4. RESULTS AND DISCUSSION

4.1. Identification of the shale deposit sample:

4.1.1. Mineralogical analysis of the clay fraction separated from the shale sample.

The mineralogical composition of the clay fraction separated from the studied shale sample was carried out by X-ray diffraction analysis. This method is considered among the most essential tools for clay and minerals identification. The purpose of qualitative interpretation of X-ray diffraction pattern is to identify each of the crystalline species present in the clay fraction. The most characteristics diffraction spacing of layer silicate clay arises along the C-axis or in crystallographic symbols, the (001) spacing.

X-ray diffraction pattern is based on the presences of diffraction peaks characteristics for each of the crystalline species present in sample. The intensity of the sharpness of these peaks are dependent not only on the number and the corresponding diffraction plains present in the examined sample but also on the particle size, chemical composition, crystal imperfection, crystal orientation and pre-treatments during clay separation (Whittig and Jackson 1965). Identification of clay minerals by X-ray diffraction analysis was carried out following the essential principles established by Jackson (1967) and Dixon and Weeds (1977) as follows:

1 Koalinite mineral is identified by presences of very sharp peaks at about 7.1-7.2°A (001) and 3.54-3.57°A (002) in the Mg-saturated samples. These peaks are not effected by glycerolated solution and they disappear upon heating to 550°C for four hours.

- 2 Hydrous mica (illite) minerals are detected by the presence of the basal reflections at 9.9-10.28°A peaks upon Mg-saturation which remain constant throughout the diffraction treatments.
- 3 Quartz is detected from the presence of 4.26 and 3.35°A stable diffraction peaks throughout the diffraction treatments.

X-ray diffraction pattern of the clay fraction separated from shale sample representing Abo Thor area is shown in Fig. (6).

Data reveal that, X-ray diffraction patterns of the clay fraction separated from the studied sample are dominated by koalinite mineral followed by hydrous mica (illite), while accessory minerals are dominated by quartz.

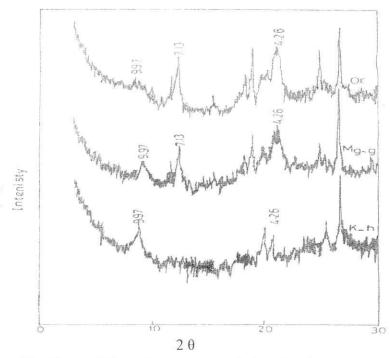


Fig. (6): X-ray diffraction pattern of the clay fraction separated from original sample.

4.1.2. Chemical composition:

In general, approaching of The soil chemical composition is used to obtain a general idea about the mineralogical composition of the various rock types especially by shale deposits, where the chemical constituents or elements are held in the mineral portion of soils and soil parent materials. Therefore, the contents of elements may give some information about nature of sediments and minerals forming the soil matrix. The studied shale deposit sample was analyzed for the major oxides of SiO₂, Al₂O₃, Fe₂O₃,TiO₂, CaO, MgO, K₂O, Na₂O and P₂O₅. Results of analysis are presented in Table (5).

Table (5): The average chemical composition of the studied shale sample.

				Elen	nent ox	id (%)				
Total	L.O.I.	P ₂ O ₅	K ₂ O	Na ₂ O	CaO	MgO	TiO ₂	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
99.68	16.16	0.40	1.4	2.2	4.9	133	0.22	18.2	11.7	27.5

From these results the following characteristics can be outlined:

The ${\rm SiO_2}$ content exceeded 27% of the shale deposit sample, this suggests that the ${\rm SiO_2}$ is the main chemical constituent of the studied shale sample as well as it occupies the tetrahedral sites and may be found inserted inbetween as impurities. Also, quartz may occur as fine disseminated crystalline particles or deposited with tiny flasks of the clay mineral .

The percentage of Al_2O_3 was 11.71%. Alumina constitutes a considerable part of the clay mineral complex. Its percentage, generally, reflects the type and amounts of clay minerals present. Also, the data obtained reveal that SiO_2 / Al_2O_3 ratio in the studied sample is about 3/1, and this ratio indicates that the deposit under investigation consists mainly of

koalinite and semictite, The Fe₂O₃ content reached 18.2% of the studied shale sample, and such relatively high iron oxide content could be attributed to four polygenetic phases:

- Secondary impregnation and staining by amourphous iron jel in the weathered samples.
- 2 -The presence of different iron oxides, mainly goethite.
- 3 -Iron substituting the Octahedral Al³⁺ and Mg²⁺ in the clay minerals structure.

4-Iron replacing Ca²⁺ in the carbonate minerals structure.(Ahmed,1999)

At the end, SiO₂, Al₂O₃ and Fe₂O₃ constitute more than 50% of the chemical constituents of shale sample. This may indicate that the studied shale deposits has, in general, a ferruginous and argillaceous nature. Minor amount of TiO₂ were recorded in the studied sample and did not exceed 0.22% of its components. Two polygenetic phases may be suggested for the origin of TiO₂ in the studied sediments:

- 1) Titanium incorporated with detrital minerals such as rutile and ilmenite.
- 2) Titanium may be substantially concentrated in the octahedral Al³⁺ sites in clays, particularly those of terrestrial origin such as koalinite.

The percentage of MgO reached 13.3% of the studied shale sample, and it may be present as:

- 1) Octahedral and interlayer cations in the clay lattice, where it substitutes Al³⁺ in the octahedral sites of smectite and illite.
- 2) Substituting Ca²⁺ in the calcite to form dolomite.

The CaO content of the studied sample was 4.9%,and it may be distributed among the following polygenetic phases:

- 1) Ca²⁺ incorporated within the carbonate minerals (calcite and dolomite) structure.
- 2) Ca²⁺ occurs in the interlayer sites of the clay lattice.

The Na_2O content of the studied sample reached 2.2%, and it may be present in the shale sample into distinct forms:

- First, as a constituent of the clay minerals structure, especially Na smectite.
- · Second, as water soluble salt.

The K_2O content in the shale deposite sample reached 1.4%, and its low content in the studied area may be due to the low content of K-bearing minerals.

P₂O₅ content reached 0.4% of the studied shale deposit sample, and its low content in the studied sample may be due to the natural of chemical components forming this shale deposit sample. In general, the variation in the SiO₂ and Al₂O₃ in the bulk sample may reflect the relative abundance of quartz and aluminium silicate bearing minerals. On the other hand, Na₂O and K₂O contents may reflect the type of feldspar present in the shale sample. The contents of CaO and Na₂O may be attributed to the presence of calcite and gypsum on one hand and presence of halite on the other hand, respectively.

The loss on ignition (L.O.I) is a measure of organic matter content, chemically combined water and CO₂ derived from carbonate. Its percentage

was 16.6% of the studied shale deposit sample. This high value could be attributed to the presence of carbonates (calcite and dolomite) in substantial amount.

4.1.3. Physical and chemical properties:

Particle size distribution of the shale deposit sample revealed that clay fraction of the studied shale sample that was collected from Abo-Thor area is 17.25%, while the silt fraction was 24.95% and the sand fraction was 57.8%. The corresponding textural class of the studied shale deposit sample is sandy clay loam.

The analytical data in Table (6) reveal that the studied shale deposit sample is almost of a neutral pH (7.1). The salinity of the shale sample expressed as electrical conductivity (EC) and determined in the saturated shale paste extract is excessively high, (38.2 dSm⁻¹).

Table (6). Some properties of the shale deposit extract.

Saturation		EC				Solu	ble ions				CaCO ₃
percentage	pН	dS/m		Cat	ions			Anio	ons		oucos
(SP) %			Ca ⁺⁺	Mg [↔]	Na ⁺	K ⁺	CO ₃ =	HCO ₃	Cl	SO ₄ =	%
26	7.1	38.2	41.9	64.4	457.0	41.0	-	2.8	569.0	32.5	11.7

The dominant soluble cations followed the descending order:

Na+ > Mg2+ > Ca2+ > K+, while the dominant soluble anions could be generally arranged in the descending order: Cl- > SO4> HCO3.

4.2. Extraction of the poisonous elements:

It was an important goal of the current study to free the studied shale deposit from the toxic metal ions or at least reduce their concentrations in the shale deposit.

The main effective poisonous elements in the studied sediments are: U, Cu, Zn and Cl. The extraction of these four elements from the studied shale deposit depends on different solid/liquid ratios to obtain the optimum conditions for the leaching process. Two operations were carried out on a technological sample from Abu Thor locality (at w-8) mainly by tap water and H₂SO₄. The materials used and their specifications either in washing by Tap water or in leaching by acid solution are shown in Table (7).

Table (7). Contents of washing by Tap water and leaching by acid

solution experiment.

	lution experiment.	6 .6
S.No	Type	Specification
I.	Lithology of sample	Shale deposit
2.	Bulk Density of sample	1.6 g/cm ³
3.	Weight of sample	1 kg
4.	Volume of sample	625 cm ³
5.	Particle size	1 cm (10 mm)
6.	Height of the sample in the column	17.2 cm
7.	Number of column	6 column
8.	Material of column	PVC
9.	Height of the pebbles as a filter at the	About 3-5 cm
	bottom of column	
10.	Pattern of the leaching	Heap
11.	Solid / liquid ratios	1: 1, 1: 2 and 1: 3
12.	Type of processes	1- washing by tap water.
		2- Leaching by sulfuric acid
		solution (H ₂ SO ₄)
13.	Concentrations of acid leaching solution	1- 2% or 20 g/L
	Concentrations of actual consequences	2- 5% or 50 g/L
14.	Concentrations of the poisonous elements in the	1- Uranium = 167 mg kg ⁻¹
	sample (Abu Thora Atw-8)	2- Copper = $6160.5 \text{ mg kg}^{-1}$
	Section Commence of the commen	3- Zinc = $3826.4 \text{ mg kg}^{-1}$
		4- Chloride = 19000 mg kg ⁻¹

4.2.1. The washing by tap water process.

The washing process was carried out using 400 mL of tap water , column with the specifications mentioned associated with Tables (8.9,10,11,12 and 13)

Data presented in Table 8 and illustrated graphically in Figs. (7and8) reveal that the first outlet sample has 112.21 Cl g/L, while the last sample has 1.10 Cl g/L. The total washed Cl was 13.32g, thus the efficiency of Cl washing was 70.10%. Neither Cu nor Zn was detected in the outlet during washing this column. On the other hand, the first outlet sample showed a concentration of 2.02 mg U L⁻¹, while the last one showed 2.5 mg U L⁻¹. The efficiency of U washing was 0.50%. The Cl contents in the leachate of column (1) during the successive washing processes Nos.1,2,3 and 4 were 11.22, 1.80, 0.19and 0.11 g, respectively. The corresponding U contents were 0.20, 0.20, 0.20and 0.25 mg, respectively.

Table (8). Effect of washing by tap water on CI', U, Cu and Zn contents in the successive water leachates (column No. 1) of the shale deposit.

	Sprin	kling s	Sprinkling solution				Th	e water lea	The water leachate (pregnant solution)	nant solu	tion)			
;						4	Chloride	ride	Uranium	ium	Col	Copper	Z	Zinc
S.No.	Type	> .	R ₁ ,	\ , 2,	Hd	K ₂ ,	Cont.	/0 JJ J	Cont.,	Eff %	Cont.,	Fff %	Cont.	Eff %
		E .	ml/min	TEI .		ml/min	(g)	EII., %	(mg)	LII., /8	(mg)		(mg)	
1 st				100	7.86	0.25	11.22		0.20		II.N		II.N	
2 nd	ater	(ς' Ι	100	7.97	0.30	1.80	%]	0.20	%:	īZ	li	N:I	lii
3.rd	em de j	700	- 0. I	100	8.11	0.25	0.19	1.07	0.20	\$:0	Nii	N	Nii	N
4 th	Ĺ			100	8.25	0.25	0.11		0.25		N		Z	
							13.32		0.86					
S	.No. =	= Ser	ial Num	iber (of the	S.No. = Serial Number of the leachate.	9,							
_	T = 1	otal	volume	of sp	rinkli	$V_1 = Total volume of sprinkling solution$	ion		Cont.	= Content	ntent			
_	$r_2 = V$	olum	$V_2 = Volume of washing sample$	shing	g saml	əle			Hd	Hd =	of the	= pH of the water leachate	leacha	te

$$V_2 = Volume of washing sample$$

$$R_2$$
 = Rate of leachate flow out of the column

Results and Discussion

 $R_1 = Rate \ of \ sprinkling \ solution$

Eff.% = Efficiency

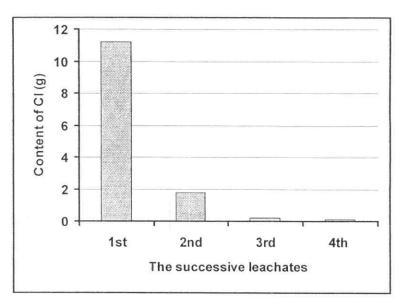


Fig. (7): CI contents in the successive tap water leachates through column No. 1

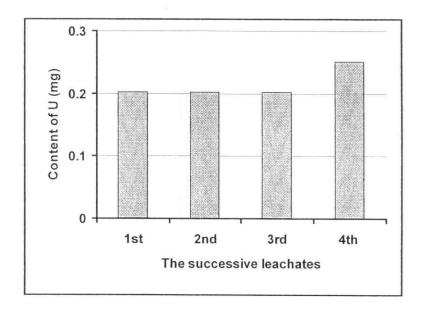


Fig.(8): U contents in the successive tap water leachates through column No. 1

In the column No. 2 which illustrated by Table 9 and Figs. (9 and 10) the concentration of Cl in first leachate sample was 97.1 g/L, while concentration of Cl in the last one was 1.3 g/L. The efficiency of Cl washing was 57.89%. Neither Cu nor Zn was presented in the outlet during washing in this column. Also, concentration of U in the first leachate was 2.02 mgUL⁻¹, while the corresponding concentration in the last one was 3.03 mgUL⁻¹. The efficiency of U washing was 0.66%. The chloride contents in the successive leachates of column (2) during the washing processes Nos.1,2,3and 4 as presented in Table(9) and illustrated by Fig(9and10) were 9.71, 0.94, 0.22 and 0.13, respectively, while the corresponding U contents were 0.20, 0.30, 0.30 and 0.30 mg, respectively.

Table (9). Effect of washing by tap water on Cl-, U, Cu and Zn contents in the successive water leachates (column No. 2) of the shale deposit.

	Zinc) EII., %			N		
		Cont.	(mg)	iz	Z	ïZ	ž	
	Copper	/0 JJ J	E11., 70		li	N		
ion)	ပိ	Cont.,	(mg)	Nii	ii Z	Z	II.N	Telephological Communication of the Communication o
The water leachate (pregnant solution)	mı	70 JJ I	E11., 70		%9	99.0		The second secon
hate (preg	Uranium	Cont.,	(mg)	0.202	0.303	0.303	0.303	The second second
vater leac) 70 JJ					0	THE REAL PROPERTY OF THE PERSON NAMED IN
The v	Chloride	E##	EII.		701	9.72		
	Ch	Cont.	(g)	9.71	0.94	0.22	0.13	NEWSTRANSPORTSTONE SERVICE SER
	ŭ	ml/min		0.40	0.43	0.63	0.55	NAME OF TAXABLE PARTY OF TAXABLE PARTY.
		Hd		6.91	7.40	7.39	7.70	
	Ň	5 E		100	100	100	100	
Sprinkling solution	×	ml/min			S.I -	- 0.1		
kling s	>	. TE			00)†		
Sprin		Type			water	Tap		
	S.No.			1 st	2 nd	314	4 th	

See footnote Table (8).

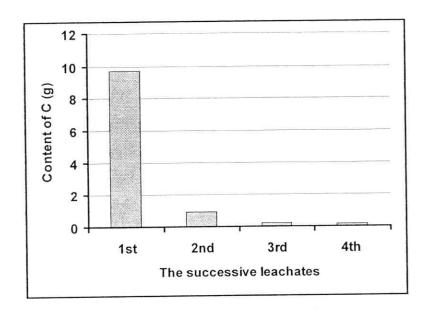


Fig. (9) CI contents in the successive tap water leachates through Column No. 2.

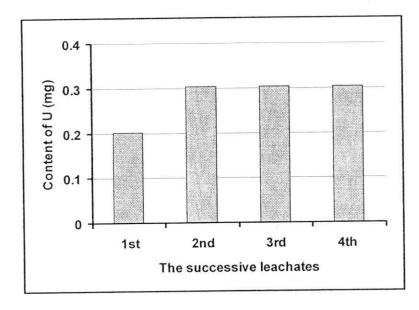


Fig. (10) U contents in the successive tap water leachates through column No. 2

Table 10 and Figs. (11 and 12) represent values of both Cl and U in the tap water leachate from column No. 3. The concentration of Cl in the first leachate was 123.74 g/L, while its concentration in the last one was 0.62 g/L. The efficiency of Cl washing was 68.31%. Neither Cu nor Zn was present in the outlet during washing in this column. Also, concentration of U in the first leachate was 3.03 mgUL⁻¹, while the corresponding concentration in the last one was 4.04 mgUL⁻¹. The efficiency of U washing was 0.86%. The chloride contents in successive leachates of column (3) during the washing processes Nos.1,2,3 and 4 were 12.37, 0.48, 0.40 and 0.40mg, respectively. Figs. (11 and 12) illustrate the relationships between the successive tap water leachates and their corresponding contents of Cl and U, respectively. It could be detected from these figures that while Cl content tended to decrease by increasing number of leachate, the opposite was true for U whose content increased with increasing number of leachate.

Table (10). Effect of washing by tap water on Cl-, U, Cu and Zn contents in the successive water leachates (column No. 3) of the shale deposit.

	Spri	Sprinkling solution	olution				TF	ne water le	achate (p	The water leachate (pregnant solution)	lution)			
N N		:	6	1		D	ChI	Chloride	Ura	Uranium	ပိ	Copper	Z	Zinc
3.110.	Type	· ·	. K.,	٧2,	hф		Cont.	70 30 11	Cont.,	/0 JJ J	Cont.,	D# 0%	Cont.	70 Ltt. 0%
	Y	Ē	mm/lm	Ē		mi/min	(g)	EII., %	(mg)	E11., 70	(mg)	EII., 70	(mg)	LII., 70
l st				100	8.9	0.35	12.37		0.30		īž		ΪŽ	
2 nd	ater	0	č.I	100	7.34	0.40	0.48	%I	0.33	%9	īž	Į!	i.Z	Į!!
3rd	w qsT	07	- 0.1	100	7.7	0.45	0.07	£.89	0.40	8.0	ïZ	N	Z	N
4 th				100	7.8	0.45	0.06		0.40		Nil		Nil	
							12.98		1.43					

• See footnote Table (8).

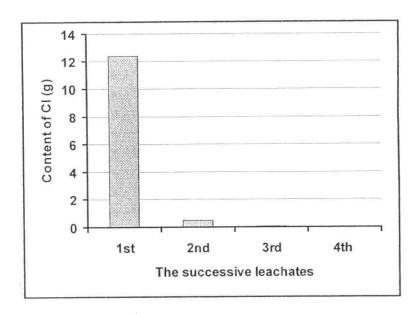


Fig. (11): Cl contents in the successive tap water leachates through column No. 3.

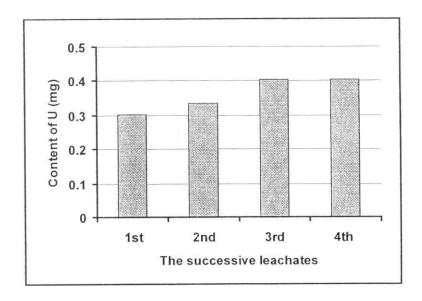


Fig. (12): U contents in the successive tap water leachates through column No. 3.

In the column No. 4, Table 11 and Figs. (13 and 14), the concentration of CI in first leachate was 97.30 g/L, while in the last one it was 0.9 g/L. The efficiency of CI washing was 66.6% Neither Cu nor Zn was present in the outlet during washing in this column. Also, concentration of U in the first leachate was 2.02 mgUL⁻¹, while the corresponding concentration in the last leachate sample was 3.03 mgUL⁻¹. The efficiency of U washing was 0.54%. The CI contents in the successive leachate of column (4) during washing processesNo.s.1,2,3and 4 were 9.73, 2.29, 0.54 and 0.09g, respectively, while the corresponding U contents were 0.20, 0.20, 0.20 and 0.30 mg, respectively. Figs. (13 and 14) illustrate that both CI and U contents although followed different patterns with increasing number of leachate, yet these patterns were ,to a great extent, similar to those achieved in columns Nos.1,2 and3.

Table (11). Effect of washing by tap water on Cl-, U, Cu and Zn contents in the successive water leachates (column No. 4) of the shale deposit.

	Sprin	ıkling	Sprinkling solution				T	The water leachate (pregnant solution)	achate (pre	gnant solt	ition)			
							Chi	Chloride	Uran	Uranium	Co	Copper	Z	Zinc
S.No.	Type	M_1,	R ₁ , ml/min	V ₂ ,	Нф	R ₂ , ml/min	Cont.	Eff., %	Cont., (mg)	Eff., %	Cont., (mg)	Eff., %	Cont. (mg)	Eff., %
1 st				100	6.25	0.30	9.73		0.20		Nii		ΙΝ̈́	
2 nd	ater	0	S. I	100	6.82	0.35	2.29	%9	0.20	%t	N III	ſi	Nii	I!
3 rd	w qsT	001	- 0.1	100	7.12	0.45	0.54	1.99	0.20	۶°0	ΞZ	N	Ξ̈́	N
4 th				100	6.5	0.45	60.0		0:30		Z		Nii	
							12.65		06.0					
						September 1	Name of Street, or other Persons in case of the last o		Principle of the last of the l					

• See footnote Table (8).

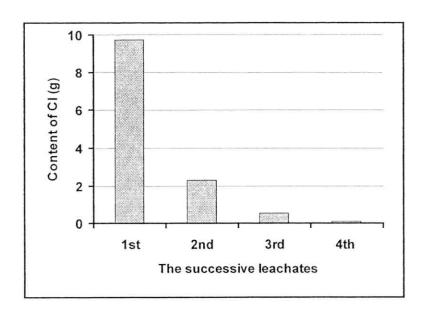


Fig.(13): Cl contents in the successive tap water leachates through column No. 4.

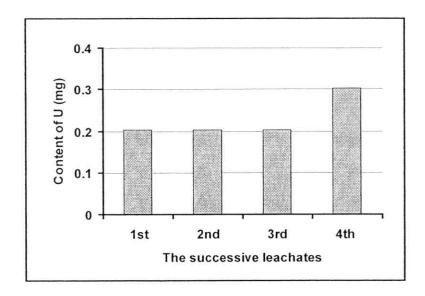


Fig. (14): U contents in the successive tap water leachates through column No. 4.

Data presented in Table 12 and illustrated graphically by Figs.(15and16) reveal that Cl content of first leachate was 5.8 g while that of the last leachate was 0.08 g. These Cl contents correspond Cl concentration in first leachate of 58.07 g/L, and Cl concentration of the last leachate of 0.8 g/L. The efficiency of Cl washing was 65.73%. Neither Cu nor Zn was present in the outlet during washing in this column. Also, U content of the first leachate was 0.20mg while the corresponding content of the last leachate was 0.30mg. These contents correspond to U concentration of 2.02 mgUL⁻¹ in the first leachate and U concentration of 3.03 mgUL⁻¹ in the last leachate. The efficiency of U washing was 0.55%. The Cl contents in the successive leachates of column (5) during the washing processes Nos.1,2,3and4 were 5.80, 2.73, 3.87 and 0.08g, respectively, while the corresponding U contents were 0.20, 0.20, 0.20 and 0.30mg, respectively. Figs. (15 and16) illustrate the relationships between No of the successive tap water leachate contents of Cl and U and the successive tap water leachates through column No.5.

Table (12). Effect of washing by tap water on Cl-, U, Cu and Zn contents in the successive water leachates (column No. 5) of the shale deposits.

	Sprin	kling s	Sprinkling solution				The	The water leachate (pregnant solution)	hate (pre	gnant sol	ution)			
							Chlo	Chloride	Ura	Uranium	Co	Copper	Z	Zinc
S.No.	Type	> 1	R ₁ ,	V ₂ ,	Hd	R ₂ ,	Cont		Cont		Cont.,	70 J.J.	Cont.	Eff %
		III	ulm/im	Ē	•		(g)	Eff., %	(mg)	Eff., %	(mg)	Litt., 70	(mg)	LALL:, 70
1 st				100	6.22	0:30	5.80		0.20		NII		II N	
2 nd	o water	001	¿.1 − (100	6.38	0.35	2.73	%£L`\$	0.20	%ES'(Zin	I!N	Nii	IJN
3rd	leT).1	100	7.24	0.40	3.87	9	0.20	0	NiiN		Nii	
4 th				100	7.30	0.45	80.0		0.31		Nii		Nii	
							12.49		06.0					
								1						

• See footnote Table (8).

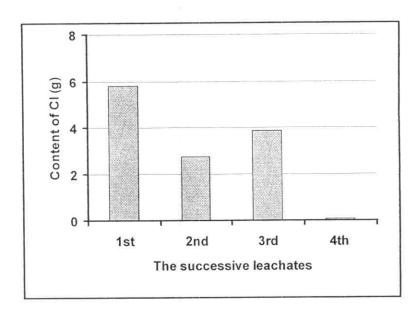


Fig. (15): Cl contents in the successive tap water leachates through column No. 5.

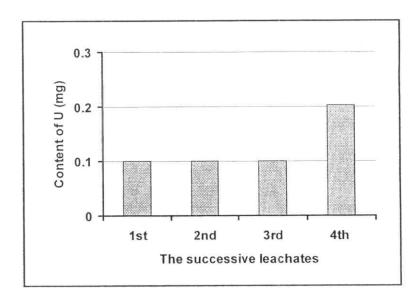


Fig. (16): U contents in the successive tap water leachates through column No. 5.

Similar to what occurred upon leaching of column No.5 with the tap water, leaching column No.6 with this water caused Cl content to be 9.41 g in the first leachate whereas it decreased it in the last leachate to 0.11 g. (Table 13 and Figs., 17 and 18). The corresponding Cl concentration of the first leachate was 94.10 g/L, while the concentration of Cl in the last leachate was 1.10 g/L. The efficiency of Cl washing was 59.58%. Neither Cu nor Zn was present in the outlet during washing in this column. Also,U concentration in the first leachate was 1.01 mgUL⁻¹, while the corresponding concentration the last leachate sample was 2.02 mgUL⁻¹. The efficiency of U washing was 0.42%. The Cl contents in successive leachates of the column No. (6) during the washing processes Nos.1,2,3 and 4 were 9.41, 1.405, 0.396 and 0.11 g, respectively, while the corresponding U contents were 0.101, 0.202, 0.202 and 0.202 mg, respectively. Figs. (17 and 18) illustrate the relationship between the Nos.of successive tap water leachates and the corresponding contents of each of Cl and U, respectively.

Table (13). Effect of washing by tap water on Cl-, U, Cu and Zn contents in the successive water leachates (column No. 6) of theshale deposit.

	Sprir	ıkling	Sprinkling solution				The	water lead	chate (pr	The water leachate (pregnant solution)	ution)			
SN S		;					Chlc	Chloride	Ura	Uranium	သိ	Copper	Z	Zinc
S.140.	Type	> E	R ₁ ,	\ 2,	Hd	R ₂ ,	Cont.		Cont		Cont.,	/0 JJ I	Cont.	70 JJ 11
							(g)	Eff., %	(mg)	Eff., %	(mg)	E11., %	(mg)	EII., 70
1 st				100	6.36	0.25	9.41		0.10		ΞΞ		ΞZ	
2 nd	vater	00	2.1	100	3.14	0.30	1.40	%7	0.20	%7	ïZ	[!	īz	1!
3 rd	7 qsT	0t	- 0. I	100	6:39	0.35	0.39	5.65	0.20	Zt'0	Z	N	Ē	N
4 th				100	68.9	0.35	0.11		0.20		Nii		Z	
							11.31		0.70					

• See footnote Table (8).

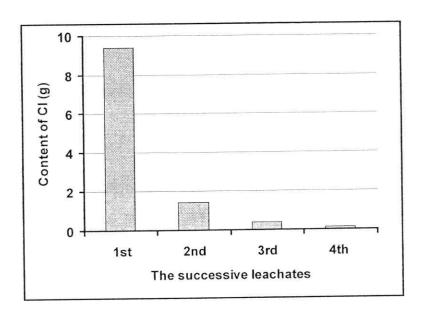


Fig. (17): Cl contents in the successive tap water leachates through column No. 6.

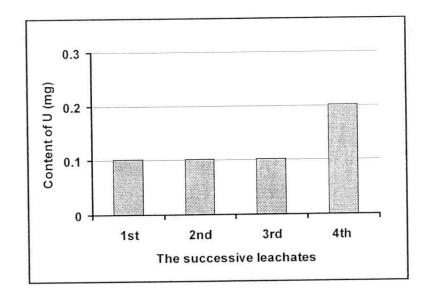


Fig. (18): U contents in the successive tap water leachates through column No. 6.

4.2.2. The leaching by H2SO₄ process.

The leaching process by sulfuric acid was carried out on the six columns which were pre-washed with tap water as mentioned before. On these columns, sulfuric acid was used at different solid/liquid ratios and different acid concentrations:

Data present in Table 14 and illustrated graphically in Figs. (19) and (20) reveal that usage of H2SO₄ acid at a ratio 1:1 and concentration of 2% was conducted downwards through column No.1 under the conditions presented in Table (14). The leach-liquor was collected five times, each of 200 mL volume. The U, Cu, Zn, Cl were measured in each volume, separately. Chloride leaching efficiency was 4.74%, while these of U, Cu and Zn were 1.7, 0.0015 and nile%, respectively.

The Cl contents in the leachates no.s.1,2,3and4 for column (1) were 0.158, 0.04, 0.024, 0.024 and 0.024 g, respectively. The corresponding U contents were 0.504, 0.504, 0.606, 0.606 and 0.606 mg, respectively.

Table (14). Effect of leaching by sulfuric acid at a concentration 2% and solid/liquid ratio of 1:1 on the successive acid leachate (column No. 1) of the shale deposit.

Chemical analysis of sample: - Concentration of total chloride in the residual part = 5.630 g/kg.
- Concentration of total uranium in the residual part = 166.04 mg kg⁻¹

		Sprinkling solution	solutic	nc				The ac	id leacha	The acid leachate (pregnant solution)	nant solu	rtion)			
		Conc.						Chloride	ide	Uranium	inm	Copper)er	Zinc	ပ
0.100	Type	of H,SO.	> E	R _l ,	V ₂ ,	hH	R ₂ ,	Cont.	Eff.	Cont	Eff.	Cont.,	Eff.,	Cont.	Eff.,
		g/L						(g)	%	(mg)	%	(mg)	%	(mg)	%
lst	uc				200	7.71	0.30	0.15		0.50		Nii		Nii	
2 nd	oitulos			ς	200	2.88	0.35	0.04		0.50	9	Nii	9/	ΞΞ	
3rd	seid:	07	1000	.1 – 0.	200	2.01	0.25	0.02	%tt`t	09.0	%89°1	0.05	65 I 00	Ξ̈́Z	Ι!N
4 th	oiruìl			I	200	1.88	0.30	0.02	7	09.0		0.04	.0	Ξ̈́Z	
5 th	ıs				200	1.85	0.30	0.02		09.0		Nil		Nii	
								0.25		2.8		60'0			
S > 1 > 8	No. = Se $ \begin{array}{l} \text{No.} = \text{Se} \\ \text{I} = \text{Total} \\ \text{I}_1 = \text{Rate} \\ \text{I}_2 = \text{Volum} \\ \text{I}_3 = \text{Rate} \\ \text{I}_4 = \text{Rate} \\ \text{I}_5 = \text{Rate} \\ \text{I}_6 = \text{Rate} \\ \text{I}_7 = \text{Rate} $	S.No. = Serial Number of the leachate. V ₁ = Total volume of sprinkling solution R ₁ = Rate of sprinkling solution V ₂ = Volume of leached sample R ₂ = Rate of leachet flow out of the column	sr of the sprinkl ng solu ed samp	e leachate. ing solution ition ple	r H		Con	Conc., = Concentration	ntration		Cont.	Cont. = Content pH = pH of the leachate Eff.% = Efficiency	a achate y		

Results and Discussion

64

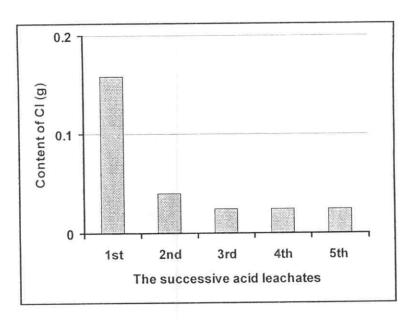


Fig. (19): Contents of Cl in the successive acid leachates (S/L ratio 1:1 and concentration 2%), Column No. 1

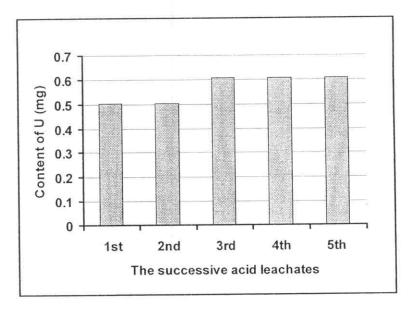


Fig. (20): Contents of U in the successive acid leachates (S/L ratio 1:1 and concentration 2%), Column No. 1

Data presented in Table (15) and illustrated graphically by Figs. (21, 22, 23 and 24) show effect of leaching by H2SO₄ acid at a ratio of 1:2 and concentration of 2% through column No.2 under the conditions presented in Table (15) on the contents of Cl , U, Cu and, Zn in the successive acid leachates. The leachliquor was collected ten times each of which is of 200 mL volume. The U , Cu , Zn Cl were measured in each volume separately.

Chloride leaching efficiency was 3.51% while those of U, Cu and Zn were 77.35, 5.34 and 33.37%, respectively.

The CI contents in the leachates Nos.1,2,3 and 4 for column (2) were 0.066, 0.052, 0.016, and 0.052g.In the leachates from No. 5 to No.10 the obtained values were almost costant and equal 0.016g, respectively. The corresponding U contents were 0.404, 0.404, 1.41, 1.41, 0.808, 3.03, 20.60, 45.36, 40.0 and 15.75mg, respectively. Also, the Cu contents in leachates No.1 to10 were 0.078, 0.108, 0.208, 0.1050.147, 4.916, 57.30, 188.72, 40.94and 37.04mg,respectively. The corresponding Zn content was nil in sample No.1 to sample No.5, contents were ,186.19,451.14,302.7,182.01and 154.9mg Zn in leachates of Nos. 6 to 10, respectively. The aforementioned results illustrate that Cl content tended to decrease sharply by progressing leaching by sulfuric acid to an almost content of about 0.016 g. The content of U in the successive leachates took another pattern since it tended to increase by progressing leaching. The former pattern can be explained on the basis of leachability of Cl whether by water or acid. U compounds, on the other hand ,might interacted with sulfuric acid whose effect become more pronounced by progressing leaching.

Table (15). Effect of leaching by sulfuric acid at a concentration 2% and solid/liquid ratio of 1:2 on the successive acid leachate (Column 2) of the shale deposit.

- Concentration of total chloride in the residual part = 7.95g/kg. * Chemical analysis of sample:

- Concentration of total uranium in the residual part = $165.78 \text{ mg kg}^{-1}$. - Concentration of total Copper in the residual part = $6160.5 \text{ mg kg}^{-1}$.

= 3876 4 ma ba-1 Concentration of total Zinc in the recidinal nart

				forder a	I		- Carlon	(1) S. C.	AZIT.	- 100	1.672	A SECTION	e se ta pi	D. Warrison	mercen
		0	Eff.,	%					9/	6LE	33.				1276.94
lg Kg		Zinc	Cont.	(mg)	ïZ	ijZ	īZ	Nii	II.N	186.19	451.14	302.70	182.01	154.9	127
= 3826.4 mg kg		er	Eff.,	%					(%†8	ζ				
	olution)	Copper	Cont.,	(mg)	0.078	0.108	0.208	0.105	0.147	4.916	57.30	188.72	40.94	37.04	329.59
anal par	egnant so	ium	Eff.,	%				•	(%6	LL				
the resid	The acid leachate (pregnant solution)	Uranium	Cont.,	(mg)	0.40	0.40	1.41	1.41	0.2	3.03	20.60	45.36	40.0	15.75	129.17
Zinc in	e acid lea	Chloride	Eff.,	%					(%LL	3.5		•		
or total	The	Chlc	Cont.	(g)	90.0	0.05	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.02	- Contract of the Contract of
 Concentration of total Zinc in the residual part 			R ₂ ,		0.45	0.54	0.51	0.50	0.45	0.51	0.51	0.50	0.50	0.50	0.3
- Conc			Hd		7.54	7.67	8.16	8.10	7.74	6.79	4.32	4.16	3.89	3.80	
			V ₂ ,		200	200	200	200	200	200	200	200	200	200	
	on		R_1 ,						ς.	I –	0. I				
	g soluti		> - <u>s</u>	=						000	7				
	Sprinkling solution	Conc.	of CS H	1123O4 g/L						07					
	•		Type				t	ıoitı	ilos	bio	ric a	nJluS			
		į	S.No.		lst	2 nd	3.rd	4 th	5 th	9 e _{th}	7 th	8 _{th}	9 th	10 th	

See footnote Table (14).

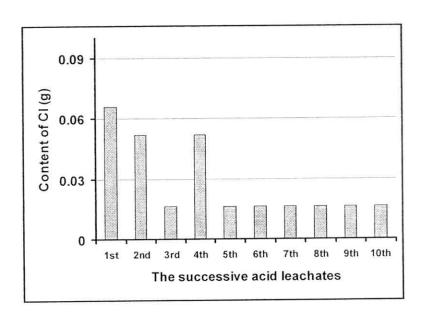


Fig. (21) Contents of CI in the successive acid leachates (S/L ratio 1:2 and concentration 2%), Column No. 2.

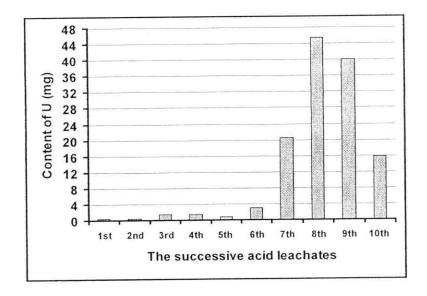


Fig. (22) Contents of U in the successive acid leachates (S/L ratio 1:2 and concentration 2%), Column No. 2.

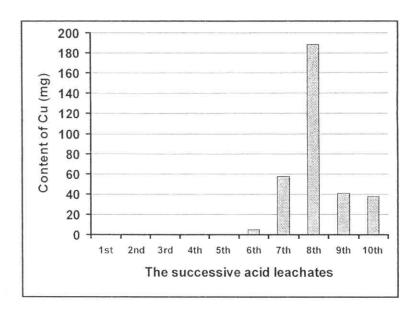


Fig. (23) Contents of Cu in the successive acid leachates (S/L ratio 1:2 and concentration 2%), Column No. 2.

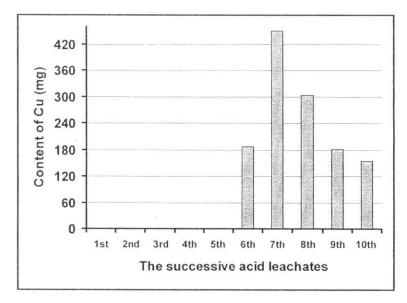


Fig. (24) Contents of Zn in the successive acid leachates (S/L ratio 1:2 and concentration 2%), Column No. 2.

Data presented in Table (16) and illustrated graphically in Figs. (25,26,27 and28) reveal that usage of H2SO₄ acid at a ratio of 1:3 and concentration 2% for washing the shale deposit downwards column No.3 caused various contents of U, Cu, Zn and Cl in each washing volume. The efficiency of leaching these elements ,therefore, varied widely Chloride leaching efficiency for example was 10.16%, while those of U, Cu and Zn were 86.22, 35.74 and 47.76%, respectively.

The Cl content in the leachates of column (3) were 0.12, 0.12, 0.09, 0.07, 0.06, 0.04, 0.024, 0.024, 0.024, 0.024, 0.01, 0.01, 0.01, 0.01, 0.01 and 0.01g from sample No. 10 to sample 15 respectively. The corresponding U content were 0.808, 1.01, 1.1, 1.61, 2.22, 1.01, 1.81, 4.04, 4.04, 29.29, 22.3, 14.14, 10.50, 7.67 and 4.84mg, respectively.

The corresponding Cu content were 0.380, 0.694, 0.766, 1.46, 1.662, 0.26,0.220,1.87,78,37.52,261.84,456.0,457.52,455and453.6mg, respectively ,aswellas6.89, 8.35 ,2.93 ,7.32 ,9.12 ,7.01 ,22.25 ,440.8 ,411.23 ,301.12 ,144.14 ,132.76,126.59,93.0 and 76.0 mg ,for the Zn contents in this column ,respectively. The aforementioned results indicated to the higher efficiency of extraction U by Sulfuric acid at aconcentration of 2% and a ratio of 1:3 Solid/liquid than the other stuied toxic elements.

Table (16). Effect of leaching by sulfuric acid at a concentration 2% and solid/liquid ratio of 1:3 on the successive acid leachate (Column 3) of the shale deposit.

Concentration of total chloride in the residual part = 5.94 g/kg. Chemical analysis of sample:

- Concentration of total uranium in the residual part

		Sprinkling solu	Infion					The	neid leacha	The acid leachate (pregnant solution)	nt solutie	011)			
		and Samuel Market					c	Chle	Chloride	Uranium	nm	Copper	er	Zinc	
N. NO.	Tvpe	Conc. of H ₂ SO ₄	>	χ.	V ₂ ,	Hd	K2,	Cont.	/0 33.4	Cont.,	Eff.,	Cont.,	Eff.,	Cont.	Eff.,
		g/L	m	ml/min	Ē		mi/min	(g)	EII., 70	(gu	%	(gm)	%	(mg)	%
İst					200	7.5	0.40	0.12		808.0		0.380		68.9	
pu 6					200	2.72	0.40	0.12		1.01		0.694		8.35	an une
3 Er					200	1.86	0.50	60.0		-		0.7660		2.93	
4th					200	7.2	0.50	0.07		1.61		1.460		7.32	
5 th	ı				200	7.13	0.40	90.0		2.22		1.662		9.12	
6 th	noim				200	7.73	0.38	0.04		1 01		0.26		7.01	
7th	los l		Įτα	S.1	200	89.9	0.50	0.024	%	1.81	%7	0.220	%6	22.25	%9
8th	oioi	07	00	- (200	5.52	0.38	0.024	٤.0	4,04	ε.9	0.187	L. S	440.8	L. 9
ф6	ic s		30	J. I	200	2.32	0.45	0.024	I	40.4	8	78	ξ	411.23	t
10th	ınj				200	2.69	0.50	0.01		29.29		37.52		301.12	
11th	Ins				200	2.12	0.40	0.01		22.3		261.84		144.14	
12 th					200	2.19	0.40	0.01	-	14.14		456.0		132.76	
13 th					200	3.5	0.40	0.01		10.50		457.52		126.59	
14 th				-	200	3.5	0.40	0.01		7.67		455		93.0	
15 th					200	3.5	0.40	0.01		4.84		453.6		76.0	
	Comment to provide the same		THE PERSON NAMED IN COLUMN NAM					0.613		142 74		22051		1789.	

See footnote Table (14).

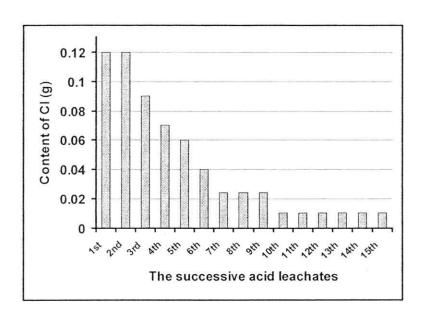


Fig. (25) Contents of Cl in the successive acid leachates (S/L ratio 1:3 and concentration 2%), Column No. 3

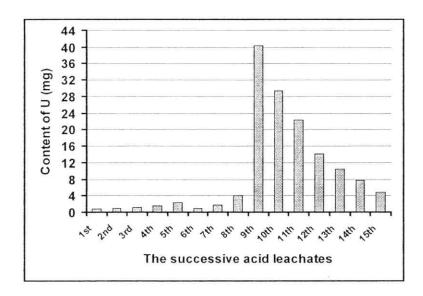


Fig. (26)Contents of U in the successive acid leachates (S/L ratio 1:3 and concentration 2%), Column No. 3

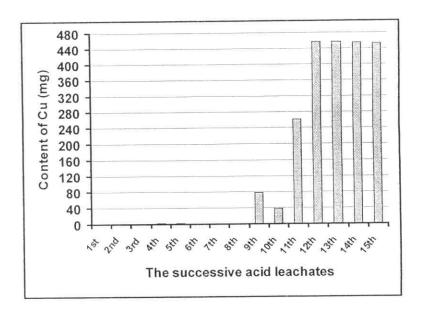


Fig. (27) Contents of Cu in the successive acid leachates (S/L ratio 1:3 and concentration 2%), Column No. 3.

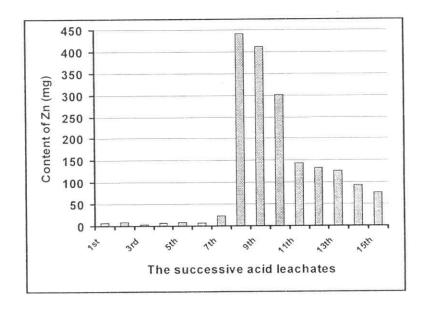
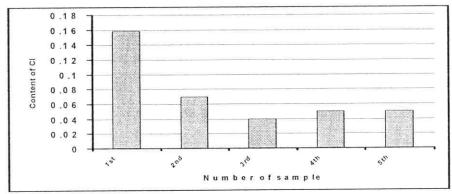


Fig. (28) Contents of Zn in the successive acid leachates (S/L ratio 1:3 and concentration 2%), Column No. 3

The procedure was carried out for other three columns, with 5% H2SO₄acid concentration.

Data presented in Table (17) and illustrated graphically in Figs. (29,30 and 31) reveal that leaching the shale deposit in column No.4 by H2SO₄ acid at a ratio of 1:1 and a concentration of 5% under the conditions presented in Table (17) resulted in different contents of U, Cu, Zn and Cl in each 200 mL collected leachliqure. As a final product of the successive leaching, chloride leaching efficiency was 3.31% while those of U, Cu and Zn were 8.73, 0.032 and nil%, respectively.

The CI contents in the five leachates of column (4) were 0.158, 0.07, 0.04, 0.05 and 0.05g, respectively. The corresponding U contents were 0.606, 6.86, 0.70, 1.07 and 11.51 mg, respectively while those of Cu were 0.28, 0.17, 504, 0.36 and 0.62 mg, respectively. These results indicate that sulfuric acid at a concentration of 5% and a solid/liquid ratio of 1:1 was not quite enough for extracting the poisonous elements out of the used shale deposit sample.


* Chemical analysis of sample:

- Concentration of total chloride in the residual part = 6.24~g/kg. - Concentration of total uranium in the residual part $= 166.01~mg~kg^{-1}$ - Concentration of total copper in the residual part $= 6160.5~mg~kg^{-1}$

- Concentration of total zinc in the residual par = 3826.5 mg kg-1

		Sprinkling solution	solutie	no				The ac	id leach.	The acid leachate (pregnant solution)	nant sol	ution)			
		Conc.		В.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		B.	Chlc	Chloride	Uranium	nium	Copper	per	Zinc	nc
S.INO.	Туре	of 11 SO	> [5 -	hЧ	17.25	Cont.	Eff.,	Cont.,	Eff.,	Cont.,	Eff.,	Cont.	Eff.,
		H2504 g/L		шшиш	Ī		11111/1111	(g)	%	(mg)	%	(mg)	%	(mg)	%
lst					200	5.32	0.45	0.15		09.0		0.28		Z	
2 nd				ς	200	5.15	0.40	0.07	(89.0	(0.17	¢	Nii	
3rd	ric a	0\$	000	.1 –	200	2.63	0.40	0.04	%9L	0.70	%EL	0.50	%£0	I.Z	I!N
4 (1)	os nying	č	ı	0·I	200	3.55	0.40	0.05	.ς	1.01	.8	0.36	0	N. I.S.	
Sth	S				200	3.38	0.40	0.05		11.51		0.62		Z	
				AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS				0.36		14.51	and the second second	1.93		ïZ	

See See footnote Table (14).

(29) Contents of Cl in the successive acid leaching (solid/liquid ratio 1:3 and acid concentration 5%) column No. 4.

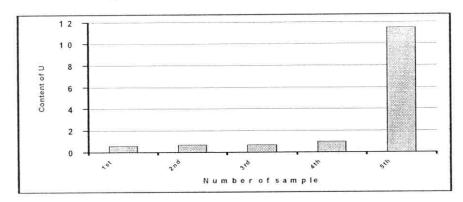


Fig. (30) Contents of U in the successive acid leaching (solid/liquid ratio 1:3 and acid concentration 5%) column No. 4.

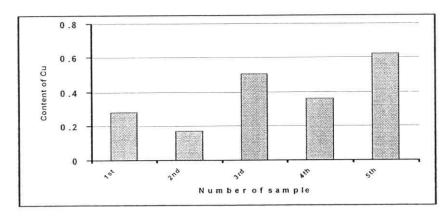


Fig. (31) Contents of Cu in the successive acid leaching (solid/liquid ratio 1:3 and acid concentration 5%) column No. 4.

Data presented in Table (18) and Figs. (32,33,34 and 35), reveal the effect of leaching by H2SO₄ acid at ratio of 1:2 and concentration 5% on extraction of the poisonous elements out of the shale deposit placed in column No.5 under the condition presented in Table (18). The leachliquir was collected ten times each of 200mL volume. The U, Cu, Zn and Cl were measured in each volume separately. Chloride leaching efficiency was 13.76%, while those of U, Cu and Zn were 71.98, 62.48 and 47.09%, respectively. The Cl contents in column (5) during leaching processes Nos.1to10 were 0.16, 0.142, 0.138, 0.106, 0.09, 0.06, 0.05, 0.05, 0.05 and 0.05 g, respectively. The corresponding U contents were 0.62, 0.79, 1.01, 1.41, 37.16, 23.02, 25.04, 16.06, 8.08 and 6.26 mg, respectively, Also, the Cu contents were 0.064, 0.11, 0.48, 0.256, 80.77, 529.46, 1080.2, 880.42, 707.6 and 570.0 mg, while the corresponding contents of Zn were nil, nil, nil, 17.158, 627.84, 469.24, 235.92, 170.0, 137.33 and 144 mg, respectively. It is obvious, generally, that in spite of usage of the same concentration of sulfuric acid, yet increasing the solid/liquid ratio to 1:2 caused the efficiency of the extraction process to increase as compared with the solid /liquid ratio of 1:1 Such a finding might by attributed to providing conditions more suitable for extraction of the studied elements by increasing amount of the applied acid.

Table (18). Effect of leaching by sulfuric acid at a concentration 5% and solid/liquid ratio of 1:2 on the successive acid leachate (Column 5).

- Concentration of total chloride in the residual part * Chemical analysis of sample:

- Concentration of total chloride in the residual part = 6.35 g/kg. - Concentration of total uranium in the residual part $= 165.88 \text{ mg kg}^{-1}$.

	0	Eff.,				%	60'	Lt					
	Zinc	Cont. (mg)	ΞZ	ΞZ	Nii	17.158	627.84	469.24	235.92	170.41	137.33	144	1801.9
	er	Eff.				%	81.	79					
ıtion)	Copper	Cont., (mg)	0.064	0.110	0.482	0.256	80.77	529.46	1080.2	880.42	9.707	570.0	3849.4
ant solu	m	Eff.				%9	86	IΖ					
The acid leachate (pregnant solution)	Uranium	Cont., (mg)	0.62	0.79	1.01	1.41	37.10	23.02	25.04	16.16	8.08	6.26	119.55
id leach	ride	Eff.,				%	П.	ÞΙ					
The ac	Chloride	Cont.	0.16	0.14	0.14	0.11	60.0	90.0	0.05	0.05	0.05	0.05	0.89
		R ₂ , ml/min	0.40	0.45	0.50	0.45	0.45	0.45	0.45	0.45	0.45	0.45	
		Hd	7.55	7.20	6.95	2.30	3.98	3.63	3.45	2.34	2.30	2.20	
		V_2 , ml	200	200	200	200	200	200	200	200	200	200	
u		R ₁ , m/min				5.1	-	0.1					
g solutio		V ₁ ,				(000	7					
Sprinkling solution		$_{\mathrm{of}}^{\mathrm{onc.}}$ of $_{\mathrm{H}_{2}}^{\mathrm{SO}_{4}}$					05						
		Туре		uc	oitu	los	biər	s oin	ulli	ns			
		S.No.	1st	2 nd	3rd	4th	S _{th}	ф9	7 th	8 _{th}	_{th} 6	10 th	

• See See footnote Table (14).

Results and Discussion

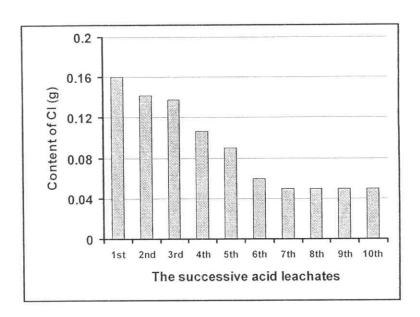


Fig. (32) Contents of CI in the successive acid leaching (solid/liquid ratio 1:2 and acid concentration 5%) column No. 5.

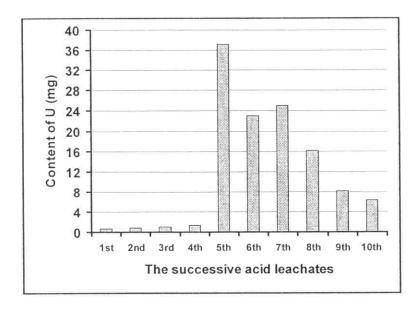


Fig. (33) Contents of U in the successive acid leaching (solid/liquid ratio 1:2 and acid concentration 5%) column No. 5.

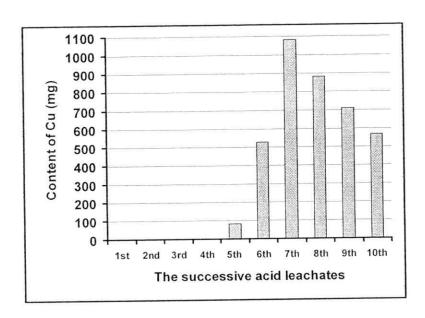


Fig. (34) Contents of Cu in the successive acid leaching (solid/liquid ratio 1:2 and acid concentration 5%) column No. 5.

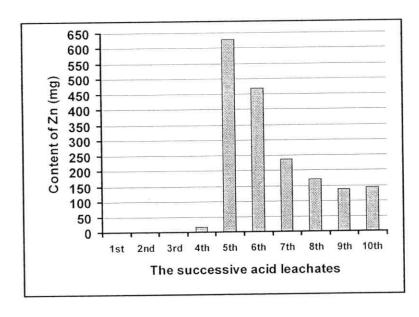


Fig. (35) Contents of Zn in the successive acid leaching (solid/liquid ratio 1:2 and acid concentration 5%) column No. 5.

Effect of H2SO₄ at a concentration of 5% and solid/liquid ratio of 1:3 on extraction of the poisonous studied elements is illustrated by data presented in Table (19) and Figs. (36,37,38 and39). The leachliquor was collected fifteen times, each of 200mL volume and used for measuring the studied poisonous elements. Chloride leaching efficiency was 16.40% Cl. while those of U, Cu and Zn were 83.27, 84.21 and 55.01%, respectively. The Cl contents in the leachates of column No.6 were 0.18, 0.16, 0.14, 0.11, 0.09, 0.07, 0.06, 0.07, 0.07, 0.07 and 0.06g for the leachates No.1 to No.11 and tended to be almost constant of, 0,06 g up to leachate No.15 The corresponding U contents were 0.40 ,0.62 ,0.80 ,1.01 ,1.41 ,4.64 ,40.84 ,27.06 ,18.89 ,10.1 ,8.88 ,8.48 ,6.06 ,4.64 and 4.64 mgvs 0.009 ,0.334 ,0.606 ,0.442 ,0.720 ,3.908 ,644.4 ,915.5 ,562.32 ,592.72 ,665.4 ,456 ,457.4 ,455.1 and 432.52 mg for C, and. Nil, 23.17, 21.98, 5.97, nil, 238.54, 739.2, 270 ,7.17 ,172.08 ,146.1 ,138.02 ,140 ,116 and 87 mg for Zn, respectively. It is of importance to indicate that efficiency of extraction of all the studied poisonous elements increased by increasing the solid/liquid ratio. However, the comparison between the results obtained by acid at a concentration of 2% and those obtained by the same acid but at a concentration of 5% reveal that the former concentration showed higher efficiency values for extraction of uranium while the latter concentration was of higher superiority for extraction of Cl, Cu and Zn

Table (19). Effect of leaching by sulfuric acid at a concentration 5% and solid/liquid ratio of 1:3 on the successive acid leachate (Column 6).

- Concentration of total uranium in the residual part * Chemical analysis of sample: - Concentration of total chloride in the residual part

=7.6g/kg. = $166.09 \text{ mg kg}^{-1}$.

		Eff., %						(%10	.88							
	Zinc	Cont. (mg)	Nii	23.17	21.98	5.97	Nii	23845	739.2	270	7.17	172.08	138.02	140.0	116.0	87	2104.9
	_	Eff., %							%17	778							
ion)	Copper	Cont., (mg)	600.0	0.334	9090	0.442	0.720	3.908	644.4	915.52	562.32	592.72	456	457.4	455.1	432.5	5187.85
nt solut	um	Eff.,							%L7	2.58				1	1		
The acid leachate (pregnant solution)	Uranium	Cont., (mg)	0.404	0.620	0.808	1.01	1.41	4.64	40.84	27.06	18.89	10.1	× × × × × × × × × × × × × × × × × × ×	90.9	4.64	4.64	1385
leachat	ide	Eff.							%0	t.8I							
The acid	Chloride	Cont.	0.18	0.16	0.14	0.11	60.0	0.07	90.0	0.07	0.07	0.07	0.06	90.0	0.06	0.06	1.06
		R ₂ , ml/min	0.45	0.45	0.50	0.50	0.50	0.50	0.45	0.45	0.50	0.50	0.55	0.55	0.50	0.50	Name and Personal
		Hd	7.52	7.42	2.67	2.44	08.9	1.50	2.41	1.81	3.51	3.50	3.42	2.27	2.38	2.35	THE PERSON NAMED IN
		V ₂ ,	200	200	200	200	200	200	200	200	200	200	200	200	200	200	NAMES OF PERSONS
		R ₁ , ml/min							ς.Ι	-0.	I						
	g solution	a,',							Įш	000	٤						200000000000000000000000000000000000000
	Sprinkling solut	Conc. of H ₂ SO₄	g/L							0\$							A CONTRACTOR OF THE PERSON NAMED IN
		Type					uc	oitu	ijos	acid	oinú	Iluč	S				
		S.No.	+01	buc	2 rd	J th	y tp		7th	8 th	oth	THO .	11	12 ^{ui}	th.	15th	3

See See footnote Table (14).

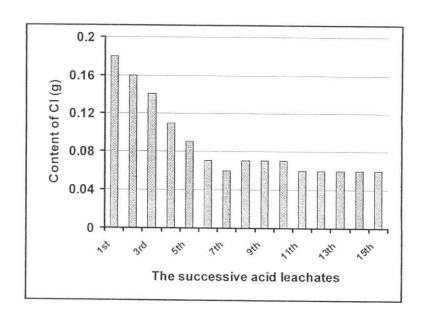


Fig. (36) Contents of CI in the successive acid leaching (solid/liquid ratio 1:3 and acid concentration 5%) column No. 6.

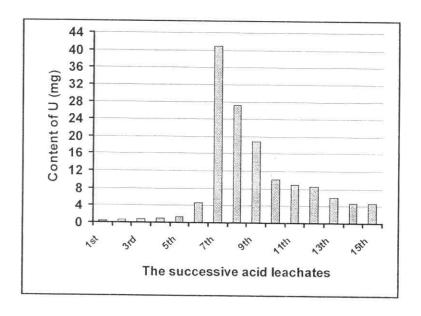


Fig. (37) Contents of U in the successive acid leaching (solid/liquid ratio 1:3 and acid concentration 5%) column No. 6.

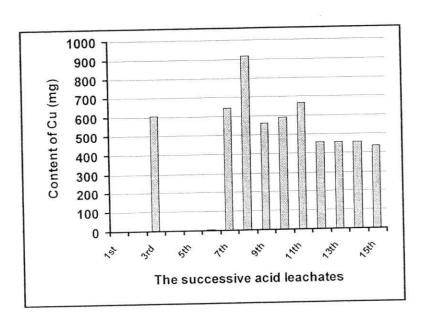


Fig. (38) Contents of Cu in the successive acid leaching (solid/liquid ratio 1:3 and acid concentration 5%) column No. 6.

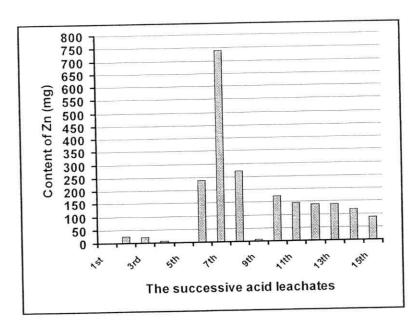


Fig. (39) Contents of Zn in the successive acid leaching (solid/liquid ratio 1:3 and acid concentration 5%) column No. 6

4.3.Effect of H2SO₄ acid concentration and solid: liquid ratio on the mineralogical properties of the shale deposit sample:

X-ray diffraction analysis was undertaken for 6 shale subsamples representing the different acid concentration and solid / liquid ratios.

X-ray diffraction patterns of clay fraction separated from the shale subsamples after being leached using the different acid concentrations and the different solid/liquid ratios are given in Table (20) and Figs. (40, 41, 42, 43, 44 and 45).

Table (20). Semi-quantitative estimation of the clay fraction separated from the studied shale sample.

Conc. of acid leaching	Solid / liquid		Clay minerals%	Ó
solution	ratios	Kaolinite	Illite	Quartz
	1:1	70.0	15.0	15.0
2%	1:2	65.0	12.0	23.0
	1:3	60.0	10.0	30.0
	1:1	69.0	12.0	19.0
5%	1:2	60.0	10.0	30.0
	1:3	57.0	8.0	35.0

Data reveal that kaolinite as a clay mineral dominated among the clay minerals in the studied shale subsamples followed by illite while quartz was the dominant associated mineral.

With regard to effect of the acid concentration and the different solid/liquid ratios, data in Table (20) show that increasing the acid concentration and solid/liquid ratio resulted in decreaseing the percentage of both koalinite and illite minerals. This finding might be due to the effect of the added acid on increasing solubilization of the silicate minerals. While, the

revers was true for quartz, since its percentages tended to increase by increasing both acid concentration and solid/liquid ratio due to its resistant to be weathered under the applied acid concentrations and solid/liquid ratios.on one hand and the relative decrease in percentages of the both kaolinite and on the other one.

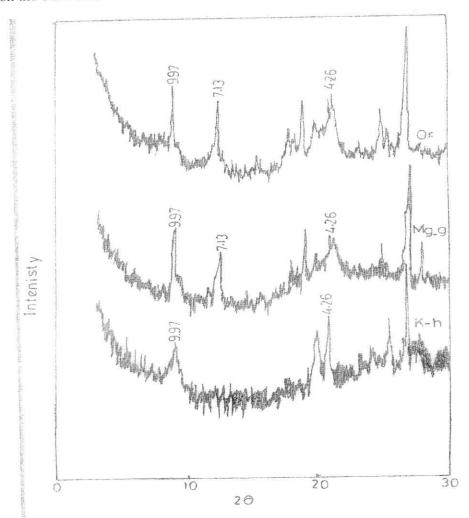


Fig. (40): X-ray diffraction pattern of the clay fraction separated from 2% acid concentration (S/L 1:1) sample.

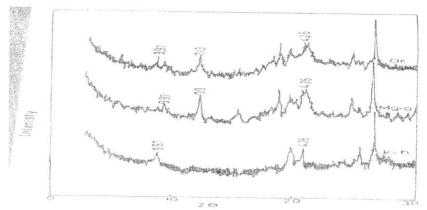


Fig. (41): X-ray diffraction pattern of the clay fraction separated from 2% acid concentration (S/L 1:2) sample.

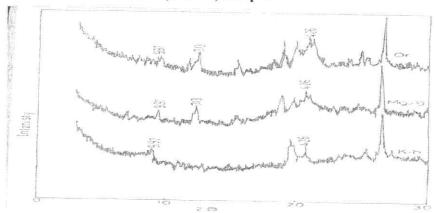


Fig. (42): X-ray diffraction pattern of the clay fraction separated from 2% acid concentration (S/L 1:3) sample.

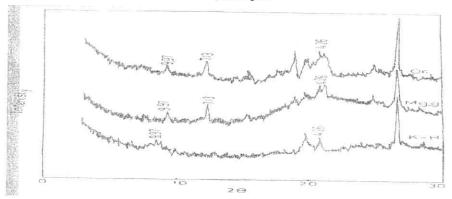


Fig. (43): X-ray diffraction pattern of the clay fraction separated from 5% acid concentration (S/L 1:1) sample.

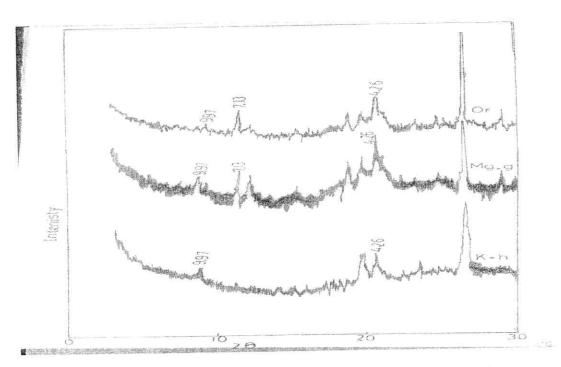


Fig. (44): X-ray diffraction pattern of the clay fraction separated from 5% acid concentration (S/L 1:2) sample.

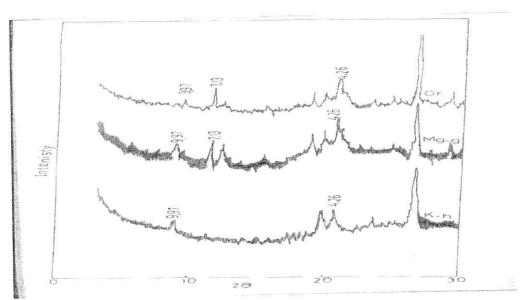


Fig. (45): X-ray diffraction pattern of the clay fraction separated from 5% acid concentration (S/L 1:3) sample.

4.4. Effect of acid concentration and solid: liquid ratio on the chemical properties of the shale deposit sample.

Data presented in Table (21) indicate that electrical conductivity (EC) of the shale sample collected from Abu Thor area and subjected to leaching by H2SO₄acid at different concentrations and different solid/liquid ratios decreased as compared with the corresponding EC value of the original shale deposit sample before leaching process.

Table (21). Chemical compositions of the saturation paste extract of the subsamples leached with H2SO₄ acid at different concentrations and different solid/liquids.

c 1	Conc. of acid	Solid					Sol	uble ior	ns(mmo	I _C L ^{-I})		
Sample No.	leading	liquid	pН	EC (dS/m)		Cati	ons			An	ions	
	solutes (%)	ratio			Ca ⁺⁺	Mg ⁺⁺	Na ⁺	K ⁺	CO3	HCO ₃	Cl	SO ₄
1		1:1	3.6	7.62	50	18.36	9.52	2.14	-	1.20	12.00	66.82
2	2%	1:2	2.9	9.97	75	11.2	10.79	3.21	-	1.20	15.0	84.0
3		1:3	2.8	9.64	65	20.84	9.52	4.64	-	1.0	12.0	87.0
4		1:1	3.0	15.32	100	57.43	24.12	2.49	-	1.0	26.0	157.04
5	5%	1:2	2.2	18.41	75	136.63	8.89	0.71	14	1.30	10.0	209.93
6		1:3	1.9	19.24	70	148.79	11.43	0.71	-	1.20	13.0	216.73

These decreases were more obvious by decreasing both H2SO₄ concentrations and the solid / liquid ratio where the EC values of the leached subsamples were 7.62, 9.97 and 9.64 dSm⁻¹ upon using the acid at a concentration of 2% and 1:1, 1: 2 and 1: 3 solid / liquid ratios, respectively. The corresponding EC values raised up to 15.32, 18.41 and 19.24 dSm⁻¹ upon using the acid concentration of 5% at 1: 1, 1: 2 and 1: 3 solid/liquid ratios, respectively. The more remarkable decrease in EC value of the shale deposits by increasing acid concentration and solid/liquid ratio may be

attributed to the ability of the higher concentration of acid to dissolve and leach more ions out of the soil columns.

Data in Table (21) reveal also that, soil reaction (pH) of the studied shale sample decreased by increasing the acid concentration and solid / liquid ratio. This might be attributed to the more concentration of H+ ions introduced to the shale deposit sample as a result of applying H2SO₄.

Regarding the soluble cations, data in Table (21) show that soluble cations of Ca^{2+} , Mg^{2+} , Na^+ and K^+ increased, generally, with increasing concentration of the applied acid. They could be arranged in the following descending order. $Ca^{2+} > Mg^{2+} > Na^+ > K^+$ upon using the acid at a concentration of 2%, while the sequence and $Mg^{2+} > Ca^{2+} > Na^+ > K^+$ characterized, generally, the distribution of the soluble cations upon using the acid at a concentration of 5%.

With regard to the soluble anions, data in Table (21) reveal that soluble anions of the studied shale sample were dominated by SO_4^{2-} followed by Cl and the HCO_3^- . Also, the values of soluble SO_4^{2-} increased with increasing both acid concentration and solid/liquid ratio. This is probable because solubility of some rarely soluble Ca- components such as $CaCO_3$ increases with increasing acidity (Balba,1995).