CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Sources of soil pollution with heavy metals	
and organic compounds	3
2.1.1. Vehicle exhausts	4
2.1.2. The industrial emissions	4
2.1.3. Irrigation with wastewaters	6
2.1.4. Herbicides	7
2.2. Factors affecting availability of heavy metals	8
2.3. Plant pollution with heavy metals	9
2.4. Bioavailability of heavy metals	11
2.5. Mechanisms of heavy metal uptake by plants	11
2.6. Plant response to heavy metals	14
2.7. Heavy metal detoxification/chelation	15
2.7.1. Organic acids and amino acids	15
2.7.2. The cell wall	15
2.7.3. Plasma membrane	16
2.7.4. Phytochelatins	16
2.7.5. Vacuolar compartmentalization	17
2.8. Bioremediation of contaminated soils	17
2.8.1. Rhizofiltration	18
2.8.2. Phytotransformation (phytodegradation	n).19
2.8.3. Phytovolatalization	19
2.8.4. Phytostabilization	20

2.8.5. Phytoextraction	20
2.8.5.1. Long-term	continuous
phytoextraction	21
2.8.5.2. Induced phytoextraction	n 21
2.8.5.3. The use of crops for in	situ
Phytoremediation	22
2.8.6. Enhancing phytoremediative	
ability of plants	23
2.8.7. Limitaions and advantages	
of phytoremediation	25
3. MATERIALS AND METHODS	27
3.1. Materials	27
3.1.1. The water samples	27
3.1.2. The soil samples	27
3.1.3. The plant samples	31
3.1.4. The soil amendments used in	
the experimental work	31
3.2. The experimental work	31
3.2.1. The phytoremediation experiment	
1. Application of elemental sulfur	32
2. Application of the Nile compost	32
3. Application of EDTA	34

3.2.2 Suitability of maize for phytoremediation.	34
3.2.2.1. Maize growth, arsenic accumulate	ion
in shoots and the quality of the grains as	
influenced by As contamination of soil,	
irrigation water and ground water	34
3.2.3. Arsenate, arsenite and DMA influxes	
and toxicity in maize	39
3.2.3.1. Plant material	40
3.2.3.2. Seedling pre-treatment	40
3.2.3.3. Short-term influx	40
3.2.3.4. Tolerance test	41
3.3. Methods of soil analyses	42
3.3.1. Physical analyses	42
3.3.2. Chemical analyses	42
3.4. Plant analyses	43
3.5. Water analyses	44
3.6. Analytical quality control	44
3.7. Data analysis	44
4. RESULTS AND DISCUSSION	46
4.1. Evaluation of the investigated waters	
for heavy metals toxicities	46
4.2. Heavy metal concentrations in the	
investigated soils	49
4.3. Heavy metal phytoextraction by maize	53

4.4. Phytorer	nediation of the heavy metals	
contaminated	l soils using geranium plants	62
	s of the different applied	9 ==
amendments	on dry matter yield	62
4.4.2.	Effect of the different applied am	endments
	on the concentrations of heavy me	
	in plant organs	72
	4.4.2.1. The enhancing effect of	
	elemental sulfur	75
	4.4.2.2. The enhancing effect of t	
	Nile compost	76
į.	4.4.2.3 The enhancing effect of the	
	EDTA	77
4.4.3. E	Effect of the different applied ame	
	on translocation of heavy metals v	
	plant organs	78
4.5. Evaluation	of using maize in phytoremedian	
	aminated soil	82
4.5.1 N	faize growth, Asumulation in	
	rains as influenced by contamina	
	nd pro-longed sub-irriagtion us	
	rater in As contaminated water	83
	5.1.1. Effect of soil contamination	
on its accumulation in shoots and grains		
	uring the different growth stages	83
	C - July	() 1

4.5.1.2. Accumulation of arsenate in shoo	ots
during the reproductive stages of maize	87
4.5.1.3. Effect of prolonged sub-irrigation	n on
As accumulations in shoots and grains	90
4.5.1.4. Comparing As concentration	s in
shoots and grains of different varieties as	3
affected by As contamination in soil	94
4.5.2. Arsenate/arsenite/DMA uptake	
4.5.2.1. Arsenate uptake	94
4.5.2.2. Arsenite uptake	100
4.5.2.3. DMA uptake	104
4.5.3. Arsenate, arsenite and DMA	
toxicity in maize	109
5. SUMMARY	113
6. REFERENCES	120
ARABIC SUMMARY	