RESULTS AND DISCUSSION

The first experiment: (Pots experiment):

Effect of some chemical materials on tomato plants grown under saline conditions

1-Vegetative growth characteristics:

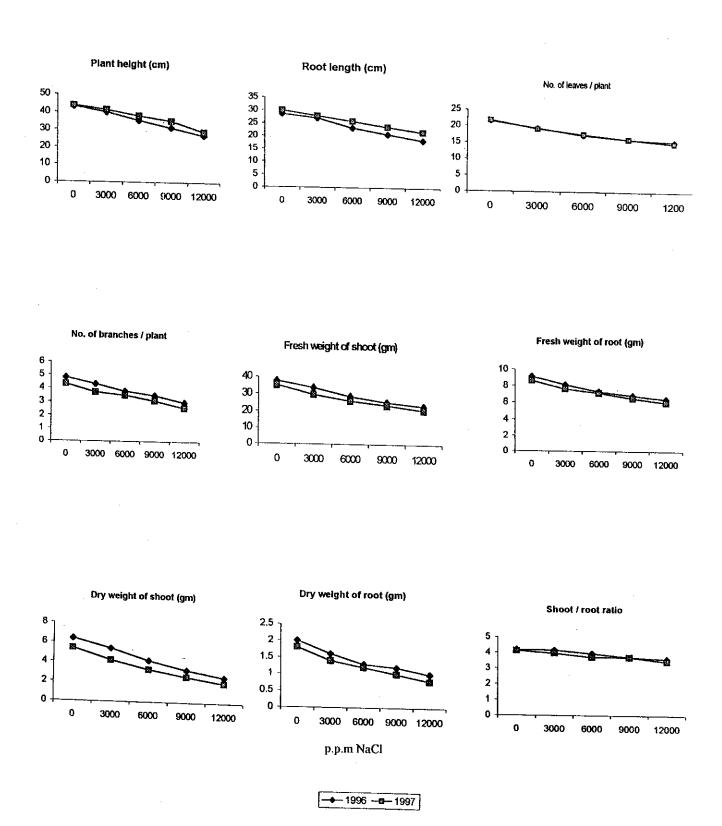
1.1Effect of salinity:

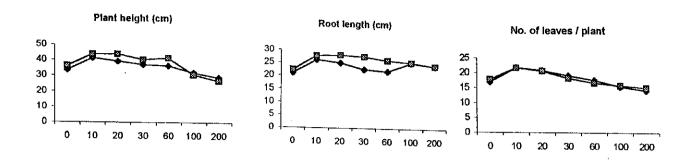
Data on the effect of different levels of sodium chloride salinity on vegetative growth characteristics of tomato plants are presented in table (5) and figure (1). It is clear that, there was a progressive reduction in all studied growth parameters as salinity level increased. trend held true during both seasons of the experiments. As average of both seasons, the reduction in plant height of tomato plants grown under 3000, 6000, 9000 and 2000 p.p.m NaCl reached 6.67, 15.56, 23,48 and 35.44 % as compared with those of control, respectively. In this respect, the corresponding values of the reduction were 5.99, 15.93, 23.63 and 30,99% in case of root length and 12.26, 19.77, 25.98 and 30.34 % in case of number of leaves per plant and 12.09, 19.78, 27.47 and 38.46% in case of number of branches per plant and 13.22, 24,93, 32.64 and 40.50% in case of fresh weight of shoot and 11.30, 18.64, 24.86 and 29.94 % in case of fresh weight of root and 18.64, 36.44, 50.00 and 61.02 % in case of dry weight of shoot as well as 21.05, 34.21, 42.11 and 52.63 % in case of dry weight of root and 2.17, 7.73, 10.87 and 15.46 % in case of shoot / root ration as compared with those of control, respectively.

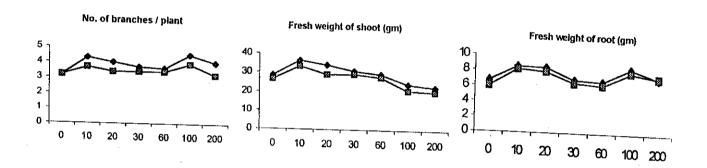
The adverse effect of salt stress on plant growth is attributed to one of more of follows:

Table (5): Vegetative growth characteristics of tomato plants as affected by irrigation with saline water and spraying with different chemical materials during 1996 and 1997 seasons.

Salhity Eq.				•	,	•		· ·	*		1	•	1	40000	1	į	Shoot
	Roof	No.of Eve	Naof branches	Fresh	Fresh weigh	Dry reight	Dry weight	Shaot /root	Pant	Root Ingth	No.of leaves/	No.of branches	rresh weigh of	Fresh weigh	veight	Weight	noouc Logi
			/plant	of.	ofroot	of Frank	ofreet	radio on FW			plant	plant	shoot	ofroot	of	ofrost	rado on F.W.
3	(EII)			(E)	(gm)	(mg)	E	basis	(cm)	(EE)			(шв)	(må)	(gm)	(mg)	basts
43.1	28.5	21.6	4.8	37.6	9.1	6.4	2.0	4.18	43.8	29.9	21.9	4.3	35.0	8.6	5.4	1.8	4.10
39.9	27.0	19.4	4.3	33.4	8.1	5.4	1.6	4.15	41.2	27.9	19.2	3.7	29.6	7.6	4.2	1.4	3.95
35.3	23.3	17.3	3.8	28.5	7.3	4.2	1.3	3.93	38.0	25.8	17.6	3.5	26.0	7.1	3.3	1.2	3.70
31.4	20.9	16.1	3.5	25.2	8.9	3.3	1.2	3.69	35.1	23.7	16.1	3.1	23.7	6.5	2.6	1.0	3.69
27.1	18.5	15.4	3.0	23.0	6.4	2.6	1.0	3.59	29.0	21.8	14.9	2.6	20.2	0.9	2.0	8.0	3.42
1.2	0.5	8.0	0.5	1.2	0.2	0.3	0.1	0.30	1.4	8.0	0.7	0.5	1.8	0.2	0.3	0.1	0.28
33.4	21.0	16.9	3.2	28.5	6.7	3.7	1.0	4.23	36.0	22.2	17.8	3.2	26.6	0.9	3.0	8.0	4.36
41.2	26.0	21.7	4.3	36.4	8.5	5.4	1.7	4.26	43.8	27.8	21.6	3.7	33.4	8.2	4.4	1.5	4.04
Phosphoric acid 20m.M 39.1	25.0	20.8	4.0	34.1	8.4	5.4	1.7	4.06	43.8	28.0	20.6	3.4	29.2	7.9	4.2	1.5	3.67
Proline acid 30m.p.p.m 37.0	22.5	19.1	3.7	31.0	6.9	4.6	1.2	4.46	40.2	27.4	18.2	3.4	29.4	6.5	3.7	1.1	4.45
36.3	21.9	9.71	3.6	29.5	6.7	4.3	1.2	4.33	41.2	26.0	16.6	3.4	28.0	6.2	3.6	1.0	4.42
Pactobutrazol 100p.p.m 31.8	25.2	15.4	4.5	24.5	8.4	3.8	1.8	2.87	30.5	25.3	15.8	3.9	21.2	7.9	2.9	1.5	2.66
28.8	24.0	14.0	4.0	23.1	7.2	3.5	1.4	3.14	26.6	24.0	15.0	3.2	20.6	7.3	2.7	1.3	2.79
1.0	1.2	6.0	0.4	1:1	0.2	0.3	0.1	0.13	1.7		8.0	0.4	1.3	0.2	0.2	0.1	0.20




Fig. (1): Effect of salinity levels on vegetative growth characteristics of tomato plants.


- -The specific toxic effect of ions excessively absorbed from the saline solution of the soil, to the process of building up the osmotic potential of the plant cells.
- -The imbalance in nutritional cations in tissues of the salt affected plants.
- -The reduction in carbon fixation in photosynthesis.
- -The inhibition in cell division and cell elongation that reflect on reduction in cell size and number of cells per unit area.
- -The imbalance in hormons content in plants, as salinity increased it caused a decrease transport of kinetin from root to leaves, and an increase in leaves content of abscisic acid (Bernstein, 1975).

The retarding action of salinity is much more sever at the late than at the early stage of growth obviously due to cumulative effect of the salt. These results are generally in agreement with those reported by Pokroveskaya (1954 & 1957); Strogonov, (1962); Greenway (1963).and Al-Lawendy (1990) on sugar beet. In this connection, many investigators came to the similar findings on tomato plants, El-Rawahy et al. (1990 & 1992); El-Sherif et al. (1990); Adams, (1991); Caro et al. (1991); Sarg (1991); Helmy (1992) Soliman and Doss (1992); Bolarin et al. (1993); Rizk (1993); Alarcon et al. (1994); Abdel-Latif (1995); Abaza (1996); Satti et al. (1996); Wanas (1996) and Yong et al. (1996).

1.2. Effect of chemical materials:

The effect of different chemical materials on vegetative growth of tomato plants are presented in Table (5) and Figure (2). It evident that the application of these materials caused a passive effect in most vegetative growth parameters of tomato plants compared with control.

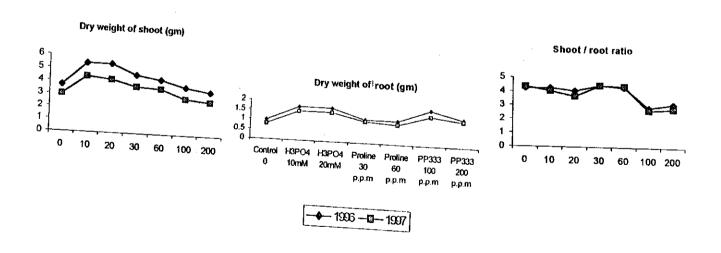


Fig. (2): Effect of chemical materials and vegetative growth characteristics of tomato plants.

In this respect, the increments in most growth parameters were occurred as a result of application of these chemical, especially phosphoric acid (10 and 20 mM) and proline acid (30 and 60 p.p.m). Differences reached mostly the 5% level of significance during both seasons of this experiment.

With respect to the effect of phosphoric acid, it is worthy mention that, the application of phosphoric acid resulted in the more pronounced effect on most studied vegetative growth characteristics, especially the low level (10 mM) than the other treatments including the control. Proline treatment exhibited a favourable and higher effects on most studied growth characters compared with control, especially when low level of proline acid (30 p.p.m) was used, but, in most cases, it came after phosphoric acid treatments.

Concerning the effects of paclobutrazol, it is clearly show that, there were a retarding effect on plant height, number of leaves per plant, fresh and dry weight of shoot when PP₃₃₃ was used, but it had a favourable effect, compared to the control in root length and weight (fresh and dry) and consequently shoot/ root ratio. Growth retardants (such as PP₃₃₃), especially with high concentrations correlated with increasing lateral growth (number of lateral branches), it may be contributed in breaking of apical dominance and increase bottom branches.

The favourable effect of phosphorus on vegetative growth characteristics might be due to its vital and essential role in cell division and due to its effect in the absorbtion of the other nutrients and consequently increase growth characters of tomato plants. Also the beneficial effect of applying phosphorus on the dry weight of leaves per plants was expected, since phosphorus is known to be

essential for increasing plant capacity in building metabolities. (Table et al., 1991). The effect of phosphoric acid on plant growth characteristics are in harmony with those mentioned by Abdalla et al., (1979) on tomatoes, Delbert and Hemphill (1982) on different species of vegetable crops, Lunin and Gallatin (1965), Farrag (1970), Shafshak (1989), Table et al. (1991) on beans, Teneb et al. (1995) on cowpea plants, Thomson and Kelly (1957), Amer (1964), Lipkind and Dzhumaeva (1973) and Abo Soliman et al. (1990) on cotton plants.

Concerning the benficial effect of proline acid on vegetative growth characteristics, it is worthy to mention that the proline acid acts as a storage compound for reduced carbon and nitrogen, as has in fact been postulated for water and osmotic stressed plants. Thus, free proline was found to be increased under salt stress conditions (Singh et al.,1973; Stewart and Lee,1974, Chu et al.,1976 and Cavalieri and Huang, 1977). One way to overcome the salinity is to increase the concentration of cellular osmotic components by synthesis and accumulation of organic solutes (Flowers et al.,1977 and Mass et al.,1977). In this connection the amino acid proline is considered to have such and osmo- regulatory function (Treichel, 1975), whereas proline is synthesized and accumulated under water and salt stresses to depress the internal osmotic potential and so maintain a positive gradient for water uptake. This osmotic adjustment is an adaptive mechanism by which the plant is able to withstand salt stress conditions (Mengel and KirKby, 1979). Obtained results are in agreement with those reported by (Tal and Katz, 1980; Tipirdamaz and Karakullukcu, 1993 and Abdel-Latif, 1995) working on tomato plants and Wageeh (1994) on wheat plants.

With respect to the retarding effect of paclobutrazol on vegetative growth of different crops, it is evident from the previously studies that paclobutrazol (also known as PP₃₃₃, PBZ or cultar) is one of the most potent which are inhibitors of endogenous gibrellin biosynthesis (Daliziel and Lawrence, 1984; Davis et al.,1988 and Davis and Curry, 1991). The present results are in harmony with those reported on tomato by (Borkowski, 1992 a & b; El-Desouky, 1992; Latimer, 1992; Grimstad, 1993; Asao et al., 1996 and Wanas, 1996) as well as Arora et al. (1989) on summer squash; Nerson et al., (1989) on muskmenlon; El-Bassiouny (1992) on strawberry; Wanas (1992) on pea and Ismaeil (1995) on broad bean.

The interaction effect between salinity and chemical materials (Tables 6 and 7) show significant differences in plant height, root length and fresh weight of the shoot in the second season and root dry weight in the first season, as well as shoot dry weight and shoot /root ratio in both seasons of this study. Differences between salinity and chemical materials did mot reach the 5% level of significance with other vegetative characteristics.

- -It is clearly show that salinity treatment continued to play as an adverse effect to all growth characters that studied in this study, so deleterious effects increased with increasing salinity level.
- -Application of the different chemical materials especially phosphoric and proline acid and somewhat PP₃₃₃ especially the low concentrations minimized the harmful effect of salinity up to the highest level of it, whereas, PP₃₃₃ treatment especially with high concentration remained to improve the root characters.

Table (6): Effect of interaction between salinity and chemical materials on vegetative growth characteristics of tomato plants during 1996 season.

\$ 8.00 \$ 8.00 \$ 8.00 \$ 8.00 \$ 8.00 \$ 8.00 \$ 9.00 \$	1				9661					
Salinity	ty Chemical materials	Plant height (cm)	Root length (cm)	No.nf leaves/	No.of branches/ nlant	Fresh weight of	Fresh weight of	Dry weight of	Dry weight of	Shoot / raot ratio
	0	40.3	27.0	20.0	4.0	36.0	8.0	5.7	1.5	4.51
> 6	Phosphoric acid 10mM	48.3	29.7	26.0	5.3	45.3	10.4	7.7	2.4	4.39
<u>.</u>		46.3	29.0	24.7	5.0	42.7	10.2	7.9	2.4	4.18
	Proline acid 30 p.p.m	44.3	28.0	23.3	4.7	39.7	8.2	6.5	1.6	4.84
	Proline acid 60 p.p.m	43.3	27.3	22.6	4.3	38.7	8.0	9.9	1.6	4.85
	PР ₃₃₃ 100 р.р.т	40.0	29.3	18.0	5.7	31.3	10.0	5.5	2.7	3.13
	РР333 200 р.р.т	39.3	29.7	16.7	5.0	30.0	6.8	5.2	1.9	3.37
_	0	38.6	25.3	18.0	3.7	31.7	7.8	4.3	1.2	4.03
		45.0	28.3	24.3	4.7	40.7	9.1	6.8	1.9	4.47
8		43.3	27.7	23.0	4.3	37.3	8.8	9.9	1.9	4.24
p.p.m	L	41.0	26.6	20.3	4.0	34.0	7.3	5.3	1.3	4.64
	Proline acid 60 p.p.m	40.3	26.0	19.3	4.0	33.3	7.1	5.3	1.3	4.70
	PP ₃₃₃ 100 p.p.m	37.6	28.0	16.3	5.0	29.0	8.9	4.8	2.0	3.26
	PP ₃₃₃ 200 p.p.m	33.3	27.7	15.0	4.7	28.3	7.7	5.0	1.6	3.70
æ	0	33.3	20.3	16.3	3.3	29.3	6.2	3.8	1.0	4.74
6	Phosphoric acid 10mM	41.3	25.7	20.7	4.0	35.3	8.3	5.2	1.7	4.24
		39.9	24.7	20.3	4.0	33.7	8.2	5.3	1.5	4.19
26 348		37.0	22.3	18.0	3.7	29.7	8.9	4.3	1.1	4.37
p.p.m		36.3	21.7	16.3	3.7	27.0	9'9	3.9	1.1	4.09
	PP ₃₃ 100 p.m	31.6	24.7	15.7	4.3	23.7	8.2	3.6	1.6	2.88
	PР ₃₃₃ 200 р.р.т	28.3	24.0	14.0	4.0	21.3	7.0	3.2	1.3	3.03
	0	30.3	17.7	15.3	2.7	23.7	6.0	2.8	8.0	3.95
	Phosphoric acid 10mM	37.7	24.0	19.3	4.0	31.0	7.7	3.9	1.5	4.05
		36.3	23.3	18.7	3.7	30.3	7.6	4.0	1.3	3.99
20 20 20 20 20 20 20 20 20 20 20 20 20 2		33.7	19.0	17.7	3.3	27.0	6.3	3.6	6.0	4.27
p.p.m		32.0	18.3	15.0	3.3	25.7	6.2	3.2	1.0	4.14
	PP ₃₃₃ 100 p.p.m	27.0	23.7	14.0	4.0	20.7	7.8	2.9	1.5	2,65
	PР ₃₃₃ 200 р.р.т	23.3	20.3	13.0	3.7	18.7	9.9	2.4	1.2	2.83
	0	24.3	15.0	15.0	2.3	22.0	5.6	2.0	0.7	3,96
	Phosphoric acid 10mM	33.6	22.3	18.3	3.7	29.6	7.1	3.4	1.2	4.18
12000		30.3	20.7	17.7	3.3	26.7	7.2	3.2	1.2	3.72
p.p.m	_	29.3	16.7	16.3	3.0	24.7	5.9	3.2	8.0	4.18
	Proline acid 60 p.p.m	29.7	16.0	15.0	2.7	23.0	5.9	2.6	8.0	3.88
	PP ₃₃₃ 100 p.p.m	23.0	20.3	13.3	3.7	18.0	7,3	2.3	1.3	2.46
	PР ₃₃₃ 200 р.р.ш	19.7	18.7	12.7	3.0	17.3	6.2	1.9	1.0	2.80
	L.S.D. at 5 %	n.s	n.s	n.s	n.s	n.s	n.s	9.0	0.2	0.41

Table (7): Effect of interaction between salinity and chmical materials on vegetative growth characteristics of tomato plants during 1997 season.

Salinity	Chemical materials	Figur height	Koot length (cm)	No of leaves		Fresh weight of	Fresh weight of	Dry weight of	Dry weight of	Shoot / root ratio
		(Cm)		330.0	/ plant	shoot (gm)	root (gm)	shoot (gm)	100t (gm)	on F.W.bassis
	0	43.3	26.7	21.3	4.3	35.3	7.5	5.0	1.4	4.71
, i	Phosphoric acid 10mM	52.3	31.7	26.3	4.7	42.3	10.0	6.5	2.0	4.24
p.p.m	Phosphoric acid 20mM	46.7	31.3	25.7	4.3	39.7	9.7	9'9	2.1	4.10
	Proline acid 30 p.p.m	42.0	31.3	23.3	4.3	40.7	7.9	5.9	1.5	5.15
	Proline acid 60 p.p.m	49.0	28.3	20.7	4.3	37.7	7.6	5.7	1.4	4.96
	PP ₃₃₃ 100 p.p.m	40.0	31.3	18.7	4.7	25.3	9.6	4.0	2.1	2.64
Ī	PP ₃₃₃ 200 p.p.m	33.7	28.7	17.7	3.7	24.3	8.3	3.8	1.9	2.91
	0	39.7	23.3	19.7	3.3	31.3	6.4	4.0	1.0	4.89
5000	Phosphoric acid 10mM	47.0	28.0	22.7	4.0	37.3	8.7	5.4	1.7	4.30
2000	Phosphoric acid 20mM	48.7	29.3	22.3	3.7	31.0	8.4	4.8	1.6	3.69
 !	Proline acid 30 p.p.m	44.0	30.7	19.0	3.7	32.3	7.0	4.5	1.2	4.62
	Proline acid 60 p.p.m	42.0	28.7	17.0	4.0	30.7	8.9	4.3	1.1	4.56
	PР ₃₃₃ 100 р.р.т	35.3	28.7	17.3	4.3	23.3	8.3	3,5	1.7	2.79
٦	PP ₃₃₃ 200 p.p.m	32.0	26.7	16.7	3.3	21.7	7.7	3.1	1.6	2.82
	0	38.0	22.0	18.0	3.3	25.7	0.9	2.6	80	4 78
	Phosphoric acid 10mM	43.0	28.0	21.0	3.7	32.7	8.2	4.3	14	3 98
	Phosphoric acid 20mM	46.3	28.0	20.0	3.3	28.7	8.0	4.0	1.5	3.58
20.0	Proline acid 30 p.p.m	40.0	28.0	17.0	3.3	27.7	6.5	3.5	1.0	2.27
	Proline acid 60 p.p.m	42.3	25.3	16.0	3.7	26.3	6.2	3.4	6.0	4.26
	PP ₃₁₃ 100 p.p.m	30.0	25.7	16.0	4.0	20.7	7.8	2.8	1.4	2.66
	PP ₃₁₃ 200 p.p.m	27.0	24.0	15.3	3.3	20.7	7.2	2.7	1.2	2.87
	0	32.3	20.7	16.3	3.0	23.0	5.3	1.9	0.5	4.35
	Phosphoric acid 10mM	41.0	26.0	19.7	3.3	30.7	7.4	3.5	1.2	4.14
	Phosphoric acid 20mM	42.3	26.3	18.3	3.3	24.7	7.1	3.0	1.2	3.46
	Proline acid 30 p.p.m	40.7	24.3	16.3	3.0	25.3	0.9	2.7	6.0	4.24
	Proline acid 60 p.p.m	40.7	25.0	15.3	3.0	24.7	5.7	2.7	8.0	4.37
	PР ₃₃₃ 100 р.р.ш	27.0	20.7	14.0	3.7	19.0	7.3	2.3	1.2	2.59
1	PР ₃₃₃ 200 р.р.т	22.0	23.0	13.3	3.0	18.7	7.0	2.1	1:1	2.66
	0	26.7	18.3	14.0	2.3	18.0	5.0	1.3	0.4	3.60
	Phosphoric acid 10mM	35.7	25.3	18.3	3.0	24.0	6.8	2.5	1.1	3.55
—	Phosphoric acid 20mM	35.3	25.0	17.0	2.7	22.3	6.3	2.4	1.0	3.52
	Proline acid 30 p.m.	34.7	23.0	15.7	2.7	21.3	5.4	2.0	0.7	3.95
_1	Proline acid 60 p.p.m	32.0	23.0	14.0	2.3	20.7	5.2	1.9	0.7	3.99
	PP ₃₃₃ 100 p.p.m	20.0	20.3	13.0	3.0	17.7	6.7	1.9	1.0	2.64
-	PP ₃₃₃ 200 p.p.m	18.3	17.7	12.3	2.7	17.7	6.5	1.8	1.0	2.82
	L.S.D. at 5 %	3.8	2.6	n.s	3 12	9.0	טע	20		0.45

-It is worth mentioning that application of phosphoric acid as spraying on tomato plants with any of used concentrations overcome the deleterious effect of salinity of vegetative growth up to the level of 6000p.p.m of NaCl salinity, so that tomato plants grow normally as plants that grown under normal conditions (control), that irrigated with tap water.

2. Chemical composition of leaves:

2.1. Photosynthetic pigments:

2.1.1. Effect of salinity:

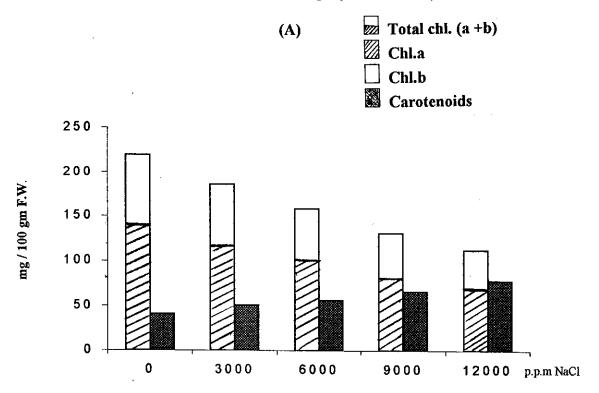
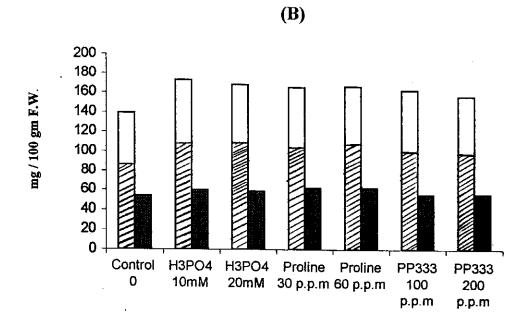

Data presented in Table (8) and Figure (3) show clearly that, using saline water for irrigation of tomato plants resulted in a significant and continuos decrease in the concentration of both chlorophyll a,b and consequently total chlorophyll compared to the control. On the contrary, the same table and figure indicated that oppositely to that observed in case of increasing salinity level led to increase in leaves content of carotenoids. The highest increase in this regard was obtained when plants were irrigated with the highest salinity level i.e. 12000 p.p.m NaCl. These results are going in the same trend in both seasons of 1996 and 1997. Obtained results about the effect of salinity on these pigments might be attributed to that the role of salinity in this respect it caused an adverse effect on water relationship of plant and consequently decrease photosynthesis process. Also those harmful effects of salinity might be attributed to the inhibitory effects of chloride on the activity of iron containing (cytochrom oxidase). This enzyme under chloride salinity may affect the rate of chloroplast structure and chlorophyll accumulation. On the other hand, salinity adversely affect the photosynthetic area as well as the rate of carbon assimilation, the lowest photosynthetic ability under

Table (8): Photosynthetic pigments (mg/100gm F.W.) of tomato leaves as affected by irrigation with saline water and spraying with different chemical materials during 1996 and 1997 seasons.


Seasons			9661					1997	
Treatments Salinity	Chlorophyll (a)	Chlorophyll (b)	Total Chlorophyll	Carotenoids	ð	Chlorophyll (a)	Chlorophyll (b)	Total Chlorophyll	Carotenoids
0 p.p.m	144	81	225	41		142	73	215	41
3000 p.p.m	119	64	182	51		125	65	190	55
6000 р.р.т	102	56	158	57		102	56	158	55
m.q.q 0006	82	48	130	99		81	50	131	99
12000 p.p.m	71	43	113	77		49	46	110	79
L.S.D. at 5%	3	2	4	2		2	П	т	2
Chemical materials									
Control 0	90	50	139	55		98	52	138	53

Chemical materials								
Control 0	06	50	139	55	98	52	138	53
Phosphoric acid 10m.M	106	65	170	58	114	62	176	62
Phosphoric acid 20m.M	108	58	166	09	 111	59	170	58
Proline acid 30 p.p.m	103	61	164	61	 107	59	166	62
Proline acid 60 p.p.m	108	56	164	64	 111	56	167	09
Paclobutrazol 100p.p.m	108	59	167	56	96	09	156	54
Paclobutrazol 200p.p.m	103	60	163	55	95	59	154	57
L.S.D. at 5 %	3	2	3	2	 2	2	3	2

Fig. (3): Effect of salinity levels (A) and chemical materials (B) on photosynthetic pigments of tomato leaves (as average of both seasons).

Salinity levels

salt stress conditions was due to stomatal closure, inhibition of chlorophyll synthesis or due to decrease in the absorption of minerals needed for chlorophyll biosynthesis, i.e. iron and magnesium.

The results about the effect of salinity on chlorophyll are in agreement with those reported by many investigators on tomato plants among them (Guerrier,1985; Sharf et al., 1985; Sarg, 1991; Rizk, 1993; Abdel-Latif, 1995; Abaza, 1996 and Wanas, 1996) and Akhavan et al., (1991) on common bean.

Concerning the effect of salinity on carotenoids content, results are in harmony with those reported by Sharaf et al. (1985) and Abaza (1996) on tomato plants.

2.1.2. Effect of chemical materials:

Data presented in Table (8) and Figure (3) show that application of tested chemicals led mostly to significant increases in tomato leaves content of chlorophyll a,b as well as total chlorophyll (a + b) and carotenoids. It is evident from the previously data that, application of phosphoric acid was the best favourable effect in comparison with other treatments especially with low concentration (10mM) on chlorophyll pigments. Proline acid treatment was distinguished with the two concentrations (30 and 60 p.p.m) by its effects on increasing carotenoids pigments especially in the first season.

Paclobutrazol treatment exhibited the lowest effects on photosynthetic pigments compared to the other chemical treatments, but it still higher than control. The favourable effects of application these materials on photosynthetic pigments may be attributed to the physiological role of these chemicals in plant tissues.

With respect to the phosphoric acid it plays an essential role in absorption of the other nutrients and a vital role in cell division, thus it will contribute in seedlings development and consequently increase the leaf area which reflect in increasing photosynthesis pigments. Whereas the favourable effect of proline acid may be due to that the proline is synthesized and accumulated under water and salt stress to depress the internal osmotic potential and so maintain a positive gradient for water uptake that is essential for photosynthesis process. The results about the effect of proline acid on photosynthetic pigments are in agreement with those reported by Abdel-Latif (1995) on tomato plants. Moreover, the results about the effect of paclobutrazol are in accordance with those of (Borkowski et al.,1989; El-Desouky, 1992 and Wanas, 1996) working on tomato plants and El-Desouky and Abd El-Dayem (1992 a) on sesame and Ismaeil (1995) on broad bean.

With respect to the effect of the interaction between salinity levels and chemical materials on photosynthetic pigments of tomato plants (Table 9), data indicate that the differences between treatments were significant during both seasons of this work. It is evident from such data that, the lowest content of chlorophyll a, b and total (a + b) was found under 12000 p.p.m of salinity without application any of chemical materials (81 mg as average of both seasons).

The highest content of chlorophyll a, b and total (a + b) was found under irrigation with tap water accompanied with spraying with proline acid (low concentration 30 p.p.m 239 mg total chlorophyll), followed with paclobutrazol (low concentration 100 p.p.m 224 total chlorophyll) under the same treatment (tap water) as average of both seasons.

Table (9): Effect of interaction between salinity and chemical materials on photosynthetic pigments (mg/100 gm F.W.) of tomato leaves during 1996 and 1997 seasons.

	1997 seasons.					Control Section				
Seasons			9661					2004	Ž.	
Salinity	Chemical materials	Chlorophyll (a)	Chlorophyll (h)	Total Calogorhyll	Carotenoids	<u>ی</u>	Chlorophyll (9)	Chlorophyll (h)	Lotal Chlorophyll	Carotenoids
	0	130	73	203	39		128	89	961	38
0	Phosphoric acid 10mM	137	64	216	42		141	75	216	46
p.p.m	Phosphoric acid 20mM	133	74	207	45		142	70	212	44
	Proline acid 30 p.p.m	154	91	245	47		156	77	233	43
	Proline acid 60 p.p.m	154	74	228	50		162	71	233	36
	PP ₃₃₃ 100 p.p.m	152	85	237	33		137	74	211	42
	PP ₃₃₃ 200 p.p.m	150	. 26	242	31		126	79	205	. 38
	0	104	58	162	46	<u> </u>	112	63	175	45
	Phosphoric acid 10mM	119	73	192	51		131	70	201	55
3000	Phosphoric acid 20mM	121	65	186	\$		122	65	187	49
p.p.m	Proline acid 30 p.p.m	116	69	185	54		142	<i>L</i> 9	209	26
! !	Proline acid 60 p.p.m	123	09	183	55		129	62	191	51
	PP411 100 p.p.m	125	61	186	54		125	99	191	45
	PP ₃₃₃ 200 p.p.m	122	09	182	43		116	62	178	49
	0	06	48	138	53	_	85	50	135	52
	Phosphoric acid 10mM	108	29	175	52		108	63	171	56
7.4	Phosphoric acid 20mM	110	56	166	59		113	09	173	55
0009	Proline 30p.p.m	102	55	157	59		110	51	161	57
p.p.m	Proline 60p.m	105	54	159	61		109	52	161	62
	РР ₃₃₃ 100р.р.m	102	55	157	54		06	58	148	48
	PP ₃₃₃ 20p.p.m	100	56	156	58		102	58	160	52
	0	72	37	109	61	Ì	64	43	107	58
	Phosphoric acid 10mM	85	55	140	69		105	52	157	89
	Phosphoric acid 20mM	8	52	142	62		96	53	149	09
9000	Proline acid 30 p.m.	62	47	126	71		70	50	120	77
p.p.m	Proline acid 60 p.p.m	82	48	130	76		83	50	133	69
	PP ₃₃₃ 100 p.p.m	68	50	139	09		72	52	124	55
	PP ₃₃₃ 200 p.p.m	78	49	127	63		74	53	127	72
	0	52	33	85	74		.43	34	77	73
	Phosphoric acid 10mM	80	49	129	74		84	50	134	84
12000	Phosphoric acid 20mM	85	45	130	80		80	49	129	83
p.p.m	Proline acid 30 p.p.m	65	44	109	74		58	48	106	78
	Proline acid 60 p.p.m	75	44	119	77		71	45	116	80
	PP ₃₃₃ 100 p.p.m	72	42	114	80		58	50	108	80
	PP ₃₃₃ 200 p.p.m		41	108	81		56	43	99	74
	L.S.D. at 5 %	9	5	8	5		5	5	7	5

36 74 **36**

It is clearly show, that the harmful effect of salinity on chlorophyll pigments was more pronounced than all chemicals in this respect.

Concerning carotenoids pigments, data indicated that, increasing salinity levels led to increasing leaves content of carotenoids. This increment continued with spraying tomato plants with chemical materials. In this connection, the highest values (82 mg) were observed when phosphoric acid (high concentration 20 mM) was used followed by paclobutrazol (low concentration 100 p.p.m) 80mg under the highest level of salinity 12000 p.p.m.

2.2. Mineral composition of leaves:

2.2.1. Effect of salinity:

Data on the effect of sodium chloride salinity on tomato leave content of N, P, K, Ca, Mg, Na and Cl are presented in Table (10). It is obvious from data that increasing salinity level led to significant and gradual reduction in leaves content of N, P, K, Ca and Mg. The lowest values of these elements were observed with the highest salinity level (12000 p.p.m) compared with control (tap water). These results are going in the same trend in the two seasons of this study. The obtained results are in agreement with those reported by (El-Kholi et al.,1982; Morishita et al.,1986; Hummadi and Ghliem, 1987; Martinez and Cerda, 1987; Adams, 1988; El-Rawahy et <u>al.</u>,1990; Sarg, 1991; El-Rawahy et al., 1992; Helmy, 1992; El-Sherif et al.,1993; Rizk,1993; Badia and Meiri, 1994; Abdel-Latif, 1995, Abaza, 1996 and Satti et al., 1996) working on tomato plants. On the contrary, some investigators showed that increasing salinity levels led to the increase of nitrogen (Alam et al., 1989 and Abaza, 1996) on tomato, phosphorus (Al-Lawendy 1985 &

Table (10): N,P,K, Ca, Mg,Na and Cl content (mg / 100gm D.W.) of tomato leaves as affected by irrigation with saline water and spraying with different chemical materials during 1996 and 1997 seasons.

				*00							1997			
Trestments	z	ď	Ж	Š	Mg	R.N.	ס	z	А	Ä	53	Mg	Na	IJ
md.d0	3561	258	2656	2263	764	216	556	3748	273	2713	2262	844	215	562
3000 p.m.	3424	235	2437	2020	683	490	1236	3523	236	2514	2088	759	475	1197
6000 P.P.M	3011	211	2291	1820	587	918	1446	3124	221	2346	1822	624	825	1512
m.q.q 0006	2780	199	2089	1643	511	1163	1506	2840	204	2163	1690	486	1204	1581
12000 p.p.m	2583	164	1909	1545	410	1489	1740	2471	181	1803	1571	374	1590	1665
L.S.D. at 5%	21	\$	37	32	6	10	7	26	4	25	17	16	8	9
Chemical materials														
Control 0	2864	192	2168	1664	496	908	1342	2856	196	2136	1748	502	950	1338
Phosphoric acid 10m.M	3346	236	2378	1928	624	800	1248	3366	243	2546	1960	642	819	1274
Phosphoric acid 20m.M	3302	218	2342	1876	632	817	1255	3286	233	2318	1932	638	845	1275
Proline acid 30 p.p.m	3028	216	2310	1916	809	823	1325	3110	225	2206	1888	640	845	1320
Proline acid 60 p.p.m	2952	218	2298	1884	576	830	1328	3104	207	2286	1854	624	872	1332
Paclobutrazol 100p.p.m	3032	209	2320	8761	506	821	1286	3132	234	2366	1920	664	841	1290
Paclobutrazol 200p.p.m	2980	205	2118	1812	596	845	1294	3136	225	2296	1908	612	098	1294
L.S.D. at 5 %	24	S	34	30	11	12	10	27	4	27	28	15	10	5

1990) working on different kinds of legumes and sugar beet, as well as Ca (Abdel -Latif, 1995) working on tomato plants.

Regarding the effect of salinity levels on tomato leaves content of Na and Cl. it is evident from data presented in Table (10) that such effect was significant during both seasons of 1996 and 1997. The highest values of these elements were recorded under the highest level of salinity (12000 p.p.m NaCl), in these conditions, Na and Cl content in tomato leaves reached seven and three folds respectively as average of both seasons in comparison with control, where increased Na content from 216 to 1540 mg, whereas Cl content increased from 559 to 1703 mg as average of both seasons. Obtained results are going in the same trend in the two seasons of this work. These results are in harmony with those reported by (Mahmoud et al., 1986 b; Morishita et al., 1986 Hummadi and Ghleim, 1987; Subba-Rao et al., 1987; Alam et al., 1989; Sarg, 1991; El-Rawahy et al., 1992; Helmy, 1992; El-Sherif et al., 1993 Rizk, 1993; Badia and Meiri; 1994; Abdel-Latif, 1995; Abaza, 1996; Perez-Alfocea et al.,1996 and Satti et al.,1996) all working on tomato plants.

2.2.2. Effect of chemical materials:

Data presented in Table (10) show the effect of different chemical materials on the accumulation of studied elements in tomato leaves. Obtained results show that, using any of these materials led mostly to a significant increase in the content of N,P,K,Ca and Mg compared with the control. The highest values of N,P,K and Ca were recorded with tomato leaves produced from plants received (10 mM) phosphoric acid (3356, 239, 2462 and 1944 mg/100gm dry weight, respectively as average of both seasons), whereas, the highest value of

Mg was found in corresponding way with the (20mM) phosphoric acid (635 mg/100 gm dry weight). Tomato leaves from plants did not received any chemicals exhibited the least values in this respect (2860, 194, 2152, 1706 and 499 mg/ 100 gm dry weight) for N,P,K,Ca and Mg, respectively as average of both seasons. Tomato plants that treated with other treatments lie in between in this respect. These results about the effect of phosphoric acid on N,P,K,Ca and Mg elements content are in agreement with those reported by (Abdalla et al.,1979; Abd-El-Zaher,1989; Shafshak,1989 and Taya et al.,1994) with N, they worked on tomato, eggplant, broad bean and tomato, respectively, and P (Farrag, 1970 on broad bean, Patel and Wallace, 1976 and Abd-alle et al.,1979 on tomato; Delbert and Hemphill, 1982 on cucumber, carrot, lettuce and onion; Shafshak, 1989 on broad bean and Masaguer et al.,1991; Taya et al.,1994 and Satti and El-Yahyai, 1995 all working on tomato), and with leaves content of K (Farrag, 1970 on broad bean; Abdalla et al., 1979 on tomato; Shafshak, 1989 on broad bean; Awad et al.,1990 and Taya et al.,1994 on tomato), and Ca (Patel and Wallace, 1976 on tomato).

Concerning the effect of proline acid on leaves content of N,P,K,Ca and Mg elements, it clearly show that application of the two concentrations of proline acid (30 and 60 p.p.m) resulted in an increase in tomato leaves content of all previously mentioned elements, these increases were significant in the both seasons for all tested elements. Obtained results are in agreement with those reported by Wageeh (1994) on wheat and Abdel -Latif (1995) on tomato, they noticed that proline acid increased leaves content of N,P,K and Mg, whereas it decreased leaves content of Ca (Abdel-Latif, 1995).

With respect to the effect of PP₃₃₃ on tomato leaves content of N,P,K,Ca and Mg, it is evident from the same table that spraying tomato plants with the two concentrations of PP₃₃₃ (100 and 200 p.p.m) resulted in a significant increase in most leaves content of those elements. These results hold true during both seasons of this work. Such results are in agreements with those reported by El-Desouky and Abd-El-Dayem (1992 b) on rapeseed and Ismaeil (1995) on broad bean. On the contrary Ismaeil in the same study indicated that the content of K was inversely proportional to paclobutrazol concentration.

Concerning the effect of chemical materials on tomato leaves content of Na and Cl, data presented in Table (10) show clearly that application of these materials resulted in a significantly reduction when compared with the control. The least values of both N and Cl contents were recorded with phosphoric acid treatments. This reduction was more pronounced with the low concentration (10mM) compared to the higher one (20mM). At the same trend, the low concentrations of each of proline acid and paclobutrazol (30 and 100 p.p.m., respectively) recorded the least values in Na and Cl content of plant leaves in comparison with the corresponding higher concentrations of each (60 and 200 p.p.m., respectively). These results were going in the same trend during the two seasons of 1996 and 1997.

The effects of chemical materials on the nutritional status of tomato leaves could be attributed to that accumulation of ions for osmotic adjustment and restriction of Na and Cl accumulation in immature leaves appear to be involved in phosphorus, proline and paclobutrazol enhancement of salt tolerance in tomato plants. The

results about the positive effect of phosphoric acid on Na and Cl accumulation are in harmony with those reported by Awad et al. (1990) on tomato. On the contrary, Patel and Wallace (1976) noticed that as P level increased, Na and Cl concentration increased in tomato plant tissues.

Regarding the effect of proline acid, results in this regard are in agreements with those indicated by **Abdel-Latif** (1995) on tomato plants.

Regarding the effect of interaction between salinity levels and different chemical materials on tomato leaves content of N,P,K,Ca and Mg, data tabulated in Table (11) show that, the highest values of studied minerals were observed in tomato leaves produced from plants received phosphoric acid at 10 mM under irrigation with tap water conditions (3860, 282, 2940 and 2420 mg / 100 gm dry weight as average of both seasons) for N,P,K and Ca, respectively. Meanwhile, using 30 p.p.m proline acid gave the highest value of leaves content of Mg (865 mg/ 100gm dry weight as average of both seasons) under irrigation with tap water. The least values in this respect were those from plants irrigated with highest level of salinity (12000 p.p.m NaCl) without treating with any chemical materials (2345, 149, 1740, 1340 and 265 mg/ 100gm dry weight as average of both seasons) for N,P,K,Ca and Mg, respectively.

Table (11): Effect of interaction between salinity and chemical materials on N,P,K,Ca, Mg, Na and Cl content (mg/ 100. gm D.W.) of tomato leaves during 1996 and 1997 seasons.

2	Seggans				100x								1007			
					2								× × ×			
Ö	Salimity	Chemical materials	Z	đ.	X	ర	Mg	Z Z	D	Z	A.	¥	S.	Mg	RA B	5
		0	3400	217	2390	2060	089	224	565	3560	253	2460	2200	740	223	577
		Phosphori 10mM	3750	282	2900	2500	780	214	542	3970	282	2980	2340	840	210	544
	0	Phosphori acid 20mM	3730	258	7890	2300	780	215	549	3870	268	2720	2200	810	213	551
<u>-</u>	p.p.m	Phosphori acid 30 mM	3570	282	2820	2300	810	213	563	3770	279	2510	2300	920	213	570
		Phosphori acid 60mM	3410	262	2520	2400	800	216	562	3740	278	2680	2280	998	215	576
		PP ₃₃₃ 100 p.p.m	3550	243	2820	2240	160	219	556	3670	277	2960	2380	006	214	556
		PP ₃₃₃ 200 p.p.m	3520	264	2460	2040	740	213	929	3660	. 275	2680	2140	840	218	260
		0	3210	216	2260	1680	590	550	1274	3200	211	2360	2060	640	534	1217
_		Phosphoric acid 10mM	3660	278	2540	2120	700	450	1196	3710	258	2700	2120	092	424	1176
(7)	3000	Phosphoric acid 20mM	3610	722	2470	2040	200	462	1191	3640	251	2530	2040	750	466	1186
<u> </u>	p.p.m	Proline acid 30 p.p.m	3450	231	2440	2140	720	496	1252	3480	235	2430	2100	098	464	1210
······································		Proline acid 60 p.p.m	3280	249	2360	2180	700	206	1239	3530	214	2420	2080	720	480	1217
		PР ₃₃₃ 100 р.р.m	3430	223	7600	2080	069	480	1238	3530	253	2620	2120	008	452	1187
		PP ₃₃₃ 200 p.p.m	3330	221	2390	1900	089	486	1263	3570	229	2540	2100	780	476	1187
<u></u>		0	2740	196	2230	1600	480	915	1499	2680	191	2180	1700	520	906	1529
8		Phosphoric acid 10mM	3370	251	2400	1820	099	774	1374	3340	232	2550	1800	089	774	1494
	0009	Phosphoric acid 20mM	3280	212	2410	1880	640	792	1390	3310	240	2350	1840	260	813	1485
<u>ة</u> 	p.p.m	Proline acid 30 p.p.m	2990	196	2290	1940	009	807	1492	3080	228	2340	1860	660	810	1526
		Proline acid 60 p.p.m	2888	204	2280	1740	570	816	1505	3120	201	2390	1800	600	831	1523
		PP ₃₃₃ 100 p.p.m	2890	215	2280	1900	290	262	1430	3160	231	2260	1880	089	807	1510
		PР ₃₃₃ 200 р.р.m	2930	205	2150	1860	570	810	1434	3180	222	2350	1880	580	834	1517
		0	2590	183	2130	1540	430	1240	1557	2530	177	2030	1540	380	1328	1640
		Phosphoric acid 10mM	3130	210	2100	1620	999	1124	1450	3120	224	2450	1780	500	1148	1533
<u>~</u>	 906	Phosphoric acid 20mM	3050	206	2140	1640	009	1152	1462	2980	207	2170	1820	540	1184	1531
<u>-</u>	p.p.m	Proline acid 30 p.p.m	2600	190	2050	1700	200	1144	1527	2780	207	2030	1640	440	1180	1616
		Proline acid 60 p.p.m	2680	706	2270	1620	450	1136	1537	2710	179	2240	1630	520	1232	1624
		PP ₃₃₃ 100 p.p.m	2730	209	2060	1740	510	1152	1495	2870	227	2110	1620	540	1168	1559
		РР ₃₃₃ 200 р.р.т	2680	187	1870	1640	530	1190	1512	2890	209	2110	1800	480	1188	1562
		0	2380	150	1830	1440	300	1610	1818	2310	148	1650	1240	230	1760	1728
	J	Phosphoric acid 10mM	2820	157	1950	1580	420	1440	1680	2690	219	2050	1760	430	1510	1622
12		Phosphoric acid 20mM	2840	186	2010	1520	440	1465	1684	2630	198	1820	1760	440	1550	1624
<u>.</u>	p.p.m	Proline acid 30 p.p.m	2530	182	1950	1500	410	1455	1792	2440	176	1720	1540	320	1560	1681
		Proline acid 60 p.p.m	2510	169	2060	1480	360	1475	1796	2420	161	1700	1480	420	1600	1721
	_1	РР _{эээ} 100 р.р.m	2560	156	1840	1680	480	1455	1710	2430	170	1880	1600	400	1565	1636
		PP ₃₃₃ 200 p.p.m	2440	148	1720	1620	460	1525	1708	2380	192	1800	1620	380	1585	1643
		L.S.D. at 5 %	53	=	77	89	25	28	21	61	6	62	63	34	22	12

Concerning the effect of interaction between salinity levels and different chemical materials on leaves content of Na and Cl, data presented in Table (11) show that the differences were significant in this respect during both seasons. The least values were observed with spraying with phosphoric acid 10mM under irrigation with tap water (212 and 543 mg/ 100 dry weight as average of both seasons) for Na and Cl, respectively. In this respect, the highest values (1685 and 1773) for Na and Cl, respectively were observed in tomato leaves produced from plants that untreated with chemical under the highest level of salinity (12000 p.p.m). Tomato plants that treated with other treatments lie in between in this respect.

With respect to the effect of salinity levels on the relationship between Na⁺ and other cations (K⁺, Ca⁺⁺ and Mg⁺⁺) in tomato leaves, it is obvious from the data that presented in Table (12) that, such ratios were significantly increased with increasing salinity levels in both tested seasons of this study (1996 & 1997). The obtained results are in agreement with those reported by (Guerrier, 1984; Taleisnik-Gertel, 1984; Feigin et al., 1987; Hashim et al.,1988 a & b; Badia and Meiri, 1994 and Abdel-Latif, 1995) on tomato, they noticed that Na⁺: Ka⁺ ratio in shoots can be used as an ionic indicator of tomato tolerance to salinity.

Concerning the effect of different chemical materials on the Na⁺: K⁺, Na⁺: Ca⁺⁺ and Na⁺: Mg⁺⁺ ratios, data presented in Table (12) show clearly that such effects resulted in significant reduction in all studied ratios in both seasons of 1996 and 1997. The only exception is that the 200 p.p.m paclobutrazol effect on Na⁺:K⁺ ratio tended to approach that of the control in the first season in which differences

were insignificant. The lowest values of Na⁺: K⁺, Na⁺: C⁺⁺ and Na: Mg⁺⁺ were observed in tomato leaves that produced from plants received phosphoric acid at 10mM showing 0.360, 0.457 and 1.533 respectively, as average of both seasons, Whereas, the highest values in this respect were recorded in tomato leaves produced from plants that untreated with chemicals (control) and reached 0.466, 0.610 and 2.547 for Na⁺: K⁺, Na⁺: Ca⁺⁺ and Na⁺ Mg⁺⁺, respectively as average of both seasons. Tomato plants that treated with other treatments lie in between in this respect.

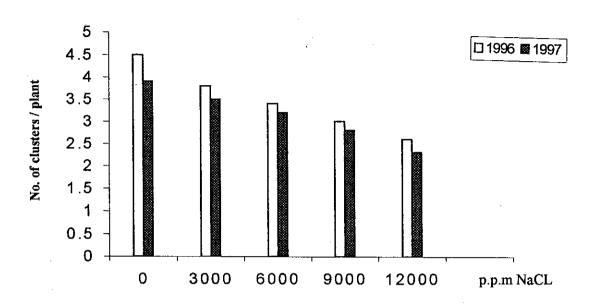
With respect to the effect of interaction between salinity levels and different chemical materials on Na⁺: K⁺, Na⁺: Ca⁺⁺ and Na⁺: Mg⁺⁺ ratios, data presented in Table (13) show clearly that such effects were significant during both seasons. It is worth mentioning that increasing salinity levels led to progressively and continually increase in the previous ratios.

Spraying tomato plants with any of the tested chemicals resulted in considerable reduction in the Na: cations ratios in most cases.

Application phosphoric acid exhibited the most favourable effect in this respect, under conditions of 12000 p.p.m NaCl, plants that spraying with phosphoric acid (low concentration 10mM) recorded the lowest values of Na⁺: K⁺⁺ and Na⁺: Ca⁺⁺ ratios, whereas spraying with 20 mM phosphoric acid resulted the lowest value of Na⁺: Mg⁺⁺ ratio (0.738, 0.885 and 3.428) as average of both seasons of this work for Na⁺: K⁺, Na⁺: Ca⁺⁺ and Na⁺: Mg⁺⁺ respectively. In this connection the highest values of Na⁺: other cations were recorded under 12000 p.p.m NaCl condition without any of spraying chemicals.

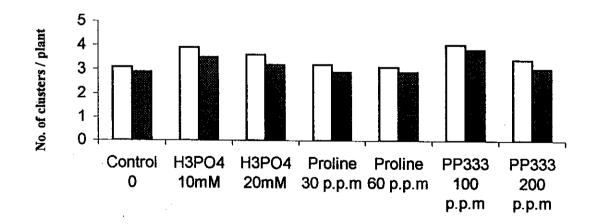
With respect to the effect of paclobutrazol on proline content in tomato leaves such effects are in agreement with those reported by Wanas (1996) on tomato plants.

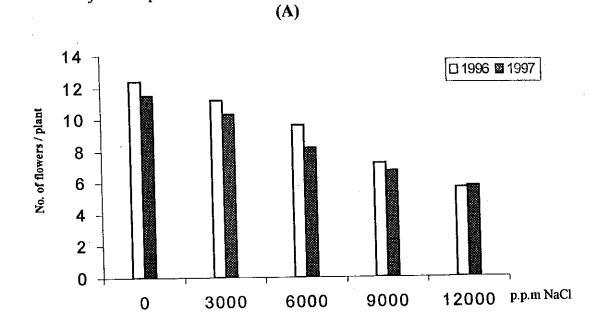
Concerning the effect of interaction between salinity levels and chemical materials on leaves content of free proline, data presented in Table (13) show clearly that the differences in this respect were significant during the two seasons of this study. The highest value of leaves content of free proline was observed when proline acid (30 p.p.m) was applied under the highest level of salinity i.e. 12000 p.p.m (1.573 mg/gm fresh weight) as average of both season, whereas the least value was recorded with paclobutrazol application at 100 p.p.m when using tap water in irrigation (0.812 mg/gm fresh weight) as average of both seasons.


3. Flowering characteristics:

3.1. Effect of salinity:

Data presented in Table (14) and Figures (4 and 5) show the effect of salinity levels on number of clusters and flowers per plant. Such characteristics tended to decrease significantly as the level of salinity increased during both seasons of this study. These results might be attributed to either the adverse role of salinity on imbalance in nutritional cations in tissues of the salts affected plant and the retardant effects on plant growth that may be reflect on the reduction in flowering parameters, or due to the imbalance in hormons content in plants, as salinity increase. In such case salinity caused a decrease transport of kinetin (which is essential in flowering and fruiting processes) from root to leaves and an increase in leaves content of abscisis acid. Obtained results are in agreement with those


Fig (4): Effect of salinity levels (A) and chemical materials (B) on number of clusters / plant.



Salinity levels

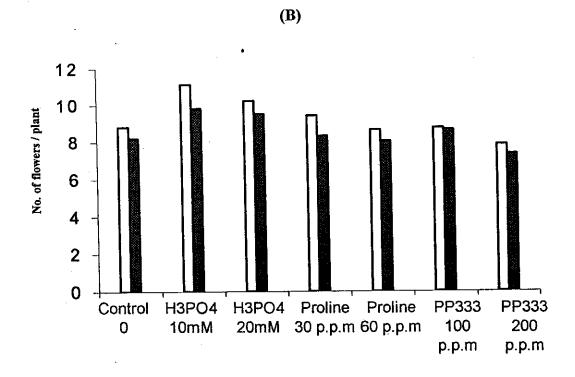

(B)

Fig.(5):Effect of salinity levels (A) and chemical materials (B) on number of flowers / plant.

Salinity levels

reported by (Mohamed, 1987; Abaza, 1996 and Wanas, 1996) on tomato plants.

3.2. Effect of chemical materials:

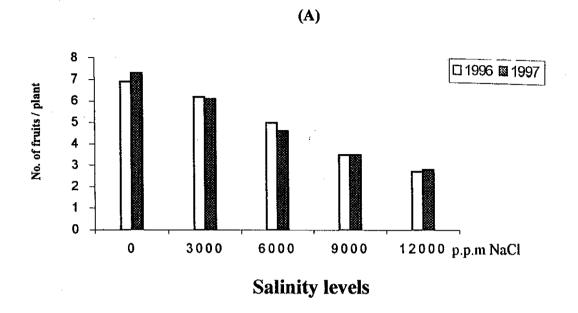
Data presented in Table (14) and Figure (4) show the effect of different chemical materials on number of clusters of tomato plants. As average of both seasons, the highest value of number of clusters (3.9) was recorded in tomato plants that received the low concentration of paclobutrazol i.e. 100 p.p.m followed by phosphoric acid at 10 mM (3.7) whereas, the least value in this respet was observed in tomato plants that untreated with chemicals (3.0).

With respect to the effect of application of chemical materials on number of flowers per plant, data presented in Table (14) and Figure (5) indicate that such effects were only significant with phosphoric acid treatments (10 and 20 mM), whereas, application of other chemicals i.e. proline acid or paclobutrazol did not induce significant effect. Obtained results on the effect of phosphoric acid are in agreement with those reported by Amer (1964) on cotton, Abd El-Zaher (1989) on eggplant and Selim (1990) on pea plants. The obtained results about the effect of paclobutrazol on number of clusters and floweres are in harmony with those reported by Salem et al., (1991) on Gomphrena globosa plants, El-Desouky and Abd El-Dayem (1992 a) on sesame, Wanas (1992) on pea, Ismaeil (1995) on broad bean and Wanas (1996) on tomato plants.

Concerning the interaction between salinity levels and chemical materials (Table, 15), no significant effects on number of clusters and flowers per plant could be detected during both seasons of this work.

Table(14): Flowering and yield and its components of tomato plants as affected by irrigation with saline water and spraying with different chmical materials during 1996 and 1997 seasons.

											T.	1997		
Seasons	No.of	No of	1996 No.of	Average		Fruit	Plant	Jo oN	No.of	No.of fruits	Average fmit weight	Fruit	Fruit	Plant
Treatments	chusters /plant	flowers /plant	fruits /plant	fruit weight (gm)		diameter (cm)	yieid (gm)	cursics plant	/plant	tigg.	(E.)	(cm)	(cm)	(Segan)
Sallnity	7.6	10.4	0.9	34.0	4.3	4.0	236	3.9	11.5	7.3	31.7	4.6	4.3	233
0 p.p.m	£ 8	11.2	6.2	30.9	4.0	3.8	195	3.5	10.3	6.1	29.1	4.2	3.9	180
3000 p.p.m	3.5	9.6	5.0	26.4	3.8	3.4	135	3.2	8.2	4.6	23.8	4.0	3.7	112
m.d.dooo	3.0	7.2	3.5	22.5	3.5	3.2	80	2.8	6.7	3.5	21.4	3.8	3.5	77
12000 p.p.m	2.6	5.6	2.7	18.0	3.3	3.0	50	2.3	5.7	2.8	17.5	3.6	3.1	50
L.S.D. at 5%	0.1	0.5	0.3	1.1	0.5	0.3	7	0.3	4.0	0.5	1.7	0.3	0.1	9
Chemical materials														
Control	3.1	8.8	4.5	24.8	3.4	3.0	122	2.9	8.2	4.4	24.1	3.7	3.4	115
o mino	0,	-	5.7	30.4	4.5	4.1	183	3.5	8.6	5.9	28.3	4.3	4.2	176
Phosphoric acid 10m.ivi	2.5	10.3	5.3	28.4	4	3.8	191	3.2	9.5	5.3	27.2	4.3	4.0	154
Phosphoric actd 20m. IVI	5.0	7.07	3	26.9	3.7	3.5	141	2.9	8.3	4.9	25.4	4.1	3.9	133
Proline acid 30 p.p.m	;	70	2.2	250	3.5	3.1	124	2.9	8.0	4.6	24.3	3.9	3.7	122
Proline acid 60 p.p.m	3.1	0.0	. 4	27.1	4.1	3.8	140	3.8	9.8	4.8	24.3	4.1	3.7	123
Paciobuttazol 2000. p.m.	3.4	7.8	4.2	22.0	3.4	3.0	102	3.0	7.3	4.2	19.3	3.7	3.1	88
L.S.D. at 5 %	0.4	0.7	0.4	1.5	0.4	0.4	10	0.3	9.0	0.4	1.4	0.5	0.5	∞


91 **#**

4. Yield and its components:

4.1 Effect of salinity:

Data in Table (14) and Figures (6,7 and 8) show the effect of salinity levels on yield and its components of tomato plants. It is evident from such data that number of fruits per plant, average fruit weight, length and diameter as well as plant yield were progressively and significantly reduced as salinity levels increased. These results are going in the same trend during the two seasons of 1996 and 1997. Such results may be attributed to the adverse effects of salinity on plant growth (Table,5) and photosynthetic pigments (Table,8) as well as mineral content of leaves (Table, 10) which may be consequently reduce plant yield. Obtained results about the effect of salinity on number of fruits per plant and average fruit weight are in harmony with those reported on tomato plants by (Rosario et al., 1990; Adams, 1991; Caro et al.,1991 Davis et al.,1991; Ohta et al.,1991; Soliman Doss, 1992; Alarcon et al.,1994; Abdel- Latif, 1995; Abaza, 1996 and Wanas, 1996). The results about the effect of salinity level on tomato plant yield (Table 14), are in line with those reported on tomato plants by Adams, (1988); Mizrahi et al. (1988); Adams and Ho (1989); Awwad et al. (1991); Sarg (1991); Soliman and Doss (1992); Rizk (1993); Sarg et al. (1993); Alarcon et al. (1994) Faiz et al. (1994); Abdel -Latif (1995); Vespasiani et al. (1995); Abaza (1996); Perez -Alfocea et al. (1996); Wanas (1996); Yong et al. (1996) and Yurtsever and Sönmez (1996). Obtained results about the effect of salinity on fruit length and diameter are in agreement with those reported on tomato fruits by Al-Najum and Neimmah (1989); Rosario et al. (1990); Adams (1991); Caro et al. (1991); Davis et al. (1991); Ohta et al.

Fig. (6): Effect of salinity levels (A) and chemical materials (B) on number of fruits / plant.

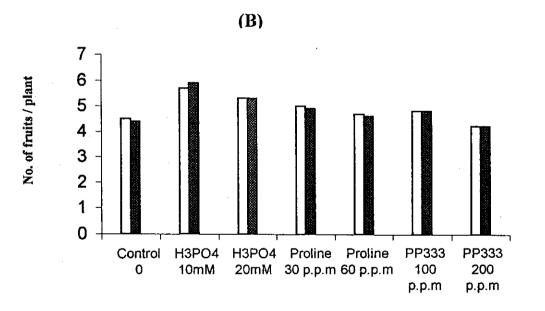
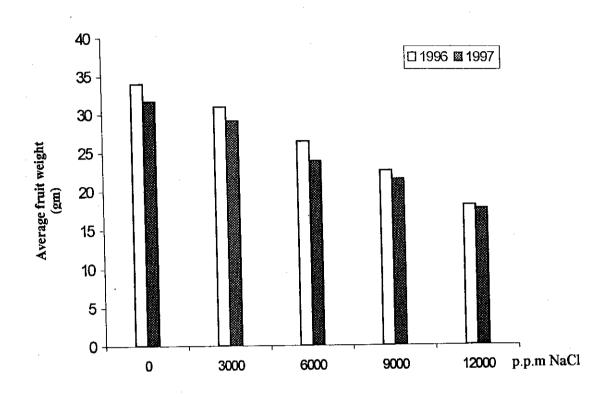



Fig. (7): Effect of salinity levels (A) and chemical materials (B) on average fruit weight.

(A)

Salinity levels

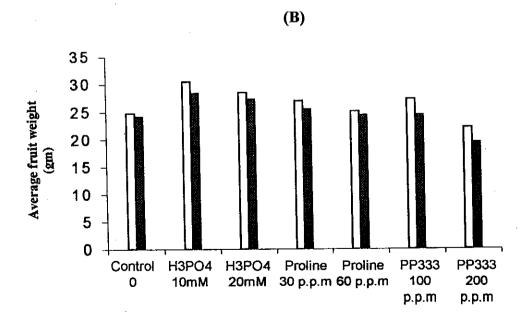
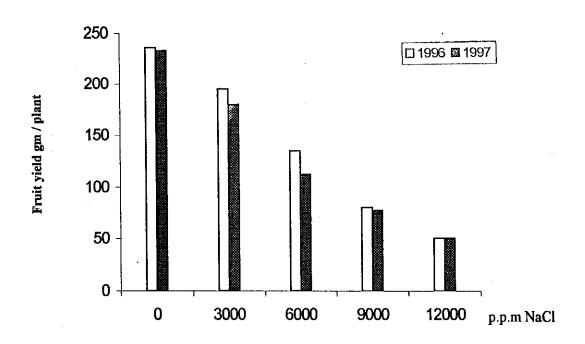



Fig. (8): Effect of salinity levels (A) and chemical materials (B) on fruit yield / plant.

Salinity levels

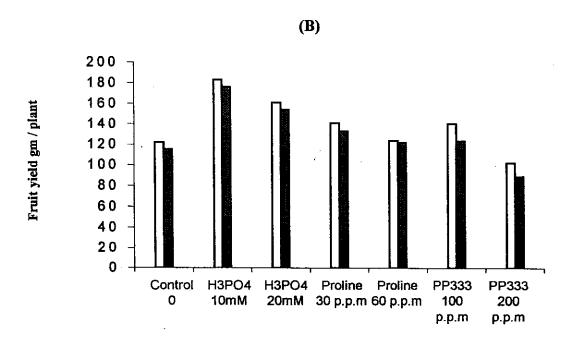


Table (15): Effect of interaction between salinity and chemical materials on flowering and yield and its components of tomato plants during 1996 and 1997 seasons.

	during 1996 and 1997 seasons.	yy / seas			(C)	200000000000000000000000000000000000000	SCHOOL SAMPLES					1997			
Seasons				1996		٠	7	#1777-T-104	A SA SA	J. J. V	No.of	Average	Fruit	H	Plant
Sell-fe	Chemical materials	No.of	No.of	સ. ઝ.	Average	Ħ.		Flain yield	olitetere.	flowers	fruits	fruit .	length	diameter	yleld
		clusters	flowers	fruits	Fruit		diameter diameter		folant	fplant	/plant	weight			(
		/plant	tundo.	(plent	weight.	ĺ	ĺ	(maj	4	100	*	(gmg)	(cm)	(cm)	Ting)
				ļ	(113)	Tenns v	2.7	214	3.7	11.0	7.0	30.7	4.3	4.0	¢17
	0	4.3	12.3	6.7	32.0	2 4	2.5	780	43	13.0	8.3	36.3	5.0	4.7	302
	Phosphoric acid 10mM	5.0	14.3	7.7	38.0	0.0	ż ,	277	4.0	13.3	8.0	35.0	5.0	4.7	569
-	Phosphoric acid 20mM	4.7	13.7	7.3	36.3	4		22.4	2 10	11.0	7.3	32.0	4.7	4.7	234
D.0.0	Proline acid 30 p.p.m	4.3	12.7	7.0	33.7	5.4	D. 4	467		10.3	7.0	31.7	4.3	4.3	219
•	Proline acid 60 p.p.m	4.3	12.0	6.7	31.3	0.4	7.7	203		12.7	7.0	30.3	4.7	4.3	211
	РРзз 100 р.р.т	47	11.3	6.7	37.0	4.	5.4	247	7.7	2.0	6.7	25.7	4.0	3.7	171
	PP ₃₃₃ 200 р.р.ш	4.3	10.7	6.3	30.3	4.0	\; ;	172	2.7	10.01	5.7	28.0	4.0	3.7	158
	0	3.7	10.3	6.0	28.7	3.7	3.3	17.2	5.5	10.0	7.0	33.7	4.7	4.3	233
	Phosphoric acid 10mM	4.3	13.7	7.0	35.3	4.7	4.3	747	5,6	12.0	63	32.7	4.7	4.3	206
3000	Phosphoric acid 20mM	4.0	13.0	6.7	33.3	4.3	4.3	177	, ; ·	10.3	63	29.7	4.3	4.0	187
D.0.0	Proline acid 30 p.p.m	3.7	11.3	6.3	30.3	0.4	4.0	130	2.0	0.7	6.3	28.3	4.0	4.0	179
	Proline acid 60 p.p.m	3.3	10.7	0.9	28.7		5 5	208	4.3	10.0	6.0	28.7	4.3	4.0	170
	PP ₁₃₃ 100 p.p.m	4.3	10.3	6.3	33.0	2.0	0.4	200	2.6	8.7	5.3	23.0	3.7	3.3	123
	PP ₃₃₃ 200 р.р.m	3.7	9.7	5.7	27.0	3.7	5.5	155		0 3	4.3	24.2	3.7	3.3	105
	0	3.3	9.3	4.3	27.0	3.3	3.0	117	0.5	0.0	0.9	263	43	4.3	157
0.0	Phosphoric acid 10mM	4.0	11.0	6.3	31.3	4.7	4.0	197	3.7	5.6	2.0	253	4.3	4.0	134
2000	Phoenhoric acid 20mM	3.3	10.0	0.9	30.0	4.0	3.7	180	5.5	0.0	5.5	24.7	4.0	3.7	115
6 9	Proline acid 30 p.m.	3.0	10.0	5.3	25.3	3.7	3.7	134	0.5	177	4 3	23.0	3.7	3.7	66
	Proline acid 60 p.p.m	3.0	9.3	4.7	24.0	3.7	3.0	112	200		43	24.3	4.0	3.7	105
	PP333 100 p.p.m	4.0	9.3	4.7	26.3	4.0	3.7	123	2.0	20.0	3.7	18.7	3.7	3.0	89
	PP-113 200 p.p.m	3.3	8.7	4.0	21.0	3.3	30	\$	0.0		3.0	77.7	3.3	3.3	89
	0	2.3	7.7	3.3	22.7	3.0	2.7	75	2.7	10.7	2.0	24.0	4.3	4.0	112
	Phosphoric acid 10mM	3.3	8.7	4.3	25.3	4.3	4.0	109	0.5	1.7	7.7	23.0	4.0	3.7	84
9006	Phosphoric acid 20mM	3.0	8.0	3.3	23.7	4.0	3.7	æ 8	7.7	6.7	3.7	22.3	4.0	3.7	81
	Proline acid 30 p.p.m	2.7	7.3	3.7	24.7	3.3	3.0	26	2.7	6.7	3.3	21.0	4.0	3.3	5
	Proline acid 60 p.p.m	2.7	6.3	3.7	22.0	5.5	0.0	8 8	3.7	6.3	3.7	20.7	3.7	3.3	9/
	PP ₃₃₃ 100 p.m.	4.0	0.7	5.5	10.7	2,6	2.5	3,4	2.7	0.9	3.0	16.3	3.7	3.0	4
	PP ₃₃₃ 200 p.p.m	3.0	909	0.5	19.	3.0	, ,	32	,	0 %	2.0	15.0	3.3	2.7	8
	0	2.0	4.3	2.3	14.0	3.0	2.5	25	2.7	7.0	3.7	21.3	4.0	3.7	82
	Phosphoric acid 10mM	3.0	8.0	3.3	22.0	Q.	7.0		100	63	3.3	20.0	3.7	3.3	99
12000		3.0	6.7	3.3	19.0	3.7	3.5	00	22	12.5	2.7	18.7	3.7	3.3	20
p.p.m	Ц_	2.3	5.7	2.7	20.7	3.3	0.0	6	2,0	5.7	2.3	17.7	3.7	3.0	41
1	Proline acid 60 p.p.m	2.3	5.0	2.7	19.0	3.0	7.7	20	0.4	200	3.7	17.7	3.7	3.3	53
	РР ₄₄₄ 100 р.р.m	3.3	5.7	3.0	18.3	3.7	2.5	50	2.7	2.0	23	12.7	3.3	2.7	34
	РР333 200 р.т	2.7	4.3	2.0	13.3	3.0	7.7	77	2.7	F	30	n S	n.s	n.s	18
T S D at 5 %	94 5 %	n.s	n.s	n.S	n.s	n.S	n.S	72	II.S	III.5	S.H.				

¥ 96 **¥**

(1991); Soliman and Doss (1992); Alarcon et al. (1994); Vespasiani et al. (1995) and Wanas (1996).

4.2. Effect of chemical materials:

Data in Table (14) and Figures (6,7 and 8) show the effect of different chemical materials on plant yield and its components. It is evident from such data that there were significant increases in plant yield, number of fruits, average fruit weight and fruit length and diameter by phosphoric acid application (10 and 20 mM) in both Also the low level of proline (30 p.p.m) increased seasons. significantly fruit number, fruit diameter and plant yield in both seasons and average fruit weight in the first season. Whereas, the significant effect when paclobutrazol was used, was that effect of using low concentration (100 p.p.m) on plant yield during both seasons. The effect of other chemicals did not show similar trend in both seasons and in different cases they did not show significant differences when compared with the control. The higher level of paclobutrazol reduced significantly fruits weight and dimensions in both seasons. It is worthy to conclude that the highest values of yield and its components were observed on plants which were treated with phosphoric acid 10 mM followed by 20 mM phosphoric acid and 30 p.p.m proline acid, respectively. Whereas, the least values were recorded on tomato plants that treated with 200 p.p.m paclobutrzol in both seasons of study. In this regard, it is clear from obtained data that the increment of studied characters as a result of using 10mM phosphoric acid reached 130, 120, 151,124, and 130 % for number of fruits / plant, average fruit weight, plant yield, fruit length and fruit diameter, respectively, as average of both seasons in comparison with control. The results about the favourable effect of phosphoric acid on

plant yield and physical fruit properties are in agreement with those reported on tomato by (Jarmilo et al.,1978; Abdalla et al., 1979; Dimitrov and Rankov, 1979; Nunung, 1980; Satsijati and Soebijanto, 1980; Abed and Eid, 1987; El-Sawy, 1988; Al-Najum and Neimmah, 1989; Awad et al., 1990; Flett et al., 1990 and Abd—Alla et al. 1996). Obtained results are also in confirmity with those of Delbert and Hemphill (1982) on carrot, cauliflower, cucumber, lettuce and onion; Farag (1984) on pepper and Abd-El-Zaher (1989) on eggplant. Farrage (1970); Shafshak (1989); Selim (1990); Table et al. (1990 a & b) and Teneb et al. (1995) working on different species of legumes. Similarly, Manchanda et al. (1982) and Gibson (1988) found the same conclusion on cereals and pasture species.

With regard to the effect of proline acid in their respect, such results are in agreement with those reported by **Abdel –Latif (1995)** on tomato plants.

Regarding the effect of paclobutrazol on yield and its components and physical properties of fruits, such results are in agreement with those reported by Elfving et al. (1987); Jones et al. (1988); Arora et al. (1989); Curry et al. (1989); Globerson et al. (1989; Prive et al. (1989); Elfving et al. (1990); El-Khoreiby et al. (1990) and Wanas (1996) working on different species of vegetables.

As for the effect of interaction between salinity levels and chemicals used, data presented in Table (15) show that, it was only significant in case of plant yield, Meanwhile, differences did not reach the 5% level of significance in all physical fruit characters. This was true during both seasons of the experiment. The highest fruit yield (296gm/plant) was detected as phosphoric acid at 10mM was applied

combined with control (tap water) irrigation. However, tomato plants supplemented with the highest level of salinity (12000 p.p.m) exhibited the least values, especially with application of 200 p.p.m paclobutrazol (31 gm / plant) as average of both seasons.

5. Fruit quality:

5.1. Vit. C, titratable acidity, T.S.S and sugars:

5.1.1. Effect of salinity:

Data presented in Table (16) show clearly that, there was a significant and gradual increase in fruits content of ascorbic acid (Vit.C.), titratable acidity and total soluble solids (T.S.S) as salinity level increased during both seasons. On the other hand, increasing salinity level resulted in a significant and progressive reduction in fruits content of reducing and total sugars, along with significant increase in fruits content of non-reducing sugars during both seasons of 1996 and 1997. Results regarding ascorbic acid (Vit.C.) are in harmony with those reported on tomato by (Sarg, 1991 and Sarg et al. 1993). On the contrary, Ponomareva and Kubuzenko (1984) found adverse results in this respect.

As for the favourable effect of salinity on fruits content of titratable acidity, results in this side are in agreement with those reported by Mizrahi (1982); Grattan et al. (1987); Adams (1988); Davis et al. (1991); Sarg (1991); Sarg et al. (1993); Abaza (1996) and Satti et al. (1996) on tomato plants.

Results on fruits content of total soluble solids (T.S.S) are in agreement with those reported on tomato plants by Mizrahi (1982); Mizrahi et al. (1982); Lapushner et al. (1986); Adams (1987); Grattan et al. (1987): Mohamed (1987); Mizrahi et al. (1988); Sarg

Table (16): Fruit quality of tomato plants as affected by irrigation with saline water and different chemical materials during 1996 and 1997 seasons.

Characteria				1996					1997	97		ļ
	28 A	Threshile scidity (%)	T.S.S.	Reducing	Non-reducing sugars	Total sugars	Vit.C.mg/106 gm F.W	Titratable acidity (%)	T.S.S.	Reducing sugar	2	Total sugars
Sallnity	i) ,	•	/au)	Q ### 951	D.W.)				/Bw)	£90 gm	0.40
1	7.77	0.52	9.9	4078	318	4396	23.1	0.52	6.2	4023	309	4332
	23.0	0.53	7.7	3871	352	4223	24.0	0.55	7.8	3900	347	4247
(24.4	0.55	8.7	3558	417	3975	24.9	0.57	8.9	3533	449	3982
[24.0	090	68	3291	466	3757	25.4	0.61	9.2	3242	465	3707
	25.8	0.65	9.3	2985	477	3462	26.0	0.64	9.6	2909	471	3381
12000 p.p.m.	0.1	0.01	0.2	20	14	15	0,1	0.01	0.2	62	23	73
Chemical materials												
	3.4.5	0.57	7.7	3502	386	3888	24.8	0.58	8.0	3535	399	3934
Control o	C. 74.	0.57	· · ·	3630	429	4059	25.1	0.58	8.4	3609	436	4045
Phosphoric acid 10m.m	0.62	0.0		3630	7.07	4059	24.9	0.58	8.4	3543	433	3976
Phosphoric acid 20m.M	24.9	0.57	6.0	2466	374	1861	23.9	0.57	8.3	3455	380	3835
Proline acid 30 p.p.m	23.3	0.30	6.0	3476	381	3857	24.0	0.57	3.3	3436	392	3828
Proline acid 60 p.p.m	24.6	0.57	7:0	3594	424	4018	25.0	0.58	8.5	3543	410	3953
PF333 100 p.p.m	24.7	0.57	8.4	3576	421	3997	25.1	0.58	8.5	3527	411	3938
1 SD at 5%	0.1	n.S	0.2	15	77	13	0.1	п.s	0.2	77	21	73

(1991); Sarg et al. (1993); Abaza (1996); Satti et al. (1996) and Yong et al. (1996).

With respect to the effect of salinity on sugars content, such results are in agreement with those indicated by (Rajasekaran and Shanmugavelu, 1983; Davis et al. 1991 and Sarg, 1991) on tomato. However, contra results were reported by Adams (1988); Sarg et al. (1993) and Vespasiani et al. (1995) indicating an increase in tomato fruits sugars by increasing salinity levels.

5.1.2. Effect of chemical materials:

Data presented in Table (16) show the effect of different chemical materials on fruits content of ascorbic acid (Vit. C.), titratable acidity, total soluble solids as well as reducing, non-reducing and total sugars. Significant increase in most fruits content of ascorbic acid (Vit. C.), total soluble solids (T.S.S) reducing, non-reducing and total sugars, were obtained due to the application of either phosphoric acid, or paclobutrzaol in both seasons. Proline acid treatment had adverse significant effect on Vit.C., reducing and total sugars, beside the negative effect on non-reducing sugars and positive effect on T.S.S as compared to the control. On the other hand, titratable acidity of tomato fruits was not affected significantly as a result of spraying tomato plants with any of the chemical materials used during both seasons of this experiment. The results about the favourable effect of phosphoric acid on fruits content of T.S.S., Vit. C. and titratable acidity are in agreement with those reported by **Dunyamalev**, (1977); Doikova (1978); Dimitrov and Rankov (1979); El-Sawah (1979); Kanesire et al. (1984); Abed and Eid (1987); El-Sawy (1988) and Satti et al. (1995) on tomato, as well as Abd-El-Zaher (1989) found a similar findings on eggplants. On the contrary, results about the effect of phosphoric acid on fruits content of titratable acidity, results are in conflict with those reported by (Abed and Eid, 1987 and El-Sawy, 1988) on tomato.

With respect to the positive effect of paclobutrazol on fruits content of Vit.C., titratable acidity, T.S.S and sugar fractions, obtained results are in harmony with those reported by Looney and MacKeller (1987) on sweet cherry; Nerson et al. (1989) on Galia muskmelon; El-Desouky and Abd-El-Dayem (1992 a & b) on sesame and rapeseed; Ismaeil (1995) on broad bean and Wanas (1996) on tomato. On the contrary, El-Bassiouny (1992) working on strawberry found a converse results in most parameters, previously mentioned. Moreover, Looney and MacKallr (1987) found no differences due to the application of paclobutrazol in sugars content of sweet cherries compared to the control.

Concerning the effect of proline acid, results in this respect are in agreement with those reported by **Abdel- Latif (1995)** on tomato plants.

Regarding the interaction between salinity levels and different chemical materials, data illustrated in the Table (17) show that differences in this respect were only significant in case of Vit.C. and reducing sugars during both seasons, meanwhile significant effects in case of reducing and total sugars were only in the first season. It worth mentioning that increasing salinity levels was accompanied with increasing fruits content of Vit. C., and non-reducing sugars. In this connection, the highest values of fruits content of these constituents were observed on tomato fruits produced from plants supplement with

Table (17): Effect of interaction between salinity and chemical materials on fruit quality of tomato plants during 1996 and 1997 seasons.

					1006					5	1997		
Seasons					e de la companya de l	Non-reducing	Total sugars	対しま	Tieratable	T.S.S	Rechicing	Nen-reducting	Tatal segara
Salling	Chemical sealed als		Figure (%)		sugates	sugar		100 gm F.W	acidity (%)	2 09	4008	342	4350
		22.5	0.52	6.1	4017	313	4330	200	25.0	;	4108	305	4413
_	Whitehoric acid 10mM	23.6	0.52	69	4146	336	4482	25.5	25.0	;;;	4114	305	4419
	Phombonic acid 20mM	23.4	0.51	8.9	4114	347	4461	4.5.4	15.0	: -	3931	305	4236
2 2	Destine serie 30 n p.m.	21.9	0.50	9.9	4030	395	4325	22.2	15.0	6.2	3919	309	4228
	Desline exid 60 n m	21.9	0.52	6.5	4013	307	4520	777	200	44	4067	291	4358
	DD 100 n m	23.0	0.53	69	4126	316	4442	23.5	65.0	3	150	309	4320
	PP 200 n.p.m	23.0	0.52	6.8	4105	316	4421	25	0.88	7.3	3914	336	4250
1	11.333 200 2.2	240	0,53	7.1	3822	334	4156	0.42		?	1002	319	4310
	U U	24.5	0.54	8.1	3945	367	4312	24.5	0.54	6	3068	328	4316
	Phosphoric acid 10mm	24.4	0.54	7.9	3960	340	4300	24.4	45.0	10	1995	334	4185
	Phosphoric acid 20 mm	23.0	0.53	7.8	3791	325	4116	23.2	6	C. C	3807	376	4183
p.p.m.	Promise acid 30 p.m.	22.7	0.53	7.6	3795	330	4125	23.2	65.0	9.	3868	383	4251
-	Profine acid oo p.p.m.	24.2	0.54	8.0	3915	383	4296	24.4	673	2 6	3880	355	4235
	PP333 100 p.p.m	242	0.53	7.9	3875	386	4261	24.3	0.56	7.9	2000	439	3995
	PP333 200 p.p.m	0.50	95.0	0%	3454	401	3855	25.1	0.57	2 8	3330	404	4113
	0	2.00	35	06	3665	460	4125	25.0	0.56	8.0	3618	450	4018
	Phosphoric acid 10mM	24.3	3	00	3474	460	4135	25.0	0.56	9.1	3621	459	2002
0009	Phosphoric acid 20mM	24.8	0.30	9 9	2447	356	3803	24.0	0.56	8.7	3451	410	3901
p.p.m	Proline acid 30 p.p.m	23.3	0.33	9.0	3440	385	3825	24.4	0.57	00 00	3435	452	380/
• .	Proline acid 60 p.p.m	23.5	0.55	0.0	0696	474	4054	25.3	0.57	8.9	3541	442	3983
	PP133 100 p.p.m	24.7	0.55	0.6	3600	127	4031	25.5	0.57	9.1	3514	466	3980
, 	PP131 200 p.m	24.6	0.55	9.0	3900	16		> > 0	190	0.6	3240	454	3694
		25.2	09:0	8.5	3228	433	3001	0 30	100	03	3311	530	3841
-	Dhomboric acid 10Mm	25.4	0.59	9.1	3380	493	3873	0.57	2000	92	3308	527	3835
0000	Prospinorio acid 20mM	25.3	0.59	9.0	3391	495	3886	5.53	97.0	; [3141	450	3591
	Parline oxid 30 n n m	23.8	09'0	9.1	3230	421	3651	0.47	970	02	3136	446	3582
h-j-i-	Proline acid 60 p.p.m	24.0	09.0	8.9	3190	424	3614	25.6	0.62	9.4	3281	433	3714
	PP 100 n.m.	25.0	09'0	9.0	3304	311	3903	25.8	0.62	9.4	3278	420	3698
	PP 200 p.p.m	25.4	0.59	9.2	3318	484	3802	1 76	9,0	9.2	2961	423	3384
	0	25.9	0.64	8.8	2990	451	3441	107	0.65	9.7	3018	533	3551
	Phoenhoric acid 10mM	26.4	0.64	5.6	3014	491	3505	0.07	6.0	90	2686	\$42	3202
00000	Phoenicacid 20mM	26.3	0.65	9.6	3022	491	3513	70.4	100	0.0	2902	400	3302
00071	Pulling acid 30 n m	24.8	0.65	9.3	2943	471	3414	25.5	650	96	2884	397	3281
h-p-u	FIGURE SAIN SO P.P.	25.0	0.65	9.4	2945	460	3405	77.67	200	2 2	3968	105	3459
	Profile acid of p.p.m.	26.3	0.65	9.6	2998	487	3485	26.4	0.04	2.0	2956	\$0\$	3461
	FF333 100 p.p.m	263	0.65	4.6	2983	488	3471	7.07	10.0	}		46	n.s
	PP333 200 P.P.111	60	D.S	D.S	35	37	29	0.3	n.s	TI I	i		
	L.S.D. 81 3 %												

the highest level of salinity (12000 p.p.m), whereas plants that irrigated with tap water recorded the lowest values of these constituents in their fruits.

- -Under such conditions, spaying tomato plant with phosphoric acid (10 and 20 mM) or paclobutrazol (100 and 200 p.p.m) exhibited a contribution effect in an increase fruits content of Vit. C. and non-reducing sugars. In this regard phosphoric acid (10 and 20 mM) recorded the highest values of fruits content of Vit. C. and non-reducing sugars (26.50 and 26.35 mg/ 100 gm F.W.) for 10 and 20 mM as average of both seasons, followed by paclobutrazol treatment (with 100 and 200 p.p.m) (26.35 and 26. 25 mg/ 100 gm D.W.) as average of both seasons.
- -Proline acid treatment exhibited an adverse effect in this respect.
- -The highest values of Vit.C. and non-reducing sugars were observed in tomato fruits that produced from plants irrigated with tap water and sprayed with paclobutrazol (100 p.p.m) and proline acid (30 p.p.m) (220 mg / 100 gm F.W. and 303 mg / 100 gm D.W) as average of both seasons for Vit. C. and non-reducing sugars, respectively.
- -With respect to the effect on reducing and total sugars, the highest level of this constituents (4127 and 4447 mg/100 gm D.W.) as average of both seasons were detected in fruits that produced from plants treated with phosphoric acid (10 mM) under irrigation with tap water, whereas, the least values of reducing ang total sugars (2914 and 3343 mg/100 gm D.W.) as average of both season for reducing and total sugars, respectively were observed in tomato fruits that produced from plants received the higher concentration of proline acid (60 p.p.m) under irrigation with the highest level of salinity (12000 p.p.m NaCl). Tomato fruits that produced from

plants that treated with other treatments lie in between in this respect. On the other hand, differences between salinity levels and different chemicals materials did not reach the level of 5% of significant in case of titratable acidity and total soluble solids (T.S.S). This was true during both seasons of 1996 and 1997.

5.2. Mineral Composition of fruits:

5.2.1 Effect of salinity:

Data presented in Table (18) show that, increasing salinity level led to a significant and gradual decrease in the content of N,P,K and Ca. However, a significant and constant increase in Na content of tomato fruits could be detected in this respect during both studied seasons. Such results were found in the same direction in plant leaves (Table, 10) which may reflect the accumulation of these minerals in tomato fruits. Obtained results about the effect of salinity level on fruits mineral accumulation are in agreement with those reported on tomato plants by (Adams and El-Gizawy, 1986; Adams, 1988 and Adams and Ho, 1989) with Ca element, and Faiz et al. (1994) with N, P and K elements.

With respect to the effect of salinity level on Na accumulation in tomato fruits, obtained results are in agreement with those reported on tomato by Mizrahi (1982); Mizrahi et al. (1982); Grattan et al. (1987); Adams (1987); Adams (1988); Mizrahi et al. (1988); Sarg et al., (1993) Faiz et al. (1994).

5.2.2. Effect of chemical materials:

It is evident from data presented in Table (18) that, application of any kind of chemical materials that used in this study resulted in a significant and gradual increase in fruits content of N,P,K and Ca

Table (18): N,P,K,Ca and Na elements (mg/ 100 gm D.W.) of tomato fruits as affected by irrigation with saline water and spraying with different chemical materials during 1996 and 1997 seasons.

Seasons		9661					1661			
Treatments Salinity	N	P	K	ð	Na	z	Ъ	K	Ca	Na
0 p.p.m	3683	300	2917	1643	113	3674	319	2949	1637	101
3000 p.p.m	3576	274	2803	1548	178	3401	275	2843	1587	164
6000 P.P.m	3164	237	2713	1460	244	3183	250	2729	1529	232
m.q.q 0006	2744	212	2637	1387	289	2824	227	2621	1469	284
1200 0 p.m	2398	190	2529	1299	337	2486	206	2521	1380	332
L.S.D. at 5 %	38	4	25	16	4	32	4	40	19	4

	Z	1
	5	į
	i	;
٠	ě	
	Ě	
,	_	
	ç	į
•	Š	
	d	Ų
į	•	,
۹		1

	-				-					
Control 0	2918	216	2448	1428	260	2920	224	2414	1448	257
Phosphoric acid 10m.M	3200	250	2848	1512	206	3214	266	2933	1546	194
Phosphoric acid 20m.M	3204	252	2798	1484	221	3260	258	2746	1564	212
Proline acid 30 p.p.m	3214	249	2854	1446	231	3106	265	2914	1506	218
Proline acid 60 p.p.m	3204	242	2798	1432	242	3138	261	2936	1482	231
PP ₃₃₃ 100 p.p.m	3046	250	2684	1506	225	3108	260	2657	1564	212
PP ₃₃₃ 200 p.p.m	3006	240	2608	1464	242	3050	252	2528	1532	233
L.S.D. at 5%	27	9	28	23	S	25	7	40	24	4

during both seasons of this study. As average of both seasons, the highest values (3232, 258, 2890 and 1529 mg / 100 gm D.W. for N,P,K and Ca, respectively were detected in tomato fruits produced from plants that received phosphoric acid (20 mM) for N content and (10 mM) for P,K and Ca. Meanwhile, the least values in this respect were observed in fruits produced from untreated plants.

As for the effect of different chemical materials on Na content of tomato fruits, data show clearly that application of all used chemicals led to a significant reduction in comparison to control. This held true during both seasons of this work. The lowest values (200 mg /100 gm D.W.) as average of both seasons were recorded in tomato fruits produced from plant that spayed with phosphoric acid at 10 mM, whereas the highest value (259 mg) were detected in fruits from untreated plants. These results about the favourable effect of phosphoric acid on tomato fruits content of different elements are in agreement with those reported by Selim (1990) on pea and Masaguer et al. (1991) on tomato.

Concerning the effect of paclobutrazol on fruits content of different elements, results are in agreement with those mentioned by (El-Desouky and Abd El-Dayem, 1992 a & b; Ismaeil, 1995 and Wanas, 1996) on sesame, rapeseed, broad bean and tomato respectively. On the contrary, El-Desouky (1992) on tomato and Ismaeil (1995) on broad bean, found a converse results about the effect of paclobutrazol on total nitrogen and potassium, respectively, in tomato fruits and broad bean seeds.

With respect to the effect of interaction between salinity levels and different chemical materials on tomato fruits content of N,P,K,Ca and Na, it is evident from data (Table, 19) that difference were significant during both seasons of this study. It is worth mentioning that increasing salinity level resulted in a decrease in fruits content of N,P,K and Ca but fruits content of Na increased, in this respect the lowest values of N,P,K and Ca were recorded with the highest level of salinity (12000), whereas under these conditions Na content recorded the highest value.

- -Spraying tomato plants with different chemicals overcome the deleterious effect, of salinity to some extent, on fruits content of these elements. Generally under spraying with used chemicals, tomato fruits maintained to more content of N,P,K and Ca as well as less content of Na in comparison with the untreated fruits (control).
- -Phosphoric acid at 10 mM exhibited the best favourable effect on fruit content of K,Ca and Na (2705, 1380, and 303 mg / 100 gm D.W) as average of both seasons under the highest level of salinity (12000 p.p.m NaCl), and proline acid at 30 p.p.m recorded the highest values of N and P contents (2595 and 210 mg / 100 gm D.W.). In this connection, tomato fruits that produced from plant that irrigated with 12000 p.p.m NaCl and without spraying with chemicals recorded the least values of N,P,K and Ca (2195, 172, 2175 and 1305 mg / 100 gm D.W.) for all mentioned elements, respectively, as average of both seasons. Meanwhile, it recorded the highest value of Na (378 mg). Tomato fruits that produced from plant treated with other treatments lie in between in this respect.

Table (19): Effect of interaction between salinity and chemical materials on N,P,K,Ca and Na elements (mg/100gm D.W.) of tomato fruits during 1996 and 1997 seasons.

Phosphoric acid 10mM Phosphoric acid 20mM Phosphoric acid 20mM Proline acid 30 p.p.m PP 333 100 p.p.m Phosphoric acid 10mM Phosphoric acid 10mM Proline acid 30 p.p.m Phosphoric acid 20mM Proline acid 30 p.p.m Proline acid 30 p.p.m	aterials	N	Ъ	K	ţ		Z	٩			118
Phosphoric Proline acic Proline acic Proline acic Proline acic Phosphoric Phosphoric Proline acic Prosphoric Prosphoric Phosphoric Phosphoric			A CONTRACTOR OF THE PROPERTY O		j						
Phosphoric Phosphoric Proline acic Proline acic Phosphoric Phosphoric Proline acic Prosphoric Phosphoric Phosphoric	_	3500	271	2620	1530	133	3570	292	2630	1600	120
Phosphoric Proline acic Proline acic Proline acic Phosphoric Proline acic Proline prophoric Phosphoric Phosphoric Phosphoric	acid 10mM	3890	306	3070	1680	103	3810	335	3307	1640	/8
Proline acic Proline acic PP333 100 p PP333 200 p Proline acic Prosphoric Phosphoric Phosphoric	acid 20mM	3770	315	2970	1680	106	3830	347	2950	16/0	8 8
Proline acic PP333 100 p PP333 100 p Phosphoric Proline acic Prosphoric Phosphoric Phosphoric	130 p.p.m	3640	302	3080	1630	113	3650	310	3100	1620	7.5
PP333 100 p PP333 200 p Phosphoric Proline acid	160 p.p.m	3670	295	3030	1580	117	3580	313	3140	1680	95
Phosphoric Phosphoric Phosphoric Proline acic Prosphoric Phosphoric Phosphoric	n.d.	3660	310	2880	1720	108	3670	314	7870	1000	106
Phosphoric Phosphoric Proline acic Proline acic Proline 200 p PP 333 200 p Phosphoric Phosphoric	m.g.	3650	300	2770	1680	114	3610	318	7650	1640	100
Phosphoric Phosphoric Proline acic Proline acic Proline 200 p PP333 200 p PPA33 200 p Phosphoric Phosphoric		3400	225	2560	1500	200	3210	234	2550	1510	196
Phosphoric Proline acic Proline acic Proline acic Proline acic Proline acic Proline acic Prosphoric Phosphoric Phosphoric	acid 10mM	3690	291	2910	1640	160	3550	312	2970	1610	152
Proline acic Proline acic Proline acic PP333 100 p PP333 200 p Phosphoric Phosphoric	acid 20mM	3680	295	2900	1580	172	3480	280	2840	1630	156
Proline acid PP333 200 p PP333 200 p Phosphoric Phosphoric	4 30 n m	3540	283	2920	1450	174	3380	282	3090	1580	158
PP333 100 p PP333 200 p Phosphoric Phosphoric	m u u 09 p	3580	271	2870	1440	184	3390	286	3050	1530	168
PP333 200 p		3560	285	2760	1660	178	3410	277	2800	1650	150
Phosphoric Phosphoric		3580	270	2700	1570	182	3390	254	2600	1600	166
Phosphoric Phosphoric	, p.m.	2000	212	02.72	1460	096	2980	227	2430	1440	271
Phosphoric	U 0 10 10	2010	236	2830	1540	222	3280	245	2860	1560	205
Phosphoric	acid 10mm	2220	241	2010	0771	222	3310	241	2760	1570	228
	acid ZomiM	3230	147	0086	1480	243	3090	267	2950	1530	225
Proline acid 30 p.p.m	1 30 p.p.m	3230	247	2700	1240	245	3180	269	2900	1500	235
Proline acid of p.p.m	a oo p.p.m	2170	242	2680	1470	242	3270	258	2700	1580	217
PP333 100 P.P.III	m.d.	2060	232	2630	1410	255	3170	241	2500	1520	245
FF333 400 p.p.m		2510	201	2400	1350	324	2630	192	2300	1380	330
-	0	0775	215	2750	1360	235	2890	222	2800	1500	230
Phosphoric	Phosphoric acid 10milyi	0100	210	0020	1420	267	3050	213	2620	1520	262
Phospitoric	Phospitoric acid collina	2010	217	2780	1410	293	2850	241	2820	1460	287
Profile acid 50 p.p.m	4 50 p.p.m	2000	216	2710	1380	307	2910	250	2840	1440	302
Promise acid oo p.p.m	d oo p.m.	2560	216	2500	1400	282	2780	233	2490	1500	280
DD. 200 pp.m		2550	211	2510	1390	312	2660	235	2480	1480	295
£ £ 333 £ 000 }		2180	260	2190	1300	385	2210	175	2160	1310	370
Dhombaid	Drambario prid 10mM	2440	202	2680	1340	310	2540	217	2730	1420	295
Phosphoric	ocid 20mM	2530	200	2590	1300	317	2630	210	2560	1430	317
Politica	Prior prid 20 m m	2630	103	0696	1260	332	2560	227	2610	1340	327
Proline soid 50 p.p.m	4 50 p.p.m	2540	187	2610	1340	355	2630	185	2750	1330	340
PD.: 100 n m	m d h h h	2280	195	2510	1280	315	2410	216	2426	1410	320
DP.:- 200 p.p.m	. F	2160	186	2430	1270	347	2420	210	2410	1420	355
1 C T 4 6 6 6 7		200	14	63	53	10	58	17	91	n.s	11

¥ 109 **¥**

6. Anatomical Studies:

6.1. Root anatomy:

6.1.1 Effect of salinity:

Data presented in Table (20) and Figures (9-11) show the effect of different levels of salinity in irrigation water on root anatomy features. Such data indicated that increasing salinity levels resulted in decrease the thickness of all studied features i.e. epidermis and exodermis, cortex, phloem, xylem and pith tissues, this reduction was proportional with increasing salinity. These results might be attributed to that role of salinity on inhibiting cell division and elongation which makes as a deleterious effects in this respect. Adverse results – to some extent – were reported by **Wanas** (1996) on tomato.

6.1.2 Effect of chemical materials:

Data presented in Table (20) and Figures (12-18) show clearly that spraying tomato plants with any kind of studied chemical led to an increase in most studied features compared with control. Phosphoric acid (at 10 and 20 mM) exhibited the most favourable effect in this respect followed by paclobutrazol (100 and 200 p.p.m). Proline acid treatment recorded the least values in this regard, but it still higher than control treatment. These results may be due to the role of phosphorus in cell division and the role of proline acid which act as osmo-regulator compound that plays an important role to depress the internal osmotic potential and so maintain a positive gradient for water uptake, this explain the mechanism by which the plant is able to withstand salt stress conditions. These results are in agreement with those reported on paclobutrazol and tomatoes by **Wanas** (1996).

Table (20): Anatomy of tomato plant roots as affected by irrigation with saline water and foliar spray with different chemical materials during 1997 season.

		Thic	ckness in micr	ons for	
Treatments	Epidermis and	Cortex	Phloem	Xylem Tissue	Pith tissue
	exodermis		tissue	rissue	
Salinity	70.4	576.9	105.4	611.2	888.0
0 p.p.m 6000 p.p.m	78.4 71.5	536.7	82.5	500.1	774.4
6000 p.p.m 12000 p.p.m	56.0	515.0	75.2	421.0	707.2
Chemical materials					
Control	63.5	516.3	77.9	425.6	644.3
H ₃ PO ₄ 10mM	74.1	582.9	103.5	641.1	863.5
H3 PO ₄ 20mM	69.6	553.1	106.7	481.6	899.7
Proline 30 p.p.m	68.3	534.9	74.1	616.5	804.8
Proline 60 p.p.m	68.8	498.1	72.0	579.2	658.1
PP ₃₃₃ 100 p.p.m	67.2	571.7	94.9	388.3	874.1
PP ₃₃₃ 200 p.p.m	68.8	542.9	84.8	443.2	785.5

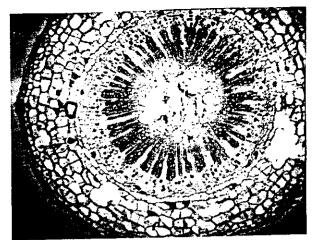


Fig. (9): Tap water (control)

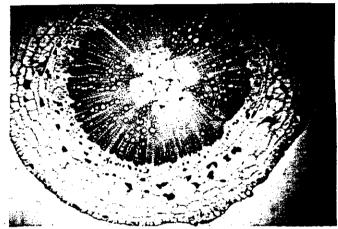
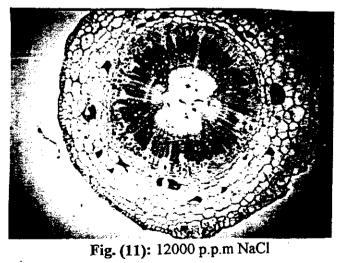



Fig. (10): 6000 p.p.m NaCl

Figures (9-11) :Effect of salinity levels on the anatomical structure of tomato plant root cv. UC97-3.

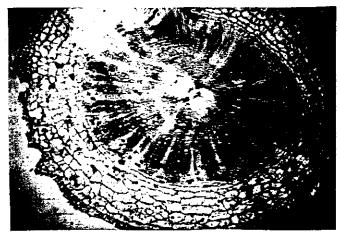


Fig. (12): Distilled water (control)

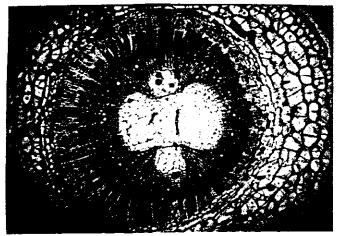


Fig. (13): H3PO4 (10mM)

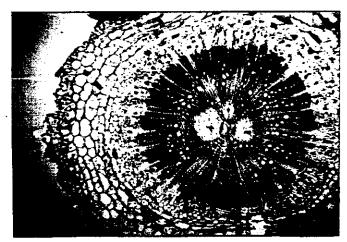


Fig. (14): H3PO4 (20mM)

Figures (12-18): Effect of different chemical materials on the anatomical structure of tomato plant root cv. UC97-3.

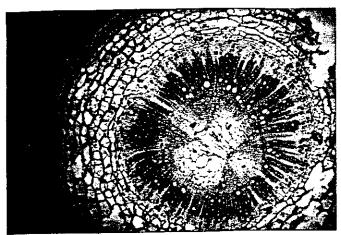


Fig. (15): Proline acid (30 p.p.m)

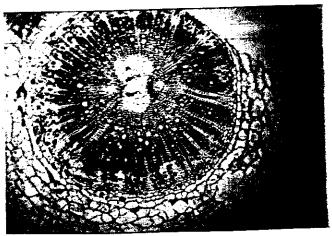


Fig. (16): Proline acid (60 p.p.m)

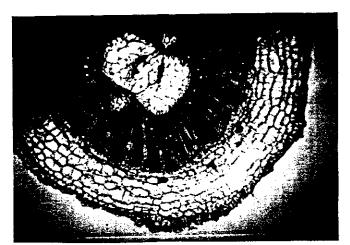


Fig.(17): PP₃₃₃ (100 p.p.m)

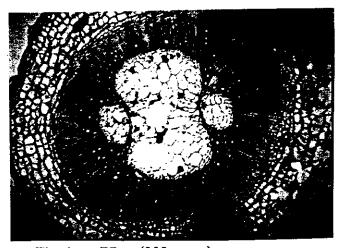


Fig. (18): PP₃₃₃ (200 p.p.m)

Fig. (12-18):Cont.: Effect of different chemical materials on the anomical structure of tomato plant root cv. UC97-3.

6.2. Leaf anatomy:

6.2.1. Effect of salinity:

Data presented in Table (21) and Figures (19-21) show the effect of different levels of salinity on leaf anatomy of tomato plants. Such data indicate that the thickness of blade and measophyll (palisade and spongy tissues) as well as upper and lower epidermis and number of xylem vessels tended to decrease as a result of increasing salinity level. However, diameter and width of midrib exhibited slightly increase with increasing salinity level. These results may be attributed to that salinity suppressed cell enlargement and cell division. Obtained results are in agreement with those reported by El-Lawendy (1985) on different species of legumes; Belda et al. (1996) and Wanas (1996) on tomato plants. On the contrary, Raafat et al. (1991) and Sarg (1991) reported and adverse results to some extent in this respect.

6.2.2. Effect of chemical materials:

Data presented in Table (22) and Figures (22-28) show that spraying tomato plants with any of the tested chemicals led to an increase in measophyll tissue (contains of palisade and spongy tissues). Paclobutrazol (200 p.p.m) followed by proline acid (60 p.p.m) recorded the highest values in thickness of measophyll tissues and consequently blade thickness. The least values in this respect were observed with control treatment.

6.2. Leaf anatomy:

6.2.1. Effect of salinity:

Data presented in Table (21) and Figures (19-21) show the effect of different levels of salinity on leaf anatomy of tomato plants. Such data indicate that the thickness of blade and measophyll (palisade and spongy tissues) as well as upper and lower epidermis and number of xylem vessels tended to decrease as a result of increasing salinity level. However, diameter and width of midrib exhibited slightly increase with increasing salinity level. These results may be attributed to that salinity suppressed cell enlargement and cell division. Obtained results are in agreement with those reported by El-Lawendy (1985) on different species of legumes; Belda et al. (1996) and Wanas (1996) on tomato plants. On the contrary, Raafat et al. (1991) and Sarg (1991) reported and adverse results to some extent in this respect.

6.2.2. Effect of chemical materials:

Data presented in Table (22) and Figures (22-28) show that spraying tomato plants with any of the tested chemicals led to an increase in measophyll tissue (contains of palisade and spongy tissues). Paclobutrazol (200 p.p.m) followed by proline acid (60 p.p.m) recorded the highest values in thickness of measophyll tissues and consequently blade thickness. The least values in this respect were observed with control treatment.

Table (21):Anatomy of tomato plant leaves as affected by irrigation with saline water and foliar spray with different chemical materials during 1997 season.

		Thic	kness in	micro	ns for				
Treatments	Upper epidermis	Lower epidermis	Palisade tissue	Spongy tissue	Measophyll tissue	Blade	Width of Midrib	Diameter of midrih	Number of
Salinity									•
0 p.p.m	25.1	17.1	91.2	129.8	221.0	263.2	785.6	699.8	45
6000 p.p.m	23.1	17.4	85.7	129.6	215.3	255.8	870.6	787.4	42
12000 p.p.m	20.3	15.1	80.4	107.4	187.8	223.2	826.3	694.2	39
Chemical materials									
Control	21.3	16.0	88.5	92.8	181.3	218.6	769.1	644.8	40
H ₃ PO4 10 mM	18.7	16.0	76.3	113.1	189.3	224.0	746.1	653.8	43
H ₃ PO4 20 mM	.18.1	15.5	73.6	117.9	191.5	225.1	826.1	799.5	44
Proline 30 p.p.m	29.3	19.2	95.5	120.5	216.0	264.5	852.3	721.1	43
Proline 60 p.p.m	26.1	18.1	93.7	126.4	220.2	264.4	1006.4	862.9	40
PP ₃₃₃ 100 p.p.m	21.9	14.4	77.3	130.7	208.0	244.3	852.3	756.3	43
PP ₃₃₃ 200 p.p.m	24.5	16.5	95.5	154.7	250.1	291.2	740.3	651.7	41.

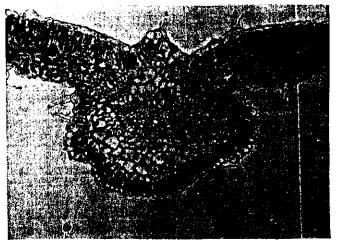


Fig. (19): Tap water (control)

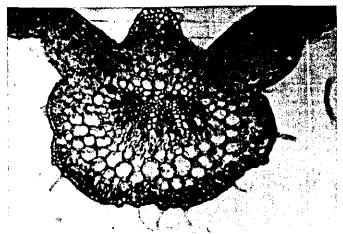


Fig. (20): 6000 p.p.m NaCl

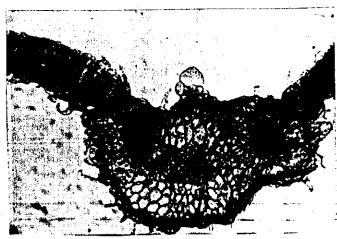


Fig.(21): 12000 p.p.m NaCi

Figures (19-21): Effect of salinity levels on the anatomical structure of tomato plant leaf cv. UC97-3.

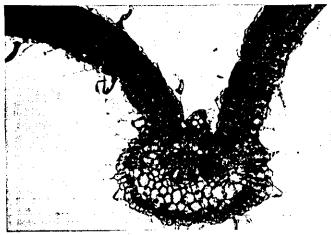


Fig. (22): Distilled water (control)

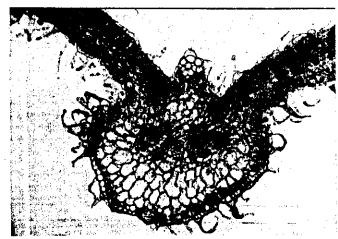


Fig. (23): H3 PO4 (10 mM)

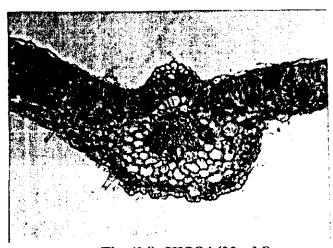


Fig. (24): H3PO4 (20 mM)

Figures (22-28): Effect of different chemical materials on the anatomical structure of tomato plant leaf cv. UC97-3.

Fig. (25): Proline acid (30 p.p.m)

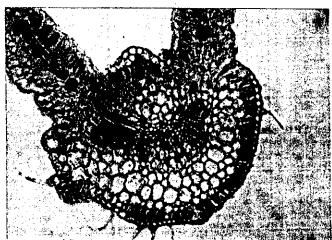


Fig. (26): Proline acid (60 p.p.m)

Fig. (27): PP₃₃₃ (100p.p.m)

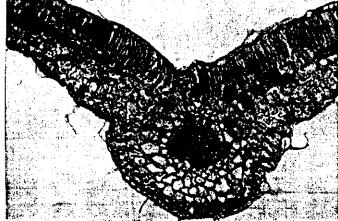


Fig. (28): PP₃₃₃ (200 p.p.m)

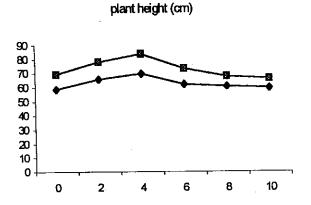
Fig. (22-28):Cont.:Effect of different chemical materials on the anatomical structure of tomato plant leaf cv. UC 97-3.

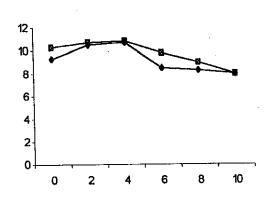
The second experiment: (Field experiment)

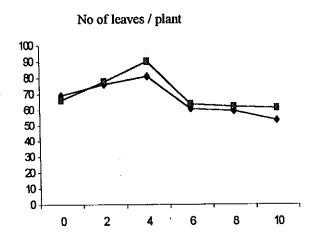
"Effect of irrigation frequencies with drainage water on vegetative growth, chemical composition, yield and quality of tomato plants cultivars"

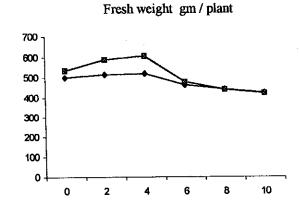
1. Vegetative growth characteristics:

1.1. Effect of irrigation frequencies:

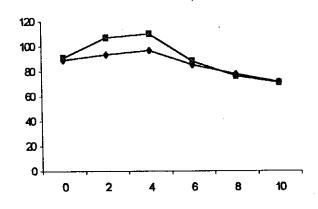

Data presented in Table (22) and Figure (29), show the effect of irrigation frequencies with drainage water on vegetative growth characteristics i.e. plant height, number of branches and leaves per plant as well as fresh and dry weight of plants of Edkawy and UC97-3 tomato cultivars. It is evident that irrigation with drainage water up to 4 times led to a significant increase in most mentioned parameters of vegetative growth during both seasons when compared with Nile water irrigation. The highest increments were obtained in case of using drainage water four times followed by tow times throughout plant growing seasons. These results are in agreement with those reported by Abd El- Dayem (1982) and Abed et al. (1988) on peas as well as by Shafshak (1989) on broad bean and Arf and El-Dougdoug (1996) on tomato. However, increasing drainage water frequencies up to six times or more led to a gradual decrease in all studied characters. This decrease might be attributed to the increase in salt a ccumulation in the soil as a result of increasing irrigation frequencies with drainage water that contained more concentration of salinity indices expressed as E.C. as well as the detrimental effect of Na⁺ and SO4⁻ ion as indicated in Tables (3 and 4). These results are in agreement with those reported by Vernooy and Nienhuis (1991) and Shennan et al. (1995) on tomato and London (1984), Kandil (1990) and Abo Soliman et al. (1992) on wheat.

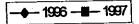

Table (22): Effect of irrigation frequencies of drainage water on plant vegetative growth characteristics of Edkawy and UC97-3 tomato cultivars during 1996 and 1997 seasons.


			,						1997		
Souchas			1996	9				31. 18	No of	Fresh	Dry weight
		Plant	Ne.of	No.of	Fresh	Dry weight	Flant	 	Towns f	weight (om)	ı
Drainage water	Varieties	height	branches/	leaves/	weight gm/		terght	pranctics / nient	nlant	plant	gm/plant
frenuencies		(cm)	plant	plant	plant	gin/plant	78.7	11.0	83.7	688.2	104.8
	Edkawy	77.7	10.5	7.06	5.760	+.CII	7.07	7.6	48.7	379.5	76.8
-	UC 97-3	39.5	8.2	47.7	300.7	110.0	0.00	11.7	97.2	737.5	129.9
	Edkawy	83.0	11.5	96.2	704.7	6.20	67.2	9.7	58.2	437.7	83.6
~	UC 97-3	48.2	9.5	55.7	324.7	173.5	110.0	12.0	118.2	762.7	132.9
,	Edkawy	86.7	12.2	101.7	706.5	50.02	57.2	0.7	62.2	442.2	9.98
4	UC 97-3	52.5	9.2	60.5	332.7	69.9	2.7.0	10.2	80.2	591.5	102.0
	Edkawy	81.7	9.2	75.7	651.5	111.0	27.60	200	47.0	363.7	73.9
9	UC 97-3.	42.5	7.7	45.7	273.5	0.60	5.75	2.7	7777	580.5	101.3
	Fdkawv	81.2	9.0	75.5	610.7	101.6	2.58	7.7	17.7	299.2	51.0
••	110 97-3	40.2	7.7	43.2	269.7	53.9	52.5	7.8	40.7	2.7.72	956
	Followy	80.5	9.0	65.5	582.5	94.2	80.7	۵./	C.//	5757	46.4
10 10	11C 07-3	38.5	7.0	41.2	263.7	48.9	51.5	7.2	C:44	213.2	5.1
12	I S D at 5 %	n.s	n.s	3.2	7.9	n.s	5.8	n.s	0.4	C.0	1.5
- 08	Political fraction						,	0.00	0 22	533 8	8 06 8
Series I		58.6	9.3	69.2	499.6	89.0	69.1	10.3	00.7		
	2	65.6	10.5	76.0	514.7	93.4	78.1	10.7	000		-
	4	9.69	10.7	81.1	519.6	96.7	83.0	10.0	7:00		-
	9	62.1	8.5	60.7	462.5	85.3	73.3	0.0	1 69	-	
	oc	60.7	8,3	59.3	440.2	77.7	8.70	0.0	61.0		3 71.0
	10	59.5	8.0	53.3	423.1	71.5	66.1	8.0	01.7	-	-
9	I S D at 5 %	2.9	0.5	3.0	4.9	1.9	4.1	0.8	C:7	_	9:1
**************************************								100	1 00	454 6	6 111.1
Taring Talkoury	atriv.	81.8	10.2	84.2	658.0	110.8	88.4	501	67.1		-
TIC 97 -3	3	43.5	8.2	49.0	295.2	60.4	57.6	0.6	7.1.6		
N 1	I S D at 5 %	2.1	0.3	1.3	3.2	1.8	2.3	4.0	2:1		
1											


Fig.(29): Effect of irrigation frequencies of drainage water on vegetative growth characteristics of tomato plants.

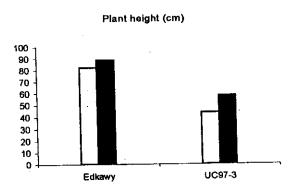
No of branches / plant

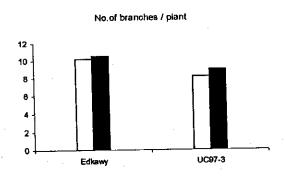


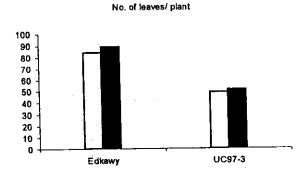


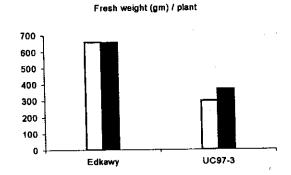
Dry weight gm / plant

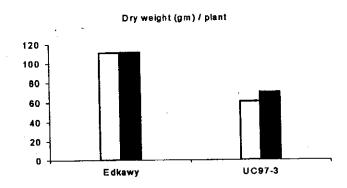
Irrigation frequencies with drainage water




1.2. Effect of varieties:


Data presented in Table (22) and Figure (10) show clearly that differences between the studied cultivars were significant in all studied growth characteristics. In this regard, plant of cv.Edkawy showed the highest values in both seasons of this investigation compared with those of UC 97-3 one. Such differences between varieties in vegetative growth characteristics are mainly due to its genetical properties which may be considered as the main factor in this respect. These results are in agreement with those reported by Mahmoud et al. (1986 a and b); Osman (1987) Sarg (1991); Mohamed and Hussein (1992), Soliman and Doss (1992); Rizk (1993); Abdel –Latif (1995); Abaza (1996) and Wanas (1996), who worked on tomato cultivars, where indicated that the trends of changes under salinity stress depended on the studied cultivars.


Concerning the interaction between drainage water irrigation frequencies and studied cultivars, it is evident from data in Table (22) that differences were significant in number of leaves as well as fresh weight per plant during both seasons, whereas differences in plant height and dry weight per plant were only significant in the second season of this investigation. The highest values as average of both seasons (plant height 98.4 cm, number of leaves 110, fresh weight 734.6 gm / plant and dry weight 128.2 gm / plant) were detected on Edkawy plant cv. that irrigated with four times with drainage water. On the other side, the lowest values in this regard as average of both seasons (plant height 45 cm, number of leaves 42.9 leaves, fresh weight per plant 269,5 gm and dry weight per plant 47.7) were observed on plants of UC97-3 cv. that irrigated with ten times with drainage water. It is worth mentioning that increasing irrigation


Fig. (30): Effect of tomato variety on vegetative growth characteristics.

Variety

□ 1996 ■ 1997

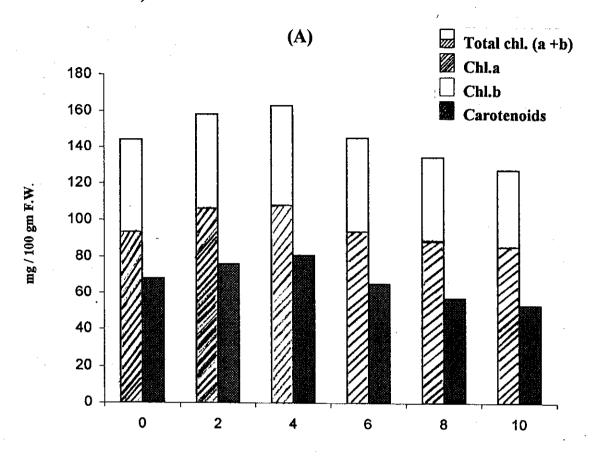
frequencies more than four times with drainage water resulted in significantly reduction in all studied characters in both seasons of this work.

2. Chemical composition of leaves:

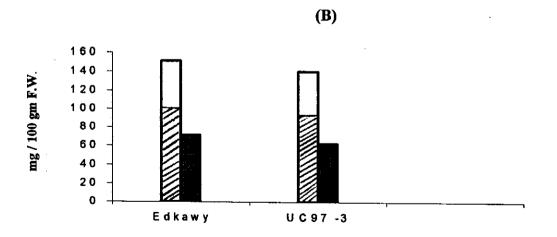
2.1. Photosynthetic pigments:

2.1.1 Effect of irrigation frequencies:

Data presented in Table (23) and Figure (31) show that using drainage water up to four times for irrigation of tomato plants resulted in a significant and gradual increase in leaves content of chlorophyll a, b and consequently total chlorophyll (a + b) as well as leaves content of carotenoids compared to the control. Further increase to six times resulted in significant differences, but more that six times showed significant negative response in this respect. The increase in photosynthetic pigments of plant leaves occurred after four times irrigation with drainage water may be due to the increase in nitrogen and magnesium content of such leaves (Table 4). These results are in agreement with those reported by Mininberg and Lezu (1973) and Shaheen (1984) on broad bean and Abed et al. (1988) on pea. Similar finding was reported by Aref and El-Dougdoug (1996) on tomato plants. On the contrary, Abdalla (1985) found converse results in this respect on pea plants.


2.1.2. Effect of varieties:

Concerning the effect of cultivars on leaves content of photosynthetic pigments presented in Table (23) and Fig.(31) show clearly that differences between the two cultivars under study were significant. Edkawy cv. recorded the highest values in all studied


Table (23): Effect of irrigation frequencies of drainage water on photosynthetic pigments (mg/100gm F.W.)of Edkawy and UC 97-3 tomato cultivars during 1996 and 1997 seasons.

			9661				1997	26	
OCHRO				•				Total	
Drainage water	Varieties	Chlorophyll	Chlorophyll	chlorophyll	Corntenoids	Chlorophyll (a)	Chlorophyll fb)	chlorophyll	Corotenoids
fractioncies		(B)	€	(d+a))	(a±0)	6
	Edboury	103	49	152	70	100	55	155	8/
0	11C 07.3	80	43	132	58	8	48	137	65
	DC 27-5	106	49	155	74	113	58	171	85
7	LIC 07.3	101	49	150	72	103	53	156	70
	Edbana,	107	52	159	88	114	57	171	87
4	11C 07-3	104	50	154	71	113	55	168	77
	Fellowar	103	50	153	69	105	52	157	74
9	11C 07-3	68	47	136	56	86	49	135	61
	Dell'ours	68	46	135	57	93	48	141	62
••	TIC 07-3	88	40	128	54	85	45	130	56
	-	88	45	133	55	88	45	133	55
10	11C 07-3	78	40	118	48	81	44	125	53
,	27720		5	1/1/	5	3	n.s	9	7
1.5.	L.S.D 8t 5 %	11.5	11.3		,				
N 38 L B I C K	Dramage water moducines	70	1 4	147	64	95	51	146	71
	•	801	49	153	73	108	55	163	78
	7	105	15	156	80	113	56	169	82
		96	48	144	63	95	90	145	29
	o (4	88	43	131	55	68	47	136	59
	0 0	83	42	125	52	84	44	128	54
7 7	2	S	2 0	*	3	5	2	9	4
	L.S.D at 5 %	4	5						
Varieties		00	40	177	1 09	100	52	154	73
Edkawy	Y.	56	64	147	60	03	49	142	64
UC 97 –3	3	92	45	15/	200		} c		3
L.S.1	L.S.D at 5 %	3	1	3	2	7	7	7	ר
							-		

Fig.(31): Effect of irrigation frequencies with drainage water (A) and tomato cultivers (B) on photosynthetic pigments of leaves. (as average of both seasons).

Irrigation frequencies with drainage water

Variety

pigments parameters compared to UC 97-3 in both seasons of 1996 and 1997.

With respect to the effect of interaction between drainage water irrigation frequencies and cultivars on leaves content of chlorophyll and carotenoids, data in Table (23) show that among studied treatments there were significant differences in leaves content of total chlorophyll and carotenoids during both seasons, whereas differences in leaves content of chlorophyll (a) were only significant in the second season. The highest values in this respect (110.55, 54.39, 164.94 and 87.38 mg/ 100gm F.W.) as average of both seasons for chlorophyll a,b, total and carotenoids were observed in the leaves of Edkawy cv. plants that irrigated with four times with drainage water. The least values in this respect were detected in plants of UC 97-3 cv. that irrigated ten times with drainage water.

2.2. Mineral composition of leaves:

2.2.1. Effect of irrigation frequencies:

Data presented in Table (24) show clearly that using drainage water in irrigation up to four times resulted in a significant increase of N,P,K and Mg along with a significant decrease in Ca in tomato plant leaves during both season compared with irrigation with Nile water throughout the growing season (control). However, drainage water more than four times led to a significant reduction in all studied elements compared with that of Nile water (control).

With respect to the effect of irrigation frequencies with drainage water on tomato plant leaves content of Na and Cl elements, date presented in Table (24) show clearly that there was a significant and gradual increase in leaves content of these elements with increasing irrigation frequencies with drainage water, where the highest values in

Table (24): Effect of irrigation frequencies of drainage water on leaves content of N,P,K,Ca,Mg,Na and Cl (mg/100gm D.W) of Edkawy and UC 97-3 tomato cultivars during 1996 and 1997 seasons.

Seasons					9661								1997			
Drainage water	Varieties	z	<u>a</u>	2	đ	Mg	N.	נו		z	P	¥	5	Mg	Na	5
CANADA MARKA	Edkawv	3040	247	1987	1860	1340	109	181		2920	250	2118	1800	1365	105	182
0	UC 97-3	2850	236	1895	1870	1280	106	167		2715	234	2044	1760	1315	26	162
	Edkawv	3120	256	2042	1880	1380	124	191		3060	266	2124	1720	1370	123	194
7	UC 97-3	3010	243	2005	1810	1330	110	184		2900	241	2070	1680	1330	115	183
	Edkawy	3230	262	2087	1740	1430	126	206		3180	289	2160	1680	1500	135	202
4	UC 97-3	3020	271	2135	1720	1380	114	191		3080	267	2150	1620	1460	123	191
	Edkawy	2866	231	1890	1560	1290	408	498		2800	235	2056	1640	1290	420	486
9	UC 97-3	2805	230	1848	1510	1210	360	487		2620	228	1910	1580	1250	384	474
	Edkawv	2686	229	1794	1370	1070	423	538	•	2760	231	1812	1580	1160	438	529
•	UC 97-3	2725	225	1734	1290	1040	396	526	•	2600	227	1790	1540	1140	420	521
	Edkawy	2646	207	1634	1250	1070	456	594		2720	209	1764	1300	1140	462	581
10	UC 97-3	2640	221	1672	1200	1030	444	580		2560	211	1748	1380	1120	432	572
L.S.D	L.S.D at 5 %	84	00	99	36	n.s	n.s	n.s	•	n.s	n.s	n.s	30	n.s	n.s	n.s
Drainage v	Dramage water frequencies	ries														
	0	2945	241	1941	1865	1310	107	174		2817	242	2081	1780	1340	101	172
	2	3065	249	2023	1845	1355	117	187	·	2980	253	2097	1700	1350	119	188
	4	3125	566	2111	1730	1405	120	198		3130	278	2155	1650	1480	129	197
	9	2835	230	1869	1535	1250	384	492		2710	231	1983	1610	1270	402	480
	90	2705	227	1764	1330	1055	409	532		2680	229	1802	1560	1150	429	525
	10	2643	214	1653	1225	1050	450	287		2660	210	1756	1340	1130	447	576
L.S.D	L.S.D at 5 %	41	5	37	16	20	20	4		74	7	56	12	32	14	4
Varieties																
Edkawy		2931	238	1905	1610	1263	274	368	·	2906	246	2005	1620	1304	280	362
UC 97-3		2841	237	1881	1566	1211	255	356	I	2752	234	1952	1593	1269	261	350
LSD	L.S.D at 5 %	34	n.s	24	14	13	11	2		22	7	31	12	14	16	3
						***************************************								I		

this respect were observed in plants that irrigated with ten times with drainage water. Obtained results are true in both seasons of 1996 and 1997. These results about the irrigation frequencies with drainage water on leaves content of N,P,K, Ca and Mg are in agreement with those reported by Dahiya and Singh (1976); Malik et al. (1977); Khadr (1979); Khadr et al. (1980); Abd- El-Dayem (1982); Abdalla (1985) and Abed et al. (1988) on pea plants. Similar findings were observed by D'arrigo et al. (1986) and Shafshak on broad bean. In this respect, Pasternak et al. (1986) and Pasternak et al. (1995) found a similar findings with tomato plants, but they added that, there were no changes in leaves content of K and Ca as a result of using saline water in irrigation.

Results about the effect of irrigation frequencies with drainage water on leaves content of Na and Cl are in harmony with those reported by Pasternak et al. (1986) on tomato and Abed et al., (1988) on pea plants. In this regard, Pasternak et al. (1995) found a similar result on tomato with Na elements, but they indicated that irrigation with brackish water (ECi = 6.2 dS / m) had no effect on tomato leaves content of chloride.

Concerning the effect of irrigation frequencies on the relationship between Na⁺ and other cations (K⁺, Ca⁺⁺ and Mg⁺⁺), data presented in Table (25) show clearly that significant increase in (Na⁺: K⁺, Na⁺: Ca⁺⁺ and Na⁺: Mg⁺⁺ ratios) could be detected as a result of using drainage water in tomato irrigation, this increase was proportional with increasing irrigation frequencies with drainage water. Obtained results are going in the same trend during both seasons of 1996 and 1997.

Table (25): Effect of irrigation frequencies of drainage water on (Na⁺:K⁺), (Na⁺:Ca⁺⁺) and (Na⁺⁺:Mg⁺⁺) ratios and free proline of Edkawy and UC97-3 tomato cultivars during 1996 and 1997 seasons.

			1006				1997	24	
Seasons			2/1					‡ ; ;	1
Drainage water	Varieties	Na*:K*	Na*;Ca*	Na [†] :Mg ^{††}	Free proline (mg/m F.W)	NatiK [‡]	Na":Ca	Na :Mg	rree proune (mg/m F.W)
frequencies		3300	0.050	0.081	0.755	0.050	0.058	0.077	0.770
	Edkawy	0.055	0.057	0.083	0.682	0.047	0.055	0.074	0.672
,	UC 97-3	0.030	0.037	0000	0 786	0.058	0.072	060'0	0.796
7	Edkawy	0.001	0.000	0.030	0.695	0.056	0.068	0.086	0.704
	UC 97-3	0.050	0.001	0.088	0.835	0.063	0.080	060'0	0.812
4	TIC 07-3	0.053	0.066	0.083	0.766	0.057	0.076	0.084	0.757
	Edbanov	0.216	0.262	0.316	0.864	0.204	0.256	0.326	0.843
9	11C 97-3	0.195	0.239	0.297	0.800	0.201	0.243	0.307	0.794
	Edloama,	0.236	0.309	0.396	0.918	0.242	0.277	0.378	0.0/1
*	LUK 97.3	0.228	0.307	0.381	0.874	0.235	0.273	0.368	0.809
	Edlana,	0.279	0.365	0.426	1.020	0.262	0.355	0.405	1.001
10	TIC 07.3	0.265	0.370	0.431	0.968	0.247	0.313	0.386	0.880
	27.70	2 4	o u	8.0	0.014	n.s	n.s	n.s	0.008
L.S.	L.S.D at 5 %	C.II	C:1)					
Drainage w	Drainage water irequencies	000	0200	7800	0.718	0.049	0.057	0.075	0.721
	0	0.055	0.030	7000	0.741	0.057	0.070	0.088	0.750
	2	0.058	0.003	0.080	0.800	090.0	0.078	0.087	0.784
	4	0.057	0.00	0.307	0.832	0.203	0.250	0.316	0.818
	0	0.203	0.308	0.388	968'0	0.238	0.275	0.373	0.840
	×	0.232	0367	0.429	0 994	0.255	0.334	0.396	0.943
	10	0.272	0.00	0.024	600 0	0.008	800.0	0.012	0.013
L.S.	L.S.D at 5 %	0.010	0.010	120.0	720.0				
Varieties			001.0	0.23	0.863	0.146	0.183	0.228	0.849
Edkawy		0.151	0.109	0.235	0.797	0.141	0.171	0.218	0.770
UC 97 -3	/6 % T	0.142	0.100	7.5	900'0	n.s	0.010	n.s	0.003
L.S.	L.S.D at 5 %	0.000	11.5						

2.2.2. Effect of varieties:

It is obvious from the data tabulated in Table (24) that Edkawy cultivar recorded the highest concentration of all studied elements, where the differences in both cultivars were significant in all studied elements during both seasons of this investigation with an unique exception in case of P content in the first season, where differences between the two cultivars did not reach 5% leavel of significance.

With respect to the effect of different cultivars on (Na⁺: K⁺), (Na⁺: Ca⁺⁺) and (Na⁺: Mg⁺⁺) ratios, data tabulated in Table (25) show that, although Edkawy cultivar reflected higher values compared with UC97-3 one, differences did not reach the 5% level of significance in most cases during both seasons.

With respect to the interaction between irrigation frequencies and cultivars, data presented Table (24) show that there were significant differences between irrigation frequencies and tomato cultivars with N,P,K concentrations during the first season only, whereas differences in the second season were insignificant. Moreover, differences were significant in case of Ca and insignificant in case of Mg, Na and Cl elements (Table, 24) as well as the ratios of Na⁺: K⁺, Na⁺: Ca⁺⁺ and Na⁺: Mg⁺⁺ (Table, 25) during both seasons.

2.3. Free proline accumulation:

2.3.1 Effect of irrigation frequencies:

Data dealing with the effect of irrigation frequencies with drainage water on tomato leaves content of free proline are presented in Table (25). Such data indicate that using drainage water in irrigation led to a significant increase in this respect. This increase in leaves content of free proline was proportional to the increase in

irrigation frequencies with drainage water. The highest values in this respect were observed in plants irrigated ten times with drainage water compared with those irrigated ten times with Nile water, which recorded the least values in this respect. Obtained results are going in the same trend during both seasons of 1996 and 1997.

2.3.2. Effect of varieties:

Data presented in Table (25) show clearly that differences between Edkawy and UC 97-3 cultivars were significant regarding their leaves content of free proline. Plants of Edkawy cv. recorded the highest concentration in this respect during both seasons of this work.

With resect to the effect of the interaction between irrigation frequencies and tomato cultivars on leaves content of free proline, data presented in Table (25) show that differences were significant in both seasons. The highest values in this respect were recorded in Edkawy plants irrigated ten times with drainage water (1.010 mg/gm F.W) as average of both seasons, whereas tomato plants of UC 97-3 cultivars irrigated with Nile water recorded the least values in this respect. Tomato plants that treated with other treatment lie in between in this regard.

3. Flowering characteristics:

3.1. Effect of irrigation frequencies:

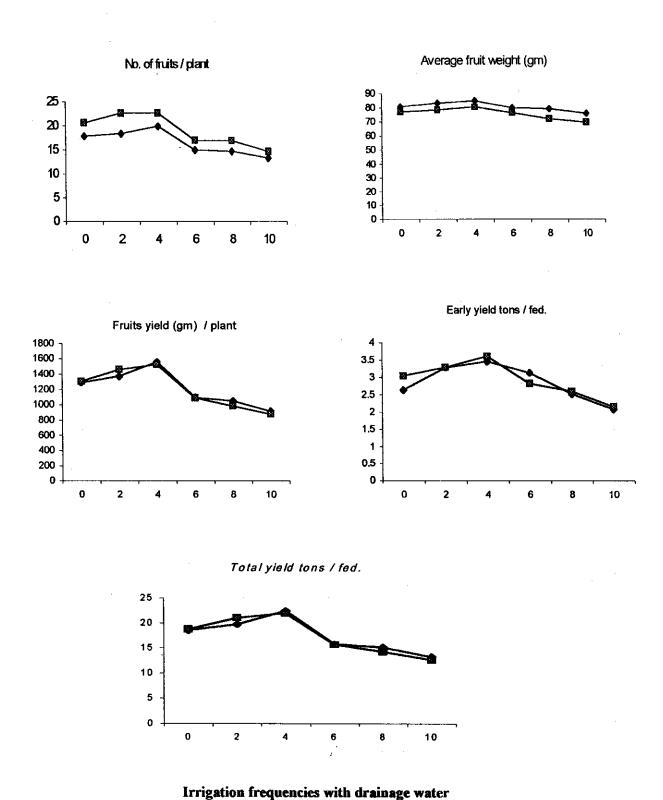
Data presented in Table (26) show that using drainage water in irrigation up to four times resulted in a significant increase in number of clusters per plant as expressed as flowering parameter during both seasons of this work. On the other hand, increasing irrigation frequencies with drainage water more than four times resulted in a gradual significant reduction in this respect.

3.2. Effect of varieties:

It is obvious from the data presented in Table (26) that differences between Edkawy and UC 97-3 cultivars were significant only during the second season, whereas no significant effects on number of clusters per plant could be detected during the first one of this work. It is obvious from such data that plants of UC 97-3 cultivar recorded the highest number of clusters per plant compared with those of Edkawy during both seasons. These results are in agreement with those reported by (Mohamed, 1987; Abaza, 1996 and Wanas, 1996). They noticed that under irrigation with saline water, Edkawy cv. recorded the least reduction in number of clusters and flowers per plant in comparison with other studied cultivars.

Concerning the effect of the interaction between irrigation frequencies and studied varieties, data tabulated in Table (26) show clearly that differences were significant during both seasons. As average of both seasons, the highest number of clusters per plants (16.6) were observed in plants of UC97–3 cultivar irrigated four times with drainage water. On the other hand, least number of clusters (11.4) were observed when using either 8 or 10 irrigation with drainage water in UC 97–3 cultivar.

4. Yield and its components:

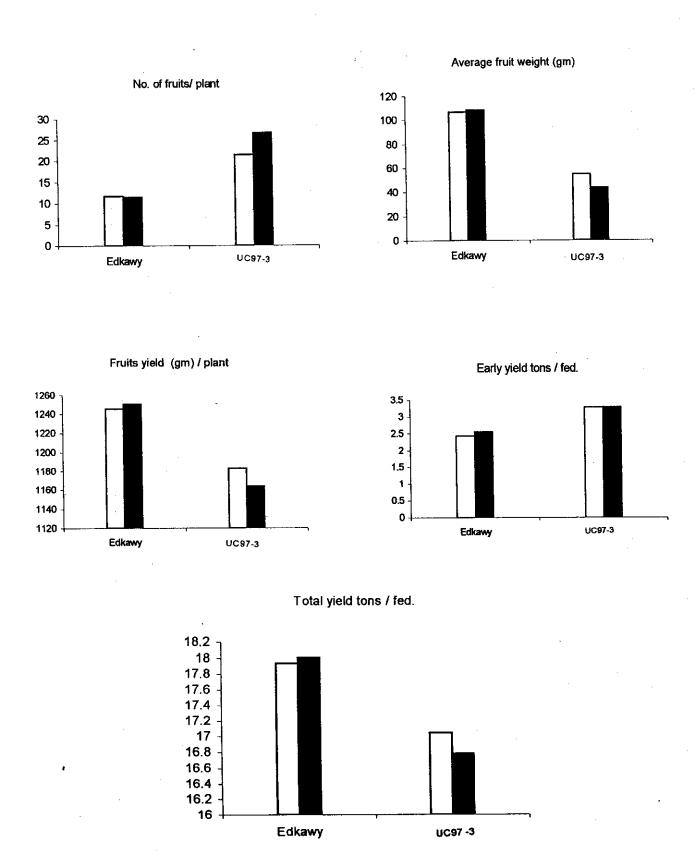

4.1. Effect of irrigation frequencies:

It is evident from data in Table (26) and Figure (32) that using drainage water in irrigation up to four times had a significant gradual improving effect on number of fruits per plant, average fruit weight, fruit length, fruit diameter, yield / plant as well as early and total yield /feddan in both seasons. Adverse effects were detected by increasing irrigation frequencies more than four times, whereby the worst results

Table (26): Effect of irrigation frequencies of drainage water on yield and its components of Edkawy and UC97-3 tomato cultivars during 1996 and 1997 seasons.

Nurtetin Delkawy UC 97-3 UC 97-3 UC 97-3 UC 97-3 UC 97-3	16.2 16.2 16.2 11.0 11.0 11.0 11.0	24.0 11.6 12.4 12.4 14.8 25.0 19.0		6.6 5.0	106.0	(cm) 1236	yield some/fed.	yeld tons Med. 17.804	clusters/ plant			Park Gibbeter (m)	weight weight (gm)	yfeid (gm) 1224	Tell four	Xield tents (Ref.
		24.0 24.0 12.4 14.8 14.8 25.0 19.0	4.7	6.6 5.0	106.0	1236		17.804			(cm)		(60)	1224		· · · · · · · · · · · · · · · · · · ·
		24.0 24.0 12.4 14.8 14.8 25.0 19.0	4.7	5.0	106.0	1236	-	17 804	•			1		7//		17 620
		24.0 12.4 24.4 14.8 25.0 10.9	4.9	5.0				_	12.2	11.3	4 .	7.6	108.3		7.701	400.71
		24.4 14.8 16.9 19.0	8.4 4.9		55.7	1338	2.997	19.284	15.0	29.9	4.6	4.6	64.2	1382	3.318	9.919
		24.4 14.8 25.0 10.9 19.0	4.5	6.3	110.3	1369	2.678	19.722	13.0	13.3	5.1	7.3	112.7	1508	2.880	21.731
		14.8 25.0 10.9 19.0	4.9	5.5	56.1	1375	3.875	608.61	16.2	31.8	4.5	5.2	44.3	1409	3.685	20.300
· · · · · · · · · · · · · · · · · · ·		10.9		7.7	112.0	1663	2.712	23.960	13.2	13.9	5.1	7.9	114.9	1606	2.921	23.138
		10.9						20 001	17.0	21.7	4.6	5.5	46.3	1446	4.284	20.839
		19.0	4.5	0.0	6/76	1449		100.02	7.11	2.1.5	2 0	J. P.	2001	1110	2719	16 001
		19.0	4.8	6.8	105.4	1157		16.671	12.0	10.3	4.0	7.7		2111	777.77	16 400
	-	100	4.6	4.9	54.6	1037	3.441	14.940	14.2	23.7	4.5	4.6	45.1	10/4	016.7	15.462
Edkawy		7.01	8.4	8.9	104.5	1066	2.280	15.358	12.0	10.0	4.5	7.1	106.3	1069	2.197	13.411
110.97-3	8.7	19.3	4.4	4.7	53.6	1039	2.767	14.979	14.0	23.8	4.3	4.6	37.8	903	3.001	13.012
	12.0	9.6	4.5	6.2	101.7	626	1.799	14.104	11.2	6.6	4.5	6.7	7.86	981	1.841	14.140
10	9.2	17.0	4.4	4.5	50.4	858	2.361	12.367	13.7	19.2	4.2	4.4	40.7	773	2.483	11.140
L.S.D at \$ %	1.2	1.9	n.s	0.3	n.s	106	0.200	1.540	6.0	2.1	n.s	n.s	3.8	94	0.120	1.350
	ברוויייי	178	- 2	5.8	8 08	1287	2.638	18.544	13.6	20.6	4.7	6.1	77.2	1303	3.040	18.779
2	14.5	18.4	4.7	5.9	83.2	1372	3.276	19.769	14.6	22.6	4.8	6.2	78.5	1459	3.283	21.015
4	15.1	6.61	4.7	0.9	84.9	1556	3.457	22.420	15.2	22.6	4.9	6.7	9.08	1526	3.603	21.989
9	12.6	15.0	4.7	5.8	80.0	1097	3.124	15.805	13.1	17.0	4.7	5.9	76.3	1092	2.817	15.741
90	10.7	14.7	4.6	5.7	79.0	1052	2.523	15.168	13.0	6.91	4.4	5.8	72.1	986	2.599	14.212
10	10.6	13.3	4.5	5.4	76.0	816	2.080	13.236	12.5	14.6	4.3	5.5	1.69	877	2.162	12.640
T & D at \$ %	0.6	-	8	03	2.0	71.0	0.080	1.020	0.7	1.3	0.2	0.3	2.2	57	0.130	0.830
Verification of the second		† •														
Edkawv	12.8	11.6	4.8	9.9	106.6	1245	2.426	17.936	12.2	11.4	4.8	7.3	108.1	1250	2.553	18.010
UC 97 - 3	13.0	21.4	4.5	4.9	54.7	1183	3.274	17.045	15.0	26.6	4.4	4.8	43.4	1164	187.5	10./01
L.S.D. at 5%	n.s	0.7	0.1	0.1	1.1	43	0.080	0.630	0.4	6.0	0.2	0.2	 	38	0.00	0.330

Fig. (32):Effect of irrigation frequencies of drainage water on yield and its components of tomato plants.


were obtained with plants received ten irrigations by using drainage water only. These results are in agreement with those reported by (Grattan et al. 1987, Al-Najum and Neimmah, 1989; Drews, 1991; Mitchell et al.,1991; Grattan et al., 1994; Shaheen et al.,1995 and Aref and El-Dougdoug, 1996) worked on tomato and Abed et al.(1988) on pea, Shafshak (1989) on broad bean as well as Abo Soliman et al. (1992) on wheat plants. However, many studies on tomato, indicated that using drainage water with high E.C. values reduced fruits yield (Pasternak et al., 1986 and 1995; Mitchell et al.,1991; Grattan et al., 1994 and Katkat et al., 1996).

4.2.Effect of varieties:

Data on the effect of different cultivars on number of fruits per plant, fruit length, fruit diameter, average fruit weight, yield per plant, early and total yield of tomato plants are tabulated in Table (26) and Figure (13). Such data show clearly that differences in this respect between the two cultivars were significant during both seasons of this work. UC97-3 cultivar recorded the highest values with number of fruits per plant and early yield during both seasons, while Edkawy cultivars recorded the highest values of fruit length and diameter, average fruit weight, plant yield as well as total yield. These results are in agreement with those reported by (Ruch and Epstein, 1981; Mahmoud et al., 1986 b; Sarg, 1991; Soliman and Doss, 1992; Sarg et al., 1993; Abdel-Latif, 1995; Vespasiani et al.,1995; Abaza, 1996 and Wanas, 1996) on tomato plants.

With respect to the interaction between irrigation frequencies and studied cultivars (Table, 26), such data exhibited a significant with most studied characters in this respect, the exception was with

Fig. (33): Effect of tomato variety on yield and its components.

¥ 138 **¥**

□ 1996 **■ 199**7

Variety

case of fruit length which differences were insignificant during both seasons. Edkawy cv. recorded the highest values (113.5 gm, 1635 gm, 23.549 tons and 7.8 cm) for average fruit weight, plant yield, total yield and fruit diameter, respectively, whereas, UC97-3 exhibited the highest values for number of fruits per plant and early yield/feddan (14.4 fruits and 4.243 tons) respectively. On the other hand, least values of number of fruits per plant (9.8) and early yield (1.82 tons / fed.) as average of both seasons were observed on plants of Edkawy cv. that irrigated ten times with drainage water, whereas the least values of average fruit weight (40.7 gm), plant yield (816 gm), total yield/feddan (11.734 tons) and fruit diameter (4.5 cm) as average of both seasons were detected on plant of UC97-3 one that irrigated 8-10 irrigations with drainage water.

5. Fruit quality:

5.1. Vit. C., titratable acidity, T.S.S. and sugars:

5.1.1. Effect of irrigation frequencies:

Data presented in Table (27) illustrated the effect of irrigation with drainage water on fruits content of Vit.C., titratable acidity, T.S.S. and sugars. These effects were significant during both seasons. Such data indicate that using drainage water in irrigation up to four times lead to the highest values of Vit.C., titratable acidity, reducing, nonreducing and total sugars, whereas the highest values of T.S.S were detected when ten irrigations with drainage water were used. On the other hand using drainage water in irrigation for ten times resulted in the least values for Vit.C., titratable acidity and sugar content, whereas the least value of T.S.S. as average of both seasons was detected when ten irrigations with Nile water were used. These results may be attributed the increase decrease in photosynthetic to or

Table (27): Effect of irrigation frequencies of drainage water on fruit quality of Edkawy and UC97-3 tomato cultivars during 1996 and 1997 seasons.

Drainage Varieties With Carlottes Water Wartestes Wartestes Wartestes Wartestes DC 97-3 19.9	Titratable addity (%) (%) 0.51 0.52 0.54 0.57 0.56 0.48 0.48 0.46 0.46		Reducing sugars (mg/1 3911 3816 4023 3980 3796	nting Non- say reducing sugars mg / 100 gm D 11 438 36 480 23 563	Total rugers D.W)	Vit. C mg/100	Titratable scidity	T.S.S.	Reducing	Non- reducing	Total sugars
region of the following the first control of the following	Titrasable acditivy (%) 0.51 0.50 0.52 0.54 0.57 0.56 0.48 0.48 0.46 0.46		Reducing sugars sugars (mg/1 3911 3836 4023 4086 3980 3796		Total sugars (W)	Vit C mg/100	licratable acidity	7	Keducing	reducing	rogars sugars
Columbia	0.51 0.50 0.52 0.54 0.57 0.56 0.48 0.48 0.46	\$ 4.3 4.4 5.1 5.1 5.5 5.7 5.7 5.7 5.7	(mg/1 3911 3816 4023 3961 4086 3980 3796		. W)	; ;				***************************************	
0 Edkawy 20.1 2 UC 97-3 19.9 4 UC 97-3 21.7 4 UC 97-3 21.9 5 UC 97-3 21.9 6 UC 97-3 21.9 8 Edkawy 20.3 8 UC 97-3 19.8 10 Edkawy 20.5 3.D at 5% n.s ainage water frequencies 2 21.8 4 22.5 6 20.0	0.50 0.50 0.52 0.54 0.57 0.56 0.48 0.48	\$ 5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	(mg/1) 3911 3836 4023 3961 4086 3980 3796		.W) 4350	The second secon	****			***	44.37
0 Edkawy 20.1 2 UC 97-3 19.9 2 UC 97-3 19.9 4 UC 97-3 21.7 5 UC 97-3 21.9 6 UC 97-3 19.8 8 Edkawy 20.3 8 UC 97-3 19.8 10 UC 97-3 18.6 10 UC 97-3 18.6 2.0.0 2.0.0 2.2.5 4 22.5 2.0.0	0.51 0.50 0.52 0.54 0.57 0.56 0.48 0.48	5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	3911 3836 4023 3961 4086 3980 3796	438 480 563	4350	mg F.W	(%)	3	gm)	5	D.W.I
0 UC 97-3 19.9 2 Edkawy 21.9 4 UC 97-3 21.7 5 UC 97-3 21.7 6 UC 97-3 21.9 8 Edkawy 20.3 8 UC 97-3 19.8 10 UC 97-3 19.8 10 UC 97-3 18.0 10 UC 97-3 18.0 2 Dat 5% n.s ainsige water frequencies 2 21.8 4 22.5 6 20.0	0.50 0.52 0.54 0.57 0.56 0.48 0.46 0.46	5.5 5.7 5.7 5.7 5.7 5.7 5.7	3836 4023 3961 4086 3980 3796	480	_	22.2	0.48	4.2	3931	432	4363
2 Edkawy 21.9 4 UC 97-3 21.7 4 UC 97-3 21.7 6 UC 97-3 21.9 8 UC 97-3 19.8 8 UC 97-3 19.8 10 Edkawy 20.5 S.D at 5% n.s ainage water frequencies 2 21.8 4 22.5 6 20.0	0.52 0.54 0.57 0.56 0.48 0.46 0.46	5.7 5.7 5.7 5.7 5.7	4023 3961 4086 3980 3796	563	4316	21.4	0.56	4.2	3852	488	4340
2 UC 97-3 21.7 4 Edkawy 23.2 6 UC 97-3 21.9 5 UC 97-3 19.8 8 UC 97-3 19.8 10 UC 97-3 18.0 10 UC 97-3 18.0 20.0 20.0 20.0 20.0 6 20.0	0.54 0.57 0.56 0.48 0.46 0.46	8.8 5.5 5.7 5.3 5.3 5.4	3961 4086 3980 3796		4586	25.4	0.50	5.0	4102	208	4610
4 Edkawy 23.2 • UC 97-3 21.9 • UC 97-3 19.8 8 UC 97-3 19.8 10 Edkawy 20.5 3.D at 5% n.s ainage water frequencies 2 21.8 4 22.5 6 20.0	0.57 0.56 0.48 0.52 0.46 0.47	5.5 5.1 5.5 5.7 5.3 5.3 5.3	4086 3980 3796	582	4543	21.2	0.56	4.7	3986	268	4554
4 UC 97-3 21.9 6 Edkawy 20.3 8 UC 97-3 19.8 8 UC 97-3 18.0 10 Edkawy 18.6 10 UC 97-3 18.0 3.D at 5% n.s aimage water frequencies 2 21.8 4 22.5 6 20.0	0.56 0.48 0.52 0.46 0.46	5.1 5.3 5.3 5.3	3980 3796	542	4628	26.4	0.58	5.6	4183	510	4693
6 UC 97-3 19.8 8 UC 97-3 19.8 10 Edkawy 20.5 S.D at 5% n.s ainage water frequencies 2 21.8 4 22.5 6 20.0	0.48 0.52 0.46 0.47	5.6	3796	596	4576	24.0	09:0	5.3	4063	523	4617
6 UC 97-3 19.8 8 Edkawy 20.5 10 Edkawy 18.6 10 UC 97-3 18.0 3.D at 5% n.s ainage water frequencies 2 21.8 4 22.5 6 20.0	0.52 0.46 0.47 0.46	5.3		473	4240	22.4	0.49	5.6	3873	368	4271
8 Edkawy 20.5 10 UC 97-3 18.0 10 UC 97-3 18.6 S.D at 5% n.s ainage water frequencies 2 21.8 4 22.5 6 20.0	0.46 0.47 0.46	5.7	3690	517	4208	19.1	0.55	5.4	3801	413	4214
8 UC 97-3 18.0 10 Edkawy 18.6 S.D at 5% n.s aimage water frequencies 2 21.8 4 22.5 6 20.0	0.47	# 4	3675	446	4121	19.1	0.46	5.8	3721	391	4112
10 Edkawy 18.6 3.D at 5% n.s ainage water frequencies 2 20.0 4 22.5 6 20.0	0.46	· ·	3625	478	4103	18.3	0.54	9.6	3649	382	4032
10 UC 97-3 17.2 5.D at 5% n.s aimage water frequencies 2 20.0 4 22.5 6 20.0		6.2	3478	393	3871	17.5	0.46	0.9	3591	321	3913
3.D at 5% n.s ainage water frequencies 2 20.0 4 22.5 6 20.0	0.46	5.8	3409	440	4849	17.3	0.51	5.7	3480	376	3856
ainage water frequencies 0 20.0 2 21.8 4 22.5 6 20.0	n.s	n.s	n.s	n.s	n.s	1.4	n.s	n.s	n.s	n.s	n.s
0 20.0 2 21.8 4 22.5 6 20.0		-		1							
	0.50	4.2	3873	459	4333	21.8	0.52	4.2	3891	460	4351
	0.53	4.9	3992	572	4565	23.3	0.53	4.8	4044	238	4582
	0.56	5.3	4033	569	4602	25.2	0.59	5.4	4123	531	4654
	0.50	5.4	3730	495	4224	20.8	0.52	5.5	3837	405	4242
7.61	0.47	5.7	3650	462	4112	18.7	0.50	5.7	3685	386	4071
	0.46	6.0	3444	417	3860	17.4	0.48	5.8	3536	349	3885
2%	0.02	0.1	21	25	10	1.2	0.02	0.1	32	24	16
Fdkawy 20.7	0.50	5.4	3824	476	4299	22.2	0.50	5.3	3900	426	4326
3	0.50	5.1	3750	515	4266	20.2	0.55	5.1	3805	463	4268
at 5 %	n.s	0.1	111	14	7	9.0	0.01	0.1	18	22	11

pigments (Table,23) since sugars is the main products of photosynthetic assimilation. Obtained results are in agreement with those reported by Pasternak et al. (1986); Al-Najum and Neimmah (1989) and Mitchell et al. (1991) on tomato, Farrage (1978) on broad bean and Abed et al. (1988) on pea plants. However, Mitchell et al. (1991) added that there was no effect on hexose concentration when saline water was used in irrigation.

5.1.2. Effect of varieties:

Data in Table (27) show the effect of different cultivars on fruit content of Vit.C., titratable acidity, T.S.S and sugar content (reducing, non-reducing and total sugars). It is obvious from such data that, differences between studied cultivars were significant in all studied parameters in this respect during both season of this work, with the unique exception of the titratable acidity during the first season which was insignificant. In this regard, Edkawy cv. recorded the highest values of fruits content of Vit.C., total soluble solids, reducing and total sugars, whereas UC 97-3 one, recorded the highest values of titratable acidity and non-reducing sugars as average of both seasons.

The interaction between irrigation frequencies and studied cultivars (Table, 27) show clearly that the only significant in this respect was found with Vit.C. parameter during the second season only. The highest content of Vit.C. was observed with. Edkawy cv. that irrigated with four times with drainage water, whereas the least value in this regard was detected when irrigated UC97-3 cv. with ten irrigations with drainage water.

5.2. Mineral composition of fruits:

5.2.1. Effect of irrigation frequencies:

Data presented in Table (28) show the effect of irrigation frequencies with drainage water on fruit content of N,P,K, Ca and Na elements. It is obvious from such data that using drainage water in irrigation of tomato plants led to a significant reduction in fruit content of N,P and Ca elements during both seasons of this work. This reduction in fruit content in such elements was proportional with increasing irrigation frequencies with drainage water. Fruits content of K tended to increase by increasing irrigation frequencies up to four times then began to decrease in both seasons, but fruit content of Na tended to increase significantly by increasing irrigation frequencies of drainage water up to ten times. Obtained results are going in the same trend during the two seasons of 1996 and 1997. These results are in agreement with those reported by (Abed et al., 1988 and Shafshak, 1989) on pea and broad bean plants, respectively.

5.2.2.Effect of varieties:

Data illustrated in Table (28) show the effect of different tomato cultivars on fruit content of N,P,K, Ca and Na elements. It is evident from such data, that differences between the studied cultivars were significant with all studied elements during both seasons of this work, with the exception of P and Ca elements during the second season, where no significant could be detected in this respect. Edkawy cv. exhibited the highest values of fruit content of N,P,K and Na elements during both seasons, whereas UC 97-3 recorded the highest values of Ca element in tomato fruit content during both seasons of this work.

Concerning the effect of interaction between irrigation frequencies with drainage water and studied cultivars, data presented

Table (28): Effect of irrigation frequencies of drainage water on fruits content of N,P,K,Ca and Na (mg/100 gm D.W) of Edkawy and UC97 -3 tomato cultivars during 1996 and 1997 seasons.

Canadana			1996						1997		
Drainage water	Varieties	Z	d	Ж	E)	Na	N	d	¥	Ca	Na
(Trequencies	Fdkawy	3370	408	2660	1520	63	3310	397	2629	1590	63
0	11C 97-3	3150	390	2455	1560	58	3140	385	2581	1630	09
	Edkawy	3215	382	2821	1450	69	3280	380	2659	1580	67
	11C 97-3	3057	377	2641	1490	63	3150	391	2619	1590	29
	Edkawv	3060	375	3004	1445	71	3180	354	7697	1575	80
4	UC 97-3	2950	369	2677	1465	64	3120	361	2627	1585	72
	Edkawy	2970	367	2430	1440	111	3060	345	7660	1505	124
9	110 97-3	2850	342	2379	1460	100	3090	336	2430	1495	115
	Folkawy	2880	358	2347	1430	127	2920	337	2452	1490	127
∞	11C 97-3	2730	345	2331	1440	113	2780	325	2293	1450	124
	Edkawv	2760	350	2330	1410	135	2690	320	2210	1430	130
10	UC 97-3	2640	326	2218	1380	128	2610	312	2058	1440	126
1.S.Dat 5 %	.5%	45	n.s	55	21	n.s	n.s	10	57	22	n.s
Troinage weter frequencies	or frequenc										
		3260	399	2557	1540	09	3225	391	2605	1610	61
2		3145	379	2731	1470	99	3215	385	2639	1585	29
4		3005	372	2840	1455	19	3150	357	2659	1580	76
9		2910	354	2404	1450	105	3075	340	2545	1500	120
œ		2805	351	2339	1435	120	2850	331	2372	1470	126
10		2700	338	2274	1395	131	2650	316	2134	1435	128
L.S.D at 5%	t 5%	34	6	62	22	7	<i>L</i> 9	10	37	13	4
Variation											
Edkawy		3042	373	2598	1449	96	3073	355	2550	1528	86
UC 97 - 3		2899	358	2450	1465	87	2981	351	2434	1531	8
L.S.D at 5%	t 5%	128	5	22	8	2	43	n.s	23	n.s	3
						Ė					

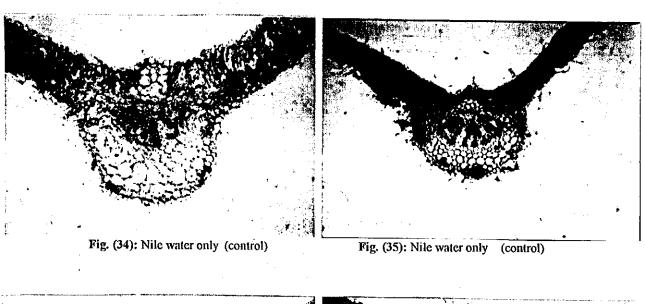
in Table (28) show that differences were significant in fruit content of K and Ca elements during both seasons as well as N and P during first and second season, respectively. the highest values of N,P and K elements were observed in plant of Edkawy cv. that treated with Nile water only (for N and P) and four times with drainage water (for K), whereas the highest value of Ca content was found in plants of UC97-3 that treated with ten irrigations with Nile water. On the other hand, the least values of the previous elements (as average of both seasons) were observed in plants of UC 97-3 cv. that treated with ten irrigations with drainage water. In this connection, no significant could be detected on fruits content of Na element during both seasons of this work.

6.Anatomical studies:

6.1. Leaf anatomy:

6.1.1 Effect of irrigation frequencies:

Data presented in Table (29) and Figures (34–39) show the effect of irrigation frequencies with drainage water on anatomy features of tomato leaves i.e upper and lower epidermis, measophyll tissue (contains of palisade and spongy tissues) as well as number of xylem vessels and diameter and width of midrib. Such data indicated that increasing irrigation frequencies with drainage water up to ten times was accompanied with gradual decrease all studied parameter. The highest decrement was found with the highest used irrigations with drainage water in comparison with using Nile water only during season, The exceptions - in this case - were in case of diameter and width of midrib that improved with increasing irrigation frequencies with drainage water. These results might be due to the role of salinity


on inhibiting sell division and elongation that grown under saline conditions.

6.2.2 Effect of varieties:

Table (29) and Figures (34-39) show clearly the effect of different studied cultivars on anatomy features of tomato plants. Such data indicate the best favourable effect of Edkawy cv. on all studied characters such as upper and lower epidermis, measophyll tissue (contains of palisade and spongy tissues) as well as number of xylem vessels and diameter and width of leaf midrib compared to UC97 – 3 one. These results may be attributed to the genetical properties which may be considered as the main factor in this respect. Obtained results are in harmony with those reported by Sarg (1991) and Wanas (1996) on tomato, they noticed that under saline conditions, Edkawy cv. was less affected in its anatomical properties than UC97-3.

Table (29):Anatomy of tomato plant leaves as affected by different irrigation frequencies with drainage water within Edkawy and UC97-3 cultivars.

		Thic	kness in	micron	s for				
Treatments	Upper	Lower	Palisade	Spongy	Measophyli	Blade	Diameter of	Width of	Number of
	epidermis	epidermis	tissue	tissue	tissue		midrib	Midrib	xylem vessels
Irrigation water									
frequencies									
0	24.0	20.0	128.0	181.6	309.6	353.6	888.8	823.2	47
4	24.0	19.2	112.0	177.6	289.6	332.8	1352.8	1368.0	46
10	19.2	16.0	93.6	125.6	219.2	254.4	1112.0	1092.0	45
Varieties									
Edkawy	23.5	20.8	122.1	184.5	306.7	350.9	1120.5	1132.8	47
UC97 – 3	21.3	16.0	100.3	138.7	238.9	276.3	1115.2	1056.0	46

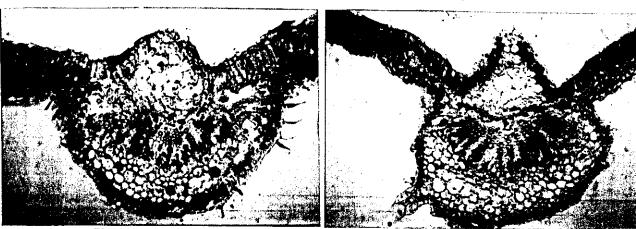
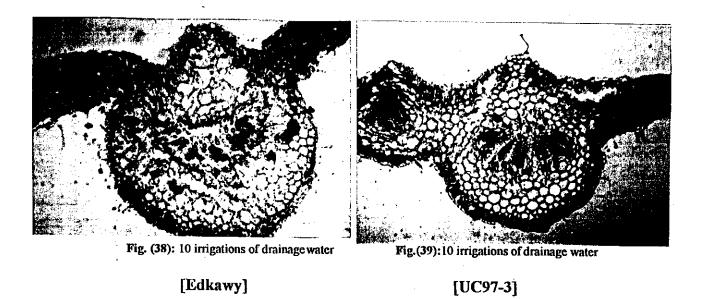



Fig. (36): 4 irrigations of drainage water Fig. (37): 4 irrigations of drainage water

Figures (34 -39): Effect of irrigation frequencies of drainage water on the leaf anatomical structure of Edkawy and UC97-3 tomato cultivars.