep 57	Root Stem L. petiols L. blades Pods	7.9 28.6 14.4 25.3 23.7	8.6 31.4 14.7 25.0 20.4	7.9 33.2 13.8 23.8 21.3	8.1 31.1 14.3 24.7 21.8	8.2 30.2 15.9 24.3 21.5	10.0 30.9 17.9 27.3 13.9	8.7 29.9 16.1 25.6 19.7	8.4 30.5 16.0 25.2 20.8	10.2 32.2 15.1 27.8 14.6	7.8 32.7 13.3 25.4 20.8	9.4 36.8 12.6 23.1 18.1	9.1 33.9 13.7 25.4 17.8	8.2 33.7 14.1 27.5 16.5	10.1 29.3 16.3 27.4 16.8	9.5 31.7 15.2 27.6 16.0	9.3 32.8 14.5 26.5	11.3 24.8 16.3 33.3	11.6 31.5 16.7 25.5 14.8	12.3 35.3 13.9 28.9	11.7 30.5 15.6 29.2 12.9	13.3 29.6 15.3 26.5 15.3	11.8 28.9 13.2 31.6	12.1 27.8 14.9 30.5	11.9 29.2 15.3 29.9 13.8
eysb 001	Root Stem L. petiols L. blades Pods	7.1 29.6 11.6 22.8 28.9	6.7 29.8 13.6 21.4 28.5	6.4 32.5 12.1 21.8 27.2	6.7 30.6 12.4 22.0 28.2	6.4 29.4 13.7 21.6 28.9	7.3 32.2 12.8 22.0 25.6	6.9 30.4 12.7 22.1 27.8	6.8 30.5 12.6 22.1 28.0	8.2 23.4 10.6 24.2 33.7	6.8 25.1 11.6 20.3 36.2	6.3 33.0 8.7 15.4 36.6	7.1 27.2 10.3 20.0 35.5	8.0 26.1 10.9 19.9 35.0	9.8 27.7 12.7 20.2 29.6	8.7 25.7 11.4 21.4 32.8	7.9 26.5 10.9 20.7 34.2	8.0 21.3 12.4 22.7 35.6	7.9 27.0 12.7 20.3 32.1	10.3 24.4 11.8 24.0	8.7 24.2 12.3 22.3	10.7 25.9 13.6 21.7 28.2	9.8 21.8 11.6 24.0	9.5 23.0 12.5 22.8 32.2	9.1 23.7 12.4 22.6 32.3

may be interpreted on the assumption that soybean plant directed its effort to stimulate leaves in the first growth period (50 days). Whereas, plant directed its growth in building up its stem through the period extended from 50 up 75 days after sowing. At lat er stages (100 days), soybean plant tend to build up its reproductive and storage organ i.e. pods. In other words, dry matter is redistributed from leaves either to the developing stem during the second period (75 days) or to the formation of the reproductive organ (pods) at lat er periods of growth. Such results may be explained on the basis that there is a regulating mechanism that redistributes dry matter within plant parts and that depends on the character of vegetative and reproductive growth period.

Regarding the effect of water defecit on dry matter distribution, data indicate that it regulates the percentage distribution within the plant organs. It was observed that the proportion of root dry matter increased with increasing soil moisture stress. However, leaf blade decreased by water deficit. Such findings can be discussed on the assumption that under water deficiency, the plant directed its effort for increasing the proportion of water absorping organ i.e. root and decreasing the transpiring area i.e. leaf blade. In other words, the plant regulates the balance between the different organs according to the environmental conditions. Under water deficit the plant increased the absorption area as well as decreasing the transpiring area to face the problem of water shortage.

As for the role of growth substances, it can be mentioned

that Alar stimulated slightly the proportion of root dry weight compared with GA₃ during different periods of growth, while other plant organs were decreased. Such results may indicate that Alar application affected the percentage distribution of dry matter within plant organs. These results showed that the retarding effect of Alar on shoot growth did result in increasing root growth, thereby its dry matter content. On the contrary, GA₃ treated plant, showed a slight reduction on percentage of dry matter of roots on the account of the increase in the other organs. These results indicate that GA₃ increased shoot growth of treated plants than roots.

It is worthy to mention that, the effect of growth substances on dry matter distribution within different plant organs depends on the available soil moisture. Growth promoting substances act: very well under wet conditions, while retardants needs dry conditions to affect the growth of treated plants. All of these affect the percentage distribution of dry matter within different plant parts. In this connection, Anton (1991) pointed out that growth substances may affect the nature of regulating mechanism which finally reflected on the distribution of dry matter accumulation.

4.2. Soybean Yield:

4.2.1. Yield component:

Yield component of soybean during the period of study as affected by soil moisture levels and growth substances are shown in Table (13). Mean values of the two seasons were analyzed statistically and presented in Table (13).

Table (13): Effect of soil moisture levels and some growth reguators on yield component of soybean plant.

			Ket Ket	% %	Wet (85 % F.C.)	_				Medium		% (2)	Ę.					Dry	(55	% F.C.	ਰੇ				L.S.D.	a Ta	Ř
Treatments	lon	ਹੋ	3, Cp	GA ₃ (ppm)	1	Alar (ppm)		×.	lon	GA ₃	(mdd)	-	Alar	(mdd)		x ·	loai	GA3	(mdd)		Alar	(bbm).		$ _{\mathbf{X}}$	-e	η, Λτη	1
	Сол	100	200	×	1	1000 2000	×	Birrig	noO	001	200	×	1000	2000	×	ltrig	Con	100	200	×	1000 2	2000	×	Ì	ginal noit	oroν du2	Conc
												•,	Season	1988	_												
No. of branches/plant	3.1	5.1	3.7	4.0	3.3	2.5	3.0	3.5	2.3	4.9	3.3	3.5	3.0	1.6	2.3	3.0	2.0	3.7	3.1	2.9	2.7	1.4	2.0	2.5	0.2	0.2	0.2
No. of pods/plant	49.3	64.3	59.0	57.6	54.7	53.7	53.7 52.6 55.1	55.1	45.0	53.3	50.0	4.64	48.3	46.7	46.7	48.1	0.04	48.7	45.0	7 9.44	44.0	38.0 4	40.7 4	1.84	1.7	1.4	1.7
Weight of seeds g./plant	15.4	19.0		16.7	16.4		14.5	14.5 15.6	12.7	15.3	14.1	0.4	14.4	8.01	12.6	13.3	10.9	10.5	10.1	10.5	4.6	8.2	9.5	0.0	8.0	0.7	0.8
Seed Index	17.2	17.4	16.9	17.2	16.3	16.6	16.6 16.7 17.0	17.0	16.3	17.0	16.7	16.7	16.1	16.5	16.3	16.5	15.5	16.5	16.3	16.1	15.3	15.7	15.5	15.8	7.0	0.3	S,
Weight of whole plant	57.5	74.7	65.3	65.8	7.49	51.0	57.6	61.7	39.7	56.9	6.64	48.8	47.9	36.2	41.3	45.1	29.7	37.6	35.4	34.2	31.4 2	21.3 2	27.5 3	30.9	3.0	2.5	3.0
												٠,	Season	1989	_												
No. of branches/plant	3.9	6.3	⊅	5.0	4.3	2.4	3.5	4.3	2.4	5.1	7.7	0.4	3.8	1.4	2.5	3.3	2.3	4.2	3.9	3.5	3.0	1.3	2.2	5.9	0.5	4.0	0.5
No. of pods/plant	69.7	76.3	71.0	76.3 71.0 72.3	70.0	64.3	70.0 64.3 68.0 70.2	70.2	61.0	66.3	65.3	64.2	63.7	51.7	58.8	61.5	32.0	43.0	37.7	37.6	39.0	37.3	36.1 3	36.9	2.9	2.3	2.9
Weight of seeds g./plant	17.1	23.5	19.2	19.9	17.1	16.3	16.8	16.8 18.4	15.1	18.2	17.1	16.8	14.5	12.5	14.0	15.4	6.6	13.5	12.9	12.1	13.4	12:1	11.8	12.0	8.0	9.0	0.8
Seed Index	15.1	17.1	16.5	16.2	15.2		17.0 15.8 16.0	16.0	15.0	15.8	15.4	15.4	15.0	15.3	15.1	15.3	14.0	13.9	14.0	14.0	14.5	13.8	14.1	14.1	0.4	Z.S.	4.0
Weight of whole plant	64.7	90.1	81.3	78.7	74.1	63.6	67.5	73.1	50.1	62.1	56.2	56.1	48.3	41.8	46.7	51.4	33.8	45.6	46.3	41.9	45.5	39.7	39.7 4	8.04	2.7	2.2	2.7
												Mea	n of t	Mean of two seasons	SOUS												
No. of branches/plant	3.5	5.9	4.3	4.5	3.8	2.5	3,3	3.9	5.4	5.0	3.9	3.8	3.4	1.5	2.4	3.1	2.2	0.4	3.5	3.2	2.9	1.4	2.2	2.7	1.0	0.7	Z
No. of pods/plant	59.5	70.3	65.0	6,49	64.9 62.4 59.0	59.0	60.3	60.3 62.6	53.0	59.8	58.0	56.9	56.0	49.2	52.9	54.8	36.0	45.9	41.4	41.1	41.5	37.7	38.4	39.8	1.6	z.s.	Z.
Weight of seeds g./plant	16.3	21.3	17.4	18.3	16.8	14.1	15.7	17.0	13.9	16.8	15.6	15.4	14.5	11.7	13.4	14.4	10.4	12.0	11.5	11.3	11.4	10.2	10.7	11.0	0.4	0.3	0.4
Seed Index	16.2	17.3	16.7	16.7	15.8	16.8	16.3	16.3 16.5	15.7	16.4	16.1	16.1	15.6	15.9	15.7	15.9	14.8	15.2	15.2	15.1	14.9	8.4	14.8	15.0	0.2	z.S.	S
Weight of whole plant	1.14	82.4	73.3	77.3	69.3	57.3		62.6 67.5	6.44	59.5	53	5.2.5	1 8 7	39.0	0.44	£ 87	3	9 17	39.7	37.5	38.5	30.5	, 712	33.6		-	-

4.2.1.1. Number of branches/plant:

Number of lateral branches/plant as influenced by soil moisture levels are presented in Table (13). Statistical analysis showed that soil moisture stress had a significant effect upon such character. This result was found to true in both seasons as well as the combined analysis of both seasons. Lateral branches/plant decreased by increasing water deficit. These results indicate that water deficit affected significantly the formation of lateral branches. The plants minimized their shoot system under dry conditions by reducing the transpiring area. Therefore, they can survive under drought. The previous results are in line with those reported by Abbas (1988) who concluded that number of branches increased under wet conditions and decreased by increasing soil moisture stress.

The application of GA₃ stimulated significantly the formation of lateral branches, while Alar retarded the formation of branches. The highest number of branches/plant was gained from plants sprayed with 100 ppm GA₃. However, the lowest values were obtained from plants sprayed with 2000 ppm Alar. Accordingly, it can be concluded that both growth substances controlled the formation of branches beside their effect on vegetative growth.

It is worthy to mention that soil moisture levels interfer with the regulating effect of growth substances. The stimulative effect of GA₃ or the retardation caused by Alar application on number of branches/plant seemed to be decreased with increasing soil moisture stress. These results may prove that the regulating effect of growth

substances can be controlled by the available soil moisture. In this connection, Baza (1985) concluded that foliar application of GA₃ significantly increased number of branches/plant at all growth stages.

4.2.1.2. Number of pods/plant:

The results in Table (13) indicate that soil moisture levels affected significantly number of bods/plant. Increasing water deficit did result in a significant reduction in the formation of pods. Such character is connected with the growth of the plant. Soil moisture stress has a great influence on the growth of soybean plant and that was reflected on the formation of pods. Maximum values of number of pods/plant were gained from wet treatment followed by the medium level whereas the least values were produced from the dry one. These results are in full agreement with those reported by Abbas (1988) who concluded that dry matter accumulation is favoured by wet conditions and consequently increased number of pods/plant.

With regards to growth substances, data of Table (13) showed that GA₃ stimulated the formation of pods while Alar retards such character. GA₃ seemed to stimulate the formation of pods and that was more pronounced when GA₃ was used at the rate of 100 ppm than when applied at 200 ppm. These results might be attributed to the effect of GA₃ in decreasing flower shedding (Huff and Dybing; 1980) and in increasing growth and period of flowering (Castro and Vello, 1981). The previous results are in line with those pointed out by Baza (1985) who concluded that number of pods/plant increased significantly by foliar application of 50 ppm GA₃ and decreased by

increasing the rate of GA3.

Alar seemed to retard pod formation and this retardation increased by increasing the rate of application from 1000 up to 2000 ppm.

It is worthy to mention that soil moisture levels affect the regulating action of growth substances either stimulation or retardation with respect to number of pods/plant. Growth promoter i.e. GA₃ needs wet conditions for enhancing pod formation, while retardants (Alar) act very well under dry soil moisture levels. In other words, GA₃ increased pod formation under high soil moisture level compared with those plants imposed to water deficit. However, Alar reduced number of pods/plant under dry conditions rather than under frequent irrigations.

4.2.1.3. Weight of seeds/plant:

Data in Table (13) showed that soil moisture levels had a significant response on weight of seeds/plant. The highest soil moisture level produced the maximum values followed by the medium level and the lowest values were gained from dry treatment (55 % field capacity). The increase in weight of seeds/plant observed in wet treatment was found to be significant compared with other irrigation treatments. Such results are in agreement with those reported by Abbas (1988).

Regarding the effect of growth substances, results showed a similar trend to that observed with number of pods/plant. GA₃ application increased the weight of seeds/plant. The most pronounced concentration was found to be 100 ppm. However, more than that level decreases

the weight of seeds/plant compared with the lower rate but still greater when compared with the control treatment. These results might be attributed to the significant effect of GA₃ on the number of pods/plant. These results are in full agreement with those found by Baza (1985).

As for Alar, results indicate that it decreased significantly the weight of seeds/plant. Such reduction was found to be clear with higher concentration. However, the lower rate of Alar increased slightly the weight of seeds/plant. Such increase was found to be insignificant compared with the control treatment. The reduction in weight of seeds/plant after. Alar application might be ascribed to the retarding effect of such chemical on soybean growth. Also, number of pods/plant was less in these treatments which was reflected on weight of seeds/plant.

The values of weight of seeds/plant in growth substances treatment under different soil moisture levels behave in a similar manner to that observed with number of pods/plant.

4.2.1.4. Seed Index:

Data in Table (13) show that soil moisture levels has a significant effect on weight of 100 seeds (seed index). Maximum seed mass was scored from high soil moisture levels and lowest value from the dry treatment whereas the medium soil moisture treatment falls in between. These results reveal that increasing soil moisture stress did result in producing smaller seeds and lighter in their mass. Such decrease was found to be significant. The previous findings indicate the importance of soil water for increasing the volume of soybean

seeds and heaviest in their mass. These reults are in full agreement with those reported by Sherif (1983) and Abbas (1988).

Foliar application of GA₃ increased weight of 100 seeds (seed index) as compared with the control. The most pronounced rate was found to be 100 ppm, while more than that level slightly decreased seed mass. Such increase was found to be significant in one season and insignificant in the second year. These findings can be attributed to the enhancing effect of such promoter on the accumulation of dry matter which in turn produced larger seeds and heavier in their mass. These results had been comfirmed by Baza (1985).

As for the effect of Alar, results showed no effect on seed index. However, a slight decrease in seed mass was observed by the application of Alar. The interaction between soil moisture levels and growth substances was found to be insignificant. These results means that both factors act independently on weight of 100 seeds (seed index).

4.2.2. Seed yield:

Results of seed yield expressed as Kg./feddan as influenced by soil moisture levels and growth regulators are presented in Table (14). Statistical analysis of variance proved that both factors had a significant response on seed yield of soybean in the two seasons as well as the combined analysis. The data show that the wet treatment (irrigated at 85 % F.C.) produced the maximum yield followed by the medium level (75 % F.C.) and the least production was gained from the dry one (irrigated at 55 % F.C.) The differences between

Table (14): Effect of soil moisture levels and some growth regulators on the yield of soybean plant (Kg./feddan).

2 %	cen- tion	1	0,4	_	216	29		1 198		7		119	
at	sq1 v	הרסי	ō	13%	170	877	121	161			_	67	
L.S.D.	-1 5	giril noi			210	59		198		77		119	
-		ginil	4	1484	2129	8 52	1982	2833	•	677	17.32	2481	
		×	ŗ	1238	32.2	\$ U.S	1836	26.38		495		2230 31.2	
	(mdd)	2000		1058	1493 29.1	7.04	1563	2307		305		2319 1894 31.7 .31.2	
-	Alar (1000		660 1238	1913 34.5	0	1914	2722		ŗ	1585		
5 F.C.)		×		702	2433		2127	3028	2		802 1929	2812 2731 28.6 29.4	
(55 %	GA ₃ (ppm)	200	1	707 1906	2613 27.1	Š	2107	3010	?		2007		
Pry	GA ₃	001	;	733	2617 28.0	ŗ	2243	3190			2064 2064	28.9	
	lon	Con	!	667 1403	2070 32.2		855 2030	3751 2885	67.0		1717	2478	
	×.	Birrl		899 2257	3156 28.5	;	2635		67.0		2446	3454	
		×		852 2043	2895 29.4		1019 2404		6.67	asons	936 2223	3159	
	(mdd)	2000		757 1776	2533 29.9	1989	879 2084		/.67	wo se	818	2748	
F.C.)	Alar	1000	Season	1007. 2346	3417 3353 27.7 30.0	Season	1212 1015 2866 2365	3380	50.00	Mean of two seasons	1011 2356	3367	
1		×	S	945 2472	3417 27.7	•			29.7	Mea	1079 2669		28.8
Medium (70 %	GA, (ppm)	200		970	3467 28.0		1201 2756		30.4		1086 2656		6.67
Media	Ğ,	001		1073 2910	3983 26.9		1272 3078		29.2		1172 2995		78.
	lo:	TroD 		793	2800		1164 2763	3927	29.6		979 2385		29.1
	X	·Birriß.		1165 2849	4014		1359 3190	4549	29.9		1262 3020	4282	29.5
		×		825 1061 1165 2115 2536 2849	3597 29.5		1212 2841	4053	29.9		1137 2688	3825	29.7
	(maa)	2000		825 2115	2940 28.1		1139 2658	3797	30.0		982 2387	3369	29.1
-	Alar (ppm)	1000 2000 X		1150	3827 30.0		1195 2775	3970	30.1		1173 2726	3899	30.1
ų k				1268 3162	4430		1506 3539	5045	29.9		1387 3351	4738	29.8 29.3 30.1 29.1 29.7 29.5
0 30)	Wer (8) % F.C.,	- 1		1207 1320 1277 1268 1150 825 1061 1165 2816 3587 3083 3162 2677 2115 2536 2849	4023 4907 4360 4430 3827 2940 3597 4014 30.0 26.9 29.3 28.6 30.0 28.1 29.5 29.0		1303 1874 1342 1506 1195 1139 1212 1359 3090 4436 3091 3539 2775 2658 2841 3190	4393 6310 4433 5045 3970 3797 4053 4549	30.3		1255 1597 1310 1387 1173 982 1137 1262 2953 4012 3087 3351 2726 2387 2688 3020	4208 5609 4397 4738 3899 3369 3825 4282	29.8
1	¥ 6	100 200		1320	4907		1874	6310	29.7		1597	909	28.5
	ı	ontro: 		1207	4023		3090	4393	×29.7		1255	4208	x29.8
		regiments		Seed yield Straw yield	Biological 4023 4907 4360 4430 3827 2940 3597 4014 yield Harvest index30.0 26.9 29.3 28.6 30.0 28.1 29.5 29.0		Seed yield Straw yield	Biological yield	Harvest index29.7 29.7 30.3, 29.9 30.1 30.0		Seed yield Straw yield	Biological yield	Harvest index 29.8 28.5

the wet treatment and the other two soil moisture levels was found to be significant. These results indicate the importance of maintaining soil water at a high level for maximizing soybean yield. Such findings may be due to multiple effect of water deficit on soybean growth which in turn was reflected on seed production. The previous results are in full agreement with these reported by Sherif (1983) and Abbas (1988).

In this respect, Dharmasena (1985) pointed out that water availability affects germination, vegetative growth, and pod-filling. Water stress during the pod-filling stage may result in higher yield reduction than stress during harvesting.

Concerning the role of growth substances on soybean yield, results of Table (14) showed that foliar spray of GA₃ did result in a significant increase in seed production. This trend was found to be clear in the two tested seasons as well as the combined analysis of the two seasons. These results are expected since GA₃ stimulated the growth of soybean. Also, it has been mentioned previously that GA₃ application affected significantly most of the tested yield component. The increase in soybean yield following GA₃ application could be explained through its role on the mobilization of nitrogenous compounds to the developing seeds, probably through GA₃ induced enzyme system and the interaction with cytokinins. It is worthy to mention that the most pronounced concentration was found to be 100 ppm,. The higher level, decreased seed yield compared with the lower one. Moreover, the higher level (200 ppm) increased seed yield

of soybean plant without any significant differences compared with the control.

Regarding the role of Alar on seed yield of soybean, results of Table (14) showed that spraying Alar on soybean plant failed to cause any increase in seed yield but significantly decreased it compared with control. Such reduction in seed yield was found to be obvious under higher concentration. In other words, the depressive effect following Alar application seemed to be clear with higher rate i.e., 2000 ppm rather than the lower used one (1000 ppm). These results can be ascribed to the retarding effect caused by Alar. It has been found previously that such growth substance retard the growth behaviour of soybean plant which was reflected on either the tested yield component or final seed yield.

Comparing the combined effect between growth regulators and soil moisture levels, it can be noticed that the promotive effect of GA₃ was found to be very clear under wet and medium soil moisture levels. However, under severe water deficit, the stimulating effect of such substances in seed production was decreased or inhibited. In other words, under severe soil moisture stress or dry conditions, growth promoting substances had a slight enhancing effect on seed production of soybean. In this connection, Kramer, (1969) concluded that the reduced synthesis of growth regulators such as cytokinins and Gibberellins in the root is an important factor in the reduction of growth observed in plants subjected to water stress. Also, Nowakowski and L'ubanska (1975) pointed out that GA₃ increased photosynthetic

intensity of plants under high soil moisture level, while had no effect at low water level. The same conclusion had been stated by Miseha (1983).

However, in case of Alar (a growth retardant) the retarding effect was found to be clear by increasing water deficit and the rate of application. In other words, the reduction in seed yield was found to be greater under high rate of Alar and severe water stress. Such decrease can be related to the reduced growth of soybean plants by the two factors. It has been mentioned previously that both factors i.e., water deficit and Alar application affect the growth and other tested yield components of soybean plant.

4.2.3. Straw yield:

Results of Table (14) showed the straw yield under the various streatments. The trend of straw yield is identical to that observed with seed yield. Analysis of variance showed that either irrigation treatments or growth substances had a significant effect upon straw production. There was a possitive association between moisture levels and straw production of soybean. The wet treatment produced the maximum values of straw followed by the medium water deficit and the least straw yield was gained from the prolonged irrigation intervals. These results demonstrate the importance of soil water for the growth of soybean thereby straw production.

As for the growth substances, results indicate that GA₃ application increased straw yield significantly over the control or those plots treated with Alar. These results may prove that growth promoting

substances had an additive effect for enhancing the vegetative growth of soybean and that was reflected on straw yield. Such stimulation was found to be more than that observed in case of seed yield. The rverse trend was found to be true with growth retardant i.e. Alar. In other words, the use of Alar decreased significantly straw yield of soybean. These results can be ascribed to the effect of such chemical on the growth of plants which was reflected on straw production.

4.2.4. Harvest index:

Data of Table (14) represent the effect of different treatments on the harvet index. It is clear that either soil moisture levels or growth substances had no effect upon such character and the values are about the same. These findings show that seed yield and straw yield are proportional to each other. In other words, any increase in straw yield was followed by a similar increase in seed yield and the reverse was true. The results indicate that factors affecting the growth of soybean plant-either by stimulation or retardation-had the same effect as yield production, such pattern resulted in no changes on harvest index.

4.2.5. Oil Yield:

4.2.5.1. Oil content:

Results of Table (15) represent the effect of soil moisture levels and some growth regulators on soybean content. Statistical analysis showed that both factors i.e., water deficit and growth substances had a significant effect on oil content of soybean seeds.

The highest values of oil content were scored from the high

Table (15): Effect of soil moisture levels and some growth regulators on oil production.

		×	Wet (85 % F.C.)	8	j.					Ž	Medium (70	(70 %	% F.C.)			.		ä	Dry (55 %		F.C.)				L.S.D.). at	%
Treatments	lon	Ì	GA ₃ (ppm)	(mc	Ala	Alar (ppm)	Ē	χ·3	lontr	5	GA ₃ (ppm)	5	Alar	Alar (ppm)		X.	lontr	GA,	GA ₃ (ppm)	٠	Alar	(mdd)		Ϋ́.B		v. M.th	cen- ion
	Con	100	200	×	1 1	1000 2000 X	×	l Jeri,	Сог	001	200	×	1000	0 2000	×	Birri	Сог	100	200	×	1000	2000	×	livil	lrrig noi	Gro Sub	Trait
											Season	on 19	1988														
Oil (%)	22.0	23.2	25.0	23.4	22.0 23.2 25.0 23.4 22.3 21:0 21.8 22.6	3 21.0	21.5	1 22.6	21.0	21.6		1 22.2	24.0 22.2 20.8	20.0	20.6	21.4	19.3	20.3	22.0	20.5	19.0	18.9	19.1	19.8	0.7	0.5	0.7
Oil production Kg/feddan	264	264 306	244	244 272	257	257 174 232	232	252	166	232	233	210	209	151	176	193	177	149	9\$1	161	165	145	162	162	7	10	12
										-	Seaso	Season 1989	39														
(%) IIO	23.0	24.1	25.0	24.(23.0 24.1 25.0 24.0 23.3 22.0 22.8 23.4 21.3	3. 22.0	, 22.	3 23.	21.3		22.0 23.0) 22.1	1 21.0	21.0	21.1	21.6	20.7	21.0	21.4	21.0	20.4	19.5	20.2	20.6	8.0	9.0	s. S
Oil production Kg./feddan	229	229 384 335 339	335	339	278	278 251	276	308	249	280	277	268	.213	184	215	242	114	200	193	169	125	165	135	152	20	91	20
										Me	in of	Two S	Mean of Two Seasons										•				
Oil (%)	22.5	23.7	, 25.(23.	22.5 23.7 25.0 23.7 22.8 21.5 22.3 23.0 21.2	3 21	5 22.	3 23.	21.2	2 21.8	3 23.5	5 22.2	2 20.9	9 20.5	20.9	21.5	20.0	20.7	21.7	20.8	19.7	19.2	19.6	20.2	0.4	0.3	0.4
Oil production Kg./feddan	282	345	290	305	282 345 290 305 268 212	212	254	1 280	208	256	255	2 39	211	168	195	217	146	175	175	165	145	155	149	157	10	∞	10
																										İ	

soil moisture level (iirigated at 85 % F.C.) and the least value of seed oil content was gained from the severe moisture stress (prolonged irrigation intervals), while the medium water level (iirgated at 70% F.C.) falls in between. The differences between the wet treatment and other irrigation levels were found to be significant. This pattern was found to be true in both seasons under study.

These results may prove the importance of maintaing soil water at a high level for increasing oil content of soybean seeds. In other words increasing water deficit did result in a significant decrease in oil content of seeds. These results can be ascribed to the stimulative effect of wet conditions on the biosynthesis of carbohydrates and the transformation of sugars to fatty acids in seeds.

These results are in harmony those there reported by El-Wakil (1979), Sherif (1983) and Abbas (1988), who pointed out that seed oil content increased as soil moisture stress decreased.

With regard to the role of growth substances, results of Table (15) indicate that GA₃ application increased oil content of soybean seeds significantly over the control. Increasing GA₃ concentration did result in a significant increase in seed oil content of soybean seeds. Such trend can be related to the enhancing effect of GA₃ on carbohydrate synthesis thereby on oil content. These results are in agreement with those reported by Bdorov, 1973; and Rao, (1975) who concluded that the application of GA₃ increased seed oil content of many treated plant species.

As for Alar, data clearly indicate that such chemical seemed to decrease seed oil content of soybean. Increasing the rate of application resulted in a significant decrease in oil content. This trend was found to be true under the three moisture levels. This phenomenon can be ascribed to the inhibiting effect of the growth retardant (Alar) on the growth of plants which was reflected on carbohydrate biosynthesis and thereby on oil formation.

4.2.5.2. Oil production:

Table (15) demonstrate the effect of soil moisture levels and growth regulators on oil production by soybean plant. Data clearly indicate that both factors i.e. soil moisture levels and growth substances had a significant response similar to that observed with seed yield. Oil production increased by high soil moisture level and decreased by water deficit. The wet treatment produced the highest oil yield followed by the medium level and lowest oil production was gained under dry conditions or prolonged irrigation intervals. This trend is similar to that observed with seed yield.

As for the role of growth regulators, GA_3 application enhanced oil production. The most pronounced concentration was found to be 100 ppm. The higher rate of GA_3 seemed to decrease oil production compared with the low level. On the contrary, the use of growth retardant (Alar) decreased oil yield and such decrease was increased by higher rate of Alar.

4.3. Evapo transpiration:

Evapotranspiration from a plant-soil is proportional to the vapour gradient between the surface and free air above the surface and inversely proportional to the resistance of the diffusion pathway. The vapour pressure at the plant or soil surface which in turn is a function of the surface energy budget.

4.3.1. Seasonal values:

Seasonal water consumptive use of soybean plant under the various treatments during the period of study is presented in Tables (16 & 17). Results indicate that seasonal evapotranspiration vary widely between 51.51 and 83.99 cm in the first season, while ranged from 49.57 to 84.09 cm. in the second season. There are a slight variation in water consumptive use values in the two seasons. Such differences are mainly due to variations in climatic factors observed in the two seasons. In this respect, Jensen (1968), concluded that crops would not necessarly require the same amounts of water when grown under widely different climatic conditions. Water requirements of a crop can not be discussed without considering the crop season and potential evapotranspiration. The above results are in agreement with those reported by Doorenbos and Pruitt (1977), Sherif (1983) and Abbas (1988). They mentioned that water consumptive use by soybean ranged from 450 - 840 mm and that depends on climate and crop season.

Results of Tables (16 & 17) showed that water consumption increased as soil moisture stress decreased. The highest evapotranspiration

Table (16): Effect of soil moisture levels and growth regulators on evapotranspiration rates (cm) of soybean during season 1988.

Treatments					Semi n	Semi monthly	ET in	in cm.			
		l	-	2	3	7	5	9	7	8	Total
Control			4.18	4.80	9.30	12.30	13.12	13.80	13.12	8.80	79.42
	GA,	100	4.18	4.95	10.05	12.90	14.40	14.55	12.96	10.00	8 3.99
	(mdd)	200	4.18	4.80	9.90	12.45	13.60	14.25	13.60	9.20	81.98
(85% F.C.)	Alar	1000	4.18	4.65	9.75	11.85	12.64	12.00	11.04	8.60	74.71
	(mdd)	2000	4.18	4.50	9,30	11.55	12.48	11.85	10.88	8.20	72.94
Control	lo		4.18	4.80	8.40	10.50	11.20	10.20	10.24	7.40	66.92
	GA,	001	4.18	4.95	8.70	10.80	11.68	12.60	10.72	7.60	71.23
Medium	(mdd)	200	4.18	4.65	8.55	10.50	11.68	12.75	10.40	6.80	69.51
(70% F.C.) Alar	Alar	1000	4.18	4.50	8.25	10.35	11.04	10.20	10.24	7.00	65.76
	(mdd)	2000	4.18	4.35	8.10	10.05	11.04	10.65	9.76	6.20	64.33
Control	12		4.18	4.35	7.35	7.95	8.48	7.95	7.68	09.9	54.54
	GA,	001	4.18	4.35	8.25	8.25	8.96	8.85	8.00	08.9	57.64
Dry	(mdd)	200	4.18	4.35	7.80	7.95	8.80	8.40	7.84	6.80	56.12
(55% F.C.) Alar	Alar	1000	4.18	4.35	6.45	7.80	8.32	7.95	7.36	5.80	52.21
	(mdd)	2000	4.18	4.35	6.30	7.80	8.32	7.80	7.36	5.40	51.51
									ì		

Table (17): Effect of soil moisture levels and growth regulators on evapotranspiration rates (cm) of soybean during season 1989.

Treatments	ents				,	Semi monthly	1	ET in cm.	ë.		
	•		1	2	3	4	5	9	7	80	Total
Control	trol		4.41	6.30	9.45	11.85	13.60	12.00	11.84	8.97	78.42
	GAz	100	4.41	09.9	10.95	12.60	14.40	13.35	12.16	68.6	84.09
Wet	(mdd)	200	4.41	6.45	10.65	12.30	13.44	13.20	12.00	9.43	81.88
(85% F.C.) Alar	Alar	1000	4.41	6.15	8.85	11.55	12.48	11.55	10.88	9.20	75.07
	(mdd)	2000	4.4]	00.9	8.70	11.10	12.00	10.95	9.92	8.97	72.05
Control	lo.		4.41	4.90	9.00	10.50	12.80	10.65	10.24	8.28	70.78
	GA	100	4.41	5.25	10.05	12.15	13.76	11.85	11.36	8.97	77.80
Medium	(mdd)	200	4.4]	5.10	9.90	11.85	13.44	11.55	10.88	8.51	75.64
(70% F.C.) Alar	Alar	1000	4.41	4.80	8.85	10.50	12.00	10.95	10.24	8.05	69.80
	(mdd)	2000	4.41	4.65	8.55	10.05	11.68	10.50	09.6	7.82	67.26
	Control		4.41	4.35	5.85	06.9	9.28	8.10	7.68	6.21	57.51
	GA3	100	4.41	4.35	6.15	7.50	9.76	8.85	8.00	6.44	55.46
Dry	(mdd)	200	4.41	4.35	9.00	7.05	9.44	8.10	7.84	6.21	53.40
(55% F.C.) Alar) Alar	1000	4.41	4.35	5.70	09.9	9.12	7.80	7.52	5.52	51.02
	(mdd)	2000	4.4]	4.35	5.40	6.30	9.12	7.50	7.20	5.29	49.57

rate was brought about under wet conditions (frequent irrigations, 85 % Field capacity), whereas the lowest water use was attained under prolonged irrigation intervals (55 % field capacity), while under medium water supply, the values falls in between. This trend shows that the increase in water consumption depends on the available soil moisture in the root zone. As soil moisture was kept wet by frequent irrigations, maximum water use was attained. This trend can be attributed to the availability of water to the plants as well as to the high evaporation opportunity from a wet rather than a dry one.

In this connection, Thronthwaite and Mather (1955) suggested a linear decline in evapotransperation with increasing soil moisture tension. Tanner et al. (1960) stated that total evapotranspiration depends on the availability of water for both plants and at the soil surface. When water is readily available to plants, maximum evapotranspiration obtains. Wiegand (1962) pointed out that the drying rate of a soil is proportional to the water content and inversely proportional to time and a drying front advances into the soil linearly with time. Also, Shaw and Laing (1965) pointed out that under stress conditions, transpiration is reduced when water deficit reached a critical value characteristic for the species, turger induced changes in stomatal operature which causes an incrase in the resistance to transpiration in the gaseous phase, the resultant is reduction in transpiration to prevent or limit dessication rather than to maintain flow at the level of evaporation demand. Ibrahim (1981) concluded that the increase in evapotranspiration rate by maintainingsoil moisture at high level

can be attributed to excess available water in the root zone to be consumed by plants.

The previous results are in full agreement with those reported by Sherif (1983), Abbas (1988) and Yousef (1989). They mentioned that more frequent irrigation provides a chance for more luxurient use of water.

In case of growth substances, results recorded in Tables (16, 17) indicate that GA₃ application, increased seasonal water consumption by soybean irrespective to the effect of soil moisture level. It is interesting to mention that increasing GA₃ rate resulted in decreasing seasonal water consumption by soybean compared with the lower rate (100 ppm). However, the higher GA₃ rate showed higher evapotranspiration than the control. Such trend can be explained on the basis that GA₃ interacts with cytokinins. The increase in seasonal ET. values observed with plants treated with GA₃ may be due to its effect on promoting the growth of soybean plant and increasing the transpiring surface (leaf area) which was reflected on the values of seasonal water consumption.

In this connection, Livne and Vaadia (1965) concluded that cytokinins and apparently also Gibberellic acid are unique among the compounds which affect stomatal opening in that they simultaneously promote stomatal opening and other physiological processes. Kinetin enhances transpiration rate and the opening of stomata.

The above mentioned results are in full agreement with those

found by Eweida et al (1978), Seif El-Yazal (1983) and Miseha (1983) who recorded an increase in seasonal evapotranspiration rates by the application of 2, 4-D and GA_3 .

In case of Alar, a reverse trend to that observed with GA₃ was found with respect to seasonal water consumption by soybean plant. The use of Alar did result in decreasing evapotranspiration by soybean and the higher the rate of Alar used the lower are the values of ET. This trend of finding may be due to the retarding effect of such chemical or the growth of treated plants. It has been previously mentioned that the growth and leaf area of soybean was reduced by such treatment. Livne and Vaadia (1972) proposed that the increase in drought tolerance of plants treated with growth retardants might be related to the interference of those compounds with the biosynthesis of gibberelic acid. The lower level of GA₃ in the treated plants could reduce stomatal opening and hence lower transpiration. These findings are in agreement with those reported by Miseha (1983) who found that seasonal water consumptive use was lower for plants treated with growth retardants.

It is worthy to mention that the increase or decrease in seasonal evapotranspiration by soybean plant observed in the plots treated with growth substances was found to be more under wet conditions (frequent irrigation) rather than under severe water deficit (prolonged irrigation intervals). This trend indicates that the reflect of soil moisture stress on transpiration is more pronounced than the role of growth substances. In other words, water deficit has a considerable effect

on stomatal behaviour than the modifications, caused by growth regulators with respect to transporation

In this respect, Black (1965) pointed out that the independance of evapotranspiration and density of vegetation canopy exist for different reasons where soil is dry than where availability of water for evaporation and transp ration is unlimited. Under moist soil, the control is in the atmosphere, under dry conditions the control is in the soil-under intermediate conditions, the control may be partly in the soil and partly in the plants. Also, Miseha (1983) concluded that by decreasing availability of water, the plant reduces the stomatal operature considerably, cutting down transpiration although photosynthesis is also reduced, the proportional drop is probably less than that for transpiration.

4.3.2. Daily Rates:

A summary of the effect of soil moisture levels and growth regulators on daily evapotranspiration by soybean plant as related to its growth cycle (as a percentage of growing season) are given in Table (18). Results indicate that the values started with lower amounts as the plants were small and intercept little of the net radiation. A gradual increase in the values of water use by soybean plant were observed as the plants developed. Such pattern of results can be ascribed to the vigrous growth of soybean plants. Thereafter, daily rates recorded its maximum when soybean plants complete 70 % of their growth period, then declined after that gradually to reach a minimum at harvest time. These results show that the increase in evapotranspiration

Table (18): Effect of soil moisture levels and growth regulators on daily evpotranspiration of soybean (Mean of two seasons).

09 05								
	04	50	09	20	80	06	. 001	Mean
Control 0.215 0.283 0.452 0.654 0.805 0.833 0.8		0.805	0.833	098.0	0.809	0.639	0.415	0.597
GA3 0.215 0.287 0.464 0.718 0.839 0.871		0.839	0.871	0.914	0.843	0.660	0.450	0.626
Alar 0.215 0.276 0.440 0.621 0.768 0.775		0.768	0.775	0.774	0.616	964.0	0.408	0.539
⊛ Mean 0.215 0.282 0.452 0.664 0.804 0.826 0.8		0.804	0.826	0.849	0.756	0.598	0.424	0.587
Control 0.215 0.265 0.402 0.600 0.700 0.746 0.		0.700	0.746	0.711	0.655	0.530	0.365	0.519
CA ₃ 0.215 0.268 0.419 0.641 0.756 0.788		0.756	0.788	0.815	0.726	0.560	0.370	0.556
To Star 0.215 0.255 0.384 0.582 0.683 0.713 0.8		0.683	0.713	0.815	0.655	0.512	0.338	0.515
S Mean 0.215 0.263 0.402 0.608 0.713 0.749		0.713	0.749	0.880	0.679	0.534	0.358	0.530
rol 0.215 0.250 0.340 0.448 0.495 0.551		0.495	0.551	0.541	0.502	0.413	0.300	904.0
0.215 0.250 0.356 0.497 0.513 0.573		0.513	0.573	0.574	0.524	0.425	0.308	0.424
0.215 0.250 0.325 0.411 0.475 0.540		0.475	0.540	0.526	0.482	0.384	0.258	0.389
S Mean 0.215 0.250 0.340 0.452 0.494 0.555		0.494	0.555	0.547	0.503	0.407	0.289	90 †* 0 .

(Growth period = number of days from planting harvest time 130 days).

rate stood parallel to the increase in the percentage of crop cover. However, the decline in daily rates after reaching a maximum can be related to maturation.

In this connection, Lemon et al. (1959) reported that the gradual increase in evapotranspiration from planting to maturity can be explained on the basis of percent cover. The decrease in evapotranspiration after maturation is probably a plant-dependent factor. However, in many studies soil water is not maintained at a high level after maturation. Gates and Hanks (1967) concluded that plant factor undoubtedly influence evapotranspiration from a crop. The greatest difference among crops occurs during the growth period when the crop cover is 50 %. During this time, evapotranspiration of most irrigated crops is less than where cover is greater because evaporation from bare soil decreases faster than does transpiration by plant.

The previous results are in accordance with those reported by Sherif (1983), Abbas (1988) and Yousef (1989) who concluded that daily evapotranspiration rates by soybean were lower early in the season, and increased as the plants developed to reach a maximum when plants aged 70-100 days then declined after that.

soil moisture stress had a negative response on daily water use by soybean. As soil moisture stress increased by prolonged irrigation intervals a relative decrease in daily water consumption was observed. The use of growth promoting substance i.e., GA₃ did result in an obvious increase in daily water use by soybean irrespective to water deficit.

This trend can be related to the enhancing effect of such chemical on soybean growth as well as on transpiration. On the contrary, when concerning Alar treatments (a growth retardent), results showed an obvious decrease in daily evapotranspiration. This pattern may be due to the reduced growth by Alar beside its effect on the biosynthesis of GA₃ in those plants treated with it. It has been prevously mentioned that soybean plant sprayed with Alar is shorter and less in vegetative growth. In this connection Gates and Hanks (1967) pointed out that plant height and size appears to influence evapotranspiration by greater interception of advected heat. Thus, plant height would affect evapotranspiration if the taller plants were isolated in a field.

In this respect, Miseha (1983) concluded that factors influencing resistance to evapotranspiration can be grouped into three categories:

- The inftuence of degree of crop cover or canopy that affect diffusive resistance.
- 2. Maturation of the crop, including the development of seed heads above a crop can influence evapotranspiration by decreasing the portion of net radiation converted to latent heat of vaporization.
- Net soil moisture stress prior irrigation can influence the effective diffusive resistance.

When considering the data of daily evapotranspiration by soybean plant, it seems advisable to represent the data as a continous function. The second class function relating the daily water consumptive

use of soybean to its growth seasons (represented as a percentage) was found to be the best type of relation. These functions have the form:

$$Y = a + b X + C X^2$$

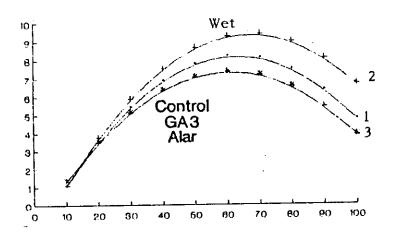
Where:

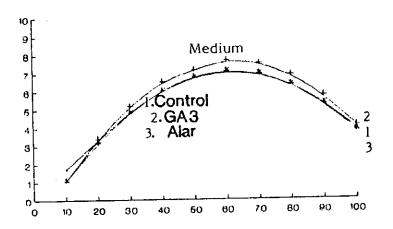
Y = daily evapotranspiration by soybean plant in mm/day.

X = relative growth period as a percentage.

a, b, c =are the parameters of the function.

The obtained functions under the three moisture levels i.e., 85, 70 and 55 % of field capacity as well as the growth regulators i.e., GA_3 or Alar are presented in Table (19). The values gained from using these functions are graphed and illustrated in Fig. (2)


These functions demonstrate that


- a. Growth cycle of the plant.
- b. Net soil moisture prior irrigation.
- c. the growth of the plant as modified by the type of growth regulators used.

each of those factors affect the daily water use by soybean. The variations observed in the parameters of the obtained functions (a, b, c) represent the effect of the aforementioned factors on the daily evapotranspiration of soybean. The period of maximum demand for water can be obtained by differentiating and equating the derivative with zero. This period was found to be from 81 - 83 days after sowing.

Table (19): Daily evapotranspiration of soybean as a function of growth cycle under different

		Quadratic function $Y = a + b x + c x^2$	R2	Maximum growtl	Maximum daily ET. for growth cycle
Treatments		Y = daily ET. in mm. x = growth period in percent		%	in days
	Control	$Y_1 = -1.887 + 32.12 \times -25.49 \times^2$	0.920	0.63	82
Wet	GA,	$Y_2 = -2.092 + 34.25 \times -27.23 \times^2$	0.931	0.63	82
(3) % F.(5)	Alar	$Y_3 = -1.263 + 28.34 \text{ X} - 23.22 \text{ X}^2$	0.886	0.61	79
	Control	Y ₁₁ = -1.180 + 26.70 X - 21.60 X ²	0.922	0.62	80
Medium	GA,	$Y_{\varsigma} = -1.719 + 30.51 \text{ X} - 24.70 \text{ X}^2$	906.0	0.62	80
(70% F.C.)		$Y_6 = -1.483 + 27.88 \text{ X} - 22.59 \text{ X}^2$	0.867	0.61	80
	Control	$Y_7 = 0.5703 + 16.74 \times -13.54 \times^2$. 0.888	0.62	80
Dry	GA,	$Y_o = -0.1231 + 18.4 \times - 14.97 \times^2$	0.905	0.61	80
(C) & C.C.	Alar	$Y_q = 0.3996 + 16.57 \text{ X} - 13.71 \text{ X}^2$	0.867	09.0	79

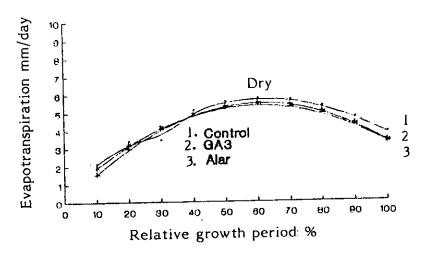


Fig. (2): Daily evapotranspiration of soybean as related to relative growth period under different soil moisture level and growth substances.

4.3.3 Crop Coefficient : (K_c) :

The term crop coefficient has been developed to reflect the physiology of the crop and the degree of crop cover on potential evapotranspiration. For determining crop coefficient, both actual and potential evapotranspiration must be measured. Many workers showed that modified Penman method gave the most accurate values of potential evapotranspiration (Miseha, 1983; Abdel-Hamid et al., 1985 and Abbas, 1988).

Crop coefficient of soybean plant throughout its growth cycle under different treatments is presented in Table (20). The values were calculated according to the daily potential evapotranspiration estimated by Penman method and actual ET. derived from the wet treatment which produced the highest soybean yield. Crop coefficient (K_c) was very low at earlier stages of growth, then increased gradually as the percent of crop cover increased. The values of K exceeds the unit when soybean complete 70 to 80 % of its growth period. Thereafter, crop coefficient is decreased again when the plant started to mature. The lower K values during the early period of growth is mainly due to large diffusive resistance of bare soil. As the percent of crop cover increased the diffusive resistance decreased also, leaf area increased greatly through this period. When the crop started to mature, crop evapotranspiration decreased as the effective resistance to transpiration increased which resulted in lower K values in such periods. These results are in line with those reported by Burch et al. (1978) who concluded that the ratio of actual to potential evapotranspiration increased from 0.2 early in the season to about 1.2 at later

Table (20): Crop coefficient (K_c) of soybean during its growth cycle as affected by some growth regulators.

Treatments	S	10	20	20	04	50	09	20	80	06	100
Potential mm./day	Н *•	10.14	9.87	9.42	9.97	9.13	8.59	8.33	8.07	7.50	7.31
Control											
Actual	** LU	2.13	2.86	4.52	6.58	8.03	8.33	8.58	8.07	6.38	4.17
	X ₀	0.21	0.29	0.48	99.0	0.88	0.97	1.03	1.00	0.85	0.57
GA											
Actual	ET.	2.13	2.86	4.80	7.18	8.40	89.8	9.16	8.39	09.9	4.53
	х .°	0.21	0.29	0.51	0.72	0.92	1.01	1.10	1.04	0.88	0.62
Alar											
Actual	ET.	2.13	2.76	4.45	6.18	7.67	7.73	7.75	6.13	4.95	4.09
	ಸ್ಗ	0.21	0.28	0.47	0.62	0.84	0.90	0.93	0.76	99.0	0.56

Estimated by modified Penman method.

^{** .} Mean of two seasons.

stages for well watered plants. The above mentioned findings are in harmony with those reported by Doorenbos et al. (1979) and Abbas (1988).

With regard to the effect of growth substances on K_{C} values, results indicate that growth promoting substance (GA3) increased such values. Such effect can be related to the effect of these compounds on the growth of plants and thereby on water consumption. The transpiring area (leaf area) increased by these chemicals and affect the loss of water by transpiration. These factors are responsible for the increase in K_{c} values compared with the control. On the contrary, the use of Alar (a growth retardant) caused a decline in the soybean crop coefficient. Such substance retard the growth of treated plants and increased the resistance to transpsiration and hence decreased $K_{\overline{C}}$ values after application. Thus, it can be concluded that the percent of crop cover and any modifications on the growth of plants either by promotion or retardation affect the crop coefficient. In this connection Miseha (1983) concluded that any environmental factor that affect the resistance to vapour diffusion may result in changes in crop coefficient either by increasing or decreasing such values. Changes in crop coefficient (K_{C}) may affect directly the evapotranspiration of a crop in concern.

4.4. Water Use Efficiency:

Water use efficiency has been used to evaluate various agronomic practices with respect to water consumption. Water use efficiency can be increased either by increasing crop production or by decreasing losses due to evapotranspiration. Crop production can

be improved by the best choice of high yielding varieties, adaptation to the particular environment as well as by improvement of water management, air and nutrient supply to the roots and of light and CO_2 to the folliage.

4.4.1. Dry Matter Production:

Water use efficiency expressed as Kg. dry matter produced/one cubic meter of water consumed for soybean under the different treatments throughout its growth cycle is recorded in Table (21). Water use efficiency values were low at the first period of growth (from planting to 50 days) then reached a maximum through the period from (50 to 75 days after sowing). Such period is said to be the rapid vegetative growth period and flowering stage. Thereafter, water use efficiency values redecreased again (75 - 100 days) to reach a minimum at the end of the season i.e., from 100 to 130 days. These results may indicate the importance of adequate water supply through the period from 50 up to 75 days after sowing as water utilization shows its maximum rate.

The lower water use efficiency values in the first period can be ascribed to less vegetable crop cover through this period. In such period, the plants are small and intercept little of the net radiation, however, evaporation rate is very high from the exposed soil surface. Dry matter production was at a minimum compared with the losses of water by evapotranspiration process. These factors are responsible for lower water use efficiency values. The maximum values of water use efficiency observed in the second period can be explained

Table (21): Water use efficiency by soybean (Kg. dry matter/m³ of water consumed) at various stages of growth as affected by soil moisture levels and some growth regulators.

	•			(io. : o/ /o/ :o#)						5	> = :	?	;					Ury Y	8	<u>;</u>			
Treatments	loı	GA3	GA ₃ (ppm)		Alar (ppm)	(mdd		X̄.	trol	GA_3	GA ₃ (ppm)		Alar	(mdd)		X.	trol	GA3	(ppm)		Alar	(mdd)		Χ̄ ·8
	Cont	100	200	×	1000 2000	2000	×	gihal	Con	100	200	×	1000	2000	×	girrig	Con	100	200	1×	1000	2000	×	jiaal
											Season	n 1988	••											
From planting to 50 days	1.00	1.39	0.99	1.13	1.01	0.82	0.94	1.04	0.92	1.05	0.89	0.95	1.01	0.89	0.94	0.95	0.82	0.86	1.02	06.0	0.98	0.80	0.87	0.89
50 - 75 days	2.07	2.86	2.63	2.52	2.33	1.72	2.04	2.28	0.73	1.60	1.47	1.27	1.54	1.07	1.11	1.19	0.76	1.28	0.91	0.98	1.25	0.99	1.00	0.99
75 - 100 days	1.20	1.14	1.05	1.13	1.04	0.98	1.07	1.10	1.87	1.87	0.94	1.56	1.91	0.71	1.50	1.53	0.84	1.82	1.02	1.23	1.45	0.90	1.06	1.15
100-130 days	0.46	0.35	0.31	0.37	0.37	0.11	0.31	0.34	0.41	0.67	1.53	0.87	0.26	1.15	0.61	0.74	1.24	0.34	1.58	1.05	0.25	0.29	0.54	0.82
											Season	n 1989	6											
From planting to 50 days	1.10	1.18	0.87	1.05	0.89	0.91	0.97	1.01	1.04	1.01	1.0	1.02	1.06	0.91	1.00	1.01	0.73	1.08	0.92	0.91	1.02	0.85	0.87	0.89
50 - 75 days	2.03	3.35	2.27	2.55	2.02	2.31	2.12	2.34	1.45	2.41	1.60	1.82	1.99	1.26	1.57	1.70	0.69	1.82	1.52	1.34	1.66	1.10	1.15	1.25
75 - 100 days	1.33	2.40	2.00	1.91	1.40	2.35	1.69	1.80	1.41	1.50	2.03	1.65	1.16	1.19	1.25	1.45	1.01	1.42	1.12	1.18	1.42	1.10	. I. 8	1.18
100 - 130 days (0.35	0.28	0.23	0.29	0.29	0.27	0.30	0.30	1.37	0.35	o.30	0.67	0.41	0.83	0.87	0.77	0.94	1.15	1.84	1.31	1.85	2.02	1.60	1.46

on the basis that vegetative growth was at a maximum through such period. It is well known that light interception by plants increased by the increase in leaf area index. The growth and photosynthesis are proportional to the amount of net radiation intercepted by the canopy. On the other hand, evaporation is not proportional to leaf area index as it occures from soil and plant surfaces. Therefore, dry matter production was higher in relation to water losses through transpiration and evaporation. All of these did result in increasing the values of water use effeciency.

The lower values of water use efficiency gained in the last period (100 - 130 days) is probably related to crop maturation.

In this respect, Ritchie and Burnett (1971) and Ritchie (1974) pointed out that water use efficiency is lower early in the season in most annual crops due to slow growth rates. They mentioned that large fraction of the evaporation flux is from soil surface compared with the amount from plant cover. They added that rapid growth rates per unit area of land would improve the efficiency of water use. The previous results are in full agreement with those reported by Miseha (1983) and Abbas (1988).

With regard to the effect of soil moisture levels on water use efficiency values, results recorded in Table (21) showed that under high soil moisture level, water use efficiency values were higher and decreased as soil moisture level decreased. In other words, increasing water deficit (prolonged irrigation intervals) did result in a sharp decrease

in water use efficiency; such trend was found to be true in most of the growth periods of soybean plant. These results may prove the importance of maintaining soil moisture at a high level for maximum production of dry matter thereby higher water use efficiency values. On the contrary, severe water stress, reduced plant growth more than water consumption which resulted in lower water use efficiency values.

In this connection, Miseha (1983) concluded that plants subjected to severe water deficit are smaller than those subjected to moist or moderate water levels. Reduced cell turger is the most important reason for reduced plant size. Plant turgidity is important in relation to the opening and closing of stomata. Also, it is important for the expansion of leaves and movement of water and nutrients to various parts of the plant. The amount of turgidity may not directly influence the actual exchange of gases required in photosynthesis, but it will affect net photosynthesis indirectly through regulation of stomatal opening. All of these reduce dry matter ascumulation in plants subjected to severe moisture stress per unit of water consumed which resulted in lower water use efficiency values.

As for the effect of growth substances on water use efficiency by soybean at various growth stages data of Table (21) indicate that the use of GA₃ improved water use efficiency figures, with respect to control under high or medium soil moisture levels. However, under prolonged irrigation intervals, no clear trend was observed. In other words, the application of GA₃ did result in increasing water use efficiency values compared with the control. These findings indicate that the

stimulation effect of GA₃ on dry matter production was found to be more than the increase in water consumption by such chemical. This phenomeron is the reason for increasing the values of water use efficiency. It is worthy to mention that the lower concentration of GA₃ was found to be more pronounced than the higher rate in improving water use efficiency by soybean plant. Such pattern can be ascribed to less dry matter produced under the higher concentration of GA₃. As for the role of Alar on water use efficiency reuslts gained from Table (21) showed that this chemical slightly decreased the values of water use efficiency compared with the control. Such findings can be ascribed to less dry matter production by plants treated with Alar. The higher the concentrations of applied Alar, the lower is the water use efficiency values.

In this respect, Miseha (1983) pointed out that growth of plants will be limited by lack of soil moisture thereby dry matter productivity. Thus the control of evapotranspiration by a crop must be considered in relation to the effect on photosynthesis or dry matter productivity. The use of growth promoting substances may increase dry matter production more than evapotranspiration resulting in our increase in water use efficiency. Such chemicals can improve the efficiency of water utilization expressed as dry matter produced per unit of water consumed under high moisture level but failed to cause any increase under lack of water.

4.4.2. Marketable Yield:

Table (22) represents the effect of growth regulators under

Water use efficiency by soybean expressed (Kg. seeds/m³ water consumed) as affected by soil moisture levels and some growth regulators. Table (22):

		So	Soil moisture levels	levels		Soi	Soil moisture levels	ievels	
Treatments	nents	Wet (85 % F.C.)	Medium (70 % F.C.)	Dry (55 % F.C.)	Main	Wet (85 % F.C.)	Medium (70 % F.C.)	Dry (55 % F.C.)	Mean
			Season 1988	988			Seaso	Season 1989	
	Control	0.36	0.28	0.29	0.31	0.40	0.39	0.25	0.35
GA3	100	0.37	0:36	0.30	0.34	0.53	0.39	0.41	0.44
(mdd)	200	0.37	0.33	0.30	0.33	0.39	0.38	07.0	0.39
	Mean	0.37	0.32	0.30	0.33	77.0	0.39	0.35	0.39
•	Control	0.36	0.28	0.29	0.31	0,40	0.39	0.35	0.38
Alar	1000	0.37	0.36	0.31	0.35	0.38	0.35	0.37	0.37
(mdd)	2000	0.27	0.28	0.20	0.25	0.38	0.31	0.35	0.35
	Mean	0.33	0.31	0.27	0.30	0.39	0.35	0.36	0.37
Me	Mean	0.35	0.32	0.29	0.32	0.42	0.37	0.36	0.38

three moisture levels on water use efficiency expressed as Kg of seeds/ m³ of water consumed in complete evapotranspiration. Soil moisture levels induced a great response on water use efficiency by soybean. The highest water use efficiency values were scored from the wet soil moisture level (irrigated at 85 % F.C.) followed by the medium level, whereas the least values were produced from the dry one (prolonged irrigation intervals). These results indicate that the relative decrease in soybean yield by increasing soil moisture stress was much more than the decrease in seasonal evapotranspiration. Such pattern of results may prove the importance of water for higher yield production thereby more efficient use of water by soybean. Thus, maintaining soil water at a high level not only increase crop production but also allow:s the plants to use water more efficiently. In other words, increasing water deficit did result in decreasing crop yield and in the same time affects greatly water utilization. These results are in full agreement with those reported by Abbas (1988) who pointed out that water use efficieny values decreased by increasing soil moisture stress.

As for the effect of growth substances on water use efficiency, results indicate that growth promoting substance i.e. GA_3 improved such values. In other words, the use of GA_3 did result in increasing water use efficiency by soybean. The low rate of GA_3 was found to be more pronounced in this respect. Such findings mean that the increase in seed yield by GA_3 was found to be greater than the enchancing effect on evapotranspiration. All of these are the main reasons of increasing water use efficiency values by such chemical. In this respect

Tinus (1974) concluded that water use efficiency improved by optimizing the factors that promote growth. The above mentioned results are in full agreement with those reported by Miseha (1983).

Concerning the role of growth retardant (Alar) on water use efficiency, results indicate that such chemicals seemed to decrease the efficiency of water utilization. These results reveal that the decrease in crop production by the use of retardant is some what more than the reduction in evapotranspiration. It is worthy to mention that the higher rate of Alar decreased the values of water use efficiency than the lower one. This means that the higher the rate of Alar used, the lower are the values of water use efficiency. Such reduction in water use efficiency was found to be clear under high soil moisture stress than wet conditions. In this connection, Miseha, (1983) pointed out that Alar application did not cause any appreciable increase in water use efficiency values.

4.5. Water and Soybean Field Relationship:

It has been mentioned previously that soil moisture levels comprise the main constrain in soybean production. Thus, for better understanding such problem, it thought advisable to find out the relationship between water and yield. In other words, at what moisture status should irrigation be applied in order to obtain the maximum yield? or what should be the loss in soybean yield if water application is inadequate? Chang (1971) concluded that when the actual evapotranspiration falls short of the potential, the actual yield will also be less than the maximum. However, the relationship between evapotranspiration

and yield in the field may or may not be linear as it is between transpiration and dry matter production in Container experiments. This is partily because the fraction of evaporation that does not contribute to plant growth varies throughout the crop cycle.

4.5.1. Actual evapotranspi ration and soybean yield:

The results of the two seasons have been analyzed by plotting the yield of soybean againest the water consumption. The best description of the relation was found to be the linear function in the form:

$$y = a + b x$$

where: y = soybean yield (seed yield, straw yield, biological yield and oil production) in kg. feddan.

x = actual evapotranspiration in cm.

a. Seed yield (y₁)

$$\hat{y}_1 = 394.8 + 20.76$$

Relative contribution

$$(R.C.) = 71.44$$

b. Straw yield (y₂)

$$\hat{y}_2 = -1211 + 53.67 \text{ x}$$

$$R.C. = 75.69$$

c. Biological yield (\hat{y}_3)

$$\hat{y}_3 = -1606 + 74.43 x$$

R.C. = 75.74

d. Qil production (\hat{y}_{ij})

$$\hat{y}_{4} = -132.7 + 5.185 \text{ x}$$

R.C. = 73.05

Such relations were statistically significant and demonstrate that actual evapotranspiration affected greatly the productivity of soybean crop.

4.5.2. Soil moisture level and yield:

Data of soybean yield had been plotted against the level of soil moisture when irrigation water was applied. Statistical analysis showed that the degree of this relation was a first class function or linear relationship in the form:

$$y = a + b x$$

where:

y = Soybean yield (seed yield, straw yield, biological yield and oil production) in Kg./fed.

x = the level of soil moisture when irrigation water is applied as a percnt from field capacity.

a. Seed yield (ŷ₁)

$$\hat{y}_1 = -181.7 + 1693 x$$

Relative contribution (R.C.) = 59.53%

b. Straw yield (9₂)

$$\hat{y}_2 = -614.4 + 4309 x$$

$$R.C. = 61.19 \%$$

c. Biological yield (ŷ 3)

$$\hat{y}_3 = -796.1 + 6002 x$$

$$R.C. = 61.76 \%$$

d. Oil production (ŷ_u)

$$\hat{y}_4 = -80.8 + 424.6 \times$$
 R.C. = 61.44 %

The previous relationships were found to be significant. Such results may prove the importance of available soil water in the production of soybean crop.

4.5.3. Actual evapotranspiration, soil moisture level and yield:

It seems advisable to develop the relation between the two factors i.e. actual evapotrainspiration and soil moisture level and soybean yield. Such relationship explain that both factors affect the productivity of soybean crop. These relations have the form:

$$y = a + bx_1 + cx_2$$

where:

y = Soybean yield (seed, straw, biological and oil yield) in kg./feddan

Soil moisture level when irrigation water was applied as a percent from field capacity.

 x_2 = Actual evapotranspiration in cm.

a. Seed yield

$$\hat{y}_1 = -397.4 - 379.7 x_1 + 24.75 x_2$$
Relative contribution (R.C.) = 71.8

b. Straw yield

$$\hat{y}_2 = -1222 - 1527 x_1 + 69.7 x_2$$
R.C. = 76.62

c. Biological yield (ŷ 3)

$$\hat{y}_3 = -1619 - 1906 x_1 + 94.45 x_2$$
R.C. = 76.49

d. Oil production (\hat{y}_{l})

$$\hat{y}_4 = -133.2 - 78.78 x_1 + 6.013 x_2$$

R.C. = 73.3

The previous relations showed that the amount of water consumed in complete evapotranspiration by soybean plant or seasonal water consumption is the main factor determining the crop yields. Such finding may indicate that any environmental factor affecting seasonal water consumption by soybean crop had a great response on its production.

4.6. Chemical Composition:

4.6.1. Soybean Protein:

The nutritive value of edible seeds such as soybean is determined by their content of protein. Protein connected of soybean seeds is an important factor affecting its quality. The nutritive value of the protein is conected with its solubility in the different known solvents. The amount and quality of protein in seeds may be influenced by soil moisture levels and growth regulators.

Protein fractions of the defatted soybean seeds were extracted as water soluble (albumins like protein); salt soluble (5% NaCi, glubulins like protein); ethanol soluble (prolamins like protein), borate biffer soluble (glublins like protein) and residual insoluble protein and calculated on dry basis. Such results are presented in Table (23).

103.5 307.0 290.4 288.3 297.3 40.6 19.3 107.7 13.3 13.4 24.5 46.1 106.9 100.7 ıkıig. 24.5 100.5 86.1 106.5 110.7 103.8 108.9 43.2 24.0 18.8 48.9 1130 317.0 299.3 94.6 24.4 15.3 9-94 116.9 25.0 157.0 ж Т 75.0 21.9 (mdd) 2000 268.1 24.6 12.3 8.9 83.6 239.5 58.2 25.0 18.8 Alar 43.8 93.7 0001 Dry (55 % F.C.) 268.1 285.9 8.0 106.4 295.3 21.6 13.4 100.7 19.7 106.8 24.9 43.2 × 114.3 21:5 15.4 30.8 253.8 24.4 18.3 33.6 92.1 GA, (ppm) 200 104.0 293.2 290.6 96.4 100.6 112.3 121.0 18.6 12.4 37.2 120.0 31.3 25.0 28.1 86.2 9 296.3 101.0 13.3 54.6 46.1 341.4 123.8 115.1 25.2 12.6 64.7 235.3 282.0 272.0 269.6 274.6 216.3 241.3 246.5 260.6 269.0 83.6 35.7 13.2 37.0 99.1 102.4 18.5 12.1 Table (23); Effect of soil moisture levels and some growth regulators on protein fractions of soybean seeds (mg./g.). X .gi ı ıl 278.7 26.4 12.1 34.5 76.1 99.5 107.7 100.6 105.3 106.5 18.3 ×.5 10.1 × 322.5 8.06 45.4 18.2 12.2 77.8 156.8 35.5 1.8 17.8 2000 Alar (ppm) **%**.6 13.3 24.4 48.5 315.1 270.7 248.5 287.0 269.0 222.0 259.3 226.4 106.0 104.8 95.6 % F.C.) 18.5 8.9 54.1 9.2 1000 Season 1989 Season 1988 28.6 12.2 % % 91.1 18.6 91.7 14.1 35.5 Medium (70 × 12.2 76.9 7.0% 30.6 90.1 80.9 13.8 32.6 17.8 (mdd) 200 12.3 103.8 104.6 81.2 8.8 43.1 113.8 19.4 19.2 30.8 85.8 100 15.3 38.6 101.9 18.5 24.4 108.5 107.7 43.1 9.5 Control 83.4 90.7 13.9 26.5 98.8 18.9 35.2 85.2 20.9 10.5 X .girıl 227.7 15.0 21.8 82.3 20.7 104.5 10.0 19.9 43.7 95.6 × 184.3 235.1 20.3 20.3 17.4 99.0 78.1 6.66 23.5 11.8 43.5 1 36.4 2000 Alar (ppm) 250.1 20.7 11.7 17.8 108.4 86.5 47.6 18.2 9.1 51:5 67.9 0001 F.C.) 242.8 226.3 31.2 21.1 84.4 934 12.7 93.0 17.9 11.0 56.6 77.8 × 243.1 (85 15.0 24.0 **30.**1 80.9 GA₄ (ppm) 11.8 25.2 77.0 205.6 93.1 200 221.6 33.3 226.4 10.2 18.2 18.5 72.1 6.66 18.2 77.7 12.1 90 100.3 263.6 246.9 21.0 13.0 30.1 38.1 105.2 18.0 9.0 Control Treatments Fractions Total Total T T T T

Results showed that the concentration of water soluble and residual non-soluble protein were higher fractions followed by borate tuffer soluble protein. Those fractions comprise about 85 % of the total protein. However, the least fractions were found to be ethanol soluble and salt soluble protein. These results may indicate that about 40 % of total amount of soybean protein is said to be non soluble.

As for the effect of soil moisture levels on protein fractions, results showed that the increase in total amount of protein by water deficit (prolonged irrigation intervals is restricted mainly through residual non soluble protein and borate biffer soluble protein. However, other fractions changed slightly to a less extent.

Regarding the effect of growth regulators, data of table (23) showed that GA₃ seemed to reduce the total amount of protein fractions. The most pronounced reduction was found to be in residual non soluble protein. As for the effect of Alar, it can be concluded that such retardent seemed to increase the total amount of protein. Such increase was found to be in the most protein fractions especially the non soluble protein. This type of results may show that growth regulators play a role in nitrogen metabolism.

In this conection, Thomas et al. (1973) concluded that specific biosynthesis of protein in the developing seeds may take place in two ways a) by condensation of amino acids translocated from green leaves to else where or b) by reaction in which carbohydrate, amids and amonium salts may part cipate. Also, Abdel-Hamid et al. (1981) pointed out that growth promoters such as GA₃ and auxins seemed to control protein metabolism.

4.6.2. Nitrogen, Phosphorus and Potassium Content:

Results of total nitrogen, phosphorus and potassium contents in different soybean plant organs throughout its growth cycle as well as the relative increase under the different treatments are presented in Tables (27 - 29). Also the distribution of the above mentioned nutrients in different plant organs with respect to the total amount in recorded in table (27-29). The percent of NPK in the whole soybean plant throughout its growth cycle is presented in Table (30).

Nitrogen, phosphorus and potassium content of the various soybean parts increased gradually by advancing age up to the last sample. These results mean that the apsorption of such nutrients contined up to later periods of its growth. Moreover, leaves of soybean always possesed the higher amounts of NPK during the first and second periods of growth. However, stem was found to be in the second rank in this respect, while root contains the least amount of these nutrients. At later periods of growth pods possesed the highest macro-nutrients followed by the leaves and stem, while the lowest amount was found to be within roots. These results may lead to the conclusion that the translocation of these elements continued to the last period of growth.

Regarding the effect of soil moisture level on the NPK content, results indicate that the total amount of the tested nutrients were influenced by irrigation treatments. The accumulation of such elements in the various plant organs was decreased by increasing soil moisture stress. These type of results may prove that the level of soil moisture affects the absorption of plant nutrients thereby the growth of soybean. In addition, the availability of different nutrients in soil

Table (24): Effect of soil moisture levels and some growth regulators on nitrogen content at different periods of soybean growth (mg N/plant).

Root 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Stem 31	L.P.					-	ı											
GA ₃ 100 Alar 2000 X X X X X X X X X X X X X X X X X X	31		L.B.	₩.P.	Root	Stem	L.P.]	L.B. 1	Pods	w.P.	Root	Stem	L.P.	L.B.	Pods	w.P.	50	75	100
CA ₃ 100 Alar 2000 X X X X X X X X X X X X X X X X X X	4.1	14	228	279	10	16	37	251	189	578	18	163	52	310	38.7	930	30.0	62.2	001
Alar 2000 Alar 2000 X		15	221	286	14	216	54	334 ;	265	883	13	303	76	38.4	556	1312	21.8	67.3	001
Alar 2000 Alar 2000 X X X X X X X X X X X X X	7	15	201	564	Ξ.	167	 49	220 2	251	713	11	119	7.1	304	510	1015	26.0	70.2	001
Alar 2000 X X X X CA 100 CA 2000	28	2	217	277	12	158	52	268	235	725	14	195	99	326	484	1085	25.5	8.99	100
Alar 2000 X X X X CA ₃ 100 CA ₃ 200 X	22	=	195	236	5	801	37	214	181	553	14	156	4.1	291	447	646	24.9	58.3	100
X X 0 0 0 0 X X 200 X X X 200 X X X X X	20	17	157	201	==	7.1	43	216	108	611	13	173	37	286	396	905	22.2	9.64	100
CA3 100	24	15	193	238	=	0,4	8	227	159	476	15	164	43	296	410	928	25.6	51.3	.100
GA ₃ 100	31	2	205	258	12	124	46	248	197	627	15	180	55	311	447	1008	25.6	62.2	100
GA ₃ 100 X	24	=	134	174	임	74	26	162	52	329	6	59	27	193	2.38	526	33.1	62.5	100
200 × 200	28	13	143	188	×0	Ξ	35	221	176	551	11	106	64	235	580	981	19.2	56.2	100
× 5	14	16	145	208	7	125	21	156	94	403	e 0	153	18	164	00#	248	27.8	53.9	001
	3.	13	141	190	× ×	103	27	180	109	427	6	108	31	197	406	.751	25.3	56.9	100
	8	2	138	191	٥	8	×	222	123	064	2	74	31	661	355	699	28.6	73.2	100
Alar 2000 7	53	91	108	160	0	36	25	165	82	338	13	51	81	114	276	472	33.9	71.6	001
	28	#	127	175	01	- 11	29	183	37	386	=	61	25	169	290	556	31.5	4.69	100
9	8	7-	134	184	6	96	28	182	86	407	οĭ	85	28	183	348	654	28.1	62.2	100
5 0	28	6	=	153	7	9	†	86	24	193	9	99	18	101	217	¢08	37.5	47.3	100
100 8	"	16	125	180	7	80	24	129	47	287	7	112	22	166	. 281	588	30.6	8.84	100
۲ ^۸ 3 200	74	9	Ξ	150	90	86	18	154	31	297	2	63	22	123	158	374	40. I	79.4	100
×.(.)	28	12	116	162	7	69	13	8.	*	259	∞	80	21	130	218	457	35.4	56.7	001
1000 5	3	13	121	179	2	62	18	164	×	282	80	72	26	156	240	502	35.7	56.2	100
Alar	35	9	95	150	12	51	13	*	59	241	01	8+	20	110	175	363	41.3	4.99	100
×	*	11	109	161	01	51	15	13%	30	242	∞	62	21	122	211	424	38.0	56.2	198
× ,	31	12	113	163	6	09	17	133	32	251	×	71	21	126	215	441	41.3	4.99	100

Table (25): Effect of soil moisture levels and some growth regulators on phosphorus content at different periods of soybean gowth (mq p./plant).

Treatments	ents			Š	days				75 di	days					100	days			% in	increase	
		Root	Stem	L.P.	1.B.	₩.P.	Root	Stem	L.P.	L.B.	Pods	W.P.	Root	Stem	L.P.	L.B.	Pods	W.P.	50	7.5	100
	0	6.0	6.5	<u>≈:</u>	6.2	15.4	1.8	24.1	8.0	8.7	30.0	72.6	3.1	37.7	11.8	15.5	45.4	113.5	13.6	64.0	100
«	.001	1.0	5.0	0.7	9.6	16.3	1.2	37.6	5.2	15.1	37.5	9.96	1.3	33.2	3.2	20.9	63.6	122.2	13.3	79.1	001
	3 200	7:	4.3	7.8	16.8	24.3	6.0	31.6	4.4	5.6	27.3	8.69	1.1	50.5	11.6	10.0	58.2	131.4	18.5	53.1	100
E.C	×	=	5.3	4:	10.9	18.7	1.3	31.1	5.9	9.8	31.6	7.67	1.8	40.5	8.9	15.5	55.7	122.4	15.3	65.1	100
-	0001	5.0	8.3%	9.6	7.4	18.3	1.6	27.0	3.9	8.4	28.4	69.3	1.2	33.6	4.9	6.2	52.5	6.66	18.3	4.69	100
8) 1		1:0	0.9	2.2	80 80	18.0	1.2	19.0	6.2	5.0	14.9	46.3	1.1	24.8	4.6	4.9	48.0	83.4	21.6	55.5	100
Μe	×	1.3	6.9	1.5	7.5	17.2	1.5	23.4	6.0	7.4	24.4	62.7	1.8	32.0	7.6	8.9	48.6	98.9	17.4	63.4	100
×		1.2	9.	.: .:	9.2	18.0	7.4	27.3	6.0	8.6	28.0	71.3	1.8	36.3	8.3	12.2	52.2	110.8	16.2	4.49	100
	0	1.7	8.2	1.6	3.8	15.3	1.0	20.5	1.0	2.3	10.0	34.8	3.2	16.7	1.7	2.3	32.9	56.8	26.9	61.3	100
∀ U (100	=	4.3	9.0	8.0	14.0	8.0	22.1	6.1	10.3	12.8	47.9	7:1	5.7	2.6	11.5	47.5	68.4	20.5	70.0	100
	3 200	1.0	3.9	1.5	10.4	16.8	0.7	18.5	2.0	5.9	11.5	38.6	8.0	47.5	7.4	9.9	48.7	111.0	15.1	34.8	100
1%-(×	1.3	5.4	1.2	7.4	15.3	0.8	20.4	1.6	6.2	11.4	40.4	1.7	23.3	3.9	8.9	43.0	78.7	19.4	51.3	100
•	1000	2.4	3.7	1.4	6.7	14.2	1.9	13.6	3.3	2.9	19.4	41.1	1.0	14.3	4.5	3.1	37.6	60.5	23.5	80.1	100
πuib <u>≰</u>	2000	1.7	6.3	1.7	4.6	14.3	2.4	15.8	3.6	5.8	8.8	3 .4	1.4	13.0	3.5	1.4	22.3	41.6	34.4	87.5	001
эW	×	1.9	6.1	1.6	5.0	14.6	8.1	16.6	5.6	3.7	12.7	37.4	1.9	14.7	3.2	2.3	30.9	53.0	27.5	70.6	100
×		1.6	5.8	1.4	6.2	15.0	1.3	18.5	2.1	5.0	12.1	39.0	1.8	19.0	3.6	4.6	37.0	0.99	22.7	59.1	100
	0	1.7	1.5	6.0	3.9	8.0	3.4	4.9	9.6	4.9	2.0	15.8	2.0	5.4	9.8	2.6	15.2	26.0	30.8	8.09	001
∀	100	1.3	3.5	0.8	10.3	15.9	1:1	13.2	2.7	5.4	4.6	27.0	0.8	9.5	4.0	1.0	21.8	36.8	43.2	73.4	001
	3 200	=	4.3	1.2	5.2	11.8	1.9	12.9	3.9	4.3	1.8	24.8	1.3	14.6	4.5	2.6	20.0	43.0	27.4	57.7	001
(:0.9	ı×	1.4	3.1	1.0	6.5	12.0	2.1	10.3	2.4	4.9	2.8	22.5	1.4	6.7	3.1	2.1	19.0	35.3	24.0	63.7	100
	1000	1.0	7.3	2.2	5.5	16.0	1.8	13.1	3.8	7.4	5.8	31.9	0.8	16.3	2.5	8.7	24.4	52.7	30.4	60.5	100
ζζ) <u>F</u>	2000	1.7	3.1	1.0	8.8	12.6	2.1	15.6	1.8	1.7	4.3	25.5	0.9	9.5	3.8	9.0	21.4	36.2	34.8	70.4	00.
Dry Dry	×	1.5	4.0	1.4	5.4	12.3	2.4	11.2	2. 1	4.7	4.0	24.4	1.2	10.4	2.4	4.0	20.3	38.3	32.1	63.7	100
×		1.5	3.6	1.2	0.9	12.3	2.3	10.8	2.3	4.8	4.4	24.6	1.3	10.1	2.8	3.1	19.7	37.0	33.2	66.5	100

Table (26): Effect of soil moisture levels and some growth regulators on potassium content at different periods of soybean growth (mg K/plant).

Tre	Treatments	۷		50 d	days	:			75 de	days					00	Sych			8	70	
:		•.	C+5.	1	-	2	,			١.						2			e	ורו במאב	
					ן וים	≱ j	K001	Stem	 P.	i.B.	Pods	w.P.	Root	Stem	L.P.	L.B.	Pods.	W.P.	20	7.5	100
	0	61	87	51	107	264	31	223	124	133	295	908	30	261	165	227	384	1047	25.2	77.0	100
	GA, 1	100 20	7.5	09	123	278	47	342	252	183	3124.	13 36 13 36	%	335	244	204	58#2	1372	20.3	82.8	100
		17 00	87	3	107	257	28	283	200	140	305	.956.	28	344	242	230	441	1285	20.0	74.4	100
). F.C		× 19	83	52	112	266	35	283	192	152	304	996	32	313	216	220	453	12.34	21.6	78.3	100
	1 7014		96	56	102	276	32	251	171	149	249	852	34	336	147	149	3821	1048	26.3	81.3	100
		2000 18	65	51	100	234	32	177	1 37	137	147	630	29	285	154	187	328	983	23.8	64.1	100
AN		x 20	83	53	103	259	32	217	144	140	2 30	763	31	294	155	188	358	1026	25.2	74.4	100
	' ×	20	83	53	108	797	34	250	168	146	267	865	32	304	186	204	904	1132	30.5	76.4	100
1	.	0 23	65	44	150	282	27	162	97 9	8 86	87	471	22	122	8	125	210	569	49.6	82.8	100
	GA, 10		55	53	95	222		. 272 .	124	133	180	8 38	24	189	109	143	480	945	23.5	78.1	100
		200 15	72	40	73	200	29	211	6 06	95 1	112	537	<u>81</u>	241	85	91	397	8 32	24.0	64.5	100
₩.		۶ کا	79	£	106	235	28	215	104	109	126	582	21	184	95	120	362	782	30.1	74.4	190
	Ĭ .		74	43	81	214		236	114]	122 1	144	643	27	236	127	106	310	806	26.6	79.8	100
) 	2000 17	. 89	33	128	252	25	133 8	8 18	82 9	06	411	22	163	71	, 99	246	. 895	44.4	72.4	100
Mec		× 19	69	42	120	250	26	3 221	97 1	101	107	508	24	174	96	66	255	849	38.6	76.4	100
	×	19	67	44	113	243	27	196	101	105 1	117	9#6	23	179	96	110	309	717	33.9	76.2	100
1		0 12	8	8	56	148	17	70	9 09	69	35	251	12 8	68	63	7.1	179	414	35.7	47.4	001
	GA, 10		53	ж	78	190				9 201	, 29	454	61	122	80 8	83	225	529	35.9	85.8	100
(.ɔ.		200 17	64	8	56	152	20	138	73 8	81 3	×	350	26 8	89	74	78	149	416	36.5	84.1	100
년 일 %		× 17	51	32	63	163	21	128 7	71 8	7 98	47	353	19	100	72)	77	7 781	452	36.1	78.1	100
۹ (۶۶ د	10		79	33	29	179		140 7	70 8	9 68	65	390	21	611	98	86	152 1	476	37.6	81.9	100
		2000 16	53 ·	25	107	201	22	102 4	46 7	72 3	38	283	17 9	86	2 09	78 1	148	401	50.1	70.6	100
1		× 14	56	29	77	176	22	104 6	2 09	77 4	94	309	17]	102	8 02	82 1	7 091	431	40.8	71.7	100
	×	16	54	31	20	171	22	116 6	8 99	82 4	47 3	333	81	101	71 8	80 1	1 221	747	4 مد	75.3	(, ,

Table (27): Effect of soil moisture levels and some growth regulators on nitrogen distribution at different periods of soybean growth.

Tre	eatme	ent		50	days			75	days				100	day	s	
			Root	Stem	L.P.	L.B.	Root	Stem	L.P.	L.B.	Pods	Root	Stem	L.P.	L.B.	Pods
		0	2	11	5	82	1	16	6	43	34	2	18	6	33	41
	GA ₃	100	3	14	5	78	2	24	. 6	38	30	1	23	6	28	42
	u'\3	200	3	16	6	75	2	23	9	31	35	1	12	7	30	50
(j		x	3	14	5	78	2	21	7	37	33	1	18	6	30	45
ж г.		1000	3	9	6	82	2	20	7	39	32	1	16	4	32	47
85	Alar	2000	3	10	8	79	3	16	01	47	24	1	19	4	32	44
Wet (85 % F.C.)		Σ	3	10	6	81	2	17	8	43	30	2	17	5	<u>3</u> 2	44
_	X		3	12	6	79	2	20	7	40	31	2	18	5	31	44
		0	3 .	14	6	77	3	23	8	49	17	1	12	5	37	45
	GA_3	100	2	15	7	76	2	20	6	40	32	1	11	5	24	59
<u>ن</u>	un3	200	3	20	8	69	2	31	5	3 9	23	1	22	2	22	54
Medium (70 % F.C.)		Σ̈́	3	16	7	74	2	25	6	43	24	1	14	4	26	55
(20		1000	4	. 16	8	72	2	20	7	45	26	2	10	5	30	53
ium	Alar	2000	4	18	10	68	3	17	7	49	24	3	11	4	24	58
Med		X	3	17	8	72	3	20	8	47	22	2	11	5	30	52
	Ī.		3	16	8	73	2	22	6	47	23	2	13	4	28	53
	.=	0	3	18	6	73	4	21	7	56	12	2	16	4	25	53
	GA ₃	100	4	17	9	70	2	28	8	45	17	1	19	4	28	48
% F.C.)	un ₃	200	3	16	7	74	3	29	6	52	10	3	17	6	33	41
ж		X	4	17	7	72	3	26	7	51	13	2	18	. 5	28	47
(55		1000	3	22	7	68	4	21	5	57	13	2	14	5	31	48
Ω̈́	Alar	2000	7	23	7	63	5	22	5	56	12	3	13	6	30	48
		χ	4	21	7	68	4	22	6	56	12	2	15	5	29	49
	-x		4	19	7	70	4	24	7	53	12	2	16	5	29	48

Table (28): Effect of soil moisture levels and some growth regulators on phosphours distribution at different periods of soybean growth.

Tr	eatme	ent		50	days			75	days				100	days		•
			Root	Stem	L.P.	L.B.	Root	Stem	L.P.	L.B.	Pods	Root	Stem	L.P.	L.B.	Pods
		0	Ġ	42	12	40	2	33	11	12	42	3	33	10	14	40
		100	6	31	4	59	ı	39	5	16	39	l	27	3	17	52
_	GA ₃	200	6	18	7	69	1	45	6	8	40	1	38	9 .	8	44
Wet (85 % F.C.)		χ	6	30	8	56	2	39	7	12	40	1	33	7	13	46
%		1000	11	45	3	41	2	39	6	12	41	ı	34	6	. 6	53
t (8)	Alar	2000	6	33	12	49	3	41	13	11	32	1	30	6	6	57
¥		Σ̄X	8	40	9	43	2	37	10	12	39	2	32	8	9	49
	Σ̄X		7	34	8	51	2	38	8	12	40	2	33	7	11	47
	· <u>-</u> ·	0	11	54	10	25	3	59	3	7	28	6	29	3	4	58
	GA ₃	100	8	31	4	57	2	46	4	22	26	2	8	4	17	69
% F.C.)		200	6	23	9	62	2	48	5	15	30	1	43	7	6	43
		Σ̄	8	35	8	49	2	50	4	15	29	2	30	5	9	54
(70		1000	17	26	10	47	5	33	8	7	47	2	24	7	5	62
Medium (70	Alar	2000	12	44	12	32	7 ι	43	10	16	24	3	31	8	3	55
Med		X	13	43	11	33	5	44	7	10	34	4	28	6	4	58
	x		11	39	9	41	3	47	5	13	32	3	29	5	7	56
		0	21	19	11	49	22	31	4	31	12	2	25	11	3	59
	GA ₃	100	8	22	5	65	4	49	10	20	17	2	25	11	3	59
	3	200	9	36	10	45	8	52	16	17	7	3	34	10	6	47
F.C.		X	12	26	8	54	9	46	11	22	12	4	27	9	6	54
%		1000	6	46	14	34	6	41	12	23	18	2	31	5	17	45
(55	Alar	2000	13	25	8	54	8	61	7	7	17	2	26	10	2	60
υry		X	12	33	11	44	10	46	9	19	16	2	27	9	7	55
	X		12	29	10	49	9	44	9	20	18	3	27	9	7	54

Table (29): Effect of soil moisture levels and some growth regulators on potassium distribution at different periods of soybean growth.

			arc	JII1el Cii												
			-	50	days			75	days					days		
Tre	atmer	nt .	Root	Stem		L.B.	Root	Stem	L.P.	L.B.	Pods	Root	Stem	L.P.		Pods
			7	33		41	4	28	15	17	36	3	25	16	22 	34
		0			22	44		30	22	16	28	3	24	18	15	40
	GA_3	100	7 7	27 3 4	18	41	3	30	21	15	31	2	27	19		34
		<u></u>			20		4	 29	20	16	31	3	25	18	18	
Wet (85 % F.C.)		<u>X</u>	7	31					20	17	30	3	32	14	14	37
35.9	Alar	1000	8	35 28	20 22	<i>31</i> 42	5	28	22	22	23	3	29	16	19	33
et (§	,,,,,,,	2000	8		 20	40		28	19	18	31	3	29	15	18	35
≥		X	8	32				29	19	17	31	3	27	16	18	36
	X 		8	31	20	41		34	20	21	19	4	21	16	22	37
		0	8	23	16	53	6		17	18	24	3	20	12	15	50
	GA ₂	100	9	. 25	24	42 36	- 4 - 5	37 39	17	18	21	2	29	10	11	48
(j	2	200	8		20			37	18	19	22	3	24	12	15	46
Medium (70 % F.C.)		X 	8	27	20	45				19	22	3	29	16	13	39
(70		1000) 7	35	20	38	4	37 32	18 20	20	22	4	29	13	12	42
E	Ala	r 2000	7	27	15		6 		19	20	21	4	27	15	15	39
Medi		X	8	28	17	47	5	35			22	3	25	13	15	44
	X		8	28	18	46 	5	36	18			3		15	17	44
_	<u></u>	0	8	34	20	38	7	28					23	15	16	42
		100	12	28	19		6	39	17			4 6	21	18	19	36
	G A	³ 200		1 32	20	37	6	39	21					16		4
(Dry (55 % 75.5)	X	1	0 31	20	39	6	36	20					18		3
è	<u> </u>	100	00	36	5 18		7		18			4		15		
	S AI	ar 20	00	8 26	5 12	54	8	36	17			 	24			3
	or,	3	ζ .	8 37	2 16	44	7	34								
	_	 X		9 3	2 18	3 41	7	35	2	0 2	5 13		23			

Table (30): The relationships between N, P and K content of whole soybean plant through out the different stages of growth.

Table (30):	8	The relationships between ity	tionships	Del wee		<u>.</u>											=	TOO GAVE				
				•							75 days	s										•
				20	days				Ì	/nlant		*	% of total	al amount	ınt	E.	mg./plant		8	of total	al amount	
Treatments	nents		mg./plant	ant		% of 1	total an	amount	_	The late		letoT	d	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	z ,	<u>а</u>	×	Total	Z R	ď.		ا <u>ن</u> د
		ż	ď	<u>ن</u> د ا	Total	ż	o.	* 	1	-					55 930	0 114	4 1047	7 2091	1 45	5	~	50
		. 279	15.4	264	558	50	~	47	578 7	72.6 8	ļ					1312 122	2 1372	2 2806	74 92	.±		61
ı		100 286	16.3	278	580	64	m	84 5	883 9	96.6 l	11.36 21 956 1	2116 4	t 1,				1 1285	15 2431	31 42	2		53
	ξ U	200 264	24.3	257	545	82	3	3		Ì			1	2	54 1(1086 12	122 1235	35 2443	43 44	2		51
D.9	-	X 276	18.7	366	561	63	~	×2					2		57 9	949	100	1048 2097		45		21
% <u>\$</u>		000 236	18.3	276	53	4.5	6	52			852	1174	ጸ ፭				3 983		1971 4	9	- l	8
(8) 1	Alar	2000 201	18.0	234	453	77.77	3	22	644	-			e g		56 9	928 9	01 66	1026 205	~	45	5	8
∂ <i>\</i> /\	•	X 239	17.2	258	514	91	~	2	527	62.7		7651	S 2		ļ	7	111	1131 22	2248 4	45	5	50
	×	258	18.0	262	538	8 1	~	6#	626	71.2		1367	} 8	, =		į	57 56	569	1152	94	5	64
		0 174	15.3	282	471	37	~	909	329	34.8	1/1	3	£	.			6 87	945	1994	64	3	84
		> 5	-	1	454	1 3	~	53	551	47.9		1337	4.I		ς <i>ξ</i>					77	7	67
(·ɔ.	GA_3	2002			425	64)	#	47	403	88.6		6/6	; ;	. =			79 7	782	1612	24	~	84
∃%		- 1	15.4	235	044	43	.	53	428	40.4	582	2020	 } } !		1 3		8 19	806	1536	44	4	52
02)		10	1	214	419	94	~	51	06#	41.1	643	1174	7	. ·	; ;				1082	††	4	52
mui	Alar				426	8 2	~	59	338	**	- C-	6	: :	, ,	: 5	35.	53	849	1257	77.7	.	52
ibəM		2 175		249	439	9	~	57	386	37.4	508	931	41	3	<u>ء</u> :	2 2			1435	100	~	67
	i	1	1		0##	7.7	~	55	407	8.9	545	1991	7	3	2				8.4.8	87	m	64
ļ	×	- 1			-	\ <u>\$</u>	-	47	193	15.8	251	09#	42	~	55	25	97		, ;	1 5	"	6.6
	.	i				1	-37	67	287	27.0	454	768	37	4	59	588	75.	529 416	1124 833	4.5	· ~	20
	S G	001	6.61 01	150				90 27	297	24.8	350	672	3	<u>.</u>	*		: ;		94.5	83	-	83
(*:		3					3	83	259	22.5	352	634	7	.3	≈	457	3	60	£ 5	۽ ا	5	4,6
D.9 a		×	1		l			89	282	31.9	390	704	40	٠	55	502	23	476	10.51	£ £	, v	5 8
% \$ \$	Alar	1000 179	79 16.0	.0 1/9 .6 201	3,4			56	241	25.5	283	\$50	##	~	⊼ :	2 3	R R	5 S	892	84	t	84
ry (1	Ì	46	3	12	239	24.4	308	57.1	45	3	¥	h7h	8 7	2 2	9.00	4.8	7	84
a	} '	<	}			3 47	4	64	249	23.5	330	603	*	±	\simeq	441	٠ ا	7	3	!		
ţ	^	- ×	71 191	17.1	İ	1		1														

solution depend upon the amount of available water in the soil for the growth of plants. In other words, the partial absorption of plant nutrients depends upon the mass flow of water from the soil to the plant roots. The higher the absorption of water, the greater is the accumulation of nutrients in plant tissues. In addition, increasing soil moisture stress resulted in higher soil solution osmotic potential which affected the growth behaviour of the plant thereby the uptake of plant nutrients.

In this respect Vites (1972) concluded that water content of soil affects nutrient transport to the root surface by affecting the rate of diffusion and the mass flow of water to the root. In the latter, ions in solution are simply swept along in the water flow. Ions such as nitrate that are entirely soluble can be completely extracted from a soil by mass flow.

Barber et al. (1963) stated that mass flow can account for most of the transport of Ca, Mg and N but is inadequate to account for much of the transport of P and K.

Growth promoting substances i.e. GA₃ increased the amount of N P K in different plant parts. This trend was found to be true in most of sampling dates. GA₃ treated plants possessed the highest nutrients compared with the corresponding values of the control treatment. Such pattern of results can be discussed on the basis that growth promoting substances enhanced the growth of the treated plants and that increased the absorption of nutrients. These findings may lead to the conclusion that when growth promoting substances are used,

the application of N.P.K. must be increased to meet the nutrient demand by plants.

It is worthy to mention that GA₃ treated plants contain the highest amount of nutrients compared with the corresponding values of those sprayed with Alar. Such trend was found to be clear in most of the tested plant organs. Also, the level of GA₃ i.e. 100 ppm was found to be superior in this respect compared with the higher rate (200 ppm). These findings can be related to the effect of higher rate of GA₃ on the growth of soybean plant thereby on nutrient uptake. It has been mentioned previously that the effect of higher level of GA₃ on the growth of soybean was less than that observed with lower level. In addition, increasing the rate of applied Alar did result in a greater depression in the amount of NPK in the different tested plant parts. This can be ascribed to the retarding effect of such chemical on the growth of soybean.

The previous results can be discussed on the basis that growth substances affect plant growth thereby the nutrient uptake. The absorption of different nutrients is controlled by the growth behaviour of the plant and such effect depends upon the type and rate of the growth substances used.

Results of Tables (24-26) showed that the promoting or retarding effect of growth regulators depend upon the level of soil moisture and that affects the absorption and accumulation of nu trient in plant tissues. The nutrient accumulation in different plant organs in those plants treated with either promoter (GA₃) or retardant (Alar)

seemed to be decreased by increasing soil moisture stress. The plants grown under wet conditions (85 % F.C.) and treated with both growth substances possessed the highest amount of N P K. Increasing soil moisture stress, such accumulation of nutrients decreased. These results lead to the assumption that the regulating effect of growth substances on either plant growth or nutrient uptake depends upon the level of soil moisture.

Tables (27-29) represent: the proportion of the three macronutrients (NPK) in the whole soybean plant at different stages of growth. Results indicate that K increased with advancing age. Thus it can be concluded that the need of soybean to K is relatively higher and such element must be available for such plant during lat er periods of growth. Also, the rate of K absorption exceeds the rate of N or P absorption especially at lat er periods of growth.

4.6.3. Fe, Mn and Zn Content:

Results of Fe, Mn and Zn contents in different soybean plant organs, during different periods of growth as well as the relative increase, as affected by soil moisture and growth substances are presented in Tables (31 - 36). Also, the distribution of the above mentioned micronutrients in different plant organs with respect to the total amount—is recorded in Tables (37-39). The percent of the three micro-nutrients in the whole plant throughout its growth cycle is presented in Table. (40).

These results indicate a continous absorption of such nutrients for building up the new developing tissues. These results may show

Table (31): Effect of soil moisture levels and some regulators on Fe. concentrations (ppm) at different periods of soybean growth.

						-					Med	Medium (% 02)	F.C.)				•	Dry	(55 %	С.				
Treatments	ents		Wet	(85 %	از:			1	X	lo	Y S	G.A. (ppm)			(mdd)			101	GA3	(mdd)		Alar (p	udd)		Х ·2
Days after		ntrol	GA3	(mdd)	- 1	o de	indd)	×i	•Bi⊤	juo(001	200	×		2000	×	lrrig	tno D	100	200	×	1000 2	2000	×	الدنإ
sowing	Organs	၀၁	<u>8</u>	200	<		1	į	ı I					9	000	207	227	0770	280	280 2	267 1	120 3	300 2	220 2	244
	, +00 Q	300	200	300	267	044	140	247	257	320	140	280	247	071	780			•	•					18.0	197
·S	1000	3/10	340	08	287	120	100	187	237	160	300	280	247	100	290		215								3.37
(e p	Sterri Particle	2 6	120	094	260	220	044	287	274	280	100	220	200	140	380	267	234								240
,0¢	L. penois	200	160	480	280	140	340	227	254	400	140	220	253	140	200	247	250,	160	160	094	7 097		-		
							9	1		0,70	180	30	247	100	350	230	2 39	180	240	220	213	760	340	260	237
	Root	280	240	220	247	760) × (•		0 4 9		, ,		000	120	233	267	220	084	280	327	180	7 092	220	274
	Stem	240	500	240	327	400	320			\$:	007	070	2 6	200	220	220	784	360	420	400	393	300	084	38 0	387
зÀг	1 petiols	220	320	140	227	240	520	327	277	140	440	460	÷	2	077	0 4 6		000	240	044	353	300	160	280	317
p	100001	140	160	200	167	240	420	267	217	340	100	300	247	300	×	545	750	र्	0 4) (- (300	245
۶L	L. blades	140	300	004	287	320			1 250	340	160	240	280	380	100	273	277	330	120	120	190	760	1 40	3	(+)
	Spor	3												1	3	1 2	376	081	62	420	340	38.0	200	253	297
	Root	140	260	380	260	400	044	327	, 294	180	220			160	450 1	707	707	2 6		220	35.3	160	380	307	330
S		160	280	200	247	100	200	153	3 200	095 (094	280		260	3/0	£ :	2 3	2 5		0 0	, ,	16.0	180	247	330
γeb	Stelli algitor		044	007	413	80	280	347	7 380	260	470	084		420	160	280	745) 100 100 100 100 100 100 100 100 100 10) + + +	5 6	117	2 2	420	- 	293
00	r. penior		2 7	× ×		094	380	7887	7 304	1 320	220	300	280	100	460	293	287	200	7 40	0 0	677	2 6 6	27 7	300	254
).[L. blades	£ :	2 3	9 9					244	980	420	200	333	330	044	88	358	220	220	180	707	077	000	3	+ ()
	Pods	160	*	5	Ř				- 1	-	- 1														
130	Seeds	044	420	450	437	064	004 (0 443	3 440	0 340	380	320	347	300	380	340	344	4 30	370	400	004	064	0.24	465	4 52
days				ì											ļ										

Table (32): Effect of soil moisture levels and regulators on Mn. concentrations (ppm) at different periods of soybean growth.

			1	Wet	(85 %	F.C.						Medium	um (70	%	F.C.					Dry	55 %	, F.C.)				
Peatments	Surs	la	GA,			' 	Alar (ppm)	_	×.	lon	GA	GA ₃ (ppm)	2	Alar	(mdd)		X 3	ıtrol	GA3	GA ₃ (ppm)	,	Alar (ı	(mdd)		X ∙ai	
after	Organs	ontro I	001	700	i×	1000	2000	ı×	Biril	noD I	801	200	.×	1000	2000	×			100 2	200	×	1000 2	2000	×	וגג	
sysb oc sysb cr sisb oo!	Root Stem L. petiols L. blades Stem L. Blades Pods Root Stem L. petiols L. blades Pods L. blades Pods Pods Pods		290 250 110 310 250 190 190 190 190 190 250 250 250 250 250 250 250 250 250 25	370 350 310 310 170 170 170 230 230 210 150	38.3 210 210 210 277 230 197 117 303 250 163 150	250 170 310 230 350 350 210 230 430 430 170 230 150	130 210 210 270 270 330 330 330 250 250 270 110	290 157 230 237 243 350 350 350 263 190 210 210	337 184 220 257 257 290 220 220 220 324 187 187	330 110 330 230 230 250 250 250 250 170 190	150 290 160 190 350 190 270 270 270 250	390 210 270 190 190 310 190 230 370 270 270 270 270 270		330 : 230 2 230 2 230 2 270 410 270 270 250 250 250 230 330 330 330	230 230 390 130 170 430 250 250 170 170 230	297 190 297 183 263 377 2290 2290 270 270 270 270 270 250 250 250 250 250 250 250 250 250 25	294 197 275 275 193 320 287 320 254 307 347 347 264 307 347 272 272 272 274 274 274 37	330 159 270 150 150 310 310 410 350 350 310 170	310 2 230 310 1 310 310 1 210 350 350 270 270 170 170 170 170 170 170 230 230 230 210 210 210 210 210 210 210 210 210 21	210 2 320 2 110 110 2 210 250 250 250 250 250 250 250 250 250 25	283 233 230 190 237 283 230 263 263 263 263 263 263 263 263 263 263	210 3 1110 3 1150 2 1190 270 430 430 1770 230 230 230 250 250 250 270 440	330 230 1230 130 130 130 250 250 250 250 250 250 250 250 250 25	290 197 197 223 223 257 257 257 257 257 257 257 257 257 257	287 215 224 207 244 247 297 220 280 280 280 280 280 44	
130 days	Seeds	09	40	09	53	09	04	23	23	0#	20	2	<u>}</u>	2	₹	3	۲	2	2							ı

Table (33): Effect of soil moisture levels and some growth regulators on Zn. concentrations (ppm) at different periods of soybean growth.

1			A	Wet (8.5	<i>¥</i>	F.C.)					Me	Medium	(70 %	6 F.C.)					Dry	y (55	% F.C.)	(;				
Dave	chis	lo	* \ \	1 12	2	Alar	Alar (ppm)		X̄.	lon	GA ₃	(mdd)		Alar ((mdd)		<u>x</u> .2	trol G	GA ₃ (F	(mdd)	€.	Alar (p	(mdd)	-	Σ -gir	
after sowing	Organs	ntno. I	001	200	×	1000	2000	×	التاع	no⊃ I	100	200	×	1000	2000	×	lrrig		100 2	200	×	1000 20	2000	×	ונו	
	• • • • •) S	70	09	09	90	80	73	67	50	70	06	70	09	80	63.	49	70	80	20	73				78	
s/	1001 (+em	2 5	2 9	20	29	180	70	107	87	09	50	09	57	120	09	80	69								63	
(ep	i. netiols	110	09	70	80	80	09	83	82	220	09	70	117	70	09									-	ς ;	
<u>ک</u> و	L. Blades	110	140	120	123	100	130	113	118	110	150	120	127	380	280	257	192	120 1	130 1	110	120 1	150	1 091	145	75	
		5	6	5	6	64	9	90	97	09	09	5	63	09	96	20		110	09	70	80	50 1	110	06	85	
	Root	₹ ;	? ?	2 6		3 5	202	77	2	09	100	20	70	09	20	63	. 29	09	80	091	100	09	09	09	80	
sÁ	Stem.	9 6	3 5	> 5	6 4	204	2 2	77	70	09	9	09	9	09	120	80	70	09	09	09	09	20	08	70	65	
e p	L. petiols	2 5	20 2	200	2 4	20	2 =	117	041.	140	190	260	161	120	110	123	160	140	220	140	167	100	_ 001		1 40	- 17
52	L. blades Pods	021	8 8	120	97	110	100	93	95	120	100	140	120	100	100	107	114	120	001	130	117	1001	001	107	112	24 -
			6	8	8	60	087	107	76	09	70	70	67	70	190	107	87	09	70	08	70	09	80	29	69	
	100X	8 6	2 6	8 0	9	001	50	67	79	50	70	04	53	09	50	53	. 53	09	50	90	29	<u>ک</u> و .	50	53.	09	•
sÁ	lieit.	2 5	2 6	3 4	22	9,0	70	63	09	50	70	09	09	09	70	09	09	09	.09	09	09	09	.09	. 09	09	:
qs	L. petiois	2 5	3 5	3 5		06	120	147	150	120	220	138	157	120	120	120	1 39	110	130	170	137	130	110	117	127	·
100	L. Diades	2 0	130	130	123	130	110	117	120	110	120	120	117	110	140	120	119	110	180	1 30	140	120	90	107	124	
																					1	ļ		0	001	
130 days	Seeds	90	100	100	97	130	110	110	104	100	001	06	. 6	100	100	100	66	90	110	001	100	001	110	001	. 201	
				ļ																						

Table (34): Effect of soil moisture levels and some growth regulators on Fe-content at different periods of soybean growth.

			000	days				75 di	days					100	days			% inc	increase	
Treatments	ents	Root	Stem	L.B.	w.P.	Root	Stem	L.P.	L.B. Pc	Pods W	W.P.	Root	Stem	L.P. L	L.B. Po	Pods V	w.P.	50	75	100
	G	0.04	0.10	3 0.12	0.29	0.08	0.26	0.13	0.12 0.	0.14 0	0.73	0.06	0.33	0.34 0	0.51 0.	0.24	1.48	19.6	49.3	100
	, ;			1	1		760	0.79	0.21 0.	0.37	1.91	0.14	0.81	0.56	0.26 0.	0.82 2	2.59	11.2	73.7	100
GA_3	3 200	0.05	0.07 0.07			0.08	0.45				1.25				0.29 0.	0.83 2	2.57	19.8	48.6	100
(·ɔ.:	×	0.0		1	0.37	0.09	0.52	0.16	0.17 0.	0.31 1	1.25	0.12	0.65	0.43	0.36 0	0.60	2.16	17.1	57.9	100
1 %	1001	1	0.04 0.04	0.00	9 0.23	0.11	0.54	0.15	0.22 0.	0.30	1.32	0.19	0.24	0.37	0.76 0.	0.41	1.97	11.7	67.0	100
(8) Alar						90.0	0.30		0.34 0.	0.08	1.06	0.19	0.43	0.21	0.47 0	0.20	1.50	20.7	70.7	001
19 <i>\</i> V	×	0.04	0.06 0.05	5 0.14	4 0.29	0.08	0.36	0.19	0.23 0.	0.16	1.02	0.14	0.34	0.30	0.58 0	0.28	1.64	17.7	62.2	100
×		0.04	0.08 0.05	5 0.16	5 0.33	0.09	0.44	0.18	0.20 0.	0.23	1.14	0.13	0.48	0.36	0.48 0	0.43	1.88	17.6	9.09	100
	0	0.04	0.04 0.04	4 0.17	7 0.29	0.06	0.31	90.0	0.20	0.10	0.73	0.07	0.45	0.12	0.29 0.	8	1.31	22.1	55.7	100
	-1 ≃	0.0		2 0.07	7 0.20	0.06	0.32	0.22	0.09	0.20	0.89	0.10	0.70	0.33	0.25 0	0.84	2.22	9.0	40.1	100
(.ጋ.: ନୁ		0.04	0.10			0.0	0.45	0.15	0.20	0.10	96.0	0.12	0.59	0.19	0.22 0	0.35	1.47	18.4	65.3	001
1 %	×	0.03	0.08 0.03	3 0.12	2 0.26	0.07	0.37	0.14	0.18 0	0.13	0.89	0.10	0.62	0.21	0.26 0	0.53	1.72	15.1	51.7	100
0 /)	Go	ı	0.03 0.02	12 0.07	7 0.14	0.03	0.24	0.13	0.23 0	0.19	0.82	90.0	0.32	0.21	0.08	0.47	1.14	12.3	71.9	100
muit A			0.08			0.08	0.08	0.07	0.22 0	0.04	0.49	0.17	0.42	90.0	0.26	0.39	1.30	16.9	37.7	100
Med	×	0.03	0.05 0.04	0.10	0 0.22	0.06	0.21	0.08	0.26 0	0.10	0.71	0.10	0.41	0.13	0.23	0.42	1.29	17.1	55.0	100
×		0.03	0.07 0.03	3 0.11	1 0.24	0.07	0.29	0.11	0.22 0	0.12	0.81	0.10	0.51	0.16	0.24 (0.48	1.49	16.1	54.4	100
	0	0.0	0.04 0.03	3 0.05	5 0.16	0.04	0.08	0.09	0.18	0.04	0.43	0.04	0.23	0.13	0.11	0.17	0.68	23.5	38.4	100
(100	0.0	0.04 0.03	3 0.07	7 0.18	0.07	0.45	0.13	0.14	0.03	0.82	0.14	0.47	0.19		0.21	1.12	16.1	73.2	00 1
GA3	3 200		0.07	0.17	7 0.31	0.06	0.23	0.11	0.24 (0.02	99.0	0.18	0.17	0.16	0.34	0.14	0.99	28.3	2.99	001
('O':	ı×	0.03	3 0.05 0.03	03 0.10	0 0.21	0.05	0.23	0.11	0.19	0.03	0.61	0.10	0.28	0.16	0.19	0.17	0.90	23.3	67.8	100
 I %	0001	0.0	0.02 0.04	04 0.10	10 0.17	0.07	0.14	0.08	0.16	0.05	0.50	0.11	0.15	0.04	0.22	0.18	0.70	24.3	71.4	100
	Alar 2000		90.0		12.0 20	0.08	0.13	0.10	0.07	0.02	0.40	0.05	0.26	0.05	0.21	0.32	0.89	23.6	44.9	001
, ýa a	ı×	0.02	0.04	0.04 0.08	38 0.18	0.06	0.12	0.09	0.14	0.05	0.46	0.07	0.23	0.08	0.18	0.23	0.79	22.8	58.2	100
i	×	0.03	0.05	0.04 0.08	0.20	0.06	0.17	0.10	0.17	0.04	0.54	0.08	0.26	0.12	0.18	0.20	0.84	23.8	64.3	100
																		i		

Table (35): Effect of soil moisture levels and some growth regulators on Mn. content at different periods of soybean growth (m2 Mn./plant).

Treatments	ents		90	days				75 da	days					D 001	days			8	increase	4.
		Root	Stem L.P.	. L.B.	w.P.	Root	Stem	L.P.	L.B. P	Pods.	w.P.	Root	Stem	L.P.	L.B.	Pods	w.P.	20	75	100
	0	0.07	0.03 0.03	3 0.13	97.0	0.12	0.35	0.13	0.20	0.28	1.08	0.07	0.35	0.11	0.29	0.28	1.10	24	86	100
8	8	0.05	0.09 0.02	2 0.23	3 0.39	0.12	9.38	0.16	0.17	0.31	1.12	0.15	1.01	0.19	0.20	0.52	2.07	61	54	100
֓֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	• •	0.06	0.11 0.06	5 0.21	0.44	0.10	0.32	0.12	0.15 0	0.43	1.12	0.19	0.68	0.21	0.24	0.31	1.63	27	69	100
·귀 3	×	0.06	0.07 0.04	4 0.19	0.38	0.12	0.37	0.14	0.18	0.34	1.15	0.14	99.0	0.17	0.25	0.37	1.59	23	72	100
	1000	0.04	0.06 0.04	i	6 0.29	0.16	0.47	0.13	0.21	0.40	1.37	0.15	14.0	0.24	0.55	0.26	1.61	8 2	85	100
Alar	• •		0.06 0.03	3 0.15	5 0.26	0.14	0.35	0.16	0.26	0.12	1.03	0.13	0.50	0.20	0.14	0.26	1.23	21	84	001
	×	0.04	0.05 0.04	4 0.14	0.27	0.14	0.39	0.14	0.23 (0.25	1.15	0.11	0.45	0.18	0.31	0.27	1.29	23	89	100
×		0.05	0.06 0.04	4 0.16	5 0.31	0.13	0.39	0.14	0.21	0.30	1.17	0.13	0.53	0.18	0.28	0.32	1.44	22	8.1	100
	0	0.04	0.03 0.05	5 0.10	0.22	0.09	0.24	0.10	0.21	0.12	0.76	0.0	0.25	0.08	0.18	0.19	0.79	28	96	100
	001	i	0.09 0.03		0.24	0.11	0.30	0.11	0.12	0.20	0.84	0.19	0.47	0.20	0.30	0.50	1.66	14	51	100
, ,	3 200	0.05	0.07 0.04	4 0.09	0.25	90.0	0.41	90.0	0.15 (0.14	0.82	0.11	0.57	0.15	0.14	0.44	1.41	89 81	58	100
∃%	×	0.04	0.06 0.04	4 0.10	0.24	0.09	0.33	0.09	0.17	0.17	0.85	0.13	0.43	0.14	0.20	0.36	1.26	61	. 67	100
•	1000	0.04	0.07 0.03	3 0.09	9 0.23	0.08	0.48	0.17	0.21	0.13	1.07	0.12	0.47	0.15	0.11	0.47	1.32	17	8.1	100
Alar					5 0.19	0.04	0.30	0.07	0.14	0.05	09.0	0.17	0.19	0.17	0.12	0.21	0.86	22	70	901
	×	0.04	0.06 0.04	t 0.08	3 0.22	0.07	0.34	p.11	0.19	0.10	0.81	0.13	0.30	0.10	0.14	0.28	0.95	23	85	100
×		0.04	0.06 0.04	0.0	9 0.23	0.0%	0.34	0.10	0.18	0.03	0.83	0.03	0.36	0.12	0.17	0.32	0.10	21	7.5	001:
	0	0.03	0.03 0.03	3 0.05	5 0.14	0.03	0.07	0.08	0.12	0.05	0.35	90.0	0.21	0.10	60.0	0.14	09.0	23	58	100
5	100	0.04	0.06 0.04	4 0.09	9 0.23	0.10	0.33	0.08	0.13	0.04	0.68	90.0	0.24	0.10	0.17	0.20	0.77	æ	88	100
۳ د د		0.03	0.07		8 0.19	0.05	0.12	0.08	0.13	0.03	0.41	0.14	0.26	0.02	0.19	0.12	0.78	24	53	100
~··	×	0.03	0.05 0.03	3 0.07	7 0.18	0.06	0.17	0.08	0.12	0.05	0.48	0.0	0.24	0.09	0.15	0.15	0.72	25	67	100
} % ≤	801	0.05	0.03 0.02	2 0.07	7 0.14	0.08	0.33	0.12	0.0	0.04	0.66	0.13	0.39	0.00	0.20	0.22	1.03	14	\$	100
Alar C			0.07		0 0.23	0.08	0.07	0.04	0.10	0.04	0.33	0.11	0.24	0.05	0.16	0.16	0.72	32	46	100
(Ja	×	0.03	0.05 0.02	2 0.08	8 0.18	90.0	0.14	0.07	0.10	0.05	0.45	0.10	0.28	0.08	0.15	0.17	0.78	23	54	100
×		0.03	0.05 0.02	2 0.07	7 0.17	0.06	0.15	0.08	0.11	0.05	0.45	0.10	0.20	0.09	0.15	0.17	0.71	54	63	100
-																				

Table (36): Effect of soil moisture levels and some growth regulators on Zn. content at different periods of soybean growth (mg Zn./plant).

Treatr	Treatments		50	days				.~	75 days				i	100 da	days		¥	increase	υ.
		Root	Stem	r. P.	L.B. W.	W.P.	Root S	Stem 1	L.P. L.B.	. Pods	W.P.	Root	Stem	L.P. L.	.B. Pods	W.P.	8	7.5	100
	0	0.007	0.020	0.018	0.066	0.111	0.038	0.064	0.040 0.102	02 0.063	0.307	0.03	0.102	0.050 0.020	.020 0.164	0.368	8	83	100
¥ C	100	0.012	0.020	0.011	0.105	0.148	0.041 0	0.132	0.050 0.197	97 0.123	0.543	0.042	0.202	0.064 0.038	.038 0.295	0.641	23	85	100
	.3 200 200		0.026	0.011	0.080	0.126	0.021 0	0.130	0.043 0.198	98 0.131	0.523	0.034	0.178	0.061 0.019	.019 0.270	0.562	22	93	100
D.F &	×	0.009	0.023	i .	0.014 0.082 0.	0.128	0.034 0	0.139	0.044 0.166	66 0.104	0.487	0.036	0.158	0.059 0.	0.251 0.240	0.744	17	99	100
•	1000	0 0.012	0.059	0.014 0.064	۱	0.149	0.025 0	0.135	0.037 0.112 0.102	12 0.102	0.411	0.029	0.240		0.061 0.315 0.224	0.869	17	Zħ -	100
	Aiar 2000		0.021	0.010	0.073	0.114	0.035	0.067	0.054 0.088 0.049	88 0.049	0.293	0.076	0.108	0.052 0.156	.156 0.153	0.545	21	54	100
	×	0.010	0.033	i	0.013 0.068 0.	0.124 . 0	0.034 0	0.086	0.045 0.101	01 0.072	0.338	0.046	0.147	l	0.055 0.220 0.179	0.647	19	52	100
_	×	0.009	0.028	0.014	0.076	0.127	0.035	0.112 (0.045 0.132	32 0.087	0.411	0.041	0.155	0.057 0	0.236 0.209	0.698	18	59	100
	0	0.007	0.016	0.031	0.046	0.100	0.016	0.049	0.023 0.084	84 0.035	0.207	0.022	0.049	0.023 0.110	.110 0.109	0.313	32	99	100
	100	0.010	0.016	0.010	0.077	0.113	0.019	0.158 (0.030 0.171	71 0.075	0.453	0.030	0.106	1	0.049 0.246 0.024	0.671	17	89	100
	200		0.020	0.009	0.053	0.094	0.020	0.066 (0.019 0.169	69 0.057	0.331	0.021	0.084	0.024	0.095 0.209	0.433	. 18	76	001
-i%	×	0.009	0.018	0.016	0.06	0.103	0.018	0.087	0.024 0.142	42 0.058	0.329	0.024	0.082	0.031	0.014 0.185	0.336	31	86	100
•		0.008	0.038	0.011	0.018	0.075	0.018	0.071	0.025 0.094 0.050	94 9.050	0.258	0.028	0.074	0.031	0.100 0.156	0.389	19	99	100
	Alar 2000	0.010	0.017	0.007	0.100	0.134	0.021	0.049	0.037 0.063 0.035	63 0.035	0.205	0.070	0.05%	0.027	0.068 0.125	5 0.347	13	59	100
~~	×	0.008	0.023	0.016	0.055	0.102	0.018	0.057	0.030 0.080	80 0.041	0.226	0.041	0.059	0.027	0.092 0.132	0.351	29	†9	100
	×	0.009	0.021	0.016	0.058	0.104	0.019	0.072 (0.027 0.109	09 0.049	0.278	0.032	0.070	0.029	0.118 0.159	9 0.408	25	89 :	100
	0	0.007	0.014	0.008	0.041	0.070	0.022	0.021	0.015 0.067	67 0.016	0.141	0.013	0.036	0.019	0.063 0.084	4 0.215	33	99	100
3	00 4	0.010	0.018	0.007	0.053	0.088	0.017	0.075	3.018 0.132	32 0.023	3 0.265	0.023	0.051	0.026	0.105 0.175	5 0.380	, 21	70	100
j	3 200		0.014	0.011	0.041	0.074 (0.018	0.082	0.017 0.077 0.021	77 0.021	0.215	0.034	0.071	0.023 0.012	0.012 0.104	4 0.244	30	88	100
(2)	×	0.00	0.014	0.00	0.044	0.076	0.020	0.070	0.017 0.090 0.020	90 0.020	0.217	0.021	0.054	0.023 0.093	3.093 0.118	3 0.309	24	.70	100
•	1000	0 0.009	0.017	l	0.007 0.059 0.	0.092	0.014	0.046	0.019 0.053 0.019	53 0.019	0.151	0.018	0.048	0.024 0.088	0.088 0.096	6 0.274	34	55	100
₹ (()	Alar 2000	0 0.012	0.013		0.006 0.048 0.	0.079	0.025 (0.031	0.016 0.0	0.046 0.014	0.132	0.020	0.034		0.018 0.054 0.063	3 0.189	4.5	70	100
۲۸	×	0.009	0.014		0.007 0.049 0.	0.079	0.022 (0.032	0.017 0.055 0.016	55 0.016	0.142	0.017	0.040	- 1	0.020 0.066 0.080	0 0.223	3 35	1 9	100
	×	0.009	0.014	0.008	0.045	0.076	0.021	0.050	0.017 0.073 0.018	173 0.018	3 0.179	0.020	0.047		0.022 0.079 0.099	9 0.267	, 28	67	100

Table (37): Effect of soil proisture levels and some growth regulators on Fe. distribution at different periods of soybean growth.

				50	days			75	days			·	100	days		
rea	atmer	it	Root	Stem	L.P.	L.B.	Root	Stem	L.P.	L.B.	Pods	Root	Stem	L.P.	L.B.	Pods
			14	34	10	42	11	36	18	16	19	4	22	23	34	17
-			10	41	7	42	6	49	15	11	19	5	31	22	10	32
	GAS	100 200	10	14	14	62	6	36	8	14	36	6	35	16	11	32
<u>;</u>		Ž.	11	27	11	51	7	42	13	14	24	6	30	20	17	27
				17	17	40	8	41	11	 17	23	10	12	19	39	20
R (9)	Alar	1000 2000	26 6	10	23	61	6	28	26	32	8	13	29	14	31	13
				21	17	48	8	35	19	23	15	9.	20	18	35	18
ע *	X		12	24	15	49	8	39	16	18	19	7	26	19	26	22
			14	14	1.4	58	8	42	8	27	15	5	34	9	22	30
			10	45	10	35	7	36	25	10	22	5	32	15	11	3 7
·	GA_3	100 200	15	37	11	37	9	44	16	21	10	8	40	13	15	24
ز			12	31	12	45	8	41	16	19	16	6	36	12	15	31
%					14	51	4	29	16	28	23	5	28	18	7	42
5	Alar	1000 2000	14 9	21 36	22	33	16	16	14	45	9	13	32	5	20	30
Medium (70 %		X	14	23	18	45	8	30	11	37	14	8	32	10	18	32
ž			13	29	13	45	8	35	14	28	15	7	34	11	16	32
		0	25	25	19	31	9	19	21	42	9	6	34	19	16	25
			22	22	17	39	9	55	16	17	. 3	13	42	17	10	18
_	GA ₃	100 200	10	23	13	54	9	35	17	. 36	3	18	17	16	34	14
(55 % F.C.)			14	24	14	48	8	38	18	31	5	11	31	48	21	19
%				12	24	58	14	28	16	32	10	16	21	6	31	26
(55	Alar	1000 2000		29	19	33	20	33	25	18	4	6	29	6	24	35
Dry		X	11	22	22	45	14	27	21	30	8	9	29	10	23	29
	X		15	25	20	40	11	33	19	31		10	31	14	21	24

Table (38): Effect of soil moisture levels and some growth regulators on Mn. distribution at different periods of soybean growth.

					<u> </u>			75	days		 -		100	days		
rea	atmer				days						D 1.	Doot	Stem	1.P.	L.B.	Pods
			Root	Stem	L.P.	L.B.	Root	Stem	L.P.		Pods					26
		0	27	12	12	49	11	32	12	19		6	32	10	26	
		100	13	23		59	11	32	14	15	28	7	49	9	10	25 18
	GA ₃	200	14	25	14	47	9	29	11	13	38	12	42	13	15	
္ပဲ		X	17	19	11	53	10	32	12	16	. 30	9	42	11	16	22
%		1000	14	21	14	51	12	34	9	15	30	9	25 .	15	34	17
Wet (85 % F.C.)	Alar	2000	8	23	12	57	14	34	16	25	11	11	41	16	11	21
Wet		X		19	15	51	12	34	.12	20	22	9	33	14	24	20
-					13	52	11	33	12	18	26	9	37	13	19	22
	X		16	19				32	13	28	15	11	32	10	23	24
		0	18	14	23	45	12		13	14	24	12	29	11	18	30
_	GA ₃	100	8	38	13	41	13 7	36 50	7	18	18	8	40	11	10	31
Medium (70 % F.C.)	,	200	20		16	36			11	20	19	10	34	11	16	29
%		x	17	25	17	41	11					9	36	11	8	36
(70	Alar	1000	17	30	13	40	7	45	16	20 23	12 8	20	22	20	14	24
iom		2000	16	32		26	7 	50						11	15	
Med		X	18	27	18	37	9	42	14	23	12	14	32			
	- -		17	26	17	40	10	41	12	22	15	12	33	11	15	29
		0	21	21	21	37	9	20	23	34	. 14	10	35	17	15	2
			17			40	15	49	12	19		8	31	13		20
	GA:	3 200	16				12	29	20	32	7	18	33	9	24	
(;					. 17	38	13	35	17	25	10	13	33	13	21	2
9 F		100					12	50	18	14	6	13	38	9	19	
55.9	Ala	r ¹⁰⁰ 200				44	24	21	12	30	13	15	33	7	22	2
Dry (55 % F.C.)						44	14	33	17	7 24	12	13	36	10	19	2
Ω							13			3 24	12	14	28	13	21	2
	X		1	8 29) 12	2 41		,,	1.	-						

Table (39): Effect of soil moisture levels and some growth regulators on Zn. distribution at different periods of soybean growth.

				50	days			75	days				100	days	. <u></u>	
re	atmer	nt .	Root	Stem		L.B.	Root	Stem	L.P.	L.B.	Pods	Root	Stem	L.P.	L.B.	Pods
_	<u> </u>	0	- 6	18	16	60	1/2	21	13	33	21	8	28	14	5	45
			8	14		71	8	24	9	36	23	7	32	10	6	45
	GA_{3}	100 200	7	21	9	63	4	25	8	38	25	6	32	11	3	48
•				18	11	64	7	29	9	34	21	7	31	12	5	45
; ?		1000		40		43	. 6	33	9	27	25	3	28	7	36	26
5	Alar		9	18	9	64	12	23	18	30	17	14	20 `	10	29	27
(o) 12 M			8	27	10	55	10	26	13	30	21	7	23	9	34	27
`	 X		7	22	11	60	9	27	11	32	21	6	22	8	34 ·	30
		0	7	16	3!	46	. 8	24	11	41	16	7	16	7	35	35
		100	9	14	9	68	4	35	7	38	16	4	16	7	37	36 40
;	GA_3	200	13	21	10	56	6	20	6	51	17	5	19	6	22	48
Č L			9	17	16	58	5	26	7	43	19	7	24	9	4	56
60/		1000	11	51	15	23	7	28	10	36	19	7	19	8	26	40
Ē	Alar		7	13	5	75	10	24	18	31	17	20	16	8	20	36
Medium (/0 % いい)		X	8	23	16	53	8	25	13	35	19	12	17	. 8	26	37
~	X	-	9	20	15	56	7 .	26	10	39	18	88	17	7	29	39
-		0	10	20	11	59	16	15	11	48	10	6	17	9	29	39
		100	11	20	8	61	6	28	7	50	9	6	13	7	28	46
F.C.)	GA ₃	100	11	19	15	55	8	38	8	36	10	14	29	_	5	43
% ⊞		X	12	18	12	58	9	32	8	41	10	7	17	7	30	39
(55 %		1000		18	8	64	9	30	13	35	13	7	18	9	32	34
Dry (Ala	2000		16	7	62	19	23	12	. 35	11	11	18	10	29	32
Ā		X	11	18	9	62	15	23	12	39	11	8	18	9	30	35
	X		12	18	11	59	12	28	9	41	10	7	18	8	30	37

Table (40): The relationships between Fe, Mn and Zn content of whole soybean plant throughout the different stages of growth.

				50	davs						25	days					1	100 de	days			
Treatments	ents		mg./plant		. 	% ₽	total	amount		mg./plant	ant		% of 1	total an	amount		mg./plant	ant		% of t	total am	amount
		Fe	Ş.	Zn	Total	Fe	Mn	Zn	F.	Mn	u2	Total	Fe	Mn	Zn	Fe	Mn	Zn	Total	Fe	Mn	Zn
	8	0.29	0.26	0.111	0.661	77	33	17	0.73	1.08	0.307	2.117	ž	51	15	1.48	1.10	0.368	2.948	50	37	13
5	180	0.29	0.39	0.148	0.828	æ	47	18	16:1	1.12	0.913	3.573	53	31	16	2.59	2.07	0.641	5.301	64	36	12
ς Σ	3 200	0.51	0.44	0.126	1.076	47	41	12	1.25	1.12	0.523	2.893	43	39	18	2.57	1.63	0.562	4.762	54	34	12
.Э.Я	×	9%	0.36	0.128	0.848	4.2	745	16	1.30	1.11	0.458	2.861	4.5	39	16	2.21	1.60	0.524	4.337	5.1	37	12
	1000	0.23	0.29	0.149	0.669	*	43	23	1.32	1.37	0.411	3,101	43	77	13	1.97	1.61	0.869	4.449	5 5 7	Ж	20
Alar	ar 2000	0.31	0.26	0.114	0.684	45	*	17	1.06	1.03	0.293	2.383	††	43	13	1.50	1.23	0.545	3.275	9†	88	16
<i>,</i> ₩	×	0.28	0.27	0.125	0.671	42	40	1.8	1.04	1.16	0.337	2.534	41	94	13	1.65	1.31	0.594	3.554	46	37	17
×		0.32	0.32	0.127	0.760	42	42	16	1.17	1.14	0.398	2.698	64	42	15	1.93	1.46	0.559	3.946	6#	37	†
	0	0.29	0.22	0.100	0.61	83	×	16	0.73	0.76	0.207	1.697	64	54	12	1.31	0.79	0.313	2.413	54	33	13
	001	0.20	0.24	0.113	0.553	*	43	21	0.89	0.84	0.453	2.183	16	×	2.1	2.22	1.66	0.671	4.551	64	%	15
(.၁. [.]		0.27	0.25	0.094	0.614	77	. 41	13	96.0	0.82	0.331	2.111	45	39	91	1.47	1.41	0.433	3.313	\$	43	13
d %	×	0.25	0.24	0.102	0.592	42	14	17	0.86	0.81	0.330	1.997	43	17	91	1.67	1.29	0.472	3.426	64	88	13
•	1000	0.14	0.23	0.075	0.445	31	52	17	0.82	1.07	0.258	2.148	×	50	12	1.14	1.32	0.389	2.849	04	94	14
muil Alar		0.22	0.19	0.134	0.544	9	35	25	0.49	0.60	0.205	1.295	×	949	16	1.30	0.86	0.347	2.507	52	34	14
эМ	×	0.22	0.21	0.103	0.533	1#	86	20	0.68	0.81	0.223	1.713	04	47	13	1.25	66.0	0.350	2.590	84.	æ	14
×		0.24	0.23	0.103	0.573	4.2	0,7	81	0.77	0.81	0.277	1.855	77	44	14	1.46	1.14	0.411	3.008	64	×	13
	0	0.16	0.14	0.070	0.370	43	88	61	0.43	0.35	0.141	0.921	24	82	15	0.68	09.0	0.215	1.495	45	0.79	15
1	8	0.18	0.23	0.088	0.498	×	3	81	0.82	0.68	0.265	1.765	94	33	15	1.12	0.77	0.380	2.270	64	34	17
£ 5	3 200	0.31	0.19	0.074	0.574	24	33	13	0.66	0.41	0.215	1.285	51	32	17	0.99	0.78	0.244	2.014	64	39	12
('')'.	×	0.22	0.19	0.077	0.487	\$	82	91	0.64	0.48	0.207	1.324	84	ж	16	0.93	0.72	0.280	1.926	48	37	1.5
	001	0.17	0.14	0.092	0.405	74	25	23	0.50	0.66	0.151	1.311	**	50	12	0.70	1.03	0.274	2.004	35	5.1	14
رج Alar	ar 2000	0.21	0.23	0.079	0.519	04	44	16	0,40	0.33	0.132	0.862	9+	88	16	0.89	0.72	0.189	1.799	64	40	=
Dry	×	0.18	0.17	0.074	0.430	45	0,	18	0.44	0.45	0.141	1.031	43	† †	13	0.76	0.78	0.226	1.766	43	44	13
`	×	0.20	0.18	0.076	0.456	77	39	17	0.54	0.47	0.174	1.178	9#	04	7	0.85	0.75	0.253	1.846	46	 *	13
																		-				

that soybean plant must be supplied with these nutrients for better growth. Zink content showed a continous increase from 50 to 75 days after sowing, then a jump in its content was observed at lat er periods (100 days). Such results were found to be clear under wet and medium soil moisture level. However, under dry treatment (55 % F.C.) Fe, Mn and Zn seemed to be increased continously by advancing age but less than those observed in other soil moisture treatment. Such effect may be due to the relationship between Zn element absorption as well as translocation and water deficit.

As for the effect of growth substances, results showed that Fe content of soybean plant increased at the first stage of growth by higher rate of GA₃ (200 ppm). However, Mn and Zn values decreased from the same treatment. This trend was found to be clear under wet treatment (85 % F.C.) as well as at latter stages. The use of Alar seemed to decrease the absorption of micro-nutrients. Such decrease was enhanced by higher rate of Alar. This can be related to the retarding effect of Alar and decreased growth. The reduction in growth may be the cause of the decrease in the content of these element.

It is worthy to mention that under the application of growth substance a slight inbalance between Macro and Micro nutrients was observed. Such inbalance can be related to the regulating effect of these chemicals on the absorption and accumulation of nutrients within plant tissues. Accordingly, the regulating effect of growth substances may be due partially to the inbalance of nutrient uptake and accumulation in soybean plant tissues. Also, soil moisture stress is another factor

affecting the absorption mechanism of nutrients which in turn affects plant growth. For acheiving the effect of these substances, the plant must be supplied with those micro-nutrients if their availability in the soil are insufficient.