RESULTS AND DISCUSSION

A. Components of Variance

Results presented in Tables 1 and 2 indicate that the differences between sires and between dams for 8 and 12 week body weights were statistically highly significant in all generations of random and selected populations. These higher variations in paternal and maternal half-sibs may be attributed to the fact that White Baladi breed of chickens used in this study was not subjected to any method of selection before starting this investigation. One way, therefore, expect higher genetic variations between individuals of this breed.

Significant differences between sires and between dams for dressing percentage were found in most generations of random population. The differences of selected population were, however, not significant in most generations (Table 3). The differences between individuals due to sires and dams for edible meat and blood percentages had no constant significant trend in most generations of random and selected populations (Tables 4 and 5). However, feather percentage showed significant differences in most generations of the two populations (Table 6). It seems, that body weights and feather percentages were characterized with high variations between individuals within generation when compared with edible meat and blood percentages which showed relatively lower variations.

The components of variances due to parental and maternal half-sibs for the studied traits are presented in Tables 7, 8, 9, 10, 11 and 12. The tabulated results indicated higher variances due to dams than those

Table 1: Mean squares of eight week body weight in successive generations of random and selected populations.

Generation	₽.,		ĒΣ-I	F 2	E4	ĸ	F.		ET TU		ъ Б	
Source of	df.	SW.	đ£	SW	đf	MS	đ£	SW	đf	WS	df.	MS
				Rai	d mopu	Random population						
Between sires	14	** 17129.5	19	** 31680.2	19	** 50925.4	19	## 4126.3	19	** 10534.2		
Dams/sires	112	** 3578.1	156	7403.2	147	9252.1	126	** 2586.1	57	8.9769		
Progeny/dams	407	2163.0	662	3254.6	411	4966.4	294	1722.5	207	4347.2		**
				Se	Selected	population	g,					
Between sires	19	** 18492.7	19	** 26217.1	19	48687	12	** 19296.4	19	** 12840.5	18	18275.6
Dams/stres	163	** 4153.2	168	** 5536.4	160	** 10049.7	85	3674 • 9	98	4427.3	98	8256.3
Progeny/4eme	748	1959.6 1146	1146	1947.3	632	5534.8	397	2196.1	264	3798,2	301	4653.2

* Significant, P 0.05

Table 2: Mean squares of twelve week body weight in successive generations of random and selected populations.

Generation	<u> </u>		læi.	5	₩	*	È≓ ♣		Er RV		<u>ы</u>	
Source of variation	đf	MS	df	MS	đf	W.S.S.	đf	W.S	đf	NS.	đĩ	S
				Rand	lom po	Random population						
Between sires	14	** 37215.4	19	** 47982.3	19	** 75976.7	19	** 19923.7	19	** 37335.4		
Dams/sires	111	** 11588.4	156	** 36778.0	146	12984.9	123	8472.0	99	18692.4		
Progeny/dams	394	5511.4	649	0.0799	375	7599.9	242	6269.1	201	H816760		
				Sele	ected	Selected population	-	-				
Between sires	19	** 19 31511.8	19	*** 60836.6	19	** 72243.7	12	** 83711.2	19	** 28584.5	18	** 48678.8
Dams/sires	191	** 9340.2	167	** 13730.3	158	** 16125.6	87	** 10171.9	97	10961.7	100	16974.5
Progeny/dams	633	4235.1	1001	6451.0	558	12072.2	378	6712,4	249	9082.2	287	10810.6

significant, P < 0.05

^{**} Significant, P 0.01

Table 3: Mean squares of dressing percentage for twelve week slaughtered males in successive generations of random and selected populations.

Generation	ß.		FI C		Е4 К		ኩ 4		я 2		9	
Source of	df fp	SW	đť	W.S.	đľ	WES	đf	MS	d.	WS	đf	MS
variation				Rand	Random population	lation						
Hatter of the control of the contro	1.4	** 13.0	18	** 11.2	19	*** 50°0	19	6.4	19	*** ***		
Dams/sires	93	6.1	133	# സ്	112	10.4	80	11.8	41	5.7		
Progeny/dams	123	3.0	208	4.6	108	7.7	62	8.3	81	3.6		
				Sel	ected p	Selected population		~				
Between sires	19	1.9	19	** 20.9	19	0.9	12	7.4	19	8.6	18	20.1
Dames/sires	40	4.6	160	₩ 4.9	127	6.4	92	4.2	85	10.0	80	14.9
Progeny/dames	17	3.8	452	5.3	174	9*9	115	3.4	128	8.7	121	12.5

x Significant, P <0.05

Table 4: Mean squares of edible meat percentage for twelve week slaughtered males in successive generations of random and selected populations.

Generation	Œ		C Eu		E4 K		년 4	!	ът Г		6	
	•		, 								٠	٠.
Source of variation	đť	SW	đľ	MS	đ£	MS	đÍ	MS	đf.	MS	df	MS
				Rando	Random population	ation						
Battween sires	14	** 10.2	18	#3x 7.2	19	14.1	19	9.4	19	8.1		
Dames/sires	93	 8.0	133	¥¥ 0•€	112	13.8	80	11.1	41	5.4		
Progeny/dames	123	3.8	208	1.2	108	11.0	62	9.4	81	3.9		
				Selec	ted pol	Selected population	:	-				,
Between sires	19	2.3	19	** 18.7	19	4.8	12	4.2	19	ر. و•	18	** 23.7 **
Dames/elres	04	4.7	160	5.8	127	9•9	92	5.0	82	10.2	80	14.8
Progeny/dames	17	5.5	452	5.3	174	7.4	115	4.0	128	7.0	121	9.1

x Significant, P < 0.05

Pable 5: Mean squares of blood percentage for twelve week slaughtered males in successive generations of random and selected populations.

Source of variation df MS df M Between sires 14 0.5 18 Dames/sires 93 0.6 153 Progeny/dames 123 0.6 208 Between sires 19 1.0 19		1 4		Œ.		Eri Eri		ET C	
df MS df ires 14 0.3 18 es 93 0.6 133 lames 123 0.6 208 sires 19 1.0 19	7 7					`			
98 14 0.5 1 93 0.6 13 98 123 0.6 20	W.S.	đf	NS.	đf	SSW	đf	MS	đf	<u> </u>
98 14 0.5 1 93 0.6 13 98 123 0.6 20		Random population	ulation						
93 0.6 13 88 123 0.6 20 88 19 1.0 1	0.3 18	** 1.8 19	1.2	19	0.5	19	1.8		
123 0.6 20	0.6 133	* 0.4 112	- **	80	0.8	41	1.6		
19 1.0	0.6 208	0.3 108	1.0	62	7.0	81	1.3		
19 1.0		Selected population	opulation	_	•				
	1.0 19	*** 0.8 19	6.0	12	* [19	0.5	18	** 4.2
Demos/+1res 40 0.5 160	0.5 160	0.4 127	9•0	92	0.8	85	0.5	80	1.7
Progeny/dames 17 0.5 452	0.5 452	0.4 174	9.0	115	0.5	128	9.0	121	1.5

Significant, P < 0.05 Significant, P < 0.01

[×]

Pable 6: Mean squares of feather percentage for twelve week slaughtered males in successive generations of random and selected populations.

Generation	E E		면		F 3	2	₽ 4		4 2		4	1
Source of variation	đf	MS	đ£	MS	đf	MS	đf	MS	đf	MS	đ£	SM
				Raı	Random population	ulation						
Between sires	14	2.3	18	* * €	19	. 5.6	19	2.	19	3.8		
Dames/sires	93	*** 2.5	133	1.6	112	** 2.6	80	1.5	41	2.4		
Progeny/dames	123	1.3	208	1.3	108	1.6	62	1.9	81	1.7		
				လ မ	lected p	Selected population	ជ					
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10	* 0	19	* K	19	2.0	12	** 2.5	19	1.6	18	6.2 *
Denos/etres	40	2. * 4.	160	** 1.7	127	1.8	92	 *	82	1.0	80	3.0
Progenv/dames	17	6.0	452	1.0	174	1.4	115	0.8	128	6.0	121	1.2

significant, P \$\left\{0.05}

xx Significant, P <0.01

due to sires in majority of the studied traits and in most generations of random and selected populations. In random population; the variances between individuals due to sires and due to dams for eight and twelve weeks body weights, dressing, edible meat, blood and feather percentages; each presented 10.0 vs. 15.3, 9.2 vs. 24.0, 6.02 vs. 20.6. 2.1 vs. 25.6, 3.3 vs. 10.8 and 4.3 vs. 15.4 percentages (means over all generations) of the corresponding phenotypic variances, respectively. While variances between individuals due to sires and due to dams in selected population for the same respective traits, each presented 10.8 vs. 13.5, 11.3 vs. 11.2, 2.5 vs. 8.1, 2.0 vs. 8.8, 7.0 vs. 6.3 and 4.7 vs. 24.0 percentages of the corresponding phenotypic variances. The variations between parental and between maternal half-sibs are supposed to be additive hereditary variability. However, the differences between $\sigma_{\rm s}^{-2}$ and $\sigma_{\rm d}^{-2}$ might be attributed to maternal effects which appeared to be of significant importance for most of the studied traits especially in random population. The maternal influences presented 4.42 vs. 2.82, 17.17 vs. -0.88, 14.41 vs. 4.85, 17.74 vs. 8.66, 10.81 vs. 1.64 and 11.74 vs. 26.41 percentages of the corresponding phenotypic variances for 8 and 12 weeks body weights, dressing, edible meat, blood and feather percentages (means over all generations) of random and selected populations, respectively. There was a trend that differences between individuals due to both sires and dams were relatively higher in most traits of random population than those of selected population. The lower variabilities due to heridity and due to materal influences detected in selected population might be attributed to the effect of selection which reduced the genetic variability between individuals and consequently increased homozygosity of the genetic make-up. Thus, the individuals of the selected population, were genetically and phenotypically more uniform.

Table 7: Estimates of the components of the phenotypic variance and their percentages for eight week body weight in random and selected populations.

	Componen	ts of var	iance	Percen	t of compo	nents
Generation -	o _s ²	$\sigma_{\rm d}^2$	σ _w ²	σ _s ²	σ _d ²	σ <mark>2</mark>
		1	Random popu	lation		
F ₁	374.7	345.0	2163.0	13.0	12.0	75.0
F ₂	560•4	891.7	3254.6	12.0	18.9	69.1
F ₃	1414.6	1273.9	4966.4	18.5	16.6	64•9
F ₄	60.5	296.5	1722.5	2.9	14.3	82.8
F .5	181.4	784.2	4347.2	3.4	14.8	81.
verage			elected pop	10.0	15.3	74.
F ₁	300.3	439.1	1959.6	11.1	16.3	72.
F ₂	303.5	512.8	1947.3	10.9	18.6	70.
F ₃	935.1	1022.7	5534.8	12.5	13.6	73•
F ₄	403.3	301.6	2196.1	13.9	10.4	75•
F ₅	431.0	205.7	3798.2	9.7	4.7	85.
F 6	416.6	1051.9	4653.2	6.8	17.2	76.
Average				10.8	13.5	75

Table 8: Estimates of the components of the phenotypic variance and their percentages for twelve week body weight in random and selected populations.

	Componen	ts of vari	ance	Perce	nt of compo	nents
Generation	σ _s ²	o _d ²	~ ² ~ w	σ _s ²	o _d ²	or 2 w
		R	andom popul	Lation		
F ₁	705.7	1511.4	5511.4	9.1	19.6	71.3
F ₂	140.8	6555.5	6670.0	1.1	49.0	49.9
F ₃	2288.2	1705.4	7599•9	19.7	14.7	65.6
F ₄	571.7	845.5	6269.1	7.4	11.0	81.6
F ₅	1045-4	3199.4	8167.0	8.4	25.8	65.8
Average				9.2	24.0	66.8
	•	S	Selected po	pulation		
F ₁	521.5	1159.1	4235.1	8.8	19.6	71.6
F ₂	724.0	1079.6	6451.0	8.7	13.1	78.2
F ₃	1510.9	1002.8	12072.2	10.4	6.8	82.8
F ₄	1988.4	747.5	6712.4	21.0	8.0	71.0
F ₅	927.2	641.0	9082.2	8.7	6.0	85.3
F ₆	1406.5	1896.9	10810.6	10.0	13.4	76.6
Average				11.3	11.2	77.

Table 9: Estimates of the components of the phenotypic variance and their percentages for dressing percentage in random and selected populations.

	Compone	nt of var	iance	Perce	ent of comp	
Generation	2 م'	o _d 2	ه. م	2 o′ _s	o _d 2	2 oʻ ₩
			Random por	oulation		
F ₁	0.410	1.509	2.980	8.4	30.8	60.8
F ₂	0.213	0.858	4.578	3.8	15.2	81.0
F ₃	0.754	1.546	7.677	7.6	15.5	76.9
F ₄	0.000	2.258	8.333	0.0	23.0	77.0
F ₅	0.522	0.944	3.610	10.3	18.6	71.1
	·			6.0	20.6	73.4
Average			Selected	population	on	
F ₁	0.000	0.702	3.814	0.0	18.7	81.
F ₂	0.452	0.317	5.293	7.5	5.2	87.
F ₃	0.000	0.000	6.580	0.0	0.0	100.
F ₄	0.187	0.390	3.398	4.7	9.8	85.
F ₅	0.000	0.612	8.731	0.0	6.7	93•
F ₆	0.376	1.150	12.545	2.7	8.1	89.
Average				2.5	8.1	89.

^{*} Negative estimates considered zero.

Table 10:Estimates of the components of the phenotypic variance and their percentages for edible meat percentage in random and selected populations.

	Componer	nts of va	riance	Pe	rcent of	
Generation	σ _{s}	or _d	2 •••	2 o′ ₈	22 % d	2 ow
			Random popu	lation		
F ₁	0.087	2.005	3.812	1.5	34.0	64.5
F ₂	0.055	1.667	1.186	1.9	. 57•3	40.8
F ₃	0.000	1.569	10.999	0.0	12.5	87.5
F 4	0.000	1.111	9.417	0.0	10.8	89.2
F 5	0.341	0.671	3.949	6.9	13.5	79.6
Average				2.1	25.6	72.3
Average			Selected po	pulation		
r ₁	0.000	0.000	5.196	0.0	0.0	100.0
F ₂	0.408	0.124	5.332	7.0	2.1	90.9
F ₃	0.000	0.000	7.390	0.0	0.0	100.0
F ₄	0.000	0.421	4.047	0.0	9.6	90.4
F ₅	0.000	1.504	7.021	0.0	18.7	81.3
F ₆	0.596	2.753	9.063	4.8	22.2	73.0
Average		<u> </u>		2.0	8.8	89.2

^{*} Negative estimates considered zero.

Table 11: Estimates of the components of the phenotypic variance and their percentages for blood percentage in random and selected populations.

	Componer	its of var	iance	Percen	t of compo	
Generation	σ _s ²	ord ²	~ <mark>2</mark>	o's	o _d ²	~ w ²
			Random popu	lation		
F ₁	0.000	0.007	0.565	0.0	1.2	98.8
F ₂	0.068	0.051	0.318	15.5	11.7	72.8
- F ₃	0.000	0.357	1.038	0.0	26.5	73.5
F ₄	0.000	0.042	0.722	0.0	5.8	94.2
F ₅	0.018	0.130	1.314	1.2	8.9	89.9
Average	<u> </u>			3.3	10.8	85.9
Average			Selected po	opulation		
F .1	0.145	0.000	0.530	22.7	0.0	77.3
F ₂	0.013	0.016	0.378	3.1	4.0	92.9
F 3	0.019	0.013	0.607	2.9	2.1	95•0
F ₄	0.008	0.154	0.483	1.3	23.9	74.8
F 5	0.003	0.000	0.584	0.6	0.0	99•4
F ₆	0.206	0.137	1.458	11.4	7.6	81.0
Average				7.0	6.3	86.

^{*} Negative estimates considered zero.

Table 12: Estimates of the components of the phenotypic variance and their percentages for feather percentage in random and selected populations.

	Compone	nts of var	iance	Percer	t of compo	nents
deneration	o g	o _d 22′	or 2 w	o _s 2	o _d ²	or 2
	•	R	andom popu	lation		
F ₁	0.000	0.547	1.340	0.0	29.4	70.6
F ₂	0.177	0.110	1.310	11.1	6.9	82.0
F ₃	0.000	0.553	1.640	0.0	25.5	74.5
F ₄	0.036	0.000	1.947	2.1	0.0	97.9
F ₅	0.179	0.336	1.666	8.2	15.4	76.4
Average		,		4.3	15.4	80.3
	•	•	Selected po	pulation		
F ₁	0.039	1.219	0.942	1.8	55.4	42.8
F 2	0.054	0.208	0.963	4.4	17.0	78.6
F ₃	0.005	0.191	1.414	0.3	11.9	87.8
F 4	0.076	0.171	0.773	7.4	16.8	75.8
F ₅	0.042	0.063	0.895	4.2	6.3	89.5
F 6	0.227	0.843	1.229	9 .9	36.7	53.4
Average			<u> </u>	4.7	24.0	71.3

B. Heritabilities

Heritability is a static value which describes a certain population in terms of observed phenotypic variance due to differences between individuals in their heredity (Lush, 1948). It can be narrowly defined as the ratio of the additive genetic variance to the total phenotypic variance. The heritability estimates is an exceedingly important figure since it determines the amount of gain which selective breeding can accomplish and the magnitude of which dictates the most effecient selection method. Heritability estimates is, also, helpful in making any decisions regarding the type of mating system that will permit the fastest and best improvement in the characters under selection.

Estimates of heritability for the studied traits of random and selected populations are presented in Tables 13, 14, 15, 16, 17 and 18. It was found that estimates of 8 and 12 week body weights (Tables 13 and 14), dressing (Table 15) and feather (Table 18) percentages were higher than those of edible meat and blood percentages (Table 16 and 17) in both populations. Means of full-sibs heritabilities over all generations in random and selected populations for 8 and 12 week body weights, dressing and feather percentages were 0.505 vs. 0.486, 0.664 vs. 0.447, 0.525 vs. 0.201 and 0.390 vs. 0.573, respectively. While those of edible meat and blood percentages were 0.552 vs. 0.211 and 0.278 vs. 0.261, respectively. It seems that 8 and 12 weeks body weights, dressing and feather percentages were relatively highly heritable traits and, therefore, must be considered in selection programme. Similar results were obtained by Goodman and Godfrey (1956), Siegel and Essary (1959), Goodman (1973) and Kumar and Acharya (1980).

Table 13: Heritability estimates (standard errors) for eight week body weight in random and selected populations.

		•	. <u> </u>
eneration	h _B ²	h _d ²	h ² (s+d)
	Ra	ndom population	
F ₁	0.520 + 0.238	0.479 + 0.168	0.499 - 0.151
F ₂	0.476 + 0.199	0.758 + 0.156	0.617 + 0.132
F ₃	0.739 + 0.286	0.666 + 0.175	0.702 + 0.173
F ₄	0.116 + 0.115	0.570 - 0.233	0.343 + 0.141
F ₅	0.137 + 0.106	0.590 + 0.304	0.364 ± 0.189
lverage	0.398	0.613	0.505
	Se	elected population	
F ₁	0.445 + 0.182	0.651 + 0.139	0.548 - 0.119
F ₂	0.439 + 0.176	0.742 + 0.125	0.591 + 0.112
F ₃	0.499 + 0.199	0.546 + 0.140	0.523 - 0.126
F ₄	0.556 + 0.266	0.416 + 0.163	0.486 + 01161
F ₅	0.389 + 0.190	0.186 + 0.209	0.287 + 0.121
F ₆	0.272 + 0.177	0.687 + 0.234	0.480 + 0.159
Average	0.433	0.538	0.486

Table 14: Heritability estimates (+ standard errors) for twelve week body weight in random and selected populations.

Generation	h _s 2	h _d ²	h ² (s+d)
	Ra	ndom population	
F ₁	0.365 + 0.199	0.782 + 0.205	0.574 + 0.15
F ₂	0.042 + 0.112	1.962 + 0.271	1.002 - 0.160
F ₃	0.790 + 0.301	0.588 - 0.176	0.689 ± 0.179
F ₄	0.298 + 0.170	0.440 + 0.242	0.369 + 0.158
F ₅	0.337 + 0.282	1.031 + 0.349	0.684 + 0.25
Average	0.366	0.961	0.664
	Se	elected population	
F ₁	0.353 + 0.162	0.784 + 0.163	0.568 - 0.12
F ₂	0.351 + 0.143	0.523 ± 0.109	0.437 - 0.09
F ₃	0.414 + 0.168	0.275 + 0.132	0.335 ± 0.11
F ₄	0.842 + 0.367	0.316 + 0.146	0.579 ± 0.20
F ₅	0.348 + 0.185	0.241 + 0.225	0.295 + 0.15
F ₆	0.399 + 0.208	0.538 - 0.222	0.468 - 0.16
Average	0.451	0.446	0.447

Table 15: Heritability estimates (* standard errors) for dressing percentage in random and selected populations.

Generation	h _s 2:	h ² d	h(s+d)
	Re	andom population	
F ₁	0.335 + 0.252	1.232 ± 0.379	0.783 ± 0.245
F ₂	0.151 - 0.136	0.608 ± 0.283	0.379 ± 0.168
F ₃	0.302 - 0.213	0.620 - 0.393	0.461 ± 0.239
F ₄	0.000 + 0.000	0.853 + 0.575	0.426 ± 0.326
F ₅	0.412 - 0.365	0.744 + 0.484	0.578 ± 0.350
Average	0.240	0.811	0.525
	S	elected population	
F ₁	0.000 + 0.000	0.622 [±] 1.201	0.311 ± 0.684
T ₂	0.298 [±] 0.136	0.209 + 0.152	0.254 + 0.324
F ₃	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
F _á	0.188 ± 0.188	0.392 + 0.375	0.290 ± 02220
F 5	0.000 ± 0.000	0.262 + 0.383	0,131 ± 0.22
F 6	0.107 + 0.167	0.327 + 0.386	0.217 ± 0.23
Average	0.099	0.302	0.201

It is clear, also, that estimates of heritability for all traits in selected population were lower than those in random population. These results agree with the established theory which indicates that heritability decreases during the course of selection due to loss of genetic variation by fixation of genes and also because of increasing homozygosity from inbreeding.

The estimates of heritability from the dam component of variance were much higher than those derived from the sire component of variance for the majority of the studied traits in both populations. The mean of estimates of heritability over all generations derived from each sire and dam components of variances in random population were 0.398 vs. 0.613, 0.366 vs. 0.961, 0.240 vs. 0.811, 0.082 vs. 1.023, 0.134 vs. 0.422 and 0.168 vs. 0.612 for 8 and 12 week body weights, dressing, edible meat, blood and feather percentages, respectively. While the respective heritabilities in selected population were 0.433 vs. 0.538, 0.451 vs. 0.446, 0.099 vs. 0.302, 0.078 vs. 0.343, 0.272 vs. 0.250 and 0.186 vs. 0.960. The estimates from the sire component are supposed to include all the additive plus a fraction of additive interactions, while those derived from the dam component involve all additive, all dominance, epestasis and all maternal effects. However, Siegel (1962) estimated higher heritability values from sire component (0.26) than that from dam component (0.14) for feather development at 8 weeks of age in White Plymouth Rock, indicating sex linked infleunces which did not show in the present study.

Table 16: Heritability estimates (* standard errors) for edible meat percentage in random and selected populations.

Generation	h _s ²	n²	h ² (s+d)
	P	andom population	
F ₁	0.059 + 0.169	1.359 + 0.409	0.709 + 0.242
F ₂	0.075 + 0.171	2.293 + 0.373	1.184 + 0.224
F ₃	0.000 + 0.000	0.500 + 0.426	0.250 + 0.239
5 F 4	0.000 + 0.000	0.422 + 0.589	0.211 + 0.333
¥ 5	0.275 + 0.318	0.541 + 0.485	0.408 ± 0.337
Average	0.082	1.023	0.552
		Selected population	
F ₁	0.000 + 0.000	0.000 ± 0.000	0.000 + 0.000
F ₂	0.278 [±] 0.126	0.085 ± 0.146	0.182 + 0.103
F ₃	0.000 + 0.000	0.000 + 0.000	0.000 ± 0.000
<i>)</i> F ₄	0.000 ± 0.000	0.377 + 0.392	0.188 - 0.220
F ₅	0.000 ± 0.000	0.706 + 0.400	0.353 ± 0.23
F 6	0.192 - 0.219	0.887 ± 0.400	0.540 ± 0.25
Average	0.078	0.343	0.211

Table 17: Heritability estimates (+ standard errors) for blood percentage in random and selected populations.

Generation	h _s ²	h _d ²	h ² (s+d)
	R	andom population	
F ₁	0.000 + 0.000	0.046 + 0.370	0.023 + 0.202
F ₂	0.620 + 0.274	0.468 + 0.242	0.544 + 0.190
F ₃	0.000 + 0.000	1.024 + 0.426	0.512 - 0.246
F ₄	0.000 + 0.000	0.219 + 0.597	0.110 - 0.33
F ₅	0.050 - 0.254	0.355 + 0.500	0.202 ± 0.328
Average	0.134	0.422	0.278
	S	elected population	
F ₁	0.858 + 0.518	0.000 + 0.000	0.429 ± 0.60
F ₂	0.126 + 0.084	0.158 - 0.156	0.142 + 0.09
F ₃	0.117 - 0.118	0.082 ± 0.301	0.100 ± 0.17
F ₄	0.051 + 0.169	0.956 + 0.414	0.504 + 0.24
F ₅	0.023 ± 0.096	0.000 + 0.000	0.012 + 0.18
F ₆	0.457 + 0.262	0.305 + 0.352	0.381 - 0.23
Average	0.272	0.250	0.261

Table 18: Heritability estimates (+ standard errors) for feather percentage in random and selected populations.

Generation	h _s 2	h _đ 2	h ² (s+d)
	Ra	ndom population	
F ₁	0.000 + 0.000	1.160 + 0.406	0.580 + 0.233
F ₂	0.442 + 0.210	0.274 + 0.252	0.358 - 0.171
F ₃	0.000 ± 0.000	1.009 + 0.426	0.504 + 0.244
F ₄	0.072 + 0.179	0.000 + 0.000	0.036 + 0.303
F ₅	0.328 - 0.336	0.616 - 0.485	0.472 + 0.341
Average	0.168	0.612	0.390
	Se	lected population	
₽° 1	0.071 + 0.490	2.216 + 0.929	1.144 + 0.613
F ₂	0.175 ⁺ 0.115	0.680 - 0.188	0.428 - 0.11
F ₃	0.013 ± 0.102	0.474 + 0.319	0.244 + 0.18
F ₄	0.297 ± 0.239	0.672 + 0.376	0.484 + 0.238
F ₅	0.167 ± 0.174	0.252 + 0.367	0.209 + 0.22
F 6	0.395 + 0.305	1.467 + 0.411	0.931 - 0.28
Average	0.186	0.960	0.573

C. Genetic, Environment and Phenotypic Correlations

Pleiotropy is the genetic cause of correlations; however, linkage can be a cause of transient correlations, especially in populations derived from crosses between divergent strains. Pleiotropy is the property of a gene which affects two or more characteristics. Thus, the segregated gene causes simultaneous variation in the characters it affects. The extent to which two characters are influenced by the same genes is expressed by degree of correlation arising from pleiotropy. However, correlation resulting from pleiotropy is overall, or net, effect of all of the segregating genes that affect both character (Falconerl 1967). Genetic correlation can, also, be induced by artificial selection in such a way that improvement in one character will cause simultaneous changes in other characters in time. The environment is a cause of correlation in a way that two characters can be influenced by the same differences of environmental conditions. Environmental correlation includes deviations due to environment togeather with non-additive genetic deviations. Hence, the phenotypic correlation $(r_{p_{YY}})$ between the two traits X and Y in terms of path coefficients is:

$$r_{P_{XY}} = h_X r_{G_{XY}} h_Y + e_X r_{E_{XY}} e_Y$$

Thus, high estimates of heritability for each trait means that the phenotypic correlation is determined chiefly by genetic correlation, otherwise, the environmental correlation is the most important. The genetic and environmental correlations between any two traits in the present study were calculated from the information based on the sire, dam and full-sib components of variances.

The genetic interpretion of these correlations can be derived from

the following table in term of genetic covariance:

Component of	covA	conD	COVAA	covAD	cov _{DD}	COVAAA	$\mathtt{cov}_{\mathrm{E}}$
covariance cov _s	1/4	0	1/16	0	0	1/64	0
covd	1/4	1/4	3/16	1/8	1/16	7/64	o
cov	1/2	3/4	3/4	7/8	15/16	7/8	1
cov + cov	1/2	1/4	1/4	1/8	1/16	1/8	0
cov _w - 2cov _s	0	3/4	5/8	7/8	15/16	27/32	1
cov _w - 2cov _d	0	1/4	3/8	5/8	13/16	42/64	1
cov _w - cov _s - cov _d	0	1/2	1/2	6/8	7/8	6/8	1

Where:

 $cov_s = covariance due to sire.$

cov = covariance due to dam.

cov = covariance due to progeny/ dams/sires.

 cov_A = covariance of additive effects.

 cov_D = covariance of dominance effects.

 cov_E = covariance of environmental effects.

Thus, the genetic correlation based on sire components (r_G) has no dominance effects, but it includes 1/4 of additive interaction. While the genetic correlation based on dam components (r_G) involves all the dominance effects and 3/4 additive interaction plus various amounts of

epistasis in its estimation. The correlation based on full sibs (r_{0}) has 1/2 of the dominance deviations and 1/2 additive interaction plus some fraction of epestatic deviations. The environmental correlation based on sire components (r_{E}) , on the otherhand, contains 3/4 dominance and 5/8 additive interaction plus more amounts of epestasis. The estimate based on dam component (r_{E}) contains 1/4 dominance and 3/8 additive interaction plus less amount of epestasis than in (r_{E}) . The environmental correlation based on full sibs components contains 1/2 of the dominance effects and 1/2 of the additive interaction plus greater amounts of epestasis.

Genetic correlations based on sire, dam and full sib components along with the phenotypic correlations among the studied traits for random and selected populations are presented in apendices Al to A22, respectively. The means of genetic and phenotypic relationships over all generations are presented in Tables 19 and 20, respectively.

Most of the genetic correlation coefficients among the studied traits based on sire components are, in general, positively higher than those obtained from dam components in random and selected populations; indicating that sires inhereted their linked and/or pleiotropic genes additively to most of the traits.

The estimates of genetic association between 8-week body weight and each of the other traits are generally positively higher in random population than in selected population; indicating that selection reduced the genetic variabilities among the studied traits. However, the genetic and phenotypic relationships between 8 and 12 weeks body weights, are positively higher in both random and selected populations. The genetic

Table 19: Genetic and phenotypic correlations among six traits in random population.

	%	%	%	%
Genetic	correlation	s based on	sire comp	onents.
0.584	0.862	0.478	0.242	0.476
	0.717	-0.015	0.462	0.267
-0.167		-0.013	0.028	0.343
-0.248	0.883		-0.302	0.151
-0.438	-0.650	-0.025		0.002
0.206	0.062	-0.160	-0.075	
correlati	ons based on	dam compo	onents.	
Genetic	correlation	ıs based or	ı full-sib	component
0.999	0.419	0.260	-0.503	0.156
	-0.004	0.212	-0.358	0.111
0.212		0.884	0.042	-0.017
0.063	0.734		0.319	-0.183
0.013	-0.091	-0.197		-0.056
0.275	-0.135	-0.165	-0.130	
		0.275 -0.135	0.275 -0.135 -0.165	0.275 -0.135 -0.165 -0.130

^{*} Correlation coefficients are over-all means of five generations.

Table 20: Genetic and phenotypic correlations among six traits in selected population.

Fraits	8-week body weight	12-week. body weight	Dressing %	Edible meat	Blood %	Feather
		Genetic	correlations	s based or	ı sire comp	onents.
8 week:		0.510	-0.095	-0.155	0.015	0.543
12 week	0.176		-0.007	-0.010	-0.400	0.513
Dressing %	-0.130	0.228		-0.277	0.061	-0.447
Edible meat %	0.271	-0.177	-0.020		-0.293	0.203
Blood %	-0.374	-0.649	-0.359	-0.104		0.462
Feather %	-0.503	0.306	-0.153	-0.199	0.026	
	Genetic (correlati	ons based on	dam comp	onents.	
		Genetic	correlation	s based o	n full-sib	component
8 week:		0.368	-0.162	0.070	0.101	-0.186
12 week	0.525		0.361	-0.107	0.097	0.059
Dressing %	0.020	0.154		-0.243	-0.334	-0.254
Edible meat %	-0.032	0.088	0.853		-0.143	-0.142
Blood %	0.013	-0.016	-0.089	0.006		-0.045

Phenotypic correlations based on full-sib components.

-0.068

-0.032 -0.313

0.057 0.171

Feather %

^{*} Correlation coefficients are over-all means of six generations.

estimates based on sire, dam and full sibs components are 0.584, 1.132 and 0.999 in random population, respectively (Table 19). While those respective estimates in selected population are 0.510, 0.176 and 0.368 (Table 20). This means that traits of body weights are additively highly correlated traits. Thus, one may expect, that genes affect 8 week body weight may themselves affect 12 week body weight. These results are in agreement with those of Merritt (1966), Nestor et. al. (1966), Saeki et. al. (1969), El-Hossari and Ragab (1970), Siegel (1970), Singh and Singh (1979) and Ahlawat et. al. (1980). Also, higher genetic correlations, based on sire components, were obtained between feather development and each of 8 and 12 week body weights. However, the estimates were higher in selected than in random population. The coefficients between feather percentage and each of 8 and 12 week body weights are 0.543 and 0.513 in selected population; while the respective estimates in random population are 0.476 and 0.267 (Tables 19 and 20). These results indicate that body weight is genetically correlated with feather development. Therefore, improving body weight by selection will simultanously followed by an improvement in feather development through fixation of genes affecting these traits.

The genetic correlations based on sire components, between dressing percentage and each of 8 (-0.095) and 12 (-0.007) week body weights were lowerly negative in selected population and highly positive in random population (0.862 and 0.717, respectively) indicating that selection for heavier 8 week body weight did not accompanied by higher dressing percentage. However, the genetic (0.884) and phenotypic (0.734) correlations between dressing percentage and edible meat were positively higher in random population. Also, higher positive phenotypic (0.853) and negative genetic (-0.243) correlations were obtained between these

two traits in selected populations. This indicates that higher dressing percentage will be associated with higher percentage of edible meat. These results are nearly similar to those of Tosovsky and Jandac (1975) and Singh (1979).

The environmental relationships between the studied traits in each of random and selected population are presented in Tables 21 and 22, respectively. The genetic and environmental correlations, based on full sibs, between 8 and 12 week body weights and between 12 week body weight and each of dressing, edible meat, blood and feather percentages; also, between dressing percentage and each of edible meat and blood percentage, both associations are positive in sign in random and selected populations. This means that these traits may arise either because the traits are genetically correlated owing to common sources of genetic variation, or, because they developed in a common environment or both. The genetic and the environmental correlations among the other traits are different in signs either in random and selected populations. A difference in sign between the two correlations shows that genetic and environmental sources of variation affect the characters through different physiological mechanisms.

Table 21: Environmental correlations among six traits in random population .

	8-week	12-week	Dressing		Blood	Feather
	body weight	body weight	%	meat %	%	%
	<u> </u>	Env. cor	relations b	pased on s	ire compone	ents.
8 week		0.388	-0.086	-0.179	-0.116	0.10
12 week	0.066		0.179	0.143	0.002	0.43
Dressing %	0.206	1.429		0.662	0.013	-0.10
Edible meat %	0.117	0.520	0.772		-0.021	-0.12
Blood %	0.178	0.314	0.805	0.361		-0.25
Feather %	0.187	0.515	-0.141	0.040	-0.208	
	Environm	ental cori	relations b	ased on da	m componen	its.
		Env. cor	relations b	ased on fu	all-sib com	iponents.
8 week:		0.362	-0.164	-0.118	-0.116	0.13
12 week:			0.126	0.139	-0.081	0.78
Dressing %				0.960	0.134	-0.12
Edible meat %	<u> </u>				0.049	0.09
Blood %						-0.26
Feather %						

^{*} Correlation coefficients are over-all means of five generations.

Table 22: Environmental correlations among six traits in selected population.

	8-week	12-week	Dressing	Edible meat	Blood	Feather
Traits	weight	body weight	%	%	%	%
		Env. cor	relations b	ased on si	ire compone	ents.
8 week.		0.610	0.008	-0.094	-0.016	0.074
12 week	0.645		0.167	0.017	-0.008	-0.079
Dressing %	0.033	0.025		0.900	-0.184	0.08
Edible meat %	-0.308	-0.076	1.036		-0.017	-0.17
Blood %	0.022	0.009	-0.106	-0.169		-0.36
Feather %	0.414	0.108	0.177	0.203	-0.300	
	Environm	ental corr	elations b	ased on da	m componen	its.
		Env. cor	relations	based on f	ull-sib co	mponents
8 week		0.628	0.131	-0.147	-0.008	0.28
12 week			0.117	-0.026	0.055	0.20
Dressing %				0.948	-0.150	0.38
Edible meat %	5				-0.077	0.30
Blood %						-0.51
Feather %						

^{*} Correlation coefficients are over-all means of six generations.

D. Response of Selection

The significances of differences between random and selected populations and between generations of selection for the studied traits are presented in Tables 23, 24 and 25. It is shownfrom these results that there were highly significant differences between populations and between generations in all traits. The means of the studied traits for males, females and males & females in each generation of random and selected populations are presented in Tables 26, 27 and 28. The results indicated that males, females and males & females were heavier in selected population than in random population for 8 and 12 weeks body weights. The increase (means of over all generations) in 8 week body weight of males, females and males & females of selected population was 52.9, 35.6 and 48.6 grams, respectively (Table 26). While, the respective increase in 12 week body weight was 111.0, 59.3 and 95.7 grams (Table 27). However, percentages of dressing, edible meat, blood and feather were almost equal in both random and selected populations (Table 28). Awad (1978) in his studies of selection for 8 week body weight in chickens found that 8 week feather score of the selected line was 17.6 percent higher than the control.

The realized and expected genetic gain for 8 week body weight due to mass selection over 6 generations are presented in Tables 29, 30, 31, 32, 33 and 34. The results indicated that the White Baladi breed of chicken responded significantly, in general, to selection in most generations. However, the progress was retarded at the fourth generation of selection; after which the birds responded again to selection during the fifth and sixth generations. The realized progress for each of F_1 ,

Table 23: Populations and generations mean squares of the studied traits.

Source of	8−8 bod	8-week body weight	12- bod	12-week body weight	Dres	Dressing % Edible meat %	Edible meat %	o ₽6	Bloc	Blood %	Fea	Feather %
variations	[] ₽	MS	df	MS	đf	MS	df.	MS	åf	MS	df df	MS
Population	н	** 1 10199975.1		** 16538099•2	. 4	** 885.7	H	. ** 1502.4	ч	* 7168.8	٦	** 4084.8
Generations	4	** 12757647.1	4	** 15265849•0	. 4	*** 625.5	4	** 303.5	4	3266.0	4	** 4 73525•3
Brror	6622	6307	.6 6214	13197.1 2593	2593	7.8	2593		8.0 2593	1361.5 2593	2593	160.5

* Significant, P 0.05

Table 24: Generations mean squares of eight and twelve week body weight for males, females and males + females of random and selected populations.

		Males	Fem	ales	Males + females		
Source of variations	df MS		df	MS	df	MS	
		Random	populati	on	·		
•			F - F			derde	
Generations	4	** 1775117•1	4	1579488.6	. 4	3354044.8	
Error	1408	5101.6	1258	3991.2	2670	4572.8	
		Selecte	ed popula	tion			
Generations	6	** 6569232•6	6	** 5990266•5	6	数 12552628。	
Error	2589	4151.1	2305	3710.4	4900	3947.]	
		12 week	c body we	eight			
		Random	population	on			
Generations	4	** 3076705.4	4	★★ 2362620.1	4	*** :545338811	
Error	2548	12198.5	1192	9255.5	2544	10802.5	
		Selecte	ed populat	tion			
	6	** 10671287.9	6	9232736.7	6	** 19905456.1	
Generations							

Table 25: Generations mean squares of dressing, edible meat, blood and feather percentages in males of random and selected populations.

Source of	Dressing %		Edible meat % Blo			od %	Feather %	
variation3	df	MS	df	MS	df	MS	df	MS
			Rane	lom popul	ation			
Generations	4	1040.78	4	1023 • 5	4	3370 **	4	38433 . 1
Error	1131	6.9	1131	7.0	1131	82.1	1131	186.1
			Sele	ected pop	ulation	1		
Generations	6	** 967.8	6	** 711.0	6	2521.0	6	** 32 224 . J

6.8 1909

1822.1 1909

171.7

* Significant, P 0.01

1909

Error

6.9 1909

Table 26: Means (standard errors) of males, females and males + females for eight week: body weight in successive generations of random and selected populations.

	Males				Females			Males + females		
eneration	No		Mean	No.		Mean	No.		Mean	
			Re	andom	populati	ion				
F ₁	279	277.3	3.2 a	255	274.2	3.4 a	534	276.0 +	2.3 a	
F ₂	406	445.6	- 3.5 b	432	380.3	3.2 b	838	411.9 +	2.4 b	
F ₃	295	521.3	5.7 b	283	433.9	4.5 b	578	478.5 [±]	3.6 b	
F ₄	228	421.0	3.1 b	212	359.5	+ 3.0 b	440	391.0 ±	2.2 b	
F ₅	204	492.3	5.2 b	80	460.0	± 7.7 b	284	471.9 +	4.3 b	
Average		431.5	······································		381.6			405.9		
F _. O	279	277.3			d popular 274.2		534	276.0 +	2.3 8	
F ₁	446	443.3	- 2.5 b	e 485	361.7	± 2.3 b	931	400.8 -	1.7	
F ₂	661	517.6	± 2.1 c	f 673	443.4	± 1.9 b	1334	480.2 -	1.4	
F ₃	412	757•9	± 4.3 d	400	622.6	± 4.3 c	812	691.1 ±	3.0 €	
F 4	245	355.3	± 3.1 a	b 250	322.1	± 3.7 a	495	338.6 [±]	2.4 8	
F ₅	272	444.2	± 4.1 c	e 110	391.1	± 6.1 b	382	428.9 ⁺	3.4	
F ₆	280	595.5	+ 4.8 f	138	505.4	± 6.3 d	418	565.9 +	3.8 1	
Average		484.4			417.2			454.5		

Means within a trait within a classification followed by the same litter do not differ significantly from each other, otherwise they do differ significantly at $P \leqslant 0.05$.

Table 27: Means (+ standard errors) of males, females and males + females for twelve week body weight in successive generations of random and selected populations.

		Males		Females	Mal	es + females
Generation	No.	Mean	No.	Mean	No.	Mean
		R	andom p	oopulation		
F ₁	273	484.0 ⁺ 5.4 a	247	457.6 ⁺ 5.5 a	520	471.5 ⁺ 3.8 a
F ₂	402	663.1 ⁺ 6.4 ab	423	557.0 ⁺ 4.9 a	b 825	609.4 ⁺ 4.0 at
F ₃	283	777.9 ⁺ 6.5 b	258.	- 6 40.8 ⁺ 6.6 b	541	712.4 ⁺ 4.6 b
F ₄	197	768.3 ⁺ 6.54b	188	618.1 ⁺ 6.1 b	3 85	695.5 ⁺ 4.5 b
F ₅	197	758.9 ⁺ 8.4 b	80	730.8 ⁺ 10.3 b	277	740.4 ⁺ 6.7 b
Average		690.4		600.9		645.8
		S	elected	population		
F _O	27.3	484.0 ⁺ 5.4 a	247	457.6 ⁺ 5.5 a	520	471.5 ⁺ 3.8 a
F ₁	389	672.8 ⁺ 4.1 b	425	603.7 ⁺ 3.5 b	814	636.9 ± 2.7 b
F 2	640	753.2 [±] 3.7 b	638	630.7 ⁺ 3.5 b	1278	691.9 ⁺ 2.5 b
F ₃	374	1121.5 ⁺ 6.6 c	362	860.4 ⁺ 5.9 c	736	993.5 ⁺ 4.4 c
F ₄	238	733;5 ⁺ 6.8 b	240	613.9 ⁺ 5.6 b	478	673.2 ⁺ 4.4 b
F ₅	268	719.6 ⁺ 6.4 b	98	617.7 ⁺ 10.0 b	366	.692.3 ⁺ 5.4 b
F ₆	273	1125.5 ⁺ 7.0 c	133	837.1 ⁺ 10.8 c	406	1031.3 ± 5.9 c
Average		801.4	<u></u>	660.2		741.5

^{*} Means within a trait within a classification followed by the same litter do not differ significantly from each other, otherwise they do differ significantly at $P \le 0.05$.

Table 28: Means (* standard error) of dressing, edible meat, blood and feather percentages for twelve week slaughtered males in successive generations of random and selected populations.

Gen.	No.	Dressing %	Edible meat %	Blood %	Feather %
<u></u>		F	Random population		
F ₁	231	56.2 ⁺ 0.1 a	67.6 ⁺ 0.2 a	4.0 ⁺ 0.5 a	5.2 ⁺ 0.9 ab
F ₂	360	57.6 ⁺ 0.1 ab	68.2 ⁺ 0.1 a	3.7 ⁺ 0.3 a	4.8 ⁺ 0.7 a
F ₃	240	57.9 ⁺ 0.2 ab	67.4 ⁺ 0.2 a	4.6 ⁺ 0.7 a	7.1 ⁺ 1.0 bc
F ₄	162	61.5 ⁺ 0.2 b	72.6 ⁺ 0.3 b	4.3 ⁺ 0.7 a	7.1 ⁺ 1.0 be
F ₅	142	61.4 ⁺ 0.2 b	71.2 ⁺ 0.2 ab	3.6 ⁺ 1.0 a	7.6 ⁺ 1.2 c
Aver	age	58.9	69.4	4.0	6.4
			Selected population	on	
F o	231	56.2 ⁺ 0.1 ab	67.6 ⁺ 0.2 ab	4.0 + 0.5 a	5.2 + 0.9 bc
F ₁	77	54.5 ± 0.2 b	65.0 ⁺ 0.2 b	4.6 ⁺ 0.9 a	5.8 - 1.7 ab
F ₂	632	56.9 [±] 0.1 bc	67.3 ± 0.1 bc	4.1 ⁺ 0.3 a	4.7 ⁺ 0.4 c
F ₃	321	59.0 + 0.1 acd	68.6 ⁺ 0.1 acd	4.6 ⁺ 0.4 a	7.2 ⁺ 0.7 a
F 4	204	56.5 [±] 0.1 ab	66.3 ⁺ 0.1 ab	4.2 ⁺ 0.6 a	6.6 ⁺ 0.7 ab
F ₅	230	57.0 + 0.2 ab	67.5 ⁺ 0.2 ab	4.8 ⁺ 0.5 a	6.3 ⁺ 0.7 ab
F ₆	220	61.5 ⁺ 0.3 d	71.4 ⁺ 0.2 d		6.9 ⁺ 1.4 a
Awar	age	57-4	67.7	4.3	6.1

^{*} Means within a trait within a classification followed by the same litter do not differ significantly from each other, otherwise they do differ significantly at $P \leq 0.05$.

F₂, F₃, F₄, F₅ and F₆ generations was 124.9, 79.4, 210.9, -352.5, 90.3 and 137.0 grams for males & females, respectively. The results, also, indicated that the realized genetic gain was much higher than the corresponding expected genetic gain in most generations. The respective expected genetic gain for males & females was 15.1, 16.6, 18.5, 28.0, 16.8 and 6.0 grams. The realized heritability values within each generation of selection were, therefore, larger than the estimated heritabilities. However, when the progress due to selection was averaged over generations (Table 35), the realized progress for males & females (48.4 grams) was nearly equal to the expected genetic gain (44.1 grams). Also, the corresponding realized heritability (0.537) was nearly equal to the estimated heritability (0.489).

These results indicate that selection for improving body weight of White Baladi breed which contains considerable amount of additive variance is unlikely to reach a selection limit in the foreseeable future. In other words, the response pattern of absolute weights from generations 1 to 6 suggests that this breed of chicken did not reach an apparent selection plateau for 8 week body weight. Thus, more genetic improvement in body weight could be expected by further generations of selection. If the genetic gain reached the level of selection plateau after a long term of selection; this would be due to cessation of genetic changes, the causes of which might be due to;

- (1) The exhaustion of genetic variability as a result of selection and inbreeding.
- (2) Natural selection counteracting the effectiveness of artificial selection.
- (3) The establishment of a negative genetic correlation between selected traits and fitness.

Table 29: Realized and expected genetic gain due to selection for 8 week body weight from $^{\rm F}{}_{\rm O}$ to $^{\rm F}{}_{\rm 1}$ generations.

	Ŋ	ales	Fem	ales	Males	+ females
Basis of selection	No.	Mean(gm)	No.	Mean(gm)	No.	Mean(gm)
Mean of F genera	ation 279	277.3	255	274.2	534	275.9
Selected breeders	3. 20	374.0	184	298.7	204	306.1
Mean of F _l genera	ation. 446	443.3	485	361.7	931	400.8
Realized selection	n	96.7		24.5		30.2
Realized progress	3•	166-0		87.5		124.9
Basis for Escalculating expected genetic gain	stimated h ²		xpec tec	d genetic ga	in	G _{gm+f}
Sire components	0.520	25.1		6.4		15.7
Dam components	0.479	23.2		5.9		14.5
Sire+dam comp.	0.499	24.1		6.1	-	15.1
Realized h ²		h _s 2		h _d ²		h ² s+d
		1.717		3.571		4.13

Table 30: Realized and expected genetic gain due to selection for 8 week body weight for $^{\rm F}$ 1 to $^{\rm F}$ 2 generations.

		M	ales	Females		Males + females	
Basis for select	cion	No.	Mean(gm)	No.	Mean(gm)	No.	Mean(gm)
Mean of F _l gener	ration.	446	443.3	485	361.7	931	400.8
Selected breeder	es.	20	590.8	190	414.3	210	431.1
Mean of F ₂ gener	ration.	661	517.6	673	443.4	1334	480.2
Realized selecti	ion		147.5		52.6		30.3
Realized progres	3 3.	·	74.3		81.7		79.4
Basis of	Estimated		Exp	ected	genetic gain	<u> </u>	
calculating expected genetic gain	h ²		$\triangle^{\overline{G}}_{\mathfrak{S}_{\mathfrak{m}}}$		$\triangle^{\overline{G}}_{g_{\overline{1}}}$	$\triangle^{\overline{\mathfrak{g}}}_{\varepsilon_{\mathfrak{r}}}$	n+ f
Sire components	0.445		32.8		11.7	13.	.5
Dam components	0.651		48.0		17.1	19.	.7
Sire+dam comp.	0.548		40.4		14.4	16.	.6

0.504

1.553

2.620

Realized h²

Table 31: Realized and expected genetic gain due to selection for 8 week body weight from F 2 to F 3 generations.

	Males		Females		Males + females	
Basis for selection	No.	Mean(gm)	No.	Mean(gm)	No.	Mean(gm)
Mean of F ₂ generation.	661	517.6	673	443.4	1334	480.2
Selected breeder.	20	639.3	184	497.6	204	511.5
Mean of F ₃ generation	412	757 .9	400	622.6	812	691.1
Realized selection differential		121.7		54.2		31.1
Realized progress		240.3		179.2		210.9

Basis of	Estimated	Expe	cted genetic gair	<u> </u>
calculating expected genetic gain	h ²	$\bigcap_{\mathbb{G}_{\mathbf{g_m}}}$	$\triangle^{\overline{G}}$ g $_{\mathbf{f}}$	$\bigcap_{g} g_{m+f}$
Sire components	0.439	26.7	11.9	13.7
Dam components	0.742	45.2	20.1	23.3
Sire+dam comp.	0.591	36.0	16.0	18.5
Realized h ²		h _m ²	$n_{\hat{f}}^2$	h ² m+f .
		1.975	3.306	6.738

Table 32: Realized and expected genetic gain due to selection for 8 week body weight from $^{\rm F}$ 3 to $^{\rm F}$ 4 generations.

	Males		Females		Males + females	
Basis for selecti o n	No.	Mean(gm)	No.	Mean(gm)	No.	Mean(gm)
Mean of F generation.	412	757.9	400	622.6	812	691.1
Selected breeder.	13	954.2	102	717.9	115	744.7
Mean of F ₄ generation.	245	355 ·3	250	322.1	495	338.6
Realized selection differential		196.3		95•3		53.6
Realized progress		-402.6		-300.5		-352-5

Basis Of	Estimated	Expe	cted genetic gar	in
calculating expected genetic gain	n ²	△G _g	△G _{gf}	△G _{Em+f}
Sire components	0.499	49.0	23.8	26.7
Dam components	0.546	53.6	26.0	29.3
Sire+dam comp.	0.523	51 .3	24.9	28.0
Realized h ²		h _m ²	${\tt h_f^2}$	h_{m+f}^2
		-2.051	-3.256	-6.576

Table 33: Realized and expected genetic gain due to selection for 8 week body weight from F_4 to F_5 generations.

Mε	ales	Fe	emales	Males	+ females
No.	Mean(gm)	No.	Mean(gm)	No.	Mean(gm)
245	355.3	250	322.1	495	338.6
20	459.3	132	360.1	152	373.1
27 2	444.2	110	391.1	382	428.9
	104.0		38.0	•	34.5
	88.9		69.0		90.3
	No. 245	245 355.3 20 459.3 272 444.2	No. Mean(gm) No. 245 355.3 250 20 459.3 132 272 444.2 110	No. Mean(gm) No. Mean(gm) 245 355.3 250 322.1 20 459.3 132 360.1 272 444.2 110 391.1	No. Mean(gm) No. Mean(gm) No. 245 355.3 250 322.1 495 20 459.3 132 360.1 152 272 444.2 110 391.1 382 104.0 38.0

3444	Stimated	Expec	·	
calculating expected genetic gain	h ²	$\triangle^{\overline{G}}_{g_{\mathfrak{m}}}$	$\triangle^{\overline{\mathbb{G}}}_{g_{\mathrm{f}}}$	△G _{gm+f}
Sire components	0.556	28.9	10.6	19.2
Dam components	0.416	21.6	7.9	14.4
Sire+dam comp.	0.486	25.3	9.2	16.8
Realized h ²		h _m 2	h <mark>f</mark>	h ² m+f
		0.855	1.816	2.617

Table 34: Realized and expected genetic gain due to selection for 8 week body weight from F_5 to F_6 generations.

		Na	ales	Fer	nales	Male	es + females
Basis of selection	ı	No.	Mean(gm)	No.	Mean(gm)	No.	Mean(gm)
Mean of F ₅ generat	ion.	272	444.2	110	391.1	382	428.9
Selected breeder.		7	575.7	43	429.4	50	449.9
Mean of F generat	ion.	280	595.5	138 *	505.4	418	565.9
Realized selection	ı		131.5		38.3		21.0
Realized progress.			151.3		114.3		137.0
		•			<i>:</i>		
	stimat	ed	Exp	ected	genetic gai	n	
calculating expected genetic gain	h ²		$\overline{\triangle^{G}}_{g_{m}}$		$\triangle^{\overline{G}}_{g_{\underline{f}}}$		$\triangle^{\overline{G}} g_{m+f}$
Sires components	0.38	9	25.6		7.4		8.2
Dams components	0.18	6	12.2		3.6		3.9
Sire+dam comp.	0.28	7	18.9		5.5		6.0
Realized h ²			h _m ²		$h_{\mathbf{f}}^2$		h m+f
		٠	1.151		2.984		6.524

Table 35: Over all means of realized and expected genetic gain due to selection for 8 week body weight.

	Ŋ	ales	Females		Males + female	
Basis of selection	No.	Mean(gm)	No.	Mean(gm)	No.	Mean(gm)
Mean of precedding	g 2315	465.9	2173	402.5	4488	435•9
Selected breeder.	100	598.9	835	453.0	935	526.0
Mean of succeedingenerations.	g 2316	519.0	2056	441.1	4372	484.3
Realized selection differential.	n	133.0		50.5		90.1
Realized progress	3•	53.1		38.6		48.4
Basis of I	Estimated	Exp	ected &	genetic gai	n	
calculating expected genetic gain	h ²	$\triangle^{\overline{c}}_{g_{m}}$		$\triangle^{\overline{G}}_{g_{\mathbf{f}}}$		$\triangle^{\overline{r_i}}_{\mathcal{E}_{m+1}}$
expected genetic	h ²			12.0		△¬¬ _{Em+1}
expected genetic gain						
expected genetic gain Sire components	0.475	31.6		12.0		42.8 45.3 44.1
expected genetic gain Sire components Dam components	0.475	31.6 33.4		12.0		45.3

(4) The emerging increase of non-additive gene effects which do not comply to ordinary selection procedures (Lush, 1951; Falconer, 1953; Lerner, 1954; Tebb, 1957 and Kan et. al., (1959). However, Siegel (1962) reported that natural selection was a minor factor in influencing the short term response to artificial selection for 8 week body weight in chickens.

Results presented in Tables 29, 30, 31, 32, 33 and 34, also, indicated that males responded effectively to selection than females within each generation of selection. The over all mean of realized progress (53.1 vs. 38.6 grams) and the expected genetic gain (32.5 vs. 12.3 grams) in males were, therefore, higher than those of females, respectively (Table 35). Again, the estimated (0.475 vs. 0.399) and the realized (0.503 vs. 0.764) heritabilities were nearly equal in males and females, respectively. One may expect that males would respond largely to selection than females, since males were subjected to intensive selection pressure (5.5%) than that of females (51.5%). Similar results were reported by Jaap et. al. (1962), Jaap (1966) and Siegel (1970).

The cessation of genetic progress in the fourth generation might be due to the effect of environmental influences which were not reasonably suitable for the flock to the extent that the birds did not respond effictively to selection pressure.

E. Correlated Response

Lerner (1961) discussed the theory of correlated response in such a way that the origin of correlation between traits may be responsible for either pleiotropy or linkage. Its rationale is rather simple. Different allels or blocks may have net affects of various kinds on traits X and Y. Thus, some may increase both X and Y, others increase X and decrease Y, and so forth. The full list of possible combinations and their fate under simultaneous selection for plus expressions of both X and Y is as follows:

	Effect on X	Effect on Y	Fate under selection
1.	+	+	
2.	+	0	Fixation
3.	0	+ J	
4 •	-	-	
5•	-	0	Elimination
6.	O	<u> </u>	
	•		
7.	+	- }	Continued segregation
8.		+)	

Although originally in this model X and Y were not correlated (assuming equal frequencies of all eight kinds of units), by the time only types 7 and 8 are left segregating in the gene pool a negative correlation between X and Y has been established. Continued selection for X will then inevitably lead to a correlated response in Y and vice

versa. Such respose can have grave consequences in the selection for multiple objectives. In addition to pleiotropy and linkage, correlated responses may be the result of association of loci and blocks located on different chromosomes. In particular, systems of correlations between selection coefficient of independently transmitted genes based on gene interactions may produce short-range correlated responses.

Common origin of independent allels in a population of hyprid derivation may cause temporary correlations. Any kind of non-random segregation can have a similar effect.

Correlated response may be either obligate or facultative. The first type is particularly important when the response takes the form of decreased fitness. This consequence of selection obtains when:

- (a) selection for character, which initially may not be a major component of fitness, is continued for a long time;
- (b) a major fitness component which is subjected to selection has an intermediate optimum;
- (c) selection is directed to a metric trait in the direction opposite to the sign of the correlation between it and fitness.

 If selection for a character not a major component of fitness, inbreeding may in part be responsible for the reduction in fitness.

The correlated response between the selected character of 8 week body weight and each of body weight, dressing, edible meat, blood and feather percentages at 12 week of age within each generation of selection are presented in Tables 36, 37, 38, 39 and 40. The tabulated results indicated that the change in 8 week body weight due to selection was associated positively with a change of about 45, 13 and 11 grams in 12 week body weight based on sire, dam and sire & dam components of

Table 36: Correlated response between 8 and 12 week body weights in selected population.

Generation	Sire	Dam	Sire + Dam
Fo	24.9619	32.8242	23.2305
F ₁	20.7291	18.7036	7.5136
F ₂	23.3409	59.3444	20.1436
F ₃	95.1320	-31.5556	4.0516
, F ₄	29.3533	23.8557	15.7398
F ₅	78.7388	- 6.4820	4.5142
F _E 5	42.9811	- 3.7351	0.5141
Average	45.034	13.279	10.815

Table 37: Correlated response between 8 week body weight and 12 week dressing percentage in selected population.

Generation	Sire	Dam	Sire + Dam
Fo	0.4716	0.3028	0.2608
F ₁	0.4075	0.0858	0.0243
F ₂	0.2341	0.2914	0.1143
F ₃	0.3554	0.3544	0.1480
F ₄	0.0511	-0.1479	-0.0589
F.	-0.2268	0.0623	-0.0010
· F ₆	0.0546	-0.2584	-0.0318
Average	0.193	0.099	0.065

Table 38: Correlated response between 8 week body weight and 12 week edible meat percentage in selected population.

Generation	Sire	Dam	Sire + Dam
^F o	0.3220	0.5131	0.3674
F ₁	0.1758	0.1256	0.0542
F ₂	-0.3873	0.4948	0.0924
F ₃	0.0450	0.0597	0.0229
F ₄	0.3201	0.2022	-0.0389
F 5	0.0255	0.0603	0.0186
7 F 6	-0.3432	0.6273	0.0722
Average	0.0230	0.2980	0.0840

Table 39: Correlated response between 8 week body weight and 12 week blood percentage in selected population.

Generation	Sire	Dam	Sire + Dam
F _O	0.0930	-0.0087	0.0092
F ₁	0.2891	0.1467	-0.0719
F ₂	-0.1771	-0.3148	-0.1137
F ₃	0.2711	0.1027	0.0658
F ₄	0.0710	-0.1316	-0.0481
F ₅	-0.0257	0.1616	0.0423
F 6	-0.3293	0.2341	0.0223
Average	0.0270	0.0270	-0.0130

Table 40: Correlated response between 8 week body weight and 12 week feather percentage in selected population.

Generation	Sire	Dam	Sire + Dam
F _O	-0.0663	0.0157	-0.0007
F ₁	-0.5465	0.1665	-0.0080
F ₂	0.2457	0.0705	-0.0112
F 3	0.3983	-1.2089	-0.0285
F ₄	0.0594	0.0898	0.0507
F ₅	0.3225	-0.1819	-0.0241
F 6	1.3404	-0.1636	0.0100
Average	0.2510	-0.1730	-0.0020

variances, respectively (Table 36). Thus, one may conclude that genes or blocks of polygenes intermingled along the chromosome which cause an increase in 8 week body weight may also cause an increase in 12 week body weight. Seigel (1963 a) reported that changes in 8 week body weight were positively associated with changes in 4, 24 and 38 week body weights. Similar results were also obtained in turkey by Johanson and Asmundson (1957) who stated that 8 week body weight was positively correlated with 12 week body weight.

The expected gain in each percentage of dressing, edible meat, blood and feather at 12 weeks of age were rather small (Tables 37, 38, 39 and 40). Similar results were found by Frairs and Tiku (1969) who reported that the percentage gain from selection for weight at 12 weeks of age was small in the eviscerated weight.

In general, the expected genetic gain calculated from the sire component of variance was higher than that derived from the dam component of variance in all the studied traits. This indicate that sires contributed largely to the changes either in selected or unselected traits. Previously it was found that the genetic correlations among the studied traits based on sire components were generally positively higher than those obtained from dam components; which indicate that sires inherited their linked genes additively to most of the studied traits especially those genes affect both 8 and 12 week body weights.

Correlated response of the unselected characteristics with moderate heritability estimates was found when the genetic correlation with the selected trait was large, but not when it was low. When there is no reduction in general fitness, a low heritability can mask the effect of

a large genetic correlation; while a moderate to high heritability has little inhibtory influence on the associated response when the genetic correlations is large (Seigel, 1963 a). In addition two different approached to the theory underlying correlated responses have been developed. One, on a purely qualitative basis, derives from Mather's theory of polygenic inheritance (Wigan and Mather, 1942; Mather and Harrison, 1949). If metric traits are conditioned by polygenic systems organized in blocks, it is to be expected that polygenes concerned in the variability of one trait are intermingled along the chromosome with those determining variability of another. Selection directed towards increasing frequencies of certain blocks will then also affect the frequencies of allels linked to them, thus generating correlated response. The other treatment of the question is a quantitative one and is rooted in the theory of genetic correlation developed by Smith (1936) and by Hazel (1943) from the respective fundamental formulations of biommetrical genetics of Fisher and of Wright. The exposition of the subject here combines features of both approaches.

SUMMARY

This study was carried out to evaluate genetic parameters and to estimate response of mass selection for 6 generations to improve body weight in a native breed of White Baladi chickens. A total number of 20 males and 200 females was taken at random for the original population. Each male was mated with 10 females in individual breeding pen. Two hatches were obtained from the same parents. The first hatch made up the selected population and the second hatch made up the random-bred population. At 8 weeks of age, mass selection based on body weight applied on the progeny of each generation of the selected population in such a way that the heaviest 20 males and 200 females were selected. The pedigreed randombred population was reproduced each generation along with the selected population. However, the 20 males used as parents were chosen at random, ore male from each previous sire. Each male within each population was mated to 10 females with only a restriction that no full or half sib mating was avoided to prevent inbreeding depression. On hatch, all produced chicks were wing-banded to keep their pedigree and weighed at 8 and 12 weeks of age. Males of each generation of selected and randombred populations were slaughtered at 12 weeks of age to evaluate dressing, edible meat, blood and feather percentages.

The collected data were adjusted for sex effect within population and generation and were statistically analysied by the application of nested design with unequal number of subclasses. Tests of significance for the differences between means of populations and between generations were done according to Duncan's Multiple Range Test.

Heritabilities of the studied traits as well as Genetic, environmental and phenotypic correlations among the traits were estimated on the basis of sire, dam and sire + dam components of variances. The expected genetic gain per generation of selection; also, the expected correlated response were derived from the three components of variances.

The obtained results can be summarized as follows:

Heritability estimates for 8 and 12 week body weights, dressing and feather percentages were larger than those of edible meat and blood percentages; indicating that the first four traits were highly heritable.

Heritability estimates for all traits in the selected population were lower than those in random population; indicating that selection decreased genetic variations through fixation of genes.

Heritabilities estimated from the dam component were much higher than those derived from the sire component for the majority of the studied traits in both populations; indicating the presence of maternal effects.

Most of the genetic correlations among the studied traits based on sire components were generally positively higher than those obtained from dam components in both populations; indicating that sires inhereted their linked and/or pleiotropic genes additively to most of the traits.

The genetic relationships between 8 week body weight and each of the other traits were positively higher in random population than in selected

population; indicating that selection reduced the genetic variabilities among the studied traits.

Higher genetic correlations were obtained between 8 and 12 week hody weights; also, between feather percentage and each of 8 and 12 week body weights; indicating that improving body weight by selection will be followed by improving feather development.

The genetic correlations between dressing percentage and each of 8 and 12 week body weights were lowerly negative in selected population and highly positive in random population; indicating that selection for heavier 8 week body weight did not accompany by higher dressing percentage.

The genetic and the phenotypic associations between dressing percentage and edible meat were positively higher in both populations; indicating that correlations between those two traits were automatic.

Results, also, indicated that males, females and males + females were heavier in selected population than in random population for 8 and 12 week hody weights; indicating that the White Baladi breed of chickens responded largely to selection for improving body weights. However, percentages of dressing, edible meat, blood and feather were almost equal in both populations.

The average of realized progress over all generations for males + females (48.4 grams) was nearly equal to the expected genetic gain (44.1 grams). Also, the corresponding realized heritability (0.537) was nearly equal to the estimated heritability (0.489). However, the realized

gain within each generation of selection; indicating that selection for improving body weight of White Baladi breed which contains considerable amount of additive variance is unlikely to reach a selection limit in the forseeable futures.

The results, also, indicated that males responded effectively to selection than females; this was due to intensive selection pressure subjected to males (5.5%) than that of females (51.5%).

The results, also, showed that the change in 8 week bedy weight due to selection was associated positively with a change of about 45, 13 and 11 grams in 12 week body weight based on sire, dam and sire + dam components of variances, respectively. However, the correlated response of each percentage of dressing, edible meat, blood and feather at 12 weeks of age was rather small. This indicated that cerrelated response of the unselected traits with moderate heritability estimates was found when the genetic correlation with the selected trait was large, but not when it was low.