- 4. Calcium and magnesium content being determined through titration against Na EDTA (Versenate) solution according to Barrows and Simpson (1962).
- 5. Zinc, iron and manganese spectrophotometrically by Mnican Sp. 1900 Atomic absorption Spectrophotometer.

III.4. Statistical analysis:

All data obtained during both seasons of study were subjected to analysis of variance according to the method described by Snedecor and Cochran (1972). However, "Factorial design": as well as the significant differences among means were determined by Duncan's multiple range test (Duncan, 1955).

VI. RESULTS AND DISCUSSION

It is well known that salinity is considered one of the factors that affect plant growth through its despressive effect on both metabolic activities and water relations within the different plant tissues. Thus, the following presentation of results and discussion will concern with the effect of saline conditions, SAR and chloride on growth and leaf chemical composition of apricot and mango seedlings.

1. Effect of salts concentration, sodium adsorption ratio and Cl:SO₄ ratio in irrigation water on growth of apricot and mango seedlings:

1.1. Effect on stem length:

Data obtained during 1994 and 1995 seasons regarding the specific and interaction effects of the three investigated factors (salinity concentration, SAR and Cl:SO₄ ratio) on the exhibited increase in stem length of both apricot and mango seedlings are presented in Table (2).

1.1.a. Specific effect:

Regarding the specific effect of salinity concentration, data obtained revealed that all three investigated (2000, 4000 and 6000 ppm) saline solutions resulted in an obvious decrease in stem length of seedlings for both fruit species during two seasons. Such decrease was significant as compared to those of tap water irrigated seedlings. On the other hand, the most depressive effect was always concomitant to the highest concentration i.e. 6000 ppm during both seasons of salinity, irrespective of fruit species, however, the 2000 ppm saline solution exhibited the lowest decrease. Meanwhile, the 4000 ppm concentration was intermediate in this concern, whereas differences between the three salinity concentrations were significant as each was compared to two other ones with both apricot and mango seedlings during two seasons of study. In addition, it could be noticed that apricot seedlings were more sensetive to increasing salinity concentration than mango especially under

the highest concentration as rate of decrease was more acute with former fruit species than latter. These results are in coincide with the finding of Wilcox et al. (1951) reported that salinity of soil solution may affect growth of plant in two ways: 1st the osmotic pressure of the solution may be high enough to limit the availability of water to the plant or 2nd hight concentration of salts in the solution may facilitate the uptake of one or more of the presentions so that an accumulation may result and cause a derangement of the normal metabolism of the plant. In addition, Pokroveskey (1957) found that in glycophgtes both cell divison and cell elongation were inhibited with increased salinity.

Moreover, Makhija et al. (1980) found that rising salinity levels (above 7.5 mmhos/cm conductivity of saturation extract) causing growth reduction on guava seedlings. They found that accumulation of Cl⁻ and Na in toxic concentration in plant tissues and nutrient imbalance were the main effects of salinity. Behairy et al. (1984) on Thompson seedless and american grape plants and Khamis et al. (1984) on guava and olive seedlings, they found that stem length was depressed by salinity concentrations.

Concerning the specific effect of sodium adsorption ratio (SAR), it is quite clear that the increasing SAR from 3 to 6 in irrigation water resulted significantly depressing the stem length of seedlings in both apricot and mango seedlings during two seasons of study. Moreover, both two fruit species under study were equally the same regarding the response of their seedlings to SAR. Similar observation was also found by El-Deen et al. (1979) on olive seedlings, Behairy et al. (1984) on Thompson seedless and American grape, Khamis et al. (1984) on guava and olive seedlings and Abd El-Aziz et al. (1985) on some citrus rootstocks seedlings. They found that sodium adsorption ratio (SAR) resulted in significant reduction of plant height.

Table (2): Stem length (cm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl. SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 seasons.

		F	*	1204					Mango	0 <u>g</u> 0		
Treatments			Apricot	1001							1006	
		1007			1995			1994			25.7	
SAK		<u>, </u>	4	8	y	Mugn*	к.	9	Mean*	ю -	9	Mean*
Conc.xCl ratio	က	9	Mean.	2	>	MICALI)		44 73	70.00	70.09	70 0 A
Tab water	89.5a	89.5a	89.5 <u>A</u>	71.1a	71.1a	71.1A	56.4a	56.4a	50.4A	80.0 <i>l</i>	70.04	
control	•						7	46.00		63 1h	58 Ocd	
Low Cl	88.6a	76.6b		68.7a	58.0b	,	91.60	20.64	47 8B	01.00		59.6B
2000			79.3B			61.5B			do./+	,	1 6 1 7	
2000 ppm High Cl	79.3b	73.0c	\	60.5b	58.0b		50.0b	44.0c		62.6bc	54 5de	
_	68.64	59 3ef		52.1bc	49.6c		40.1d	35.1ef		51.6ef	46 gfg	
2 401	3	<u>.</u>	919			49.3C			37.C			48.0C
4000 ppm		,) 	0 0 0	46.300		38 1de	34.5f		49 9ef	43.8gh	
High C1 62.0e	62.0e	56.6tg		49.0c	40.3cm		20.				11000	
Low Cl	66.5d	54.6g		42.2d	41.5d		33.4fg	29.1hi		42.1gh	(15.0t	90
)	58 4D			42.0D			30.0D			38.20
eogo ppm	30 63	66.3%) ;	42 1f	42.3f		31.1gh	26.0i		40.5hi	34.1ij	
High Ci	gio./c	30.00					***	30 KD		54 2 A	49 1B	
Mean**	73.1A	66.4B		55.1A	52.4B		45.0A	30.0D		133.1	1	
Manne forth	l ow	High		Low	High		Low	High		Low	High	
Means 101				V 0 73	40.55	 	43 4A	42.1B		54.2A	53.0B	
Cl : SO ₄ ratio	72.8A	70.3B		20.0A	33.04		171.61					
 												

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * , ** , *** Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

As for the specific effect of the Cl:SO₄ ratio of saline solution used for irrigation on stem length, it could be noticed from data in Table (2) that the higher ratio (increasing the level of chloride in irrigation water) resulted in a significantly decreased in both apricot and mango seedlings during two seasons of study. In this respect, Abd El-Aziz *et al.* (1985) on some citrus seedlings and Kabeel (1985) on some deciduous fruit species, they found that increasing Cl:SO₄ ratio was not affected in stem length.

1.1.b. Interaction effect:

Reffering the interaction effect of the investigated three factors i.e., salinity concentration, SAR and CL:SO₄ ratio on stem length, data obtained in Table (2) showed that obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. The most depressive irrigation solutions on stem length of both apricot and mango was that combination between the highest salinity concentration (6000 ppm) X SAR 3 or 6 X higher Cl:SO₄ ratio, whereas the lowest stem length was resulted. Moreover, two other combinations of 6000 ppm saline solution ranked second in an increasing order. On the other hand the lowest decrease in stem length was detected by those seedlings irrigated with 2000 ppm saline solution of SAR 3 and lower Cl:SO₄ ratio as compared to those continuously irrigated with tap water during 1994 and 1995 seasons for seedlings of two studied fruit species.

These results could be confirmed with those of Pandy and Divate (1976) who stated that shoot length in grape vines reduced considerably as the salts concentration increase. This results are in confirmity with the findings of Kabeel (1985) on some deciduous fruit species.

1.2. Effect on net increase in stem length:

1.2.a. Specific effect:

Concerning the specific effect of different factors involved in this study i.e. (salinity concentration, SAR and Cl:SO₄ ratio) on the net increase in stem length (cm), data obtained in Table (3) clearly show that

a significant effect for salts concentration in irrigation water, irrespective of both apricot and mango plants. It was also noticed from the obtained results that net increase in stem length (cm) decreased significantly with increasing the salts concentration in the irrigation water from tap water to 6000 ppm. On the other hand, the most depressive effect was always concomitant to the lowest concentration i.e., 6000 ppm during both seasons of study, irrespective of fruit species, however the 2000 ppm saline solution exhibited the lightest decrease. Meanwhile, the 4000 ppm concentration was intermediate in this concern, whereas differences between the three salinity concentrations were significant as each was compared to two other ones with both apricot and mango seedlings during 1994 and 1995 seasons. In addition, it could be noticed that apricot seedlings were more sensitive to increasing salinity concentration than mango as rate of decrease was more acute with former fruit species than later.

Reffering the specific effect of SAR, it was quite clear that the highest ratio i.e. 6 resulted significantly in depressin the stem elongation of seedlings in both apricot and mango seedlings than the later one i.e. SAR3 during two seasons of study. Moreover, both two fruit species were equally the same regarding the response of their seedlings to SAR.

As for the specific of the Cl:SO₄ ratio of saline solution used for irrigation on net increase in stem length, it could be noticed from data in Table (3) that the higher ratio caused a significant decrease net increase in stem length than lower ratio in both fruit species during the study.

1.2.b. Interaction effect:

Regarding the interaction effect of the investigated there factors i.e. salinity concentration X SAR X Cl:SO₄ ratio, on net increase in stem length, data obtained in Table (3) showed obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. The most depressive irrigation solution on net increase in stem length of both apricot and mango was

Table (3): Net increase in stem length (cm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl : SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 seasons.

Apricot Apricot 1994 1994 3 6 Mean* 3 9 4 8 8 3 9 9 9 9 4 8 4 8 8 2 3 9 9 9 9 9 9 9 9 9 9 4 8 8 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9<										Mango	120		
R Mean* 3 6 Mean* 3 6 Mean* 3 6 36.8a 36.8a 36.8a 36.8a 36.8a 36.8a 30.9a 30.9a 30.9a 30.9a Cl 36.8a 36.8a 36.8a 36.8a 36.8a 30.9a 30.9a 30.9a Cl 34.4b 21.9d 27.0a 15.7b 19.7B 25.8b 20.3c Cl 26.5c 20.0e 20.3b 16.0b 19.7B 19.0c Cl 13.8f 5.5h 10.6c 7.1cd 7.8C 10.4e Cl 8.4g 3.0i 8.7cd 5.0de 13.5d 9.1ef Cl 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h I.7 A 12.7B 1.4e 0.7e 7.6fg 1.6i I.7 A 12.7B 14.4A 10.8B 17.7A 13.6b I.7 A 12.7B 16.7B 16.2A 17.0A 17.0B	Treatments			Apr	1001							1005	
3 6 Mean* 3 6 Mean* 3 6 36.8a 36.8a 36.8a 30.9a 30.9a 30.9a 30.9a 30.9a C1 36.8a 36.8a 36.8a 36.8a 30.9a 30.9a 30.9a 30.9a C1 34.4b 21.9d 27.0a 15.7b 19.7B 25.8b 20.3c 20.3c C1 26.5c 20.0e 20.3b 16.0b 7.8C 14.9d 10.4e C1 13.8f 5.5h 10.6c 7.1cd 7.8C 14.9d 10.4e C1 8.4g 3.0i 8.7cd 5.0de 13.5d 1.1f C1 2.4i 1.0j 1.8e 0.5e 1.1D 7.6fg 3.9h C2 2.4i 1.0j 1.4e 0.7e 2.3g 1.6i C1 1.7A 12.7B 1.4e 0.7e 2.3g 1.7f C2 1.7A 1.2B 1.4A 1			1004		L	1995			1994			1973	
3 6 Mean? 3 9 100 mean? 3 0 100 mean? 3 0 3 3 0 3	SAK		1 //			7	Mean*	65	9	Mean*	က	9	Mean*
36.8a 36.8a 36.8a 36.8a 30.9a 30.3c CI 30.3c 27.0a 15.7b 19.7B 25.8b 20.3c 10.0c 7.1cd 14.9d 10.4e 10	Conc.xCl ratio	က	9	Mean	C	0	IVICAII	>		4000	20 60	38 69	38 6A
Igh Cl 26.5c 20.0e 27.0a 15.7b 25.8b 20.3c 20.3b 16.0b 25.8b 20.3c 20.3c 16.0b 25.0b 19.0c <t< th=""><th>Tab water</th><th>36.8a</th><th>36.8a</th><th>36.8A</th><th>30.9a</th><th>30.9a</th><th>30.9A</th><th>30.9a</th><th>30.9a</th><th>30.9A</th><th>30.04</th><th>20.04</th><th></th></t<>	Tab water	36.8a	36.8a	36.8A	30.9a	30.9a	30.9A	30.9a	30.9a	30.9A	30.04	20.04	
Low CI 34.4b 21.9d 27.0a 15.7b 19.7B 25.80 20.3c ligh CI 26.5c 20.0e 20.3b 16.0b 25.0b 19.0c Low CI 13.8f 5.5h 10.6c 7.1cd 7.8C 14.9d 10.4e Low CI 8.4g 3.0i 8.7cd 5.0de 13.5d 9.1ef Low CI 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High CI 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B *** 10.0 15.5A 14.2A 16.2A 17.0B 17.0B	control							10.00	20.30		31 Sh	26.0c	
ligh Cl 26.5c 20.0e 20.3b 16.0b 19.7B 25.0b 19.0c Low Cl 13.8f 5.5h 10.6c 7.1cd 7.8C 14.9d 10.4e Ligh Cl 8.4g 3.0i 8.7cd 5.0de 7.8C 13.5d 9.1ef Low Cl 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High Cl 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B *** 10.7B 16.7B 16.7B 14.2A 14.2A 14.2A 17.0B	» CI	34.4b	21.9d		27.0a	15.7b	í	75.8b	70.3c	22 5B	0.10		27.6B
Low Cl 26.5c 20.0e 20.3b 16.0b 25.0b 19.0c Low Cl 13.8f 5.5h 10.6c 7.1cd 7.8C 14.9d 10.4e Ligh Cl 8.4g 3.0i 8.7cd 5.0de 13.5d 9.1ef Low Cl 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High Cl 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B *** 10.0 High Low High Low High 17.0B	2000 pnm			25.7B	_		19.7B		4	44.30	43.00	22.10	
Low CI 13.8f 5.5h 10.6c 7.1cd 7.8C 10.4e High CI 8.4g 3.0i 8.7cd 5.0de 7.8C 13.5d 9.1ef Low CI 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High CI 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B **** 1 ow High Low High Low High Low High **** 1 ow High Low High Low High 17.0B	Zovo pp High Cl	26.50	20.0e		20.3b	16.0b		25.0b	19.0c		29.30	23.40	
High CI 8.4g 3.0i 8.7cd 5.0de 13.5d 9.1ef Low CI 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High CI 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B **** 1 ow High Low High Low High Low High **** 1 ow High Low High Low High 17.0B	O mgm	30 CT	5 Sh		10.6c	7.1cd		14.9d	10.4e		19.3d	14.0e	
High CI 8.4g 3.0i 8.7cd 5.0de 13.5d 9.1ef Low CI 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High CI 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B **** 1 ow High Low High Low High Low High **** 1 ow High Low High Low High Low High	CO M CI	19.01		722			7.8C			12.0C			15.9C
High CI 8.4g 3.0i 8.7cd 5.0de 15.5d 3.9h Low CI 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High CI 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B **** 1 ow High Low High Low High **** 16.7B 15.5A 14.2A 18.1A 17.0B	4000 ppm) - -		()		12 54	0 lef		18.1d	12.1f	
Low CI 2.4i 1.0j 1.8e 0.5e 7.6fg 3.9h High CI 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B 14.4A 10.8B 17.7A 13.6B **** 1 ow High Low High Low High Low High **** 16.7B 15.5A 14.2A 18.1A 17.0B	High Cl	_	3.0i		8.7cd	onde		13.30	3			11.0	
High Cl 1.9j 0.5j 1.4e 0.7e 6.3g 1.6i *** 17.7A 12.7B Low High Low High Low High High *** 16.7B 16.7B 16.7A 17.0B	D mo		0		1.8e	0.5e		7.6fg	3.9h		9.81g	2.In	(
High CI 1.9j 0.5j 1.4e 0.7e 6.3g 1*** 17.7A 12.7B 14.4A 10.8B 17.7A **** 1 ow High Low High Low **** 16.7B 15.5A 14.2A 18.1A		: i	`	1 50			1.1D			4.8D			0.40
177A 12.7B	6000 ppm			70.1	1 4e	0.7e		6.3g	1.6i		7.9g	2.01	
17.7A 12.7B 14.4A 10.8B 17.7A 10.7B 10.8B 17.7A 16.7B 15.5A 14.2A 18.1A	High C	_	(c.0		2		+	¥ 1. 1.	13 KB		27.1A	17.3B	
1 ow High Low High Low 15.5A 14.2A 18.1A	Mean**	17.7A	12.7B		144A	10.8B		1/./A	13.00		-		- 1
18.1A 16.7B 15.5A 14.2A 18.1A	***	ino	High	1	Low	High	<u> </u>	Low	High		Low	Hıgh	- -
(a) 5A 16.7B 19.117 19.117	Means for	X		-1	1	7 7	<u> </u>	18.14	17 0B	·	22.9A	21.3B	_
	CI: SO4 ratio	5A	16.7B		15.5A	14.2A		10.17					

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction *, **, ***: Means refere to specific effect of salinity concentration, SAR and CL: SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

that combination between the highest salinity concentration (6000 ppm) X SAR6 X higher Cl:SO₄ ratio, whereas the lower net increase of stem length was resulted. Moreover, three other combinations of 6000 ppm saline solution ranked second in an increasing order. On the other hand, the lowest decresae in net increase of stem length was detected by those seedlings irrigated with 2000 ppm saline solution of SAR3 and lower Cl:SO₄ ratio as compared to those continuously irrigated with tap water during both 1994 and 1995 seasons for seedlings of two studied fruit species. Moreover, it could be noticed obviously that mango seedlings were relatively more tolerant to saline solutions than apricot especially as those solutions (combinations) of the higher SAR were concerned to be compared.

1.3. Effect on number of leaves per plant:

1.3.a. Specific effect:

Concerning the specific effect of the different factors involved in this study i.e. (salinity concentration, SAR and Cl:SO₄ ratio) on the number of leaves per plant data as shown in Table (4) revealed that total number of leaves per seedling decreased, in general, with increasing salt concentration in the irrigation water for both apricot and mango seedlings during two seasons. Such decrease was significant within the three salts concentration of 2000, 4000 and 6000 ppm as compared to those of tap water irrigated (control) seedlings. In addition, the saline irrigation treatment of 6000 ppm salts in the irrigation water was the great injurious effect on leaf number per plant. These findings are in harmony with those obtained by Pandey and Divate (1976) on grape vine, El-Deen et al. (1979) on olive seedlings and Abd El-Karim (1991) on mango varieties who found that number of leaves per plant decreased considerably with increasing salt concentration in irrigation water.

Regarding the specific effect of SAR, data as shown in Table (4) revealed that the higher ratio of SAR6 resulted significantly in depressing the number of leaves/plant than the lower one i.e. SAR3 in both apricot and mango seedlings during two seasons of study. This results is in

adsorption ratio, C1: SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 Table (4): Number of leaves/plant of apricot and mango seedlings as influenced by salt concentration, sodium

seasons	ons.											
				100		-			Mango	ogu		
Treatments			Apricor	1001				1001			1995	
Q V D		1994			1995			1774		,		Moonk
NEC :	,	7	Moonk		9	Mean*	-	9	Mean*	2	د ا	Meall
Conc.xCl ratio	3	0	Mean			4000	20.00	30.08	30.0A	36.3a	36.3a	36.3A
Tab water	56.8a	56.8a	56.8A	53.3a	53.3a	55.5A	30.0 a	JU. 04				
control							2000	22.5%		34 0a	30.8b	
Low CI	55.0a	43.0b		50.5a	41.3bc	43 1B	80.07	23.30	24.9B			31.1B
2000 ppm	10	7 7	45.3B	44 Sh	36.0cd	J. C	24.3b	23.8b		30.8b	28.8bc	
High CI	45.80	37.70		200			21.5	10.504		28 8hc	26.5cde	
Low Cl	36.3c	26.3de		32.8de	24.5f	0	200.12	19.50d	10 3D			26.8C
0007			28.6C			78.9€			70.71			
4000 ppiii		24 Odef	l	27.8ef	22.3f		19.5cd	16.8de		27.3cd	24.5det	
High	no./2	74.0dc					16.640	15.00		23 Sefg	20.5g	
Low Ci	23.3ef	21.0f		22.0f	22.0f		apc.ol	13.06	15.10) 	20.6D
(COOO		_	23.0D			77.70					ţ	
l oooo phiii	30 6 A C	72 20f		23.8f	21.0f		15.0f	14.0e		21.5tg	n0./1	
High Ci	24.3uci	136.67			31.50		22 1A	20 4B		29.0A	26.2B	
Mean**	48.5A	33.1B		56.4A	31.35		777.77		- -		11:0h	•
***	101	High	T	Low	High		Low	High		Low	rigii	
Means 10r					GC 35	<u> </u>	23.0A	21 7B	_	29.6A	27 8B	
Cl : SO4 ratio	39.7A	37.0B		37.4A	33.2B		170.03					

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * * * * * * * Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

agreement with that reported by El-Deen et al. (1979) found that increasing SAR resulted in a significant reduction of number of leaves in olive seedlings.

As for the specific effect of the Cl:SO₄ ratio of saline used for irrigation in number of leaves/plant, it could be observed from data in Table (4) the higher ratio resulted in a significant decrease number of leaves (plant in both fruit species than the lower one regardless salt concentration and SAR during the study similar results was also found by Kabeel (1985) on some deciduous fruit.

Reffering the interaction effect of the investigated three factors i.e. salinity concentration, SAR and Cl:SO₄ ratio on number of leaves. Table (4) shows a considerable and statistical effect in both seasons of study where the most depressive irrigation solution on number of leaves/plant of both apricot and mango was that combination between the highest salinity concentration (6000 ppm) X SAR3 or 6 X higher Cl:SO₄ ratio whereas the lowest number of leaves/plant was resulted. Moreover, four other combinations of (4000 ppm) salin solution ranked second in an increasing order. In addition, the lowest decrease in number of leaves/plant was detected by apricot and mango seedlings irrigated with 2000 ppm saline solution with SAR3 and lower Cl:SO₄ ratio as compared with control during 1994 and 1995 seasons. These results could be partially confirmed with those of Kabeel (1985) who stated that number of leaves per plant in some deciduous fruit seedlings was slightly decrease and not significant.

1.4. Effect on net increase in number of leaves per plant:

1.4.a. Specific effect:

The obtained results as shown in Table (5) revealed that salinizing irrigation water with CaCl₂, MgSO₄, KCl, K₂SO₄, Na₂SO₄ and NaCl at different concentrations had in general significant effect on net incresae in number of leaves/plant of apricot and mango seedlings. To clarify this, it was noticed that net increase of leaf number/plant decreased with increasing salts concentration to reach its minimum value at the high salts concentration of 6000 ppm during 1994 and 1995 seasons, irrespective of fruit species. However, the 2000 ppm saline solution exhibited the lightest decrease. In addition, the 4000 ppm concentration was intermediate in this concern. Moreover, differences between the three salinity concentrations were significant as each was compared to two other ones with both apricot and mango seedlings during two seasons of study.

These results could be confirmed with the findings of many others investigators such as Pandey and Divate (1976) on grape vines, Jindal et al. (1976) on mango seedlings, Patial et al. (1984) on guava plants and Abd El-Karim (1991) on mango seedlings whose results revealed depressive or adverse effects for high salinity levels on the different growth parameters.

Concerning the specific effect of SAR, it was quite clear that the higher ratio i.e., SAR6 resulted significantly in decreased net increased leaf number/plant in both apricot and mango than the lower one i.e., SAR3 during two seasons of study.

As for the specific effect of the Cl:SO₄ ratio of saline water used for irrigation on net increase of leaf number/plant, data as shown in Table (5) revealed that higher ratio were significantly the lowest net increase of leaf number/plant as compared to the lowest one in both two fruit species under study during 1994 and 1995 seasons.

1.4.b. Interaction effect:

Table (5) indicates a significant interaction between salinity and Cl:SO₄ ratio, on net increase of leaf concentration, SAR number/plant. Anyhow, both apricot and mango seedlings irrigated with 6000 ppm saline water with SAR6 and high level of Cl:SO₄ ratio had the lowest net increase of leaf number/plant, whereas the lowest net increase of leaf number was resulted. Moreover, three other combinations of 6000 ppm saline solution in an increasing order.

Table (5): Net increase in number of leaves/plant of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, C1: SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 seasons.

T-ootmonte			Apricot	icot		i			Mango	ngo		
SAR		1994			1995			1994			1995	
Conc vCl ratio	65	9	Mean*	3	9	Mean*	6	9	Mean*	3	9	Mean*
Tab water ()	36.5a	36.5a	36.5A	34.3a	34.3a	34.3A	16.5a	16.5a	16.5A	20.3a	20.3a	20.3A
control											,	
» Cl	34.5b	20.3d		31.5a	19.3c		14.5b	10.5cd		17.8b	13.5c	
2000 nnm			24.4B			23.0B			11.6B			14.4B
High CI	25.5c	17.5e		24.8b	16.3cd		11.5c	p8.6		14.5c	12.0d	
Low CI	14.3f	5.3g		12.8d	5.0ef		8.3e	6.3f		10.5de	8 5fg	
			7.3C			28 9			6.4C			8.8C
High CI	6.5g	3.3h		6.8e	2.5fg		98.9	4.5g		9.5ef	6.8g	
Low CI	2.3hi	1.0.1		2.0fg	1.3g		3.5g	1.3h		5.0h	2.0ij	
maa 0009			G9:1			U.7D			1.9D			2.8D
High Cl	2.0hi	1.01		2.5fg	1.0g		2.0h	1.0h		3.0i	1.0j	
Mean**	17.4A	15.2B		16.4A	1.4B		9.0A	7.1B		11.5A	9.2B	
Means for***	Low	High	T	Low	High	T	Low	High		Low	High	
Cl : SO ₄ ratio	18.8A	16.1B		17.5A	15.3B		9.7A	8.6B		12.2A	10.9B	

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * , ** , *** Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

On the other hand, the lowest decrease in net increase of leaf number/plant was detected by those seedlings irrigated with 2000 ppm saline solutions with SAR3 and lower Cl:SO₄ ratio as compared with plants irrigated with tap water during two seasons of study for apricot and mango plants.

1.5. Effect on root length (cm):

1.5.a. Specific effect:

Data concerning the specific effect of salt concentration, SAR and and Cl:SO₄ ratio on root length are presented in Table (6).

Generally the data indicated that the depression in root length (cm) were closely associated with increasing salt concentration in irrigation water as compared with control (tap water treatment) in both two fruit species during two seasons of study. Moreover, all salt concentration significantly depressed root length, such decrease was more remarkable with the higher concentration (6000 ppm), however, the 2000 ppm saline solution exhibited the lowest decrease. Meanwhile, the 4000 ppm concentration was intermediate in this respect, whereas differences between the three salinity concentrations were significant as each was compred to two other ones with both apricot and mango seedlings during 1994 and 1995 seasons. In this concentration, the findings of Hayward and Long (1942) found that the total concentration of salts was a major factor in the general growth depression on peach. Haward and Spurr (1943) concluded that the increase in osmotic pressure of saline soil solution tended to restrict the uptake of by roots on corn.

Barakat et al. (1982) on guava and olive disclosed that the depressing effect of salts was ponded to the type of salts.

Concerning the specific effect of SAR, it was quite clear that, increasing sodium adsorption ratio (SAR) from 3 to 6 in irrigation water significantly in depressed the root length of seedlings in both apricot and mango during two seasons of study.

Table (6): Root length (cm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl. SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 seasons.

()		-	*						Mango	120		
Treatments			Apr	Apricot							1005	
0.40		1004			1995			1994			CKKI	
SAR			4	6	4	Moon*	۳.	9	Mean*	8	9	Mean*
Conc.xCl ratio	3	9	Mean.	S		IVICAII	,	, ,	7 1 37	46.02	96.34	46.04
Tab water	36.5a	36.5a	36.5A	33.4a	33.4a	33.4A	45.la	45.1a	45.1A	40.04	40.04	U0:01
control							;	-		42 CF	40 3cd	
Low Ci	32.8b	24.6d		30.4b	23.8c		43.0b	39.9cd		45.00	10.3cm	-
			27.4B			25.8B			40.8B			41.0B
	78 30	24.14		25.8c	23.4c		41.4bc	39.0d		41.5c	38.5de	
Ingil C	20.35	71.10					26.4	~0.00		36 8A	30.00	
Low C	20.8e	16.9g		20.9d	17.5ef		36.4e	86.67		30.00	30.05	(
			18 OC			18.3C			31.4C			31.6C
4000 ppm	1	,)	10.62	15 160		32.6f	26.7h		33.5f	26.3h	
High Cl	8.81	15.8h		20.00	17.115						16 51.	
C ow C	14 6hi	12.8ik		13.0g	11.0j		24.0i	17.0k		23.51	13.3K	(
		-	13.10			11.2D			19.07D			17.3D
onno ppini	•	;		1260	7 45		21 1;	14.21		19.8!	10.31	
High CI	. 3.8ıj	11.4K		13.38	117.			1		40 40	30.60	
Moanth	23 6A	20.3B		22.4A	19.0B		35.0A	30.3B		35.0A	39.0D	
Mican		H;ch	 -	Į ow	High	1	Low	High		Low	High	
Means tor***	LOW	riigiii	- [1	1000	11.10	T-	25.24	32 8B	
C: SO4 ratio	24.4A	23.1B		22.9A	21.4B		35.0A	33.1D		33.60	10.1	

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * , **, *** Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

As for the specific effect of the Cl:SO₄ ratio of saline solution used for irrigation on root length. It is quite clear from the present data in Table (6) that root length significantly decreased with higher ratio than lower one in both two fruit species.

1.5.b. Interaction effect:

With respect to interaction between concentration level, SAR and Cl:SO₄ ratio on root length are presented in Table (6). Generally, the data indicated that root length of the irrigated either apricot or mango seedlings with saline solutions were significant depressed as compared with control during the study.

The most depressive irrigation solution root length of both apricot and mango was that combination between the highest salinity concentration (6000 ppm) X SAR6 X higher Cl:SO₄ ratio, whereas the lowest increase in root length was resulted. Moreover, three other combinations of 6000 ppm saline solution ranked second in an increasing order. On the other hand, the lowest decrease in root length was found by those seedlings irrigated with 2000 ppm, saline solution of SAR3 X lower Cl:SO₄ ratio as compared with control during 1994 and 1995 seasons for two studied fruit species.

1.6. Effect on the dry weight on plant organs (leaves, stem, roots and total plant dry weights):

Data presented in Tables (7, 8, 9 and 10) show the effect of salts concentration in irrigation water, sodium adsorption ratio (SAR), Cl:SO₄ ratio and their interaction on the dry weight on plant organs (leaves, stem, roots and total plant dry weight) of both apricot and mango seedlings.

1.6.a. Specific effect:

Concerning the specif effect of salinity concentration, data obtained revealed that, the plant organs dry weight were gradually decreased by increasing the level of salinity for both fruit species during two seasons. Such decrease was significant as compared to those of tap

water irrigated seedlings. On the other hand, the greatest loss in the dry weight of plant organs (leaves, stem and roots) as well as total plant dry weight were noticed at the highest level salts concentration (6000 ppm) during both seasons of study, irrespective of fruit species, however, the 2000 ppm saline solution showed the lowest loss in the dry weight of plant organs. Meanwhile, the 4000 ppm concentration was intermediate in this concern, whereas the differences between the three salinity concentrations were significant as each was compared to two other ones with both apricot and mango seedlings during two seasons of study. Such results appeared to agree with those obtained by Jindal et al. (1976) on mango cultivar; Rokba et al. (1979) on some citrus rootstocks; Behairy et al. (1984) on Thompson and American grape plants, Gaser (1986) on Avocado, El-Hawary (1987) on grape and Abd-El-Karim (1991) on mango seedlings, all they found that the dry weight of plant organs was decreased gradually by increasing the level of salinity in the irrigation water. Such decrease in the plant dry weight, under stress of salinity, may be due to the physiological hunger.

With respect to the specific effect of sodium adsorption ratio, it was quite clear that the increasing SAR from 3 to 6 in irrigation water significantly decreased dry weight in plant organs in both fruit species during two seasons of study. Moreover, both apricot and mango were equally the same regarding the response of their seedlings to SAR. These results is in agreement with that reported by Khamis *et al.* (1984) on guava and olive seedlings, and Behairy *et al.* (1984) on Thompson, American grape plants and Kabeel (1985) on some deciduous fruit species.

Regarding the specific effect of the Cl:SO₄ ratio of saline solution used for irrigation on the dry weight of plant organs (leaves, shoots, roots and total plant dry weight) are found in Tables (7, 8, 9 and 10). It is noticed from the obtained data that the dry weight of the Cl:SO₄ ratio, showed significant decrease in both fruit species during 1994 and 1995 seasons except leaves, roots and total plant dry weight of appricot

Table (7): Leaves dry weight (gm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl. SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995

seasons	ons.											
Trootmonte			Apricot	cot		-			Mango	1 <u>g</u> 0		
Learments		7007			1005			1994			1995	
SAK		1994				7	,	7	Moonk	6.0	9	Mean*
Conc.xCl ratio	3	9	Mean*	3	9	Mean	2	0	MEall	ָ ֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓) [V 00 1
Tab water	1.13a	1.13a	1.13A	1.10a	1.10a	1.10A	4.00a	4.00a	4.00A	5.00a	5.00a	S.00A
control										4524	4 00 4	
Low CI	1.00b	0.90c		0.91b	0.85bc		3.21b	2.30d		4.320	300.4	, i
			0 90B			0.90 B			2.60 B			4.2115
	0.036	0.864	2	0.84bc	0.80bc		2.80c	2.00e		4.60b	3.70c	
IJ IIBIII	0.736	0.00			1,020		000 6	1 52ο		3.20d	2.21f	<u>- 17</u>
Low CI	0.90c	0.70f		0.75c	Dcc.U		4.00c	9	(2 53 C
4000			0 70C	•		0.60C			1.60C			2.73
4000 ppm	0.010	0 500		0.80bc	0.42e		1.54g	1.35gh		2.70e	2.01f	
High CI USIE	0.016	0.308						2:00		1,600	1.400	
Low Cl	0.24h	0.16i		0.23f	0.20fg		l.30gh	800°0		900.1 2000.1	15	
			0 20D			0.20D			0.90D			U.42D
ouve ppin	0.20	0.12k	 	0 20fg	0.11g		1.0hi	0.62j		1.50g	1.20g	
		45.7			0.50		2 32 A	2 10B		3.30A	2.78B	
Mean**	0.74A	0.62B		U./UA	0.00		4.326.3	i		,	11:11	
Moone for***	VO.	High		Low	High		Low	High		Low	Hign	
Citation Co.	0.80	0.70R		0.70A	0.70A	· ·	2.40A	2.20B		3.30A	3.10B	
CI : SO4 ratio	0.00.0	0.70	_									

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction *, **, ***; Means refere to specific effect of salinity concentration, SAR and CL: SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

adsorption ratio, C1: SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 Table (8): Stem dry weight (gm) of apricot and mango seedlings as influenced by salt concentration, sodium

seasons	ons.								Me	000		
Treatments			Apricot	icot					ivialigo	IBO	00,	
CAD		1004			1995			1994			255	
NAC	,		Manne	4	9	Mean*	3	9	Mean*	3	9	Mean*
Conc.xCl ratio	S	0	Meall	2	2		i i	1 13	7 72 4	10.609	10.60a	10 60 A
Tab water (5.22a	5.22a	5.22A	4.20a	4.20a	4.20A	7.73a	/./3a	V:/3A	10.00	2000	
control								000		405.0	2008	
Low Cl	4.22b	2.92d		3.20b	2.40c		6.91b	3.90c		9.500	30.0	C 5.40
			3 30B			2.70B			6.30B			8.34D
2000 ppm	3 400	2676	2000	3.10b	2.10c		6.70b	5.64c		9.12b	7.60d	-
High CI	3.400	2.026					101	2 440		6316	4 700	=
Low Cl	2.48e	1.80f		2.02cd	1.62d		4.810	3.446	,	215.0	<u> </u>	ر د د
			1 94C			1.81C			3.90C			2.310
4000 ppm			?	6	1 400€		4 24e	2 90f		5.81f	4.50gh	
High Cl	1.83f	1.701		207.7	1.4051		2					
I ow C	1 50g	1.05i		1.11fg	0.80g	ļ- -	2.81f	2.40f		4.20h	5.211	6
			1 21D			0.90D			2.40D			3.33D
eono ppm			1	1 0064	0.800		2 60f	1.74g		3.50i	3.43i	
High Cl	1.33h	166.0		1.001g	0.008		i	0			doo.	
Mean**	2 85A	2.32B		2.40A	1.90B		5.11A	4.30B		/.01A	900.0	
***	1	Ligh		W O. I	High		Low	High		Low	High	
Means lor	MO T	111811			0	<u> </u>	i	000	_	7 13 4	80R	
CI : SOA ratio	3.05A	2.80B		2.40A	2.40A		5./IA	4.90 b		OCI.,	0.00	

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * , **, ***; Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

Table (9): Root dry weight (gm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl : SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995

seasons	ons.								Mo	95		
			Anricot	cot					Mango	180		
Treatments								1007			1995	
SAR		1994			5661			-//-		•	7	Moon
1	,	7	Mean*	3	9	Mean*	m	9	Mean*	2	0	Mican
Conc.xCl ratio	2 5	2 70.	7.70.4	4 743	4 24a	4.24	6.01a	6.01a	₩10.9	6.30a	6.30a	6.30A
Tab water (/./Ua	7.70g	V01.1	3	!							
control							401 3	3 80cd		5.40b	3.94d	
Low Cl	6.53b	4.80d		3.64b	3.30c		3.100	3.00.0	4 25B			4.45B
2000 ppm			5.30B	- - -	ָר ה די	3.2/B	4 60hc	3 50cd) !	4.84c	3.60e	
High CI	5.33c	4.40e		3.42bc	7.77d		2000:1			-07.0	3 70F	
Low CI	4.10e	3.03f		2.60d	1.74f		3.21de	2.60etg	(3.40e	7.701	3000
			3 300			2.13C			2.73C			_ رون ر
4000 ppm	0	J00 C	2000	2 300	1 90f		2.81ef	2.31fgh		3.20e	2.40fg	
High CI 3.201	3.20I	106.7		200.7			. 100	1 546:		2 10oh	1 60ii	
Low Cl	2.50g	2.03h		3.40bc	1.20g		2.00 ni	1.34m	0.721	7.10		T 80D
maa 0007			2.10D			1.72D		<u> </u>	J. ()	,		
one plans	45000	1 70:		1 40g	0.90h		1.80hi	1.42i		1.92hi	1.44)	
High	-+	<u>-</u> 01			4000		3.644	3 07B		4.33A	3.20B	
Mean**	4.50A	3.80B		3.00A	7.30A		0.040	7.02			Lich	
F. C**	I ou	Hioh	T -	Low	High		Low	High		Low	ııgıı.	
Means 101	200			4000	2634		3 80A	3.54A		4.00A	3.70B	
C1 : SO4 ratio	4.81A	4.42B		7.30A	Z.03A							

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * * * * * * * Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. Interact.: Conc. x SAR x Cl.

small letters were used, as means followed by same letter/s were not significantly difference.

Table (10): Total plant dry weight (gm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl : SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995

seasons	ons.						1					
			•	100					Mango	150		
Treatments			Apricor	103				1007			1995	
CAD		1994			1995			1774		,		******
NIV.	,	, , ,	Moon*	~	9	Mean*	က	9	Mean*	3	٥	Mean
Conc.xCl ratio	3	0	Micali	7	, ;	A C F O	17.730	17 739	17 73 A	21.82a	21.82a	21.82A
Tab water ()	14.30a	14.30a	14.30A	9.43a	9.45a	9.43A	17.73	3000				
control							100 21	11 044		19 40h	15.90d	7
Low Cl	11.71b	8.60cd		7.70b	6.32c		15.220	11.74 u	0.00	2		17 10B
			9.40B			6.75B			12.8118		,	101:/1
2000 ppm	0000	7 0004	201.	7 40b	5.60cd		14.03c	10.04e		18.30c	14.81e	
High CI	37076	/. 20cu	ļ				3110	6 00ah		12 80f	9,60h	
Low Ci	7.50de	5.50fg		4.60e	4.10et		8.44I	0.30gn	ָרָ רַרָ		· ·	10 73C
			6 00C			4.40C			7.51.)
4000 ppm		-		5 204	3 50fo		7.30g	6.60gh		11.70g	8.82i	
High CI	5.93et	ngoo.c			9.5.5)			s 10;	6.201	
$\overline{}$	4.20fghi	3.23hi	1	2.82gh	2.10hi		6.10h1	4.71		6. I.O	57.0	C 55D
)		3 50D			2.30D			4.91D			Acc.o
mdd 0009	-1 -2 -7 -7			2 5h	1.73i		5.31ij	3.54k		6.90k	5.00m	
High CI	s./Ugni	7.901					40701	S SOR		14 14A	12.00B	
Mean**	8.60A	7.70B		5.70A	4.70B		IU.bUA	0.00.0			1	- -
		Ligh		MO I	High		Low	High	_	Low	Hign	
Means tor	LOW	111811			1	· T	11100	10 30R	_	14.44A	13.70B	
Cl : SO4 ratio	8.70A	7.61B		5.80A	5.60A		11.10A	TV::VI			# # #	

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction *, **, ***; Means refere to specific effect of salinity concentration, SAR and CL: SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

seedlings during 1995 and root dry weight of mango seedlings during 1994 seasons. This result agree with the findings of Abd El-Aziz (1985) in some citrus rootstocks and Kabeel (1985) in Thompson seedless garpe, Meet-Ghamr peach and Halywood plum seedlings.

Concerning the effect of the interaction of the three investigated three factors i.e., salinity concentration, SAR and Cl:SO₄ ratio, on the dry weight of plant organs leaves, stem and roots) as well as total plant dry weights are presented in Tables (7, 8, 9 and 10). It is quite clear that the effect was significantly decreased as compared with control in two fruit species during two seasons of study. In this respect; Kabeel (1985) on some deciduous species, found that dry weight of plant organs was slightly decreased with the interaction between salt concentration X SAR X chloride levels.

1.7. Effect on top/root ratio:

Data presented in Table (11) show the specific effect of salts concentration, SAR and Cl:SO₄ ratio and their interaction on top/root ratio of two fruit species.

1.7.a. Specific effect:

Data concerning the specific effect of salts concentration on top/root, it was quite clear that tap/root ratio in both aprico and mango seedlings did not differ by increasing salt concentration except when apricot plants irrigated with 6000 ppm in both season and mango plants irrigated with 4000 ppm during first season, the decrease in top/root ratio was significant.

As for the specific effect of both sodium adsorption ratio (SAR) and Cl:SO₄ ratio used for irrigation on top/root ratio, it could be noticed from data in Table (11) that top/root ratio did not differe by either increasing SAR from 3 to 6 or Cl:SO₄ ratio in both apricot and mango seedlings during two seasons of study. In this respect, Khamis *et al.*

Table (11): Top: root ratio of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl : SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 seasons.

			•						Mang ₀	180		
Trootmente			Apricot	1001							1005	
		1001			1995			1994		-		
SAK	ļ	1994				*	*	9	Mean*	-	9	Mean
Conc.xCl ratio	6	9	Mean*	3	0	Mean			1000	2 504	2 504	2 SOA
Tab water	0.80a	0.80a	0.80A	1.22a	1.22a	1.22A	2.0abcd	2.0abcd	Z.00A	7.30d	DOC: 7	
Control	•						-			2 60hcd	3 00ab	-
» Cl	0.80a	0.80a	V 08.0	1.20ab	1.30a	1 204	2.1abc	r.73	2.00A	7.000.7		2.90A
	,	0		1 20ah	1 10ab	407.I	2.1abc	1.9abcd		2.8abcd	3.20a	ļ
High CI	0.81a	0.80a		1.20a0				1 70.04		2 Rahed	2.55d	
	0.819	0.80a		1.10ab	1.10ab		1.63bc	1. / Ucd		7. Ogod	; ;	A 0.7 C
_	: :		0.804			1.10A			1.68B			771.7
4000 ppm	(0.00.0	1 309	0 90bc		1.60d	1.8abcd		2.73bcd	2.8abcd	
High Cl	0.85a	0.74a		1.304						2 04ahr	2 9abcd	
	0.70a	0.60a		0.90bc	0.70c		2.11ab	2.04e	1 07 4	7.7400		2.73A
			0.72B	_		0.90B			0/6.1			
6000 ppm	i i	0,660) : 	0 90bc	1 00abc		2.04abc	1.73bcd		2.60bcd	2.50d	
High CI	U./Ua	0.004					1 04 4	1 97 A		2.72A	2.70A	
Mean**	0.80A	0.75A		1.11A	1.10 A		1.744	17.7			11,11	
		Liloh	- ₁	No.	High	_	Low	High		TOW	High	- 1
Means for***	Fow	IIBIL			1 10 4	_	\$ 00 c	1 90 A	1	2.71A	2.70A	
CI - SO 4 ratio	0.80A	0.80A	_	1.10A	1.10 A		4.00A	110/1		 		
			1									

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * * * * * * Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

(1984) on guava and olive seedlings mentioned that top/root ratio was decreased in response to increasing the SAR level.

1.7.b. Interaction effect

Table (11) show that there was no significant effect for the interaction between such three studied factors on top/root ratio in both apricot and mango seedlings during 1994 and 1995 seasons. This may indicates that such three factors did not act to gether for affecting top/root ratio.

2. Effect of salts concentration, sodium adsorption ratio (SAR) and Cl:SO₄ ratio in irrigation water on leaves mineral content:

The data concerning the effect of different salt concentrations, sodium adsorption ratio (SAR) and Cl:SO₄ ratio (chloride levels) on leaf N, P, K, Ca, Mg, Na, Zn, Fe and Mn contents of both apricot and mango seedlings are presented in Tables (12, 13, 14, 15, 16, 17, 18, 19 and 20).

2.1. Effect on leaf nitrogen content:

2.1.a. Specific effect:

Concerning the effect of different salt concentration in the irrigation water on leaf nitrogen content of both two fruit species, it is obvious from the results of the Table (12) that nitrogen level in leaves decreased significantly with increasing salts concentration in the irrigation water comparing with those of the control (tap water) in both two fruit species during two seasons of study (Nitrogen status reflects the physiology of the whole plants as well as its interaction with its surrounding) under saline conditions there were disturbances in the nitrogen metabolism in plants.

These results are similar to those obtained by Abd El-Ghani (1990) on peach, Abd El-Karim (1991) on mango, Abdel-Messih *et al.* (1979) on some citrus rootstock seedlings, Abd El-Aziz *et al.* (1985) on guava and olive seedlings, Sharaf *et al.* (1985) on Thompson seedlings and American Grape Behairy *et al.* (1985) on guava and olive seedlings and

adsorption ratio, C1: SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 Table (12): Leaf nitrogen content (%) of apricot and mango seedlings as influenced by salt concentration, sodium

seasons	ons.					1			14			
			•	1					Mango	180		
Treatments			Apricor	1001				1001			1995	_
O V D		1994			1995			1771				Moon
NAC	,		Massix		9	Mean*	6	9	Mean*	S	0	Mean
Conc.xCl ratio	5	0	Mean	,		¥ 0 C 0	2000	2.003	2 20 A	1.94a	1.94a	1.94A
Tab water	2.58a	2.58a	2.58A	2.38a	2.38a	7.38A	7.704	#07.7				
control					,		4000	1 Kohed		1 87a	1.47bc	
S CI	2.42b	2.25d		2.28ab	2.16bc	(1.9940	1.02020	1 73B			1.58B
2000 ppm			2.29B	,	7,000	2.18B 	1 81ahc	1 48cde	act.	1.65b	1.33cd	
High Cl	2.33c	2.17e		7.21abc	2.0/07		201			1 22 24	0 00 of	
Low Cl	2.11f	1.63g		1.89de	1.53fg		1.32def	1.2efgh	1 200	1.23cd	0.9961	1.08C
			1.71C			1.63C			1.500		0	
4000 ppm	1 660	1 45h		1.73ef	1.37gh		1.2defg	1.06k		1.17de	9 .901g	
High Ci 1.30g	900.1			1 201	1 04:		0 ofghhi	0.80hi	<u> </u>	0.89fgh	0.78gh	
Low CI	1.33i	1.23		1107.1	<u> </u>	Cloop	0		0.83D			0.80D
6000 ppm			1.25D			U.77.U		.77:		0 83foh	0 69h	
7 45 II	1 26	1 17k		1.13i	0.55j		0.84gn	0.741		9,550		
	_+		 	1 83 4	1 60B		147A	1.30B		1.37A	1.15B	
Mean**	2.00A	1.805		1760.1		-		Linh		Low	High	
Moone for**	wo,I	High		Low	High		Low	111811			200	
Micalis 13:	2 17A	1 93B		1.86A	1.73B		1.53A	1.44B		1.39A	1.30 b	
CI: SO4 ratio	2.17	1.7.2										

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * * * * * * Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

Kabeel (1985) on three deciduous fruit species. They stated that increasing the salt concentration in irrigation water decreased leaf nitrogen content with increasing salt concentration in irrigation water.

As for the specific effect of different two levels of sodium adsorption ratio (SAR) in the irrigation water on both apricot and mango leaf nitrogen content, data are presented in Table (12). The results show that the nitrogen content in leaves was significant by decreased by increasing sodium adsorption ratio (SAR) from 3 to 6 during the study. In this respect; Abd El-Aziz *et al.* (1985) on guava and olive, Sharif *et al.* (1985) on Thompson seedless and American grape, Kabeel (1985) on three deciduous fruit seedlings and Al-Khateeb (1989) on some fig varieties. They found that leaf nitrogen content was slightly decreased by increasing sodium adsorption ratio (SAR) but not significantly.

With respect to the specific effect of Cl:SO₄ ratio (chloride levels) on leaf-N content, data from Table (12) show clearly that the higher ratio was significantly decrease in both two fruit species during 1994 and 1995 seasons. This results are in harmony with reported by El-Ashram *et al.* (1985) on some citrus rootstock seedlings and Kabeel (1985) on three deciduous fruit species.

2.1.b. Interaction effect:

Reffering the interaction effect of the investigated three factors i.e., salinity concentration, SAR and Cl:SO₄ ratio on leaf nitrogen content, data obtained in Table (12) showed obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. The most depressive irrigation solution on leaf nitrogen of both apricot and mango was that combinations between the highest salinity concentration (6000 ppm X SAR6 X higher Cl:SO₄ ratio as compared to control during two seasons of study. Moreover, either combinations treatments are in between in this concern.

2.2. Effect on leaf phosphorus content:

2.2.a. Specific effect:

As shown in Table (13), it is clear that phosphorous level in both apricot and mango leaves was significantly affected by salt concentration in the irrigation water. In this regard, phosphorus level increased in apricot seedlings with increasing salts concentration in the irrigation water while in mango seedlings, leaf-P content decreases as salinity level increases. These results are in accordance with those obtained by El-Kholi *et al.* (1979) on oranges, and Salem (1981) on grape vines. They reported that P-content decreases as salinity level increase.

The obtained results are also in line with those reported by Jundel et al. (1979) on mango seedlings. They stated that leaf-P content was reduced at all salinity level (2-10 mmhos/cm) in soil to sodium chloride was added. However, significant decreases in phosphorus level at the high salt concentration of 3000 and 6000 ppm were detected in leaves but not in roots.

These results could be confirmed by those El-Azab and Minessy (1975) who observed that P-concentration in Thompson seedless grapevine leaves treated with 1500 and 3000 ppm NaCl + CaCl₂ (1:1 by weight) was lower than that in roots.

On the other hand, other studies have revealed that salinity treatments increased leaf and root phosphorus content, Abd El-Karim (1991) on some mango varieties El-Azab et al. (1978) on apricot and peach and Abdel-Messih et al. (1984) on the Washington Navel orange. Another trend was also obtained by Ragab (1979) and Sherif (1985) on some citrus rootstocks. They found that salinity did not significantly change leaf-P content of some citrus rootstocks. This contradiction of findings may be attributed to the different response of fruit species to the saline solutions.

sodium adsorption ratio, Cl. SO₄ ratio and their combinations in saline irrigation water during 1994 Table (13): Leaf phosphorus content (%) of apricot and mango seedlings as influenced by salt concentration,

740	2 1005 ceasons	Suns					1					
allu	000 000	430113.							Mango	120		
			Apricot	cot							1005	
Leatments		1001			1995			1994				1
SAR		1994				******	*	9	Mean*	n	9	Mean
Conc.xCl ratio	က	9	Mean*	3	0	Meall	2		0.22 A	0.30a	0.30a	0.30A
Tah water	0.10h	0.10h	0.10A	0.09a	0. 09a	0.09A	0.32a	0.32a	0.328	200		
control							11,00	0.254		0.28b	0.24d	
D ¾	0.10h	0.20f		0.10k	0.2 0i	0.160	0.310	D.2.0	0.26B			0.25B
2000 ppm			0.16B		0.00	0 .10	0.28c	0.23e		0.27c	0.23d	
High Cl	0.15g	0.20f		0.13	0.20			0.106		0.20e	0.17f	
Low Cl	0.20f	0.30d		0.23h	0.31f	0	977.0	0.101	0.20C			0.20C
4000 ppm			0.30C			787.0	Č	0.17b) 	0.20e	0.15g	
Lish C	0.28e	0.33c		0.27g	0.34e		0.20g	0.171		1010	1000	
Lingin Ci		0 37b		0.37d	0.41b		0.15i	0.11k		0.13n	(on:0	0.24D
))				0 40D			0.12D			0.41 0.41
6000 ppm			0.010	,	0.439	; ;	0.13i	0.10k		0.11i	0.06k	
High Cl	0.36b	0.40a		0.390	0.438		600	avco		0.27A	0.26B	
***************************************	0.234	0.27B		0.23A	0.28B		0.25A	0.20D		,	1.11	-
Mean	7.0	-		I out	Hioh	T	Low	High		Low	Hign	- 1
Means for***	Low	High		LOW .			0.234	0.218	т -	0.21A	0.20B	
CI . SO. ratio	0.21A	0.24B		0.23A	0.25B		V.2.7					
- C : 2 C + :												

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * * * * * * Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

With respect to the effect of sodium adsorption ratio (SAR) from 3 to 6 under investigation, it was quite clear that the higher ratio i.e. SAR 6 resulted significantly increased the leaf phosphorus content in apricot seedlings while it was significantly decreased leaf-P content in mango seedlings during two seasons of study. In these respectic, Bernstein *et al.* (1956), in stone fruit tras and almond, El-Ashram *et al.* (1985) on some citrus rootstock seedlings, Sharaf *et al.* (1985) on guava and olive seedlings and Kabeel (1985) on three deciduous fruit seedlings. They reported that leaf-P concentration did not differ by increasing sodium adsorption ratio.

Concerning the specific effect of Cl:SO₄ ratio of saline solution used for irrigation used in leaf phosphorus content, it could be noticed from data in Table (13) that the higher ratio resulted in a significantly increased leaf phosphorus content in apricot but it significantly decreased leaf-P content in mango seedling during two seasons. In this respect, El-Ashram *et al.* (1985) on some citrus roodstock seedling, Sharaf *et al.* (1985) on guava and olive seedlings and Kabeel (1985) on three deciduous fruit plants.

2.2.b. Interaction effect:

Results of Table (13) showed the effect of the interaction between salts concentration, sodium adsorption ratio (SAR) and Cl:SO₄ ratio in the irrigation water on leaf-phosphorus content. These results revealed that phosphorus level in leaves significantly affected by the interaction between the three factor under study. On the other hand, leaf phosphorus content was significantly increased by such an interaction in apricot seedling while it was significantly decreased by such an interaction.

This conclusion means that phosphorus level in seedlings in certain species differed with the three factors in this concern.

2.3. Effect on leaf potassium content:

Results of the two seasons as shown in Table (14) show the effect of salts concentration, SAR and Cl:SO₄ ratio in the irrigation water and their interaction on K content in leaves of seedlings of two fruit speaces.

2.3.a. Specific effect:

It is obvious from the results of Table (14) that irrigation both apricot and mango seedlings with salinized water had significant effect on potassium level in the leaves of the seedlings.

From these results, it could be noticed that K concentration, on dry weight basis, in such seedling leaves decreased gradually with increasing salts concentration in the irrigation water from 2000 ppm to 6000 ppm. In this concern, non slinized plants appeared to contain K level usually higher than those in salinized ones in both two fruit species during 1994 and 1995 seasons. This depressive effect of salinity on K level may explain the competitive effect of Na⁺ ions existed in the prepared saline growth media on the absorption of K ion.

This suggestion was based on the findings of Rains (1972) who confirmed such a competition between Na⁺ and K ions in the growth media. In addition, Garton and Cooper (1952), who stated that increasing Ca content in irrigation water depressed K concentration of Grapefruit leaves. Pearson *et al.* (1957) found that increasing levels of salinity, as NaCl in irrigation water caused a decrease in leaf potassium content.

Similar findings were also reported by Jindal et al. (1979) they stated that leaf-K content of 4 month old mango seedlings reduced at all tested salinity levels (2-10 mmhos/cm) in soil to which sodium chloride was added. Also, Abdel-Messih et al. (1979) and Khamis and Darwish (1981) on some citrus rootstocks, Singh et al. (1983) on olive, guava and Jujube, Behairy et al. (1985) on guava and olive seedlings, Kabeel (1985) on three deciduous fruit plants; Al-Khateeb (1989) on some fig varieties

adsorption ratio, Cl : SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 Table (14): Leaf potassium content (%) of apricot and mango seedlings as influenced by salt concentration, sodium

seasons	ons.								Mongo	950		
			Anni	cot					IVIA	150	.00.	
Treatments			Apricat	101	100,			1994			1995	
M V V		1994			1995				**	~	9	Mean*
		7	Moon	*	9	Mean*	e .	0	Meall	0)	***
Conc.xCl ratio	S	o	Mean	>		00 -	1 40a	1 40a	1.40A	1.60a	1.60a	1.60A
Tab water	1.90a	1.90a	1.90A	1.90a	1.90a	1.904		• •				
control	_						1001	1 104		1.40b	1.25cd	<u> </u>
Low Cl	1.74b	1.41cd		1.80b	1.70c	1 700	008.1	2	1.15B			1.30B
2000 ppm		- (1.52B	1 700	1,604	a 0/:1	1.20c	1.00e		1.30c	1.10e	
High CI	1.54c	1.40d		1.706	2001		2000	0 80f		1.20d	g08.0	
Low CI	1.30d	1.11e		1.50e	1.40f	7,7	90 0 .0	0.03	0.80C			0.93C
4000 nnm			1.20C			7747I —	(7767		1 000	0.75	
	1 100	1 0 90f		1.50e	1.30h		608.0	0.70n		200.1		
High CI	1.106	0.701			.000		0.73	0.68	_	0.65h	0.60hi	
Low CI	0.73g	0.63g		1.20g	10 8 :0		5	· · · · · · · · · · · · · · · · · · ·	0.69D			O.60D
mdd 0009			0.70D		-	0.92D	.11:	1690		0.60hi	0.55i	
High Cl	0.70g	0.60g		1.00h	0.70		0.711			-	1 00R	
D.	1	1 13B		1.51A	1.34B		1.00A	0.91 B		1.113	1.00	
Mean**	1.33A	act 1			U.s.h	- - -	Low	High	-	Low	High	
Means for***	Low	High		LOW	118111		¥ 00 0	1 038	т-	1.10A	1.07B	
CI : SO4 ratio	1.33A	1.30B		1.46A	1.45B		0.997	200.1		<u> </u>		
•												

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * * * * * * Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively small letters were used, as means followed by same letter/s were not significantly difference.

and Abd El-Karim (1991) on mango seedlings. They reported that K content in leaves decreased by rising salts concentration.

Concerning the specific effect of sodium adsorption ratio (SAR) from 3 to 6, it is quite clear that leaf-K concentration was decreased by increasing sodium adsorption ratio (SAR), the decreased was significantly in both apricot and mango seedlings during two seasons of study. In this respect; Bower and Wedleigh (1949) reported that increasing the exchangeable Na percentage of the substrate resulted in a decrease plant K content. Similar findings were also reported by Kabeel (1985) on three deciduous fruit seedlings and Al-Khateeb (1989) on some fig varieties.

As for the specific effect of the Cl:SO₄ ratio of saline solution used for irrigation on leaf-K content, it could be noticed from Table (14) that the higher ratio from Cl:SO₄ ratio in irrigation significantly decreased leaf-potassium content in both apricot and mango seedlings. In this respect, Kabeel (1985) reported that increasing chloride level in irrigation decreased leaf-K concentration in grape, peach and plum but not significantly.

2.3.b. Interaction effect:

Reffering the interaction effect of the investigated three factors i.e., salinity concentration, SAR and Cl:SO₄ ratio, on leaf-K content, data obtained in Table (14) showed obviously that the interaction between concentration, SAR and Cl:SO₄ ratio in irrigation water had significant effect on K content in both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. The most depressive irrigation solution on leaf-K content of both apricot and mango was that combination between the highest salinity (6000 ppm) X SAR6 X higher ratio, whereas the highest decrease was resulted. Moreover, the lowest decrease in leaf-potassium content was detected by those seedlings irrigated with 2000 ppm saline solution of SAR3 and

lower Cl:SO₄ ratio as those continuously irrigated with tap water during 1994 and 1995 seasons.

2.4. Effect on leaf calcium content:

Results pertaining the effect of salts concentration, SAR and Cl:SO₄ ratio in irrigation water and their interaction on calcium percentage in leaves of both apricot and mango seedlings are presented in Table (15).

2.4.a. Specific effect:

Results of Table (15) declar significant effect for saline irrigation water on calcium level in leaves of both two fruit species. In apricot and mango leaves, calcium level increased with increasing salts concentration in irrigation water up to 6000 ppm following an opposit trend to that previously obtained for both N and K levels, Tables (12 and 14).

This might be due to according to Walace et al. (1952) to that plants with low K content, obtained under salinity conditions, trend to compensate their low K content by either high calcium and/or magnesium contents in leaves.

These results are in partially in a accordance with those obtained by El-Hefnawy (1986) who reported that the increase in soil salinity caused an increase in Ca⁺⁺ content in guava leaves. The same trend was also obtained by Makhija *et al.* (1980) on guava salinity, found rising salinity levels increased leaf Ca contents. Similar results were found by Kabeel (1985) on grape, peach and plum seedlings, Gaser (1986) on avocado and Abd El-Ghani (1990) on peach, and Abd El-Karim (1991) on mango seedlings, whose results showed that Ca⁺⁺ content in salttreated plants was increased with increasing salinity levels. On the contrary, Divate and Pandey (1981b) on grapevine, and Singh *et al.* (1983) on jujuba and guava plants, found that high NaCl in the growth media decreased calcium content.

adsorption ratio, Cl : SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 Table (15): Leaf calcium content (%) of apricot and mango seedlings as influenced by salt concentration, sodium

Seasons	ons.											
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1004					Mango	120		
Treatments		ļ	Apricor	1001				1007			1995	
SAB		1994		!	1995			1774		,		* moon
	,	7	Moon*	65	9	Mean*	n	9	Mean*	2	c	Mean
Conc.xCl ratio	2	9	Mean		, ,	1 20 4	2114	2 14h	2 14A	1.84i	1.84j	1.84A
Tab water ,	1.30	1.301	1.30A	1.30m	1.30m	I.30A	7.1411	7.1.1	:		,	
control							3120	J 586		1 90	2.23g	, , ,
Low CI	1.47k	1.90i		1.44	1.72j	1654	7.571	7.701	2.60B	· ·) 	2.12B
2000 ppm		7	1.80B	1891	1 82	WC0.1	2.44g	2.72e		2.04h	2.34f	
High CI	1.73	7.1011		100.1			17	700		7 47P	2 60d	
Low Cl	2.33g	2.67e		1.96h	2.02g		2.73e	7.04u	6	2	3	2600
:			2 580			2.18A			2.82C			700.7
4000 ppm		-		3000	7 550		2.81d	2.90c		2.56d	2.75c	
High CI 2.54f	2.54f	2.81d		2.201	7.55			0		2000	3 34h	
Low Cl	2.02i	3.40b		2.70d	3.16b		2.94c	3.2/a		706.7		3 00D
1			3 03D			3.03A			3.02			
enou ppm		2.469		2 91c	3.38a		2.70e	3.17b		2.23g	3.48a	
Hign CI	3.240	J.+0a					7 61 4	2 80R		2.30A	2.65B	. —
Mean**	2.10A	2.52B		2.02A	2.30 B		Z.01A	7.00.7	- T	;		
444	7 100	High	T.	wo, I	High	τ	Low	High		Low	High	
Means 10r	row	111811	Ī	,		1	2654	2 69R	T	2.40A	2.51B	
C1: SO4 ratio	2.05A	2.31B		1.95A	2.14B		2.0.7	£:07£				
-												

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * , ** , *** Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

Concerning the specific effect of sodium adsorption ratio (SAR), it was quite clear that the higher ratio i.e. 6 significantly increased leaf calcium content in both fruit species than the lower one i.e. SAR3 during two seasons of study. Moreover both apricot and mango equally the same regarding the response of their seedlings to SAR. These results are similar to that obtained by Kabeel (1985) on grape, peach and plum seedlins and Al-Khateeb (1989) on some fig varieties.

As for the specific effect of the Cl:SO₄ ratio, of saline solution used for irrigation on leaf-Ca content, it could be noticed from data in Table (15) that the higher ratio resulted in a significant increase as compared to the lower ones during two seasons of study. In this respect, Khabeel (1985) found that leaf Ca-content increased by increasing Cl:SO₄ ratio, but this increase was not significant.

2.4.b. Interaction effect:

Reffering the interaction effect of the investigated three factors i.e., salinity concentration, SAR and Cl:SO₄ ratio, on leaf-Ca content, data obtained in Table (15) showed obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. The higher increase leaf Ca of two fruit species under study was that combined between highest salinity concentration (6000 ppm) X SAR6 X higher Cl:SO₄ ratio whereas the lowest increase leaf-Ca content was detected by those seedlings irrigated with 2000 ppm saline solution of SAR3 and lower Cl:SO₄ ratio as compared to those continously irrigated with tap water during both 1994 and 1995 seasons for seedlings of two studed fruit species. These may mean that the three tested factors can act together in affecting Ca level. Each factor affected Ca level in separable way.

2.5. Effect of leaf magnesium content:

The effects of salts concentration, sodium adsorption ratio (SAR) and Cl:SO₄ ratio in irrigation water and their interaction on magnesium

level in leaves of both apricot and mango seedlings are shown in Table (16).

2.5.a. Specific effect:

Regarding the specific effect of salinity concentration data obtained revealed that all three investigated concentration (2000, 4000 and 6000 ppm) saline solutions resulted in an obvious decrease in leaf magnesium content for apricot seedling during two seasons. Such decrease was significant as compared to those of tap water irrigated seedlings. On the other hand, generally show a gradual increase in leaf-Mg content as salinity in irrigation water increased. Moreover, data in Table (16) obviously showed that leaf Mg content was decreased significantly by using different saline solutions in irrigation water in mango seedlings as compared with those irrigated with tap water during two seasons of study. In spite of this, a general trend could be observed that leaf-Mg content in mango seedling tended, but to a little extent, to decrease with increasing salt concentration in irrigation water.

These findings could be supported with those of Wallace et al. (1952) who reported that plant with low K content, obtained under salinity condition tend to compensate the low K level by either high calcium and/or magniesum contents in leaves. This results is confirmed with the findings by Downton (1978) reported that Mg++ content tended to increase some white in avocado by salinity. On the other hand, El-Azab and Minessy (1975) on grape, guava and olive and Nasr et al. (1977) on plum showed that Mg⁺⁺ content did not differ markedly with salinity condition. On the other hand, Al-Khateeb (1989) on some fig varieties mentioned that leaf Mg++ content was decreased significantly by using different saline solutions in irrigation water as compared with those irrigated with tap water.

Abd El-Karim (1991) on some varieties of mango found that leaf Mg++ content was not significantly affected by salts concentration in irrigation water.

Table (16): Leaf magnesium content (%) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl. SO₄ ratio and their combinations in saline irrigation water during 1994

* * * * * * * * * * * * * * * * * * *	200											_
and	and 1995 Scasonis	SOIIS.							Mango	000		
			Apricot	cot				1004			1995	
Leatments		700.			1995			1771		-	4	Mean*
SAR		1994		,	,	Magn*	m	9	Mean*	S	 	
Conc.xCl ratio	3	9	Mean*	8	0	1415011	1 19hc	1.19bc	191A	1.31a	1.31a	1.51A
Tahwater	0.61a	0.61a	0.61A	0.64a	0.64a	0.040	2				4500	
control				1100	6470		1.22ab	1.20abc		1.28ab	1.3040	
» CI	0.55b	0.42bcd		010.0	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.48B			1.21B	•	4000	1.29B
2000 npm			0.45B	, c	0 386		1.23a	1.20ab		1.28ab	1.20au	
High CI 0.47bc	0.47bc	0.37cde		0.52c	0.300	- + -	1 180	1 20abc		1.30a	1.30a	
Low Cl	1.0w Cl 0.31c-f	0.22efg		0.30f	0.21h	7	1.100		1.20AB			1.29B
4000			0.25C			0.24	7,7	1 22h		1.25b	1.29a	
4000 ppm	•			0.26g	0.19h		1.21900	777.1		1,00	1 254	-
High Cl	0.26d-g	0.1918		0 10	0 1 2		1 20abc	1.21abc		1.28ab	0.62.1	
Low CI	0.17fg	0.13g		0.101	0.12	0.13D			1.20AB			1.26C
6000 ppm			0.14D		100	<u> </u>	1 22ab	1.20abc		1.28ab	1.25b	
High CI	0.15fg	0.12g		0.13	0.09K	- - -	V 0C 1	1 20A	\ \ - 	1.28A	1.28A	
	0 36A	0.34B		0.37A	0.30B		1.200			MOI	High	
Mean	0.500			7.01	High		Low	High				
Means for***	Low	High		300	0.360	_	1.21A	1.20B		1.28A	1.28A	
Cl : SO4 ratio	0.38A	0.35B		0.39A	U.30D							

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction *, **, ***; Means refere to specific effect of salinity concentration, SAR and CL: SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

Concerning the specific effect of SAR, it was quite clear that the higher ratio i.e., 6 significantly decreased leaf-Mg content of apricot seedlings while it was not significant between them in mango seedlings during 1994 and 1995 seasons. These results is confirmed with the findings by Al-Khateeb (1989) on some fig varieties, reported that Mg⁺⁺ content in leaves significantly decreased with increasing SAR from 6 to 12.

These findings could be supported with that Kabeel (1985) on grape, peach and plum, found that leaf-Mg content slightly decrease but not statistically significant.

As for the specific effect of the Cl:SO₄ ratio, of saline solution used for irrigation on the leaf-Mg content, it could be noticed from data in Table (16) that leaf-Mg content was significantly decreased in apricot and mango during the study, except the second season in mango seedlings, leaf Mg content was not affected.

2.5.b. Interaction effect:

Reffering the interaction effect of the investigated factors i.e., salinity concentration, SAR and Cl:SO₄ ratio, on leaf-Mg content, data obtained in Table (16) showed obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation used during two seasons.

These results indicated that the three factors can act together in affecting leaf Mg content.

2.6. Effect on leaf sodium content:

Data presented in Table (17) declare significant effects for salt concentration, SAR and Cl:SO₄ ratio in irrigation water and their interaction on sodium level in leaves of apricot and mango seedlings.

adsorption ratio, C1: SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 Table (17): Leaf sodium content (%) of apricot and mango seedlings as influenced by salt concentration, sodium

seasons	ons.											
			•	400					Mango	120		
Treatments	ļ		Apr	Apricot				1001			1995	
CAR	İ	1994			5661			1777		,	,	Moonk
	,	7	*mooN	~	9	Mean*	m	9	Mean*	2	0	Mcall
Conc.xCl ratio	S	0	MICAII		, ,	4 C F	0.151	0.151	0.15A	0.151	0.151	0.15A
Tab water ;	0.16i	0.16i	0.16A	0.12m	0.12m	0.124	4CI.O					
control							:00	0.45		0.22k	0.34i	-10
Low Cl	0.19i	0.34h		0.171	0.28	0	0.23j	1 010	0.38B			0.31B
2000 ppm		, 1	0.40 B	0 22k	0 34i	9.73B	0.28	0.51h		0.29j	0.39h	
High CI	0.6/de	0.418		0.22.0				2020		0.440	0.56f	
Low CI	0.45g	0.64e		0.40 h	0.57f		0.019	27/0	0690	<u>.</u>		0.53C
			0.59C		_	0.52C) oo o		,	
4000 ppm	3750	0.714		0.462	0.66e		0.65f	0.74e		0.50g	0.60e	
riign Ci	0.001	0.710			160		0800	0.91h		p69.0	0.83b	
Low Cl	0.80c	0.90a		0//0	0.920		200.0		0000			0.078D
		_	0.87D			0.87D			700.0		(
onon ppiii		0.039		0.85c	0.96a		0.85c	0.95a		0.77c	0.93a	
High CI	0.830	0.734			0.55	 -	A C 5 O	0.63B		0.44A	0.54B	
Mean**	0.40 A	0.58B		0.42A	0.000		0.0				4::17	1
***	1	High	- -	Low	High	_	Low	High		Low	III BIII	
Means 10r	FCW	11.9.11		40,	O AKB		0.51A	0.54B	<u> </u>	0.47A	0.42B	
Cl : SO4 ratio	0.46A	0.56B		0.42A	0.40D		2.5					

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * , ** , *** Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

2.6.a. Specific effect:

As for the effect of salt concentration in irrigation water, it is obvious from the obtained results in Table (17) that Na level in leaves significantly increased with increasing salt concentration in irrigation water. Untreated seedlings were of least Na concentration. While the opposit was for seedlings irrigated with salinized water at 6000 ppm. In addition, sodium content was increased with increasing salt concentration in both apricot and mango seedlings during two seasons of study.

These results could be confirmed with the findings of Mobayen and Milthorope (1980) who stated that Na⁺ concentration in leaves was linearly correlated to its concentration in the external solution.

Similar observations were achieved by Abdel-Messih et al. (1979), Khamis and Darwish (1981) and El-Ashram et al. (1985) on some citrus rootstocks, Makhija et al. (1980) on guava seedlings, Sweidan et al. (1982) on apricot, Saraf et al. (1985) on Thompson seedless and American Grape, Behairy et al. (1985) on guava and olive seedlings and Abd El-Karim (1991) on mango seedlings. They stated that as the salinity level of the irrigation water increased, a subsequent increase was observed in Na⁺ accumulation in plants.

As for the specific effect of sodium adsorption ratio (SAR) 3 and 6 treatments on leaf Na⁺ content. The obtained results showed that SAR at 6 treatment significantly increased Na⁺ content in leaves than SAR3.

These result are in accordance with the findings of Abd El-Aziz et al. (1985) on guava and olive seedlings, El-Ashram et al. (1985) on some citrus rootstock seedlings, Sharaf et al. (1985) on Thompson seedless and American grape and Al-Khateeb (1989) on some fig varieties.

Concerning the specific effect of the Cl:SO₄ ratio of saline solution used for irrigation on leaf Na⁺ content, it could be noticed in Table (17) that the higher ratio resulted in a significantly increased leaf Na

concentration in both two fruit species during the two seasons of study. In this respect, El-Ashram *et al.* (1985) on some citrus rootstock seedlings and Kabeel (1985) on grape, peach and plum reported that leaf sodium content was not affected by increasing chloride levels (Cl:SO₄ ratio) in irrigation water.

2.6.b. Interaction effect:

With respect to the interaction effect of the investigated three factors i.e., salinity concentration, SAR and Cl:SO₄ ratio on leaf-Na content, data obtained in Table (17) showed obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. The highest increase leaf-Na of both apricot and mango was that combination on between the highest salinity concentration (6000 ppm) X SAR X higher Cl:SO₄ ratio whereas the lowest increase of leaf-Na content was detected by those seedlings irrigated with 2000 ppm saline solution of SAR3 and lower Cl:SO₄ ratio as compared to those continuously irrigated with tap water during two seasons for seedlings of two studed fruit species.

2.7. Effect on leaf zinc content:

2.7.a. Specific effect:

Concerning the effect of different salt concentration, sodium adsorption ratio (SAR) and Cl:SO₄ ratio in irrigation water on leaf zinc content of apricot and mango seedlings are presented in Table (18).

It is obvious from the results that zinc concentration in the leaf of mango seedlings significantly decreased by salts concentration in irrigation water. Moreover, zinc concentration in leaf of apricot seedling was not significantly affected by salts concentration in irrigation water except 2000 ppm and 4000 ppm treatments, a general trend could be observed that leaf Zn content in leaves but to a lettle extent to decrease with increasing salts concentration in irrigation water in both fruit species during two seasons of study. These findings could be supported with those of Patil and Patil (1982) on pomegranate, Patil et al. (1984) on

adsorption ratio, Cl : SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 Table (18): Leaf zinc content (ppm) of apricot and mango seedlings as influenced by salt concentration, sodium

seasons	ons.								Mor			
		 	· ·	*					Mango	080		
Treatments			Apricot	1001				1994	-		1995	
CAR		1994			1995				******	~	9	Mean*
- NINCO	,		Moone	**	9	Mean*	m	0	Mean) 	,	4 6 9 9
Conc.xCl ratio	~	0	Mean		42 600	A3 60A	24 65a	24.65a	24.65A	28.3abc	28.3a-d	28.3A
Tab water	38.00a	38.00a	38.00A	45.60a	43.004	100.54	3					
control				1000	25 204		24 32a	24.00a		28.7abc	28 3a-d	
Low CI	35.00b	29.30d		40.000	37.304	36 20R			24.24A			28.65A
2000 ppm		1	30.50B	37 Oac	32,40e	20.20	24.65a	24.00a		29.32ab	30.0a	
High CI	32.00c	25.65e		37.0ac			24.009	23 328		26.7cde	25.66e	
Low CI	22.31f	19.65h		29.33f	23.00n 	24 40C	24.004	3	23.74B			26.60B
4000 ppm			20.40C		() F. + 7	24 000	23.659		27.7a-e	26.7cde	
High Cl	21.65g	18.00 <u>i</u>		25.60g	19.501		24.004	20.67		00 7-10	26 Ode	
O ugui		13 00		17.33;	12.301	 	24.00a	23.32a		28. /abc		001 20
	10.40	100.CI	730 61	·		14.10D			23.66B			d 01.72
6000 ppm		•	U5.551	15 004	11 65		23.32a	24.00a		27.2b-e	26.7cde	
High CI	15.00k	11.40m		100.C		 -	24 13 4	23 84A	<u> </u>	28.06A	27.13A	
Mean**	25.80A	22.14B		29.70A	25.40B		751.47			1	High	
111		High	т-	Low	High		Low	High		MO TO	111811	
Means for	LOW	111511	1	10.604			24.11A	24.03A		28.00A	27.36A	
CI : SO4 ratio	26.50A	24.90B		30.00								

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction *, **, ***; Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

guava leaves, Aly et al. (1986a) on Cleoptara mandarrin and Troyer citrange, El-Hefnawy (1986) on guava leaves and Gaser (1986) on Avocado plants.

Concerning the specific effect of sodium adsorption ratio (SAR), it was quite clear that leaf zinc content was decreased by increasing sodium adsorption ratio from 3 to 6 and the decrease was significantly in both apricot and mango leaves during 1994 and 1995 seasons.

As for the specific effect of the Cl:SO₄ ratio of saline solution used for irrigation on leaf Zn content, it could be noticed from data in Table (18) that the higher ratio was not affected by increasing Cl:SO₄ ratio in both two fruit species except in apricot plant during first season only, it was significantly decrease.

2.7.b. Interaction effect:

Reffering the interaction effect of the investigated three factors i.e., salinity concentration, SAR and Cl:SO₄ ratio, on leaf zinc content, data obtained in Table (18) showed obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. It could be noticed that the most depressive irrigation solution on zinc concentration in mango leaves was that combination between the highest salinity concentration (6000 ppm) X SAR6 X higher Cl:SO₄ ratio, whereas the lowest leaf Zn content was resulted. Moreover, three other combinations of 6000 ppm saline solution remarked in an increasing order. On the other hand the lowest decrease in leaf Zn content was detected by those mango seedlings irrigated with 2000 ppm saline solution X SAR3 X lower Cl:SO₄ ratio as compared to control during both seasons of study. In addition to that, interaction between salt concentrations X SAR X Cl:SO₄ ratio on leaf Zn content in appricot seedlings under study did not affected during 1994 and 1995 seasons.

2.8. Effect on leaf iron content:

Results presented in Table (19) shown the effect of salts concentration in irrigation water, SAR and Cl:SO₄ ratio and their interaction on the leaf Fe content in both apricot and mango seedlins.

2.8.a. Specific effect:

In general, the specific effect of salinity concentration, the obtained results indicated that salts concentration in irrigation water had significant effect on leaf Fe content. It is also clear that all three investigated concentrations (2000, 4000 and 6000 ppm) of saline solutions resulted in an obvious decrease leaf Fe content of seedlings for both apricot and mango seedlings during two seasons of study. Such decrease was significant as compared to those of tap water irrigated seedlings.

These results could be confirmed with the findings of Ivanova (1971) in apricot, Patil and Patil (1982) in pomegranate, Abd El-Aziz et al. (1985) on guava and olive, Aly et al. (1986a) on some citrus rootstocks and El-Hefnawy (1986) in guava. They found that leaf Fe content decreased with increasing levels of salinity.

With respect to the specific effect of two levels of sodium adsorption ratio (SAR) in the irrigation water on both two fruit species, it was quite clear that increasing sodium adsorption ratio (SAR) from 3 to 6 in irrigation water significantly decreased leaf iron content in both apricot and mango seedlings during two seasons of study.

As for the specific effect of the Cl:SO₄ ratio of saline solution used for irrigation water on leaf iron content, it could be noticed that increasing the level of chloride (Cl:SO₄ ratio) in irrigation water significantly decreased leaf Fe content in both apricot and mango seedlings during the two seasons of study.

Table (19): Leaf iron content (ppm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, C1: SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995

seasons	Suc											
			•	1					Mango	1g0		
Treatments	!		Apricot	1001				1007			1995	_
DAD		1994			1995			1774		•		Moonk
NAC			* A CONTRACTOR	"	9	Mean*	ო	9	Mean*	3	0	Mean
Conc.xCl ratio	3	0	Meall	2		11101	170 60	177 69	172 6A	157.3a	157.3a	157.3A
Tab water	131.8a	131 8a	131.8A	144.0a	144.0 a	144.0 A	1 / 7.0d	1 / &. Oa				
control					ļ		7 07.	145 24		137 Oh	126.3d	
Low Cl	127.0b	103.6d		133.0b	116.3d	5	00.791	143.3 u	149 5B			129.2B
2000 ppm		(109.1B	106 10	05.76	a c./11	156.3c	133.0e		131.3c	122.3e	
High Ct 113.3c	113.3c	92.3e		123.10	27.75			110.01		118 Of	198 7h	
Low CI	83.0f	40.69		87.7f	63.0h	,	125.71	119.50	79 001			111.1C
			72.0C			70.6C			70.021		•	
4000 ppm	: : :	7.07		77 60	54.3		122.4g	115.7i		111.7g	106.31	
High CI /5.3g	85.57	00.71		a .			112 2:	0.4.31		98.3i	88.71	
Low CI	53.0j	37.31		42.0j	28.6		[c.211	74.71	07.60	<u></u>		G6'06
			42.6D			33.3D			do:/6		(
l euuu ppm	ָרָ נָי	7,7 2	<u> </u>	36.0k	26.61		98.0k	85.7m		93.3k	83.3m	
High C	47.5K	32.7111					125 7 A	123 7R		121.0A	113.2B	
Mean**	90.1A	72.2B		92.2A	75.5B		133.78	143.72				
ivean.		1 Link	\ \ -	J own	High		Low	High		Low	Hign	-
Means for ***	Low	ııgırı					138 14	132 1R		123.9A	120.3B	
CI : SO4 ratio	92.1A	85.7B		94.8A	87.915		130.17	1,0 2. 11	 			
•												

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction *, **, *** Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

2.8.b. Interaction effect:

Results of Table (19) show the effect of the interaction between salts concentration in the irrigation water, sodium adsorption ratio (SAR) and Cl:SO₄ ratio on leaf iron content in leaves of both apricot and mango seedlings.

These results revealed that iron level in leaves significantly affected by the interaction between the factors. On the other hand, it could be concluded that iron level in both fruit species were greately affected by three factors and this fcators can act together in affecting Fe level in plant leaves during two seasons of study. In addition, the pattern of Fe distribution showed that leaves of plants irrigated with high salts concentration X SAR6 and high Cl:SO₄ ratio had the lowest Fe concentration when compared with plants irrigated with tap water during the two seasons of study.

2.9. Effect on leaf manganese content:

The effect of salts concentration in irrigation water, SAR, Cl:SO₄ ratio and their interaction on leaf iron content of both two fruit species are shown in Table (20).

2.9.a. Specific effect:

Regarding the specific effect of salinity data obtained revealed that all three investigated concentrations (2000, 4000 and 6000 ppm) saline solutions resulted in an obvous decrease leaf Mn content for mango seedlings during two seasons. Such decrease in leaf Mn content was significant as compared to those of tap water irrigated seedlings. On the other the hand, manganese level decreased with increasing salts concentration in irrigation water up to 6000 ppm. In addition, increasing the level of salts concentration in irrigation water for apricot seedlings did not affected in leaf manganes content during 1994 and 1995 seasons. In this respect, Guiffen *et al.* (1979) on some citrus seedlings, Patil and Patil (1982) on pomegranate and Abd El-Aziz (1985) on guava and olive seedlings. They found that, leaf Mn content were decreased with

Table (20): Leaf manganese content (ppm) of apricot and mango seedlings as influenced by salt concentration, sodium adsorption ratio, Cl. SO₄ ratio and their combinations in saline irrigation water during 1994 and 1995 seasons.

alla	alla 1773 seasons.	DOILS.							Mango	ומט		
Treatments			Apricot	icot							1005	
l realineills		1001			1995		i	1994			5661	,
SAK	1	1774				***************************************	۲,	9	Mean*	က	9	Mean*
Conc vCl ratio	-	9	Mean*	3	0	Mean	0			27.00	02.70	93.7A
Tab water	55.1b	55.1b	55.1A	58.0a-d	58.0a-d	58.0A	100.3a	100.3a	100.3A	93./a	73.1a	23.113
control							10 50	07 7c		90 7b	84.3d	
Low CI	53.7bcd	54.7abc		58.3a	55.3d	4 4 1 2	90.06	2/:/0	89 IB			86.0B
2000 ppm	,		53.4A	60 79	55 3ch	77.4C	90.3c	83.3d		88.0c	81.0e	
High Cl 52.1d	52.1d	55.3DCa		00.7a	33.55		1000	71.76		76 Of	48.69	
Low CI	53.0cd	54.0a-d		58.3abc	59.0ab		80.3d	11.11	73 8C	5	· ·	71.1C
4000 ppm			54.0A			21.15				10.00	12 79	
Liab Cl	54 0a-d	55.3ab		55.7cd	57.7a-d		75.7e	67.7g		12.3g	16.00	
Ingin C	30.7	l_		55 Knd	50 0sh		63.0h	54.3		63.0j	55.71	
Low Ci	55.9a	52.70		25.00	0.00	V 7 73			D9.95			S6.7D
6000 nnm			53.9A			20.00				10.7	40.35	
	11:24 Cl 54 0a-d	53 36		55.3b	56.6bcd		58.7i	50.4k		38. /K	49.3111	
ingin Ci	04.0a-u	- 1			4000	<u> </u>	80 S A	73 6B		77.5A	71.4B	
Mean**	54.0A	54.0A		57.4A	51.2A		00.JO	30.57	-		-	
,,,,	1	High		Low	High		Low	High		Low	High	
Means tor	FOW	III ĝin			, ,		8164	78 3B	!	78.3A	75.3B	
CI : SOA ratio	54.3A	54.1A		57.7A	57.2A		01.00	10:01	 			
· -												

values within the same column or row for any of the 3 investigated factors were individually differentiated by capital letters, while for interaction * , * * , * * Means refere to specific effect of salinity concentration, SAR and CL : SO4 ratio, respectively. small letters were used, as means followed by same letter/s were not significantly difference.

increasing salinity concentration in irrigated water. On the other hand, Badawi, et al. (1979) on sour orange seedlings and El-Ashram et al. (1985) on five citrus rootstock seedlings, reported that leaf Mn content was not affected with increasing salinity levels.

As for the specific effect of sodium adsorption ratio (SAR), it was quite clear that the higher ratio i.e. 6 resulted significantly decreased leaf manganese content in mango a seedlings while in apricot leaves was un affected during two seasons of study.

Concerning the specific effect of the Cl:SO₄ ratio of saline solution used in irrigation on leaf manganese content. It could be noticed that increasing the level of chloride (Cl:SO₄ ratio) in irrigation water caused a significantly decrease leaf. Mn content in mango seedlings while leaf Mn apricot seedlings was not affected in this concern.

2.9.b. Interaction effect:

Table (20) show that there was no significant effect for the the investigated three factors i.e., salinity interaction between concentration, SAR and Cl:SO₄ ratio on leaf manganese, data in Table (20) showed obviously the variable response of both apricot and mango seedlings to the different combinations of irrigation water used during two seasons. There was no significant effect for the interaction between such three studied factors on the manganese level in leaves of apricot seedlings. This may indicate that such three factors did not act together for affecting manganese level in apricot leaves, however, it is clear from Table (20) that leaf manganese content decreased significantly in mango seedlings, the most decrease was that combination between the highest salinity concentration (6000 ppm) X SAR6 X higher Cl:SO₄ ratio, whereas the lowest decrease leaf manganese content was resulted between 2000 ppm X SAR3 and lower Cl:SO₄ ratio during the two seasons of study.