CONTENTS

	Pa	ge
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2.1. Status and forms of soil P	3
	2.1.1. Soil solution P	4
	2.1.2. Labile P pool in soils	5
	2.1.3. Phosphorus of the non-labile fraction	7
	2.2. Retention and release of P in soil	8
	2.2.1. Factors affecting phosphate retention in soils	9
	2.2.1.1. Soil pH	10
	2.2.1.2. Temperature	11.
	2.2.1.3. Concentration of solution P	12
	2.2.1.4. Time of reaction ··· ··· ···	13
	2.2.1.5. Calcium carbonate content in soils	14
	2.2.1.6. Type of clay minerals	16
	2.3. Representation of P adsorption by soils	19
	2.3.1. Phosphorus adsorption plotting to Langmuir adsorption isotherm	20
	2.3.2. Modified forms of Langmuir adsorption isotherm	23
	2.3.3. Freundlich equation	24
	2.4. Phosphorus diffusion in soils	26
3.	MATERIALS AND METHODS:	33
	3.1. Soil sampling and soil analysis ···	33
	3.2. Identification of the tested soil samples	33
	3.2.1. Physical analysis of the soils ···	33
	3.2.2. Mineralogical analysis ··· ···	35
	3.2.3. Soil chemical analysis ··· ···	35
	3.3. Experimental work	39
	2.3.1. Retntion of phosphate by soil	39
	2.2.2 Dheenhause malages in sails	4.1

	Page
3.3.3. Measurements of P diffusion coefficient	42
3.4. Phosphorus determinations	44
4. RESULTS AND DISCUSSION	45
4.1. Retention and release of P in soils	45
4.1.1. Retention of added P by soils	45
4.1.1.1. Retention of P by soils in relation to the concentration of added P	52
4.1.1.2. Retention of P by soils in relation to	
temperature	55
4.1.1.3. Retention of P by soils in relation to time	
of reaction	57
4.1.2. Release of soil P	59
4.1.2.1. Soil P recovery by water	59
4.1.2.2. Soil P recovery by NaHCO ₃ solution	63
4.2. Adsorption of P by soils	67
4.2.1. Adsorption of P as represented by Langmuir	
Isotherm	68
4.2.2. Adsorption of P by soils as represented by the	
modified forms of Langmuir adsorption isotherm.	77
4.2.2.1. Adsorption of P by soils as represented by	
Muljadi equation	79
4.2.2.2. Adsorption of P by soils as represented by	
Junary equation.	94
4.2.3. Adsorption of P by soils as represented by	
Freudlich equation	97
4.3. Diffusion of ³² P in soil systems ···	102
4.3.1. Diffusion of ³² P as a function of soil moisture	
content."6"	102
4.3.2. P diffusion as a function of the rate of P	
application ··· ··· ···	109
4.3.3. P diffusion as a function of clay content	110

.

										Page
5. Sl	IMMARY		• • •				 		•••	112
S. RE	FERENCES	•••		• • •		• • •	 • • •	• • •		122
7. AF	PENDIX		• • •		•••		 • • •	•••	•••	142
A D A D 1	re CHMMADV									