4. RESULTS AND DISCUSSION

The present study was carried out to investigate the heterosis and type of gene action for yield and its components as well as the susceptibility to low nitrogen fertilizer by using sixparental diallel crosses of flax.

For better representation and discussion of the results obtained herein, it was preferred to outline the results into three parts, the first is heterosis and combining ability analysis for yield and its components, the second is concerned with genetic components of variation and the third is the fertilizer susceptibility index (FSI).

4.1. Heterosis and combining ability:

4.1.1. Analysis of variance and means:

The analysis of variance for each experiment (30 kg and 45 kg N/fed) and the combined analysis between them for all traits are presented in Table (6). Results indicated that nitrogen levels mean squares were significant for all studied traits.

Results in Table (7) presented the effect of nitrogen fertilizer levels on the studied traits. It is clear that all traits increased with 45 kg N/fed. This result might be attributed to the pronounced improvement in yield and yield components (seed and fiber). Similar results were recorded before by El-Farouk et al. (1983), Salama (1983), El-Ganayni et al. (1985), Hella et al. (1988), Mourad et al. (1988), Ghanem (1990), Nimje (1991), Salama (1991), El-Hindi et al. (1992), El-Shimey et al. (1993),

Abd El-Fatah (1994), Esmail and Morsy (1994), Mohamed (1996), El-Sweify et al. (1997), Kineber et al. (1998), Rajesh et al. (1999), Singh and Verma (1999), Ash-Shormillesy (2001) and Awad et al. (2001).

Highly significant genotypes mean squares were obtained for all the studied traits in separate experiments as well as the combined analysis, indicating the wide diversity between the parental materials used in the present study. Significant genotypes x fertilizer nitrogen levels interaction mean squares were obtained for all the studied traits except number of seeds/capsule indicating that the tested genotypes varied from one nitrogen level to another and ranked differently from 30 to 45 kg N/fed

For number of seeds/capsule, significant genotypes mean squares along with insignificant genotypes x nitrogen levels interaction mean squares was detected. These findings, therefore, might revealed the high stability of the tested genotypes at both nitrogen levels. Also, it may reflect the minor role of the non additive type of gene action on the expression of this trait.

Results also, showed that mean squares due to parents were significant for all the studied traits. Significant mean squares due to interaction between parent and nitrogen levels were detected for the studied traits except plant height, oil percentage and number of seeds/capsule. These findings indicate that parental varieties and or lines differed in their mean performance in all traits under test. Also, it revealed that parents varied in their response to nitrogen levels in all traits except, plant height, oil percentage and number of seeds/capsule.

Table (6): Observed mean	n squares i	1010	ilary anar	1.1	squares from ordinary analysis of the Tachnical let	Techni	Technical length (cm)	(cm)	Stem o	Stem diameter (IIIII)	mmi)
VOS	d.f.	ſ.	Pla	Plant height (cm)	cmj	100	15 1.0	5	.30 kg	45 kg	Com.
3.0.4	Single	Comb.	30 kg	45 kg	Com.	30 Kg	t Na	*			
		-			713.29			819.01			2.31
	•	-		700		17.1	4.95		0.01	0.01	
100	2	•	3.61	8.80	100			3.36			0.01
Rep./Fer.		4	:	*	***	*	**	**	**	0.10	0.34
	20	20	1000.16	1021.17	2002.36	1006.34	1386.27	7307.00	*	*	
Genotypes	3		**	**	3288.16	1467.74	1974.94	3418.77	0.18	90.0	0.20
Parents	0	0	1071.00	-				1122 92	0.23	90.0	0.24
	1	7	841.46	845.77	1665.53	907.	7671		*	*	
Crosses			*	170 51	289.08	76.53	244.36	297.20	1.50	0.93	2.39
Par. vs. Crossos	-		CC.CII	-				**			0.05
Genotypes x Fer.	ľ	20			18.96			30.01			
		'			14.32	-		23.91			
Par. x Fer.					21.71			32.63			
Cross. x Fer.		-			3.79	6		23.69			
Parvs. cross x Fer.	1	-			000	4 19	9 9.38	8 6.78	0.01	1 0.01	4

Error at 0.05 and 0.01 levels of probability, respectively.

Cont.
(9)
Table (

S.O.V.	0	d.f.		Fiber length	th	Stran	Straw windd/hlaw werts	mt (a)			
	Single	Comb.	30 kg	45 kg		20 1.0	15 L	(8)		riber yield	Id
		+	G. C.	17, NS	COIII.	SO Ng	43 kg	Com.	30 kg	45 kg	Com.
Ľ		,			*			**			*
rer.		-			783.90			888.14			1 917
Rep.	,										
	4	r	17.7	4.31	3.26	0.65	1.14		0.001	0.002	
Rep./Fcr.	1	4									
			*	•				0.89			0.002
(1	K	*	*	ĸ	* *	*	*	*
Cenotypes	0.7	07	1040.81	1425.08	2435.14	11.82	46.39	50.32	0.028	0.110	0.117
Ŋ			*	*	*	*	**	*	**	:	1
Parents	n	S	1510.20	2034.14	3519.14	20.41	73.59	83.96	0.052	0.124	0.153
			**	**	*	**	*	;			200
Crosses	77	17	12 61 0	1301 70					K	*	*
Closes	-	1	16.24	8/.1671	2201.26	5.43	28.26	26.97	0.015	0.065	0.069
1	3		*	*	*	K K	*	*	*	:	1
Par. vs. Crossos	-	-	70.03	246.09	289.34	58.30	164.23	200 11	2000	7270	× • •
Genotynes v Fer								11.707	CK0.0	0.630	0.625
constitution of the second		90			*			*			*
		07			30.75			7.88			1000
1					*			*			0.021
Par. x Fer.	r	w.			25.20		n	10.01			0.023
(*			*			:
Cross. x Fer.		7			33.02			6.72			0.12
		,			×			*			:
Parvs. cross x Fer.		-			26.79			13.42			7010
Firor	4	00									07170
*******		80	3.97	9.39	89.9	0.35	0.51	0.43	0.001	0 000	0.001
and " significant at 0.05 and 0.01		levels of probability, respectively.	espectively.						10000	0.002	0.001

Table (6): Cont.						NI.	olusaco/boog for	olue	1000	1000-seed weight	ight
A O S	P	d f	No. ol	No. of capsules/plant	plant	INO. O	1 secure	Suite		15 1.0	
5.O.V.	3	Comb	20 10	45 1.0	Com.	30 kg	45 kg	Com.	30 Kg	t Ng	Collii
	Single	Comb.	30 NS	17 N.S				*			*
					5892.11			1.35			163.68
7. 2.		-								*	
ro.				* (0 03	0.02		0.12	0.24	
Rep.	2	•	12.01	32.36	*	20.0					*
		4			22.19			0.02		1	0.18
Rep./rer.		-		;	*	**	*	*	*		i
	90	20	182.61	434.59	550.84	2.53	2.77	5.27	3.23	7.01	9.54
Genotypes	707	1	1	*	*	*	*	*	*	K	
		4	28158	659.42	896.32	4.04	3.63	7.65	6.23	15.03	20.08
Daronte	n	c	707		1,	*	*	*	*	*	*
Laiones			*	*	i c	1 70	111	3.97	1.49	2.95	3.94
	14	7	94.99	288.48	71.70	1.17		;	*	*	*
Crosses	1		*	*	*	*	*	ŧ.			25 33
	-	-	1298.81	1355.91	2654.40	5.33	6.23	11.54	12.48	25.74	35.55
Par. vs. Crossos	-	•			*						
Genotypes x Fer.					98 99			0.04			0.70
- A Course	,	70			**						
		V			47.69			0.02			1:1
Par. x Fer.	.		-		*						7.70
		-			47.74			0.04			16.0
Cross. x Fer.	•	<u> </u>									* 6
		(()			0.31			0.02	61		0.70
Parvs. cross x Fer.					23.3	900	0.10	0.08	8 0.09	0.06	, 0.07
1	OF.	8	5.36	Ø/:c							

Error 40 80 5.36 and 0.01 levels of probability, respectively.

	100	OIII.
(ر.
1	3	
2	0	2
-	2	2001

S.O.V.	0	d.f.	Seed	Seed yield/plant (g)	(g)	0	Oil percentage	9
	Single	Comb.	30 kg	45 kg	Com.	30 kp	45 ko	Com
		1			**	0	Su Ci	COIII.
Fer.	•				82.62			22.73
Rep.	2	7	0.05	0.18		1.75	0.84	
Ron /For	t	7						*
report of		00			0.12			1.29
Genotypes	20	07	99.0	1.78	1.78	9.78	16.31	24.79
Parents	S	s	0.90	2.72	2.94	20.73	27.16	47.33
Crosses	2	14	0.38	**	0.62	6.12	13.48	**
Par. vs. Crossos	1	-	3.41	**	**	**	* 5	** 5
Genotypes x Fer.	,	20			* 3	400	C0.1	× × ×
Par. x Fer.		ر ا			0.06 89.0			1.31
Cross. x Fer.	1	7			0.64			1.62
Parvs. cross x Fer.	1	-			0.82			0.67
Error 40 80	40	80			0.07	0.22	0.32	0.27

and ** significant at 0.05 and 0.01 levels of probability, respectively.

c (/): 11	e genory he	1		Table (1): The genoty less mean per recommendation of the state of the	Land Langeth	(m)	Stem	Stem diameter (mm)	Jm (mr	Fiber	Fiber length (cm)	1
Genotype	Plan	Plant height (cm	(m)	Iecum	lechnical length (cili	(III)	201.00	15 1.0	Com	30 kg	45 kg	Com.
	30 kg	45 kg	Com.	30 kg	45 kg	Com.	24 PC	100	176	59 31	60.85	80.09
141	88.87	90.64	89.76	61.30	63.13	62.22	7.40	70.7	250	10 72	54.78	52.00
150	75.80	84.90	80.40	51.79	56.48	54.13	2.37	2.78	2.10	93.33	80 00	95.71
1 5	11914	121 66	120.40	94.49	101.52	10.86	2.18	7.69	7.7	00.00	00 30	85 70
CXC .	105.00	112 22	108 71	83.10	92.40	87.75	2.48	2.76	79.7	81.00	25.07	30 00
4X4	20.001	20.71	56.05	35.87	34.67	35.27	2.92	3.02	2.97	32.73	31.3/	32.0
5x5	23.50	20.20	20.00	70 37	20 08	49 72	2.41	2.62	2.51	46.53	46.84	40.07
9x9	75.98	78.41	11.19	47.30	20.00	00 27	2.50	2.87	2.73	92.41	19.66	96.01
1x2	119.55	121.88	120.72	94.52	102.02	77.05	281	291	2.88	69.04	70.58	69.81
1x3	90.09	93.61	91.85	71.64	/3.6/	02.77	10.7	2 92	2.85	75.31	91.97	83.64
Lvl	105.29	114.48	109.89	77.35	93.90	85.65	11.7	336	3.31	38 73	45.57	42.15
155	76.89	73.48	71.23	41.94	48.48	45.21	3.26	5.50	1000	50.81	51 65	51.23
	77.30	82 02	99.62	53.46	54.31	53.89	2.66	3.01	1.01	10.00	83 63	78.66
0.1	00 30	106.24	102.82	77.31	85.04	81.17	2.46	3.06	27.70	11.00	63 68	79.41
CX7	17.37	100	10.001	LL 7L	20 98	81.40	2.68	3.02	2.83	14.75	00.00	
2x4	102.85	103.77	103.31	10.11	20.00	43.0%	306	3.18	3.08	39.23	40.59	39.91
2x5	89.99	71.76	69.22	42.54	43.39	45.00	233	2.01	262	54.68	55.52	55.10
932	83.74	84.88	84.31	56.85	57.35	01.70	4.04	200	280	96.23	105.80	101.02
37.4	120.23	124.13	122.18	98.20	107.73	102.97	7.74	2.00	217	56.14	61.58	58.86
345	84 92	85.16	85.04	53.99	64.43	61.71	5.13	3.20	000	54.07	75 09	58.32
346	68.62	87.33	83.61	99.99	65.20	06.09	2.67	3.11	2.15	51.10	50.70	50.90
445	76.23	87.28	81.76	53.76	53.49	53.63	3.15	3.00	08.0	07.17	73.74	70.07
yAF	88.91	101.59	95.25	19.89	76.47	72.54	09.7	3.10	216	45.32	46.26	45.79
9x9	77.68	78.78	78.23	47.82	49.38	48.60	5.14	0.13	0.13	3.29	5.06	4.20
L S D 0.05	3.69	4.94	4.29	3.38	5.05	4.23	0.13	0.19	0.17	4.40	6.77	5.57
0.01	4.94	19.9	5.69	4.52	92.9	00.0	0.00	0.1.0	0.85**	0.73**	0.77**	0.75**
	>>0	0.75	0.71**	0.72**	0.76**	0.75	0.00	0.0		-		

* and ** significant at 0.05 and 0.01 levels of probability, respectively.
r: Correlation coefficient between hybrid mean performance and mid-parent value.

Ţ
Con
6
ble
La

	100	1	/01	-	riner vield (g)	(6)	Ž	J.				
-	SO Kg	45 松	Com.	30 Lo	151	41.1	IAO.	5	s/plant	Z	No of sood/capeulo	olusa
1x1	11.63	19.25	15.14	2 3	24 CF	Com.	30 kg	45 kg	Com.	30 La	45 le	Sale
2x2	10.65	15.76	12.51	0.00	0.95	0.77	47.99	-	57.01	2000	45 Kg	Com.
3x3	10 00	12.27	17.61	0.54	0.78	99.0	46 31	20 99	27.74	0.80	6.82	6.81
de.d	10.70	13.36	12.13	0.55	0.65	0.00	25.35	00.27	26.64	7.59	7.74	7.66
+1/4	12.72	19.52	16.12	0.64	0.65	00.00	17.00	33.60	29.43	9.35	9.42	9 38
cxc	6.84	8.54	7.69	0.36	0.43	0.00	47.21	60.30	53.76	68.9	7.13	7.01
9X9	6.42	8.40	7.41	033	5.0	0.39	31.40	38.87	35.13	6.22	85 9	6.46
1x2	12.44	20.70	16.57	0.02	7+70	0.37	33.86	45.48	39.67	8 30	0.00	0.40
1x3	11.65	19.86	15.75	0.01	1.05	0.83	50.30	68.39	59 35	0.07	0.30	8.48
1x4	12.98	20.02	16.05	0.01	0.97	0.79	50.05	69.19	29 65	76.1	7.70	9.49
1x5	11.61	19 19	15.10	0.67	1.00	0.84	52.34	70.20	2019	70.7	61.19	7.72
1x6	11.99	10 31	15.40	0.00	0.94	0.77	49.04	68.00	58 53	07.7	7.46	7.36
2x3	71.17	17.57	00.61	0.59	96.0	0.78	48.90	75 83	20.02	0.91	7.11	7.01
34.4	13.00	CC./1	14.65	0.57	0.85	0.71	50.01	10.00	20.02	8.45	8.62	8.54
+Y77	13.08	19.47	16.27	0.63	86.0	001	20.01	69.37	59.69	8.83	9.48	9 15
CX7	11.25	16.08	13.66	0.5.1	070	0.01	21.6/	68.15	59.91	7.64	755	7.60
2x6	11.39	16.53	13.06	0.55	0.76	0.65	48.37	67.80	58.09	7.18	7.50	7.00
3x4	13.24	19.61	16.11	0.50	0.85	0.70	49.13	67.58	58.35	8 57	97.0	7.54
3x5	12.36	14.80	13 50	00.00	0.97	0.81	51.78	63.48	57 63	700	0.13	0.00
yar	11.01	14.00	15.38	0.54	0.74	0.64	35 55	20.21	20.75	0.30	9.35	9.16
0.00	11.04	14.10	12.57	0.54	69.0	090	50.00	10.75	37.43	7.96	8.30	8.13
CX+	13.41	18.58	16.00	99.0	0.03	0.70	51.00	40.24	18.62	9.43	9.53	9.48
4x6	13.50	19.41	16.45	77.0	200	0.72	06.16	60.64	56.27	7.40	755	1 . 1
9x9	8.14	656	0 03	0.00	0.93	0.80	50.91	61.89	56.40	8.16	07.0	1.4/
LS.D.0.05	86.0	1 18	0.03	0.39	0.49	0.44	39.83	48.26	11.05	0 43	0.09	8.58
0.01	131	1.10	1.0/	0.04	0.07	0.05	3.82	3 07	201	1+0	8.60	8.53
100	1.31	1.38	1.42	0.05	60.0	0.07	11.5	53:	5.04	0.41	0.53	0.47
	0.72**	0.90**	0.86**	0.79**	0.78**	0.80**		10.0	3.09	0.55	0.71	0.62
Signific	And " Significant at 0.05 and 0.01			The same of the last		0.00		***	1	-		

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

r: Correlation coefficient between hybrid mean performance and mid-parent value.

Table (1). Come	1	J	(4)	Doog	Seed vield/plant (g)	(ā)	Oii	Oil percentage	
Genotype	I (M)() S	1000 seed weight (g)	(8)	100	45 1.0	Com	30 kg	45 kg	Com.
	30 kg	45 kg	Com.	30 Kg	2 CF		41.46	13.69	12 57
1.7	7.64	10.34	8.99	2.84	5.29	4.0/	07:17	20.00	05
IXI	207	10.01	7 98	2.78	4.65	3.71	40.92	47.08	41.30
2X2	0.70	10.01	417	175	256	2.16	35.47	36.41	35.94
3x3	3.81	4.55	17.	3.00	443	3.76	41.03	41.73	41.38
4x4	19.9	8.71	00.7	3.07	223	3.85	39.10	40.06	39.58
5x5	8+.9	6.64	8.06	3.37	4.33	3.10	36.13	36.61	36.37
9x9	4.82	6.16	5.49	18.7	10.0	25.5	20 05	13 00	41.53
1x2	7.47	10.32	8.89	2.77	2.53	4.00	09 11	13 90	42.75
1x3	7.68	10.38	9.03	3.18	26.6	65.4	0F 11	42.74	42.12
1x4	7.61	10.51	90.6	3.35	2.63	(+·+	10.39	10 17	41.16
1.5	7.66	10.28	8.97	3.90	2.46	4.68	40.30	20.11	20 00
l ve	735	10.01	8.70	3.21	5.41	4.31	39.41	38.77	20.00
OXI	1.00	100	8 11	277	4.74	3.76	38.96	39.88	39.47
2x3	01.7	7.04	9.0	300	208	117	41.47	42.48	41.98
2x4	7.33	9.03	8.18	5.60	00.00	1 30	40.11	41.43	40.77
2x5	7.25	9.78	8.51	3.39	3.20	001	28.62	38.57	38.59
2x6	7.22	98.8	8.04	2.79	3.30	4.00	10.13	40.15	40 14
3x4	06'9	80.6	7.99	3.21	4.60	3.90	30.70	38.70	38.74
355	6.23	9.12	7.67	3.38	4.60	5.77	36.00	26.71	36.82
3x6	4.96	09'9	5.78	3.13	3.75	5.44	20.70	41.64	41.35
4x5	7.04	9.92	8.48	3.69	4.73	4.21	30.42	38.80	39.11
4v6	7.24	8.70	7.97	3.25	4.86	4.00	37.42	30.40	37.90
5x6	6.44	9.70	8.07	3.82	4.57	07.5	0.77	0.93	0.84
LS.D.0.05	0.50	0.40	0.44	0.33	40.0	0.44	1 02	1.24	1.11
0.01	99.0	0.52	0.58	1	0.72	0.30	0.70××	0.84**	0.76**
		*****	4 400 0	*670	0 71 x x	0./0	6.79	0.0	

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

r : Correlation coefficient between hybrid mean performance and mid-parent value.

The mean performances of the parental lines and/or varieties of flax at separate nitrogen levels as well as the combined data are presented in Table (7).

Data presented in Table (6), showed that crosses mean squares were significant for all the studied traits, revealing overall differences between these hybrids. Significant mean squares due to interaction between crosses and nitrogen levels were detected for all traits except number of seeds/capsule. Such results indicated that these hybrids varied in their response to environmental fluctuations.

The mean performances of F_1 hybrids in each nitrogen level and over both of them are presented in Table (7).

The varieties Ariane-R₃ (P₃) recorded the highest plant height, technical length and fiber length followed by variety S.strain₁ (P₄). While high values of plant height, technical length and fiber length of crosses were recorded by Ariane x S₁ (3x4) followed S.24191/1 x Giza 8 (1x2). This result indicated that parents No. P₃ (Arian) and P₄ (S.strain₁) contained the genes for tall plant height.

For fiber yield in gramme, the mean values for crosses ranged from 0.84 (1x4), S.2419/1 x S_1 to 0.44 (5x6) Gawhar x Bombay in the combined analysis. While, the mean values for parents ranged from 0.37 P_6 (Bombay) to 0.77 P_1 (S.2419/1) in the combined analysis. The highest values of fiber yield were detected in the combined analysis by (1x4) S.2419/1 x S_1 followed by (1x2) S.2419/1 x Ariane and then by (2x4) Giza 8 x S_1 and (3x4) Ariane x S_1 .

Concerning straw yield/plant in grammes, the mean values for genotypes ranged from 7.41 (P_6) Bombay to 16.95 (1x4) S.2419/1 x S₁ in the combined analysis. The highest mean values were obtained by crosses (1x4) S.2419/1 x S₁, (1x2) S.2419/1 x Ariane, (4x6) S₁ x Bombay and (3x4) Ariane x S₁. This result indicated that P_1 (S.2419/1) and P_4 (S.strain₁) contained the genes controlling high fiber yield.

For number of capsules/plant, the mean values of genotypes ranged from 61.27 (1x4) S.2419/1 x S₁ to 29.43 for (P₃) Ariane in the combined analysis. The highest number of capsules were obtained by cross (1x4) S.2419/1 x S₁ but without significant superiority compared with (P₁) S.2419/1, (1x2) S.2419/1 x Giza 8, (1x3) S.2419/1 x Ariane-R₃, (1x5) S.2419/1 x Gawhar, (1x6) S.2419/1 x Bombay, (2x3) Giza 8 x Ariane, (2x4) Giza 8 x S₁, (2x5) Giza 8 x Gawhar, (2x6) Giza 8 x Bombay and (3x4) Ariane x S₁.

None of the hybrids, significantly, surpassed the highest parent in number of seeds/capsule, 1000-seed weight and oil percentage.

Concerning seed yield/plant in grammes, the mean values for genotypes ranged from 2.16 (P₃) Ariane to 4.68 cross (1x3) S.2419/1 x Ariane in the combined analysis. The highest mean value was obtained by cross (1x5) S.2419/1 x Gawhar but without superiority than crosses (1x3) S.2419/1 x Ariane, (1x4) S.2419/1 x S₁, (1x6) S.2419/1 x Bombay and (2x5) Giza 8 x Gawhar in the combined analysis. The high seed yield/plant in the previous crosses could be attributed to the high value of one or more of the yield components (no. of capsules/plant, no. of

seeds/capsule and 1000-seed weight). It could be concluded that these crosses would be efficient and promising in flax breeding for improving seed yield/plant.

Correlation coefficient values between mid-parent and F₁ hybrids mean values for each of the studied traits are presented in Table (7). Significant positive correlation coefficient values were obtained for all the studied traits at two nitrogen levels as well as the combined analysis. Such result clarified good agreement between mid-parent values and F₁ performance. Consequently, the best performance of F₁ combination could be achieved by crossing between parental (lines or varieties) of high mean values.

4.1.2. Heterosis:

Mean squares for parents vs. crosses as an indication to average heterosis over all crosses was of appreciable magnitude in both experiments as well as their combined analysis for all investigated traits (Table, 6). Significant interaction mean squares between parents vs. crosses and nitrogen fertilizer levels were detected for all the studied traits except plant height, technical length, oil percentage, number of capsules/plant and number of seeds/capsule, indicating that the heterotic effects were affected by different nitrogen levels. For the exceptional traits, insignificant interaction between parent vs. crosses and nitrogen levels was detected. These results indicated that the heterotic effects were not affected by nitrogen level changes.

Heterosis expressed as the percentage deviation of F₁ mean performance from its mid- and better parent average values

for all the studied traits at both nitrogen levels and averages of their combined are presented in Table (8).

For plant height, seven, five and six crosses expressed significant positive heterotic effects relative to mid-parent values at 30, 45 kg N/fed as well as with the combined analysis, respectively. While, two, one and two crosses from the previous crosses showed significant positive heterotic effects relative to better parent values in the same order. Significant positive heterotic effects, for plant height was previously detected by Krepkov and Michkina (1983), Ashry (1991), Heyland and Hemker (1991), wang et al. (1996) and El-Sweify (2002).

Regarding technical length, six, seven and eight parental combinations exhibited significant positive heterotic effects relative to mid-parent values at 30, 45 kg N/fed and with the combined analysis, respectively. While, three, two and one crosses expressed significant positive heterotic effects relative to better parent values in the same order. The best cross over both N-fertilizer levels was (1x2) S.2419/1 x Giza 8. Significant positive heterotic effects for technical length was reached before by Wang *et al.* (1996).

Concerning stem diameter, thirteen, fourteen and fourteen hybrids exceeded significantly mid-parent values at 30, 45 kg N/fed as well as with the combined average over them, respectively. Also, twelve, twelve and twelve hybrids showed significant positive heterotic effects relative to better parent values in the same order. Also, the other crosses at least were equal to their mid-parent or better than parent values. Significant

Table (8): Percentage of heterosis over both mid-parent and better parent at two nitrogen levels as well as the combined analysis for all studied traits.

Cross			Plant	Plant height					Technics	Technical length					Stem d	Stem diameter		
	30	30 kg	45	45 kg	Com	Combined	30	30 kg	45 kg	A.	Combined	bined	30	30 kg	45	45 kg	Com	Combined
	H.MP	H.BP	H.MP	H.BP	H.MP	II.BP	H.MP	II.BP	II.MP	II.BP	H.MP	II.BP	H.MP	H.BP	II.MP	H.BP	H.MP	H.BP
	:	:	*	4	*	**	:	*		**		:	:	**	-		•	
1x2	45.12	34.52	38.86	34.47	41.88	34.48	67.17	54.19	70.57	61.60	68.94	57.94	8.37	7.92	2.50	1.77	5.41	4.60
	•	:	:	4 4	**	*	*	:	•	* *	4	:	:		44		4 4	4 4
Ix3	-13.38	-24.38	-11.81	-23.06	-12.59	-23.71	-8.04	-24.18	-10.52	-27.43	-9.31	-25.88	24.02	18.33	5.44	13.19	14.29	10.35
	*		**		*		4		4 4		*		**	4 4	4	-	•	:
1x4	8.57	0.19	12.81	1.92	10.72	1.08	7.13	-6.92	20.74	1.62	14.20	-2.42	13.53	11.69	4.66	3.55	9.20	8.78
		*		4		**	**	**				4 0	**	**	**	**	**	4
1x5	-3.39	-22.39	0.082	-18.93	-1.63	-20.64	-13.67	-31.58	-5.86	-23.21	-7.24	-27.34	22.56	1.6	15.07	11.26	18.64	11.45
	*	*		*	*	*		:				:	**	**	4 4	**	**	*
1x6	-6.22	-13.02	-2.96	-9.51	-4.58	-11.25	-3.38	-12.79	-4.06	-13.97	-3.72	-13.39	10.83	10.37	10.66	0.19	10.94	8.81
				*		*	:	:	4 4	**	*	:	:			*	**	:
2x3	1.92	-16.58	2.87	-12.67	2.41	-14.60	5.70	-18.18	7.65	-16.23	6.70	-17.18	2.90	3.80	11.68	0.28	966	8639
	:		•	•	*	•	**	44		*		**	:	:	*	**	**	**
2x4	13.66	-2.13	5.23	-7.61	9.25	4.97	13.82	-7.62	15.56	-6.91	14.75	-7.24	10.74	8.06	9.03	0.24	9.62	8.78
		*		æ		4		:				:	:		**	•	*	
2x5	2.74	12.14	1.71	-15.48	2.20	13.91	-2.94	-17.86	-4.35	-22.82	-3.67	-20.45	12.45	2.06	99.6	0.16	11.19	3.70
	:	:			:		**	*							**	*		
2x6	10.27	10.21	3.96	-0.024	7.01	4.86	12.42	9.77	7.64	1.54	86.6	5.49	-2.93	-3.73	7.78	0.13	3.15	1.55
	:	21	:		:		:	•	**	*	**		**	**	•		**	:
3x4	7.23	0.91	6.10	2.03	99.9	1.48	10.59	3.93	11.11	6.12	10.86	90.9	17.60	10.48	4.76	0.10	10.67	6.87
		:		*		*	* *	•		**	*	:	:	4	:	**	**	**
3x5	-1.85	-28.72	4.24	-30.00	-3.07	-29.37	-9.50	-37.57	-5.38	-36.54	-7.40	-37.04	22.75	7.19	11.89	0.18	17.41	6.73
	:	:	:	:	*	**	**	:	•			:	:	*	**	**	:	*
3x6	18.11	-32.94	-12.70	-28.22	-15.37	30.56	21.31	40.10	-13.98	-35.78	-17.55	-37.86	16.59	10.79	16.92	0.42	17.00	15.14
	•	:		*		**	:	:	•		*	**	:	4 4	**	**	**	:
4x5	4.10	-27.46	3.58	-22.29	-0.16	-24.79	-9.63	-35.31	-15.82	42.11	-12.81	-38.88	16.67	7.88	9.34	0.14	12.90	90.9
		:	*	*		*		*	•	•	•	:	:	:	*	**	*	*
4x6	-1.80	-15.40	6.53	-9.55	2.47	-12.37	3.59	-17.44	7.34	-17.24	5.54	-17.33	95.9	7.88	11.52	0.24	9.38	6.87
	**		:		**		:		:		:		:	:				**
5x6	19.62	2.24	17.04	0.47	18.32	1.35	12.23	-3.12	16.55	-1.40	14.38	-2.25	18.05	7.53	12.77	0.16	15.33	6.40

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Cross III									Street vield/Diam					-				
		TO THE OWNER OF THE OWNER.	Fiber length	ength							Combined	ined	30 kg	k.o	45 kg	9	Combined	pau
	30 kg		45 kg	01	Combined	ined	7	0.0	40 Kg		1 250	11 00	II MP	H RP	H.MP	H.BP	H.MP	H.BP
	H.MP	.BP	II.MP	H.BP	H.MP	H.BP	H.MP	II.BP	II.MF	H.Br.	il.mir		1		:	:	:	•
		1		:	:	:	: :		: :	7 53	15.71	7.32	7.02	1.67	20.69	10.53	15.28	7.79
	05.69	18'55	73.05	63.70	71.32	29.80	11.67	6.97	77.81	ce./	:				**		:	
	-	:	:	:	:	:			1016	317	14.21	2.01	5.17	1.67	21.25	2.11	14.49	2.60
1.3	8.94	25.23	-11.73	-28.77	-10.37	-27.06	3.37	0.17	10.17		•		:		:		:	:
	-	:	:		*	VACA CARD			100	111	17.	5.15	8.07	4.69	25.00	5.26	18.31	60.6
1 vd	7.36	-7.03	21.62	1.75	14.75	-2.40	6.57	2.04	1.87	1.1.1	:		*		*		:	
	-	:		*	•	* .	: 0	210	38.06	-0.31	33.22	-0.26	26.42	1.005	36.23	-1.05	32.76	0.129
1x5	-15.84	-34.70	-1.17	-25.11	-8.49	-29.84	15.73	10.1	**		**		:		:		: 3	1 30
		:			100		10 01	3.10	39.94	0.47	37.13	1.43	28.26	-1.67	39.13	1.05	30.54	5
1x6	-3.99	-14.33	4.09	-15.12	-4.03	27.4			4	*	:	:			.	. !		7.60
	_	:	: ;	97.	. 27	17.81	606	7.89	20.40	11.23	15.63	10.91	3.64	3.64	18.06	8.97	12.70	:
2x3	5.14	-19.12	1.76	-10.00	0.21		:		**		:		:	_	i i		216	27 73
	:	: :		1 30	15 31	7.3.1	66.11	2.83	10.37	-0.26	10.98	0.93	6.78	-1.56	36.11	20.03	10.02	
2x4	7.07	64.7	2.52			:	**		:		:			0.553	21.50	2 56	22.64	-1.52
			573	15 22	10.5	-23.25	28.72	5.63	32.35	2.03	30.72	3.41	20.00	1		*	•	
2x5	£ :	**			:		:		•		;	07 2	10.70	1.85	11 67	8.97	34.62	90.9
,	13.51	80 0	9.81	2.29	11.67	5.96	33.53	6.95	36.84	4.89	35.40	00.0	:	1	1	*	•	:
OX7			:	•	:	•	:		:				10.00	113	FC 01	49.23	28.57	24.62
	11 03	CLT	11.67	6.78	11.38	5.55	12.11	4.09	19.47	0.62	ccol.		1	-	-	**	*	
3X4	**	:		**	**	:	:	*	:			=	17 30	-1.82	37.04	13.85	28.00	6.67
	10 33	-39.20	-5.58	-37.85	-7.86	-38.50	39.35	13.40	35.16	10.78	1	+	-	╀	-		:	
exe	**		L	:	:	:	:	0.000	_	_	20	163	77.73	-1.82	27.78	6.15	26.53	3
7.1	21 12	7	.14.24	36.85	-18.09	-39.07	27.48	1.28	29.00	č.		-	1	-	:	:	:	_
	:	:	:	:	•	_	:		;	63	STIE	10.74	32.00	3.13	72.22	43.08	51.	21.54
JAY.	-10.15	-36.91	-16.72	-43.91	-13.54	-40.61	37.12	27.6	20	-	1	_	:		:	_		
	•	:		_			: 6	613	30	0.56	39.88	2.05	37.	3.13	3 72.22	43.08	20.80	1
4x6	4.12	-18.03	7.	-18.42	ó	-10.54	10.11	1	1	•	**		:	_		_	0.70	1280
	:		:		:		;	10 01	12.40	11.48	16.95	14.82	14.71	8.33	3 13.95	13.55	4	1

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

		Γ	L	· a		-1.11	,	6	8		2			2			~T	_	T					_			
			Combined	P H RD	+	-		1	0.78		-0.22	373		1.63	2.51		5.58	0.75	1	4.31		107	5.28		5.21		4.05
				H	-	4.71	17 72	**	8.89	* :	0.10	20.17	**	33.39	4.60		0.11	19.29	*	35.20	75 37	**	19.61		7.89	21 12	1
		1000 seed weight	45 kg	H.BP		-0.19	0.39		1.64	0 20	0000	-2.90	0.4.1	***	0.33	4 0 0	0.0	-1.56		4.25	_	_	7.14		7.91	-0.12	L
	-	1000 see	45	H.MP		0.72	39.52		10.28	2.90	:	21.70	33.53		1.92	F67	**		: ;	37.16	28.63		1	8 10	1	16.94	* *
	-			H.BP	,,,	C7	0.52		-0.39	0.26		-3.80	3.16		2.5.5	4.17	L	3.74	4 30	+	-3.86 28	_	+		L	4	
		. 00	7	H.MP	2.33	1	34.27	. 00 9	1		_	86./1	_		1		_	1			1		7.91	6.51	_	9.53	
	L	+	a	-			_		L		_	+	33.			7.89		1,1	32.44	*	21.21	: 2	44.0	7.48	4	26.57	4
		Combined	P II DD	+	8 23.89		-17.70	967		2.94	0.71		2.45	-0.78		1.57		7.17	-2.35	:	-13.33	1.07	•	95.9		81.1	02.0
	ale	1	II.MP	-	31.08		4.69	6.51	•	6.21	11.78	4	7.39	3.54		7.25	7 3.1	:	11.71		3.04	6.16	:	11.49		00.00	14.66
-	No. of seeds/capsule	Kg	II.BP	:	25.32		00./1-	4.63		4.25	0.70		1970	-2.46		1.94	2.22		-0.74	11 60	1.07	1.17		5.89	1 53	1	0.47
The second	· of see	45 kg	II.MP	*	33.24	700	•	7.03		6.12	12.09	:	6+01	1.48	200	+	7.36		13.06	3.75	1	-		1		L	
1			II.ISP	:	22.13	1.29	-	5.37		70.1	0.72	* 1	1	99.0					1		_	-	_	10.00	10.70		13.61
	1	-	-		* 2	-5.33 -18.		1		-	1		1	-	-1.45	_	2.15		;	-14.87		0.86	7 10	7.40	0.83		0.95
F	+	30	+	_	-			0.14	614		11.18	SCF		5.53	8.41	**	7.26	10 3.1	1000	2.31	: ;	0.31	12.98	**	10.73	: :	19.61
	Combined	II RD	+	rr c	L	2.90	575		1.00		1.19	5.39	1	0.71	2.56		3.02	7.20		6.55	33 66	2	4.67		4.91		50.0
ĭ	S	II.MP		3.60	:	36.49	9.71	*	25.74	**		38.72	* * * *	:	26.59	31 10		38.57		15.95	_	-	29.92	: ;	77.07	78	
or capsules/plant	pı	II.BP		0.72		1.30	3.39		0.15	0.69		3.58	1.76	-	1.24	16.0	+	5.27	_	1.13	1.67	_	0.56 20	_	+	1 17	Top Park
Capst	45 kg	II.MP		1+1	12 98	**	9.52		27.37	20.60	:	1.94	7.09					1		1				764	L	6.11	els of n
0.0	+	-		1.81	4.29		1	_	+	-		,		_	07	20.	•	35.21		**	16.95	**	77.78	17.02	:	14.41	0.01 lev
301	30 Kg	H.BP		1			90.6	3.10		1.90			9.45	SFF		60.9	*	89.6	13.22	4	50.59	0 0 3	2.33	7.84	**	17.63	95 and (
		II.NI	,	0.08	36.67	•	9.96	23.56	4 4	19.50	30 77	**	10.50	24.51	*	22.58	: 8	**	25.53		72.56	32.06		25.61	_	22.07	int at 0.0
			Cx		11.3		2	5		9					-	-					-			-		-	significant at 0.05 and 0.01 levels of probability
	_				1	,	1X4	1x5		1x6	2x3		2x4	2x5		2x6	314		3x5	,	OXC	4x5		4x6	7.7	ove we	2

Table (8): Cont.

.,			Seed vield/nlant	d/nlant					Oll Krittening	,9,,,,,		
C 1088	02	W.F.	45 1/0	7.0	Combined	ined	30 kg	en en	45 kg	94	Combined	ined
	II MP	II RP	II.MP	-BP	H.MP	H.BP	H.MP	H.BP	H.MP	H.BP	H.MP	H.BP
							:	:		9		;
5	CF I	-2.47	5.23	-1.13	2.83	-1.72	-2.74	-3.38	0.20	-1.58	17.1-	-
7			:	•	**	•	*		:			
143	38 26	11.97	50.64	11.91	46.30	11.79	8.16	0.34	19.6	0.48	8.89	0.42
2			:	1	**	10.33	95.0	0 0 0	0.07	-2.17	0.33	-1.06
1x4	12.80	8.41	15.84	6.43	14.83	10.32	0.30			:		**
	: :	• •	: 52	1.21	81 81	. 87	0.25	-2.61	0.14	107	0.20	-3.31
1x5	75.81	07:01	10.01		:			**	:	:		•
	• 5	13.03	22.12	2.27	18.73	5.90	1.57	4.95	-3.44	-11.26	-0.96	-8.13
1x0	2:	20.01			:		•	:		•		
22	33 03	98 0	31.67	1.94	28.33	1.35	2.02	4.79	1.61	-5.23	1.81	-5.01
2	. 8	2.7	11 80	9.25	11.50	10.90	1.20	1.07	1.36	0.95	1.30	1.16
+X7	10.72	2112	1			•		•				
,	: 0 91	159	15.81	11.83	16.14	14.03	0.25	-1.98	0.88	-1.55	0.57	-1.76
CX7	10.74	2000	:	•	**			:		:		•
,	71.0	11.0	30.41	15.27	18.26	9.97	0.23	5.62	-1.98	-8.34	0.90	-7.01
0X7	0.00	i			:		:	•	:	:	:	
		3 00	21 43	181	31.76	3.72	4.92	-2.19	2.76	-3.79	3.83	-3.00
3x4	37.05	1	2::0		:		•			:	:	
345	: 04	0.30	33.33	6.24	33.00	3.64	4.00	-0.82	1.20	3.40	2.60	-2.12
O.Y.C.		1	*		:		**	•		10		
yar	37.28	11.39	22.55	5.04	28.84	7.84	3.07	2.13	0.63	0.36	1.83	1.24
	:				*		:				31.6	0.07
341	14.74	9.50	7.99	6.77	10.79	9.35	2.47	0.07	1.81	77.0	1	1
440		-	•		:		•	:	3.0		02.0	2 10
yxF	10.17	5.18	21.50	9.71	17.00	7.98	2.18	-3.92	-0.95	7.07	1	1
- Care		*	:		•							301
246	23.63	13.35	15.70	5.54	19.32	60.6	-0.56	4.32	0.10	7	1	4

positive heterotic effects for stem diameter were recorded before by Ashry (1991).

For fiber length, eight parental combinations expressed significant positive heterotic effects relative to mid-parent values in both nitrogen levels and the combined analysis. While, three, two and two hybrids exhibited significant positive heterotic effects relative to better parent at 30, 45 kg N/fed as well as at the combined analysis, respectively. The two crosses (1x2) S.2419/1 x Giza 8 and (3x4) Ariane x Strain 1 gave significant positive heterotic effects relative to mid-parent or better parent values at both nitrogen levels as well as the combined analysis. Significant positive heterotic effects for fiber length were recorded before by Sallam et al. (1981), Krepkov and Michkina (1983), Ashry (1991) and Wang et al. (1996).

Regarding straw yield, thirteen, fifteen and fifteen parental combinations exceeded significantly mid-parent values at 30, 45 kg N/fed as well as at the combined analysis, respectively. Also, two, five and four crosses from the previous hybrids showed significant positive heterotic effects relative to better parent value in the same order. The crosses (5x6) Gawhar x Bombay, (3x5) Ariane x Gawhar and (2x3) Giza 8 x Ariane recorded the highest values of heterotic effects for this trait. Significant positive heterotic effects for straw yield were previously reported by Sallam et al. (1981), Singh et al. (1983), Wang et al. (1996) and El-Sweify (2002).

Concerning fiber yield, fourteen, fifteen and fifteen hybrids significantly exceeded mid-parent value at 30, 45 kg N/fed as well as at the combined analysis, respectively. While,

nine and eight crosses from the previous hybrids exhibited significant positive heterotic effects relative to the better parent values in the same order. The crosses (3x4) Ariane x S₁ followed by (4x6) S₁ x Bombay and then by (2x4) Giza 8 x S₁ recorded the highest values of heterotic effects relative to the better parent values in the combined analysis. These crosses exhibited heterosis for one or more of traits contributing to fiber yield. The heterotic magnitude, however, differed from case to case. This finding agrees with general trend where the expression of heterosis for a complex trait could be explained on the basis of component interaction, as the numerical value recorded for a complex trait is always a function of its components. It could be concluded that these crosses would be efficient and prospective in flax breeding programs for improving fiber yield per plant. Significant positive heterotic effects relative to higher fiber yielding parent were also reached before by Heland and Hemker (1991) and Wang et al. (1996).

Concerning 1000-seed weight, fourteen, thirteen and fourteen crosses exhibited significant positive heterotic effects relative to mid-parent value at 30, 45 kg N/fed as well as with the combined analysis, respectively. While, one, two and one crosses exceeded significantly the better parent in the same order. Significant positive heterotic effects for 1000-seed weight were recorded by Singh *et al.* (1983), Dakhore *et al.* (1987) and Heyland and Hemker (1991).

For number of seeds/capsule, thirteen, ten and twelve parental combinations exhibited significant positive heterotic effects relative to mid-parent values at 30, 45 kg N/fed as well as

with combined analysis, respectively. While two, one and two crosses expressed significant positive heterotic effects relative to the better parent value in the same order. The two crosses (1x2) S.2419/1 x Giza 8 and (4x5) S₁ x Gawhar recorded the highest values of heterotic effects for this trait in the combined analysis. The same trend of the present results was reported before by Singh *et al.* (1983) and El-Sweify (2002).

Concerning number of capsules/plant, all crosses exhibited significant positive heterotic effects relative to mid-parent values except cross (1x2) S.2419/1 x Giza 8 at both nitrogen levels as well as with the combined analysis. Also, seven, one and three crosses from the previous hybrids expressed significant positive heterotic effects relative to better parent at 30, 45 kg N/fed and the combined analysis, respectively. The three crosses (3x6) Ariane x Bombay followed by (5x6) Gawhar x Bombay and then by (3x4) Ariane x S₁ recorded significant positive heterotic effects relative to the better parent in the combined analysis. Significant positive heterotic effects relative to mid-parent or better parent values were recorded by Singh et al. (1983), Heyland and Hemker (1991), Wang et al. (1996) and El-Sweify (2002).

For oil percentage, seven, two and four crosses exhibited significant positive heterotic effects relative to the mid-parent values at 30, 45 kg N/fed as well as the combined analysis, respectively. While, the cross (3x6) Ariane x Bombay at 30 kg N/fed recorded significant positive heterotic effects relative to the better parent value. Similar results were also obtained by Heyland and Hemker (1991), Tolba (1991) and El-Sweify (2002).

Concerning seed yield/plant, thirteen, thirteen fourteen crosses exhibited significant positive heterotic effects relative to mid-parent values at 30, 45 kg N/fed as well as the combined analysis, respectively. Also, seven three and three crosses from the previous crosses showed significant positive heterotic effects relative to better parent values in the same order. The crosses (1x3) S.2419/1 x Ariane, (1x5) S.2419/1 x Gawhar and (2x5) Giza 8 x Gawhar showed the desirable heterotic effects over both nitrogen levels for seed yield/plant. The previous crosses exhibited superiority in one or more of the traits contributing seed yield. The heterotic effects were different from one nitrogen level to another. This finding coincided with that reached before for significant genotypes by fertilizer mean squares (Table, 6). Significant positive heterotic effects relative to higher yielding parent were also reached before by Krepkov and Michkina (1983) and El-Sweify (2002).

4.1.3. Combining ability variance:

Analysis of variance for combining ability as outlined by Griffing's (1956) method 2 model I at each nitrogen levels as well as their combined average for all the studied traits is shown in Table (9).

The mean squares associated with general and specific combining abilities were significant for all traits at each nitrogen levels as well as the combined analysis, revealing that additive and non-additive gene effects were involved in determining the performance of single cross progeny. Also, results showed that all the traits expressed significant GCA/SCA ratios which

exceeded the unity, indicating the predominance of additive and additive by additive gene action in the inheritance of each trait. These results were along the same line of those reported by Sprague and Tatum (1942), Wright (1985), El-Farouk et al. (1998), Prygun and Polonetskaya (1985), Dang et al. (1987), Ashry (1991), Tak (1994) and Stuthman and Stucker (1975).

The mean squares of the interaction between nitrogen levels and both types of combining ability were significant for all traits except with no. of seeds/capsule which showed insignificant GCA x nitrogen fertilizer and SCA x nitrogen fertilizer indicating that the magnitude of both additive and non-additive types of gene action varied from one nitrogen level to another.

For no. of seeds/capsule, insignificant mean squares of interaction between nitrogen levels and both types of combining ability were detected indicating that the magnitude of additive and non-additive types of gene action did not differ from one nitrogen level to another.

With the exception of 1000-seed weight, no. of capsules/plant, seed yield/plant and straw yield/plant, it is fairly evident that mean squares of SCA x nitrogen levels/SCA were much higher than GCA x nitrogen levels/GCA. Such results indicated that non-additive gene effects were much more influenced by the nitrogen fertilizer levels than additive genetic effects in these traits. Specific combining ability was tested by several investigators to be more sensitive to environmental changes than GCA (Gilbert, 1958; Shehata and Comstock, 1971; Patil and Chopde, 1981; Sallam et al. (1981; Marchenkov, 1984;

Table (9): Observed mean squares for general and specific combining ability from diallel cross analysis for all the studied traits at both nitrogen levels as well as the combined analysis.

1100		3	Plan	Plant height (cm)	Technical Technical	Techni	Technical length (cm)	(cm)	Stem (Stem diameter (IIIIII)	
S.O.V.	3	a.r.	Tall .			30 1.0	45 kg	Com	30 kg	45 kg	Com.
	Single	Comb.	30 kg	30 kg 45 kg	Com.	30 NB	1 mg	:	**	**	
-		-	*	*	*	*	K K		E 11		
	ć	90	10001	1000 16 1021 17	2002.37	1006.34	1386.27	2362.60	0.28	0.10	9
Genotypes	20	0.7	1000.10			*	*	**	*	*	*
			* ;	**		1027 63	1453.93	2461.66	0.23	0.05	0.24
CCA	'n	ıc.	965.61	79.7/01	7027.30	20.1201		*	*	*	*
200		1	*	* 5	21.7 50	104 72	131.47	229.49	0.05	0.03	0
SCA	15	15	122.64	70.31				*			*
NATH.	f				19 06			30.00		The second	0.05
Genotypes x Fer	•	20			10.00			*			*
Service and a se					603			19.90			0.04
CCA v Fer		S			5.75			*			*
					* * *			6.70			0.01
SCA v For	,	15			6.43						
SCA ATEL		00	1.67	2.99	2.33	1.40	3.12	2.26	00.0	0.00	0.00
Error	40	00					20	25 01	4.46	1 78	3.46
103/100			7.87	11.14	9.56	9.81	8.11	10.73	1		
GCAISCA					0.92			2.97			3.38
CCAvFer/SCAxFer	Fer										0.15
100					0.01			0.01			
GCAxFer/GCA					0.03			0.03			0.15
SCAVFer/SCA		SCAYFer/SCA			-						

	100	711
((5
1		-
111	2	1
į	d	2
-	200	on I

S.U.V.		d.f.	ш	Fiber length	_	Straw	Straw vield/nlant (a)	nt (0)		Eihor wiold	7
	Single	Comb.	30 ko	45 kg	Com	201-0	45 1.	(9)		1001 710	0
			0	Sw Ci	COIII.	JU Ng	gy C+	Com.	30 kg	45 kg	Com.
			K	K	*	K K	* *	**	**	**	40
Genotypes	20	20	1040.81	1425.08	2435.14	11.82	46.39	50.32	0.03	0.11	0.12
i			龙龙	*	*	*	*	*	*	*	*
GCA	S	'n	1066.17	1502.05	2548.07	9.26	45.86	46.57	0.03	0.09	0.10
(*	*	*	*	*	*		**	**
SCA	15	15	107.19	132.69	232.93	2.17	5.33	6.84	0.00	0.02	0.02
					*			*			*
Genotypes x rer		70			30.75			7.88			0.05
					*			*			*
GCA x Fer		v.			20.15			8.54			0.01
					*			K			
SCA x Fer		15			6.95			99.0			0.00
Error	0+	80	1.32	3.13	2.23	0.12	0.17	0.14	000	0.00	0.00
GCA/SCA			9.95	11.32	10.94	4.27	8.60	6.81	6.95	4.18	4.85
GCAxFer/SCAxFer	_				2.90			13.03			3.49
GCAxFer/GCA					0.08			0.18			0.16
SCAxFer/SCA		Ą			0.03			0.10	11		0.21

Table (9): Com			100	/30111300	lant	No o	No of seeds/capsule	sule	100	1000 seed weight	eight
S.O.V.	ס	d.1.	NO. 0	No. of capsuics/piam	Diam.		15.1.5	000	30 Fa	45 kg	Com.
	Single	Comb.	30 kg	45 kg	Com.	30 kg	45 Kg	COIII.	20 NS	1	*
	0		*	*	*	*	*	ĸ	K K		į
	6	00	182 61	434.59	550.84	2.53	2.77	5.27	3.23	7.01	9.54
Genotypes	70	07	10.701	;	*	*	*	**	*	*	
		9	* (10101	76 021	2.30	2.33	4.62	2.79	6.43	8.60
CCA	v	S	111.62	404.84	437.4	*	*	*	**	*	*
			* 0	**	91 73	0.36	0.46	0.80	0.50	0.97	1.38
SCA	15	51	43.73	30.40	**						*
		į			yr yy			0.04	St.		0.70
Genotypes x Fer		20			**						K K
Į.		,			57 19			0.00			0.63
GCA x Fer		n			***						K K
		- 9			10.43			0.05			0.10
SCA x Fer		2						000	0.03	000	0.02
	\$	00	1.79	1.93	1.86	0.05	0.03	0.00	_	70.0	
Error	9	00	13.0	70 7	5.01	6.41	5.10	5.78	5.55	6.62	6.25
GCA/SCA			†C.7	0.0							17.7
					5.48			0.27			1
GCAxFer/SCAxFer	Fer										0.07
CCA vEor/GCA					0.12						100
GCAMERICA					0.11						0.0

SCAxFer/SCA * and 0.05 and 0.01 levels of probability, respectively.

Table (9): Cont..

S.O.V.		d.f.	Seed	Seed yield/plant (g)	it (g)	C	Oil percentage	tage
	Single	Comb.	30 Fo	4510	100	201		lago
			Sw oc	TO NB	COIII.	30 Kg	45 Kg	Com.
Conotinos		į		*	*	*	*	**
ocnorypes	70	20	99.0	1.78	1.78	9.78	16.31	24.79
			*	*	*	*	*	*
GCA	0	S	0.51	1.33	1.22	10.80	18.94	28 77
V. J.S	•		*	K	*	*	*	**
SCA	5	15	0.12	0.35	0.39	0.75	0.94	1.43
Genotynee v For	9	5			*			**
The said frame		07			99.0			1.31
GCA v For		4			*			* *
		0			0.62			0.98
SCA v Ear		:			*			* *
SCAAFE		2			0.00			0.26
Error	40	80	0.01	0.04	0.02	0.07	0.11	0.00
GCA/SCA	1		4.05	3.80	3.13	14.49	20.22	20.17
GCAxFer/SCAxFer	<u>.</u>				7.15			3.81
GCAxFer/GCA					0.51			0.03
SCAxFer/SCA		·			0.22			0.10

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Rao and Singh, 1984; Prygun and Polonetskaya, 1985; Chung and Plonka, 1986; Dakhore et al., 1987, Dang et al., 1987 and Abo Kaied, 2002).

For 1000-seed weight and no. of capsules/plant, the ratio of mean squares of GCA x nitrogen levels/GCA and SCA x nitrogen levels/SCA were similar in magnitude, revealing that additive and non-additive gene action were similarly influenced by the nitrogen levels. However, with seed yield and straw yield/plant, the ratios of mean squares of GCAxnitrogen levels/GCA were much higher than SCA x nitrogen levels/SCA. This result indicates that additive genetic effects were much more influenced by the nitrogen levels.

4.1.4. General combining ability effects:

General combining ability effects (\hat{g}_i) of each parent for the studied traits at both fertilizer levels as well as the combined analysis are presented in Table (10). Such effects are being used to compare the average performance of each parent with other parents and its performance to select of parents (variety and/or lines) for further improvement.

High positive values would be interest for all the studied traits. The parental variety S.2419/1 expressed significantly positive \hat{g}_1 effects for all the studied traits except stem diameter and number of seeds/capsule at both fertilizer N-levels as well as the combined data, and seed yield/plant at 30 kg N level for stem diameter at both N fertilizer levels as well as the combined data and seed yield/plant at 30 kg N level, insignificant \hat{g}_1 effects were detected. However, it recorded significant negative \hat{g}_1 effects

Table (10): Estimates of general combining ability effects for studied parents in the Fiwell as the combined analysis for all studied traits.

as

		Plant height (cm)	Plant height (cm)	(1111)						
		30 10	151	(111)	Iechi	Technical length (cm)	(cm)	Ct		
		Sw no	4.3 Kg	Com.	30 kg	45 ko	000	SICILI 201	ordin diameter (mm)	nm)
S. 2419/1		33,	*	*	**	**	COIII.	30 kg	45 kg	Com.
ç		**	1.66	2.00	1.34	1.52	1 13	000		
GIZa 8		0.48	020	k i	ĸ			0.00	-0.01	-0.01
A minima D		*	0.00 **	0.54	0.10	0.07	0.08	719	000	K
Arrane-K ₃		11.58	10.70	× .	*	*	*	***	-0.03	-0.09
S. Strain-1		*	X * *	×* × ×	12.62	14.08	13.35	-0.09	* 700	* 0
		10.44	12.80	11.63	;	*	*		100	-0.06
Cowhor 553		*	*	70.11	11.27	14.50	12.88	9 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* (
Samilal-332		-17.24	10.00		*	*	*	00:0	-0.04	-0.02
1		40	-10.00	-17.66	-16.75	-19.72	18 72	× (*	*
Bombay		750	*	*	K K	*	70.07	0.32	0.16	0.24
		4.37	-7.76	-7.68	-8.59	-10.45		*	*	*
	0.05	0.84	1.13	0.47	1110	7	75.6-	-0.09	-0.05	-0.07
(ig) A (gi)		1		1.5	0.77	1.15	0.46	0.03	0.03	,00
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.01	1.13	1.51	0.62	1.03	151			2000	0.01
, T	0.05	1.31	1.75	92.0	1 20	+0:1	0.61	0.04	0.04	0.02
(gi-gi)		-			07.1	1.79	0.75	0.04	0.05	000
	0.01	67:1	2.34	1.01	1.60	2.40	0 0 0	200		70.0
L.		* 0	*	*	**	*	(1)	0.06	90.0	0.03
* and ** significant at 0.05 and 0.01 levels of and 1.95	0.01 levele	66.0	0.97	96.0	0.95	96.0	200	*	*	*
r : Correlation between parental mean performance and it is	d mean perf	probability, r	espectively.				0.30	0.92	0.91	960

Parent		Fibe	Fiber length (cm)	ш)	Straw	Straw yield/plant (g)	t (g)	Fibe	Fiber yield/plant (g)	t (g)
		30 kg	45 kg	Com.	30 kg	45 kg	Com.	30 kg	45 kg	Com.
		*	*	*	*	* *	* *	*	*	* *
S. 2419/1		1.42	1.57	1.50	0.53	2.71	1.62	0.04	0.14	0.00
						* *	*		*	*
Giza 8		0.23	0.29	0.26	0.19	0.63	0.41	0.01	0.05	0.03
		*	*	*	*	*	*		*	
Ariane-R3		12.66	14.10	13.38	0.27	-0.52	-0.12	0.01	-0.02	-0.00
		*	*	*	*	*	*	*	*	*
S. Strain-1		11.55	14.80	13.18	1.50	2.53	2.01	0.08	90.0	0.07
		*	*	*	*	*	*	*	*	*
Gawhar-552		-17.20	-20.13	-18.66	-1.15	-2.70	-1.93	-0.06	-0.12	-0.09
		*	*	*	*	*	*	*	*	*
Bombay		-8.65	-10.63	-9.64	-1.35	-2.64	-1.99	-0.07	-0.11	-0.09
	0.05	0.75	1.15	0.46	0.22	0.27	0.12	0.01	0.02	0.01
L.S.D.	0.01	1.00	1.54	0.61	0.30	0.36	0.16	0.01	0.02	0.01
<i>*</i>	0.05	1.16	1.79	0.74	0.35	0.42	0.19	0.01	0.02	0.00
(gi-gi)	0.01	1.56	2.39	0.99	0.47	0.56	0.25	0.02	0.03	0.01
		*	*	*				*	*	*
<u>.</u>		0.95	96.0	96.0	0.98	1.00	1.00	0.98	96.0	0.97

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Parent		N								
		INO. C	INO. Of capsules/plant	olant	No.	No. of seeds/cancillo	enlo	1000		
		30 kg	45 kg	Com.	30 kg	45 1.0	Sinc	1000	1000 seed weight (g)	it (g)
S. 2419/1		* .	*	*	**	XX XX	Com.	30 kg	45 kg	Com.
		17.6	7.91	5.56	-0.36	-0.39	-0.37	0.72	* 2	* 6
Giza 8		2.65	7.32	1 00	* (K	*	*	**	0.92
Ariane-B.		*	*	**	717	0.14	0.13	0.38	0.22	0 30
		4.01	-7.73	-5.87	020		*	*	*	*
S. Strain-1		* ;	*	*	**	0.73 **	0.71	-0.84	-1.25	-1.04
		4.01	3.54	3.77	-0.31	CE 0-	* 6	*	*	*
Gawhar-552		* (*	*	*	**	-0.32	0.26	0.75	0.22
		× *	98.9-	-5.52	-0.67	-0.64	-0.65	000	* 0	*
Bombay		-1 68	× t	* 6	*	*	* *	**	09.0	0.32
		100	117	-2.93	0.52	0.48	0.50	-0.55	000	* 6
(iā) *	0.05	0.8/	0.91	0.42	0.00	0.12	0.05	0 11	00.00	7.72
	0.01	1.17	1.21	0.56	0.13	21.0		11.0	0.09	0.05
/	-	1 35			Crim	0.10	0.02	0.15	0.12	0.06
(gi-gi)	0.05	CCT	1.40	89.0	0.15	0.19	0.08	0.18	0.14	000
	0.01	1.81	1.88	0.90	0.19	0.25	011	100		0.00
					Carried Control		0.11	100	010	7000

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r : Correlation between parental mean performance and its gi effects. 0.99

**

0.19 * 0.99

0.23 * 0.99

0.11

96.0

0.99

0.98

0.99

0.97 K K

Table (10): Cont.

Parent		Seed	Seed yield/plant (g)	(g)	Ō	Oil percentage	e
		30 kg	45 kg	Com.	30 kg	45 kg	Com.
		1	*	K X	*	*	*
S. 2419/1		0.02	0.62	0.32	1.15	1.89	1.52
		*	*		*	*	*
Giza 8		-0.16	0.20	0.02	0.55	0.87	0.71
		*	*	*	*	*	**
Ariane-R3		-0.35	-0.57	-0.46	-1.17	-1.30	-1.23
		*		* *	*		*
S. Strain-1		0.12	0.05	0.09	1.13	0.84	0.98
		*		*			
Gawhar-552		0.39	-0.01	0.19	-0.09	-0.04	-0.06
			*	* *	*	*	*
Bombay		-0.02	-0.28	-0.15	-1.58	-2.26	-1.92
	0.05	0.08	0.12	0.05	0.18	0.21	0.00
LS.D. (gi)	0.01	0.10	0.16	90'0	0.23	0.28	0.12
<u></u>	0.05	0.12	0.19	0.08	0.27	0.33	0.15
(gi-gi)	0.01	0.16	0.25	0.10	0.36	0.44	0.20
		*	*	*	*	*	*
		98.0	0.98	0.98	0.97	0.98	0.97

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r : Correlation between parental mean performance and its gi effects.

for number of seeds/capsule at both fertilizer N-levels as well as the combined analysis.

The parental variety Giza 8 was the best general combiner for 1000-seed weight, oil percentage and number of capsules/plant, at both N-levels as well as the combined analysis, plant height in the combined analysis, fiber yield and straw yield at 45 kg N/fed and the combined analysis, and seed yield/plant at 45 kg N/fed. Also, it appeared insignificant or significantly negative \hat{g}_1 effects for other cases.

The parental variety Ariane (P_3) exhibited significantly positive g_i effect, for plant height, technical length, fiber length and number of seeds/capsule at both N-levels as well as the combined analysis. Also, it gave significantly negative or insignificant \hat{g}_1 effects for other traits.

The parental line strain₁ (P_4) expressed significantly positive \hat{g}_i effects for plant height, technical length, 1000-seed weight, oil percentage, fiber yield, number of capsules/plant, and straw yield at both nitrogen fertilizer levels and the combined analysis, and seed yield/plant at 30 kg N/fed and the combined analysis. However, it had significantly negative or insignificant \hat{g}_i effects for other traits. The parental variety Gawhar (P_5) seemed to be good combiner for stem diameter at both nitrogen levels as well as the combined analysis, while, it gave undesirable (\hat{g}_i) effects for other traits. Therefore, this parent was considered as a poor one for these traits.

The parental variety Bombay (P_6) expressed significantly positive (\hat{g}_1) effects for number of seeds/capsule at both nitrogen

levels as well as the combined analysis. While, it was considered as a poor combiner for other traits.

The parental varieties Gawhar (P₅) and Strain 1 (P₄) expressed significantly positive \hat{g}_1 effects for plant height, fiber length compared to other parents at both nitrogen levels as well as the combined analysis. The two parental strains S.2419/1 (P₁) and Strain 1 (P₄) gave the highest \hat{g}_i effects for number of capsules/plant, straw yield, oil percentage and fiber yield at both fertilizer levels as well as the combined analysis, also, significantly superior over other parents. Also, S.2419/1 seemed to be good combiner for 1000-seed weight and seed yield/plant showing significant superiority than other parents.

The two parental varieties Ariane (P_3) and Bombay (P_6) gave the highest \hat{g}_i effects for number of seeds/capsule and it significantly differed than other parents.

In all traits, the values of (\hat{g}_1) mostly differed from one nitrogen level to another. This finding coincided with the detected significant GCA x fertilizer mean squares Table (9).

It is worth mentioning that good agreement between the parental performance and its (\hat{g}_i) effects was obtained for all traits (Table, 10). This finding indicates that intrinsic performance of parental varieties and/or lines gave a good index of their (\hat{g}_i) effects. Therefore, selection with the tested parental population for initiating any proposed breeding program could be practiced either on mean performance or (\hat{g}_i) effects basis with similar efficiency. Such agreement might add another proof to the preponderance of additive genetic variance in these cases.

4.1.5. Specific combining ability effects:

Specific combining ability effects for each cross at N_1 (30 kg N/fed), N_2 (45 kg N/fed) and the combined analysis are present of in Table (11).

For plant height, five, five and four crosses exhibited significantly positive (\hat{S}_{ij}) effects at N_1 , N_2 and the combined analysis, respectively.

Tallness, if found in flax is favorable for increasing technical length, straw yield and fiber yield. The four crosses (1x2) S.2419/1 x Giza 8, (1x4) S.2419/1 x S₁, (3x4) Ariane x S₁ and (5x6) Gawhar x Bombay gave the highest S_{ij} effects in the combined analysis for this trait. In addition, the first three previous crosses (1x2) S.2419/1 x Giza 8, (1x4) S.2419/1 x S₁ and (3x4) Ariane x S₁ involved one or two good combiners for this trait. Hence, it could be concluded that the three crosses are valuable in breeding for increasing plant height.

For technical length, three, four and five crosses exhibited significantly positive S_{ij} effects at N_1 , N_2 as well as the combined analysis, respectively.

For fiber length, three, four and six crosses exhibited significantly positive S_{ij} effects at N_1 , N_2 as well as the combined analysis, respectively. The three crosses (1x2) S.2419/1 x Giza 8, (3x4) Ariane x Strain 1 and (5x6) Gawhar x Bombay gave significantly positive (S_{ij}) effects at both nitrogen levels as well as the combined analysis for this trait. Also, the first two crosses from the previously mentioned crosses involved one or two good combiners for this trait.

Table (11): Estimates of specific combining ability effects for crosses studied at two nitrogen levels as well as the combined analysis for all studied traits.

Cross 1x2 1x3 1x4 1x4 1x5 1x6 2x3 2x4 2x5 2x6 3x4 3x5 3x6 3x6	91ar 30 kg 28.13** -12.41**	Plant height (cm	,						
13.2 13.3 13.4 13.6 13.6 23.3 23.4 23.5 23.6 33.4 33.5 33.6	30 kg 28.13** -12.41**		(III)	Tochn	Technical length (cm)	(cm)	Stem	Stem diameter (mm)	mm)
1x2 1x3 1x4 1x5 1x6 2x3 2x4 2x4 2x5 2x6 3x4 3x5 3x6	28.13**	45 kg	Com.	30 kg	45 kg	Com.	30 kg	45 kg	Com.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-12.41**	26.26**	27.20**	28.68**	30.93 **	29.81**	0.03	-0.06	-0.02
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-12 19**	-12.31**	-6.72**	-11.43**	-9.08**	0.23**	-0.01	0.11**
1x5 1x6 2x3 2x4 2x5 2x6 3x4 3x5 3x6	3.91**	6.67**	5.29**	0.34	8.39**	4.37**	0.07	0.01	0.04
1x6 2x3 2x4 2x4 2x5 2x6 3x4 3x5 3x6	4.73**	-3.45**	4.00**	-7.05**	-2.8	4.94**	0.24**	0.24**	0.24**
2x3 2x4 2x5 2x6 3x6 3x6 3x6	-6.05**	-5.23**	-5.64**	-3.69**	-6.26**	4.97**	0.05	×60.0	0.07*
2x4 2x5 2x6 3x4 3x5 3x6	-1.26	0+1	0.12	0.19	1.40	080	-0.01	0.15**	0.07*
2x5 2x6 3x4 3x5 3x6	3.34**	-2.99	0.17	1.01	1.97	1.49	0.12**	0.11**	0.12**
2x6 3x4 3x5 3x6 3x6	-5.16**	4.12*	4.64**	-5.21**	-6.25**	-5.73**	0.10∗	0.07	0.08**
3x4 3x5 3x6	2.26	-1.32	0.47	0.94	-1.76	-0.41	-0.15**	0.01	-0.07*
3x5 3x6	9.61**	7.19**	8.40**	9.92**	3.66**	9.79**	0.13**	-0.04	0.05
3x6	1.98	-0.90	0.54	-0.54	-1.28	0.57	0.19**	0.10*	0.15**
7.1	-12.70**	**90.6-	-10.88**	-11.82**	-7.93**	-9.88**	0.15**	0.22**	0.18**
-	-5.56**	-0.80	-3.18**	-5.16**	-10.78**	-7.97**	0.12**	0.07	0.10**
914	-2.54	3.19*	0.33	1.54	2.93	2.23*	-0.01	0.12**	.90.0
9x9	13.91**	11.26**	12.59**	8.76**	10.05**	9.40**	0.21	√60.0	0.15**
0.05	2.31	2.10	1.90	2.12	3.17	1.88	80.0	80.0	90.0
L.S.D.sij 0.01	3.09	4.14	2.52	2.83	4.24	2.49	0.11	0.11	80.0
	3.45	4.62	2.84	3.16	4.72	2.80	0.12	0.12	80.0
L.S.D.(stl-stk) 0.01	4.62	6.18	3.76	4.23	6.32	3.71	0.16	0.16	0.01
0.05	3.20	4.28	1.07	2.93	4.38	1.06	0.11	0.11	0.03
LS.D.(sil-sk1) 0.01	4.28	5.72	1.42	3.92	5.85	1.40	0.15	0.15	0.04

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Cont.	
able (11	

45 kg Com. 30 kg 45 kg Com. 30 kg 45 kg 30.82*** 29.82*** 0.34 0.68 0.51* -0.00 0.04* 30.82*** 29.82*** 0.34 0.68 0.51* -0.00 0.04* -12.03*** -9.50*** -0.54 0.98* 0.22 -0.01 0.04 -2.80 -5.11*** 0.85** 2.10*** -0.01 0.01 -0.01 -2.80 -5.11*** 0.85** 2.10** 0.06** 0.10** 0.10** -6.22*** -5.06** 1.42** 2.58** 2.00** 0.06** 0.10** -6.22** -6.09 0.74 0.32 -0.01 0.07** 1.31 0.59 -0.09 0.74 0.32 -0.01 0.07** -6.49** -6.11** 0.83** 1.46** 1.14** 0.03** 0.07** -6.49** -6.11** 0.83** 1.46** 1.14** 0.03** 0.010** -6.49**	Cross	E	Fiber length (cm)	cm)	Stra	Straw vield/plant (g)	ant (g)	Fibo	r viold/nla	nt (a)
28.83^{**} 30.82^{**} 29.82^{**} 0.34 0.68 0.51^{**} 0.00 0.04^{**} -6.97^{**} -12.03^{**} -9.50^{**} -0.54 0.98^{**} 0.21 -0.00 0.04^{**} -0.40 8.67^{**} 4.54^{**} -0.54 0.98^{**} 0.22 -0.01 0.04 -7.43^{**} -2.80 -5.11^{**} 0.85^{**} 2.49^{**} 1.60 0.01 -7.43^{**} -2.80 -5.11^{**} 0.85^{**} 2.49^{**} 1.60 0.01 -3.90^{**} -6.22^{**} -6.043 -1.01 0.02 0.01 0.01 -3.90^{**} -6.22^{**} -5.06^{**} 1.42^{**} 2.49^{**} 1.60 0.10 -3.90^{**} -6.22^{**} 1.42^{**} 2.49^{**} 1.60 0.10 0.10 -0.14 -0.14 0.59 0.09 0.74 0.32 0.01 0.01 -0.14 0.10 0.0		30 kg	45 kg	Com.	30 kg	45 ko	Com	201-2	15100010	III (B)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1x2	28.83**	30.82 **	29.82**	0.34	070	O STATE	SO NB	43 Kg	Com
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1x3	4 * 2 6 9 7 * *	-12 02**	**020	100	0.00	0.51°	-0.00	0.04*	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.4	0.10	0 67**	00.7-	-0.54	0.98*	0.22	-0.01	0.04	0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	7.42**	0.07	x x † C †	-0.43	-I.01**	-0.72**	-0.01	-0.01	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.6	C+./-	-2.80	-5.11××	0.85**	2.49**	1.67**	0.06**	0.10**	*800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	72	-3.90**	-6.22**	-5.06**	1.42**	2.58**	2.00**	90.0	0.12**	0.00
1.21 1.87 1.54 0.01 -0.37 -0.18 -0.01 0.07** -5.74** -6.49** -6.11** 0.83** 1.46** 1.14** 0.03** 0.07** 0.05 1.10** 0.05** 0.010** 0.07** 0.05 1.10** 0.05** 0.010** 0.05** 0.010** 0.05** 0.010** 0.05** 0.010** 0.05** 0.010** 0.05** 0.010** 0.05** 0.05** 0.010** 0.05** 0.010** 0.05** 0.010** 0.05** 0.010** 0.05** 0.010**	CX.7	4).14	1.31	0.59	-0.09	0.74	0.32	-0.01	100	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+X7	1.21	1.87	1.54	0.01	-0.37	21.0	-0.01	0.01	0.00
11.7 -1.07 0.05 1.16** 1.86** 1.11* 0.05** 0.010** 10.08** 9.97** 10.03** 0.08 0.95* 0.52* 0.01 0.12** -1.26 0.68 -0.29** 1.86** 1.33** 1.59** 0.03** 0.07** -1.1.88** -7.82** -9.85** 0.74* 0.58 0.66** 0.04** 0.07** -5.19** -10.90** -8.04** 1.68** 2.06** 0.04** 0.01 -5.19** -10.90** -8.04** 1.68** 2.06** 0.04** 0.01 -5.19** -10.90** -8.04** 1.68** 2.06** 0.04** 0.01** -5.19** -10.90** -8.04** 1.68** 2.06** 0.08** 0.18** -5.19** -10.10** 9.67** -0.74* -1.83** -1.29** -0.04** -0.09** -0.05 2.22 3.14 0.47 0.47 0.02 0.09** 0.05 3.08	2x2	-5.74**	-6.49**	-6.11**	0.83**	1 16**	1 1.1**	10.00	0.07	0.03
10.08** 9.97** 10.03** 0.05** 0.10** 0.10** -1.26 0.68 -0.29** 1.86** 1.33** 1.59** 0.03** 0.12** -1.1.88** -7.82** -9.85** 0.74* 0.58 0.66** 0.03** 0.07** -5.19** -10.90** -8.04** 1.68** 2.06** 0.06** 0.04** 0.01 -5.19** -10.90** -8.04** 1.68** 2.06** 0.06** 0.04** 0.01 -5.19** -10.90** -8.04** 1.68** 2.06** 0.04** 0.01 -5.19** -10.90** -8.04** 1.68** 2.06** 0.08** 0.18** -5.19** -10.90** -8.04** 1.97** 2.83** 2.40** 0.08** 0.18** -6.05 -1.10** -0.74* -1.83** -1.29** -0.04** -0.09** -0.09** -0.05 -2.22 -3.17 0.82 0.99 0.63 0.03 0.05 0.09	2x6	1.17	-1.07	0.05	116**	1 86 **	1.14	0.03	0.02	0.03*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3x4	10.08**	9.97**	10.03**	800	0.05*	1.31	0.05**	0.10**	*80.0
-11.88** -7.82** -9.85** 0.74* 0.58 0.66** 0.03** 0.07** -5.19** -10.90** -8.04** 0.74* 0.58 0.66** 0.04** 0.01 1.57 2.65 2.11* 1.97** 2.83** 2.40** 0.08** 0.18** 0.05 2.22 3.17 1.86 0.62 0.74 0.47 0.02 0.09** 0.09** 0.01 2.76 4.24 2.47 0.82 0.99 0.63 0.03 0.05 0.04 0.05 3.08 4.73 2.78 0.92 1.10 0.71 0.03 0.05 0.05 0.01 4.12 6.33 3.68 1.23 1.48 0.94 0.04 0.09 0.06 0 0.05 2.85 4.38 1.05 0.85 1.02 0.03 0.06 0	3x5	-1.26	89.0	-0 20××	1 06**	1.33	0.52	0.01	0.12**	0.06**
-5.19** -10.90** -9.04** 0.14* 0.58 0.66** 0.04** 0.01 -5.19** -10.90** -8.04** 1.68** 2.06** 1.87** 0.08** 0.01** 1.57 2.65 2.11* 1.97** 2.83** 2.40** 0.08** 0.18** 0.05 2.22 3.17 1.86 0.62 0.74 0.47 0.02 0.09** 0.01 2.76 4.24 2.47 0.82 0.99 0.63 0.03 0.05 0.05 3.08 4.73 2.78 0.92 1.10 0.71 0.03 0.06 0.01 4.12 6.33 3.68 1.23 1.48 0.94 0.04 0.09 0.05 2.85 4.38 1.05 0.85 1.02 0.03 0.06 0.01 3.81 5.86 1.30 1.14 0.03 0.03 0.06 0	3x6	-11 88**	787**	0.050	1.00	1.33	1.59**	0.03**	0.07**	0.05**
0.05 2.22 3.17 1.86 0.92 0.04 0.08 0.08** 0.18** 0.05 2.22 3.17 1.86 0.62 0.74 0.47 0.02 0.09** 0.09** 0.09** 0.01 2.76 4.24 2.47 0.82 0.99 0.63 0.03 0.09 0.05 3.08 4.73 2.78 0.92 1.10 0.71 0.03 0.06 0.01 4.12 6.33 3.68 1.23 1.48 0.94 0.04 0.03 0.06 0.05 2.85 4.38 1.05 0.85 1.02 0.07 0.03 0.06 0	4x5	-5 10××	10.00**	20.00	0.74	0.58	0.66**	0.04**	0.01	0.02*
0.05 2.22 3.17 1.86 0.62 0.74 0.18** 2.40** 0.89** 0.18** 0.05 2.22 3.17 1.86 0.62 0.74 0.47 0.02 0.04** -0.09** -0.09** -0.09** -0.09** -0.09** -0.09** -0.09** -0.09** -0.09** -0.09** -0.09** -0.09* 0.04 0.04 0.09 0.04 0.09 0.05 0.09 0.05 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0	4x6	1 57	3,65	-0.04	1.68××	2.06**	1.87**	0.08**	0.18**	0.13*
0.05 2.22 3.17 1.86 0.62 0.74 -1.23** -1.29** -0.04** -0.09** 0.01 2.22 3.17 1.86 0.62 0.74 0.47 0.02 0.04 0.05 3.08 4.73 2.47 0.82 0.99 0.63 0.03 0.05 0.01 4.12 6.33 2.78 0.92 1.10 0.71 0.03 0.06 0.05 2.85 4.38 1.05 0.85 1.02 0.27 0.03 0.06 0.01 3.81 5.86 1.30 1.12 0.27 0.03 0.06	2.0	0.73**	2.03	2.11.	1.97**	2.83**	2.40**	0.89**	0.18**	0.13*
0.05 2.22 3.17 1.86 0.62 0.74 0.47 0.02 0.04 0.01 2.76 4.24 2.47 0.82 0.99 0.63 0.03 0.05 0.05 3.08 4.73 2.78 0.92 1.10 0.71 0.03 0.05 0.01 4.12 6.33 3.68 1.23 1.48 0.94 0.04 0.08 0.05 2.85 4.38 1.05 0.85 1.02 0.27 0.03 0.06 0.01 3.81 5.86 1.30 1.14 0.27 0.03 0.06		22.5	10.10	9.6/**	-0.74*	-1.83**	-1.29**	-0.04**	-0.09**	-0.06**
0.01 2.76 4.24 2.47 0.82 0.99 0.63 0.03 0.05 0.05 3.08 4.73 2.78 0.92 1.10 0.71 0.03 0.05 0.01 4.12 6.33 3.68 1.23 1.48 0.94 0.04 0.06 0.05 2.85 4.38 1.05 0.85 1.02 0.27 0.03 0.06 0.01 3.81 5.86 1.39 1.14 0.07 0.03 0.06	1	77.7	3.17	1.86	0.62	0.74	0.47	0.02	FOO	0.00
0.05 3.08 4.73 2.78 0.92 1.10 0.71 0.03 0.05 0.01 4.12 6.33 3.68 1.23 1.48 0.94 0.04 0.06 0.05 2.85 4.38 1.05 0.85 1.02 0.27 0.03 0.06 0.01 3.81 5.86 1.39 1.14 0.05 0.03 0.06		2.76	4.24	2.47	0.82	0.99	0.63	0.03	0.05	20.0
0.01 4.12 6.33 3.68 1.23 1.48 0.94 0.04 0.08 0.05 2.85 4.38 1.05 0.85 1.02 0.27 0.03 0.06 0.01 3.81 5.86 1.30 1.14 0.07 0.03 0.06	t	3.08	4.73	2.78	0.92	01.1	0.71	0.00	0.00	0.03
0.05 2.85 4.38 1.05 0.85 1.02 0.27 0.04 0.08 0.01 3.81 5.86 1.30 1.14 0.27 0.03 0.06		4.12	6.33	3.68	1.23	1 48	0.04	0.03	0.06	0.03
0.01 3.81 5.86 1.30 1.11 1.22 0.27 0.03 0.06	- 1	2.85	4.38	1.05	0.85	1.00	0.24	0.04	0.08	0.05
		3.81	586	1 30	111	70.7	0.27	0.03	90.0	0.01

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Cross	No.	No. of capsules/plant	/plant	No. o	No. of seeds/capsule	sulc	100	1000 seed weight	ght
	30 kg	45 kg	Com.	30 kg	45 kg	Com.	30 kg	45 kg	Com.
Cyl	-140	-6.37**	-3.88**	1.51**	1.75**	1.63**	-0.39*	-0.06	-0.23*
221	× × 00 ×		7.24**	-0.61**	-0.76**	-0.72**	1.04**	1.47**	1.26**
2 2	-0.73		-0.75	0.07	-0.03	-0.05	-0.12	0.18	0.03
185	416**	7.43**	5.80**	-0.06	-0.07	90.0	0.15	-0.48**	-0.17
186	1.52	5.11**	3.31**	0.29*	0.32	0.30**	0.43**	0.76**	0.60**
2x3	5.52**		7.89**	0.02	0.40*	0.21*	0.88**	1.03**	**96.0
FAC	-0.83	-	-1.53	-0.17	-0.47**	-0.32**	-0.06	-0.41**	-0.24*
27.5	4.06**	7.82**	5.94**	0.03	-0.11	+0.0 +	0.07	-0.09	-0.01
9x2	2.32	4.90**	3.61**	-0.07	-0.08	-0.08	0.63**	0.48**	0.56**
3x4	5.93**	8.15**	7.04**	0.58**	0.73**	0.66**	0.73**	1.11**	0.92**
3x5	-2.11	-5.61**	-3.86**	-0.07	0.01	-0.03	0.28	0.72**	0.50**
3x6	10.84**	-1.38	4.73**	0.22	0.11	0.16	-0.40*	-0.31*	-0.36**
445	6.22**	4.44.4	5.33**	0.38**	0.31	0.34**	-0.01	0.10	0.05
4x6	2.73*		2.87**	0.25	0.32	0.29**	0.78**	0.37**	0.58**
9x5	-0.15	-0.23	-0.19	0.61**	0.55**	0.58**	0.20	0.94**	0.57**
	0.05 2.40	2.49	1.70	0.26	0.33	0.21	0.31	0.25	0.20
LS.D.stj 0.01		3.33	2.25	0.35	0.44	0.27	0.41	0.33	0.26
	_	3.71	2.54	0.38	0.49	0.31	0.46	0.37	0.29
L.S.D (sil-sik) 0.01		4.97	3.36	0.51	99.0	0.41	0.62	0.49	0.39
1		3.44	96'0	0.36	0.46	0.12	0.43	0.34	0.11
LS.D.(sil-sk1) 0.01	1	977	127	0.48	0.61	0.16	0.57	0.45	0.15

L.S.D.(sij.sk1) 0.01 4.43 4.60 1.27 0.40
*and ** significant at 0.05 and 0.01 levels of probability, respectively.

ont
Ü
$\widehat{\Xi}$
ble (
ap

Cross		See	Seed vield/plant(g)	nt(g)	0	Oil percentage	OP.
		$30 \mathrm{kg}$	45 kg	Com	30 ko	451-0	2
1x2		-0.23*	*1.60-	0.30**	11/11	ga Cr	COIII.
143		11000		0.47	-1.10	-0.13	-0.64**
CVI		0.38	1.12**	0.75**	2.09**	2.93**	2.51**
+XI		0.08	0.20	0.14	-0.31	-0.36	133
Ix5		0.36**	0.10	0.23*	-0.21	0.28	0.0
1x6		0.07	0.31	0.19	0.32	-1.23**	*970
2x3		0.14	0.36*	0.25*	90.0	90.0	000
2x4		0.15	0.07	0.11	0.27	0.41	0.34
2x5		0.21*	0.25	0.23*	0.12	0.23	010
2x6		-0.17	0.68**	0.26*	0.12	010	01.0
3x4	1	0.30**	0.36*	0.33**	0.65**	0.74	0.14
3x5		0.20	0.42*	0.31**	0.51*	-0.33	0.43
3x6		0.36**	-0.16	0.10	0.12	200	0.00
4x5		0.04	-0.07	-0.02	0.51*	0.0	0.00
4x6		0.01	0.10	0.17	70.0	0.40	U.49**
5x6		0.31**	0.10	100	0.30	4.15	0.10
	0 05	100	0.10	0.20	-0.43	0.33	90.0
L.S.D. sil		0.20	1.34	0.20	0.48	0.58	0.37
o o	0.01	0.28	0.45	0.26	0.64	0.78	0.49
L.S.D (sil. dt.)	0.05	0.31	0.50	0.29	0.72	0.87	0.55
	0.01	0.42	0.67	0.39	96.0	116	0.72
LS.D 0.	0.05	0.29	0.46	0.11	99.0	080	0.71
- 1	0.01	0.39	0.62	0.15	080	1 00	17.0

und ** significant at 0.05 and 0.01 levels of probability, respectively.

Eight, eight and eleven parental combinations expressed significantly positive (\hat{S}_{ij}) effects for stem diameter at N_1 , N_2 as well as the combined analysis, respectively. The cross (1x5) S.2419/1 x Gawhar gave the highest \hat{S}_{ij} effects in the combined analysis followed by (3x6) Ariane x Bombay and then by (3x5) Ariane x Gawhar.

Regarding straw yield, eight, nine and eleven parental combinations expressed significantly positive S_{ij} effects at N_1 , N_2 as well as the combined analysis, respectively.

For fiber yield, eight, nine and ten hybrids exhibited significantly positive (S_{ij}) effects at N_1 , N_2 as well as the combined analysis, respectively. For both traits, straw and fiber yields, the six crosses (1x5) S.2419/1 x Gawhar, (1x6) S.2419/1 x Bombay, (2x6) Giza 8 x Bombay, (3x5) Ariane x Gawhar, (4x5) S₁ x Gawhar and (4x6) S₁ x Bombay gave the highest S_{ij} effects in the combined analysis.

For number of capsules/plant, eight, nine and ten parental combinations expressed significantly positive (\hat{S}_{ij}) effects at N_1 , N_2 as well as the combined analysis, respectively. The best combinations were (1x3) S.2419/1 x Ariane, (2x3) Giza 8 x Ariane and (3x4) Ariane x S_1 . This result is logically expected where the parents S.2419/1, Giza 8, Ariane and Strain 1 were of D or O types.

Concerning, number of seeds/capsule, five, four and seven parental combinations exhibited significantly positive (\hat{S}_{ij}) effects at N_1 , N_2 as well as the combined analysis, respectively. The best crosses were (1x2) S.2419/1 x Giza 8, (3x4) Ariane x S_1 and (5x6) Gawhar x Bombay, where they gave significantly

positive S_{ij} effects at both N-levels as well as the combined analysis.

Regarding 1000-seed weight, seven, eight and eight parental combinations expressed significant positive (\hat{S}_{ij}) effects at N_1 , N_2 as well as the combined analysis, respectively. The best combinations were (1x3) S.2419/1 x Ariane, (2x3) Giza 8 x Ariane and (3x4) ariane x S_1 at both N-levels and the combined analysis.

Regarding oil percentage, the crosses (1x3) S.2419/1 x Ariane, (3x4) ariane x S_1 , (3x5) Ariane x Gawhar and (4x5) S_1 x Gawhar at N_1 ; (1x3) S.2419/1 x Ariane at N_2 ; and (1x3) S.2419/1 x Ariane, (3x4) ariane x S_1 and (4x5) S_1 x Gawhar in the combined analysis exhibited significantly positive (\hat{S}_{ij}) effects. The best cross was (1x3) S.2419/1 x Ariane which gave significantly positive S_{ij} effects at N_1 , N_2 the combined analysis.

Concerning seed yield/plant, six, five and eight parental combinations expressed significantly positive S_{ij} effects at N₁, N₂ as well as the combined analysis, respectively. The best parental combinations were (1x3) S.2419/1 x Ariane, (1x5) S.2419/1 x Gawhar, (3x4) Ariane x S₁, (3x6) Ariane x Bombay and (5x6) Gawhar x Bombay at N₁; (1x3) S.2419/1 x Ariane, (2x6) Giza 8 x Bombay, (3x4) Ariane x S₁ and (3x5) Ariane x Gawhar at N₂; and (1x3) S.2419/1 x Ariane, (1x5) S.2419/1 x Gawhar (3x4) Ariane x S₁ and (3x5) Ariane x Gawahr, in the combined analysis. It could be concluded that the previous crosses seemed to be the best combinations since they had significant S_{ij} effects for more than one of seed yield components.

The best combinations were (1x3) S.2419/1 x Ariane, (2x3) Giza 8 x Ariane and (5x6) Gawhar x Bombay for seed yield/plant, (1x2) S.2419/1 x Giza 8, (1x6) S.2419/1 x Bombay, (3x6) Ariane x Bombay, (4x5) S₁ x Gawhar and (4x6) S₁ x Bombay for fiber yield and (1x5) S.2419/1 x Gawhar, (2x5) Giza 8 x Gawhar, (2x6) Giza 8 x Bombay, (3x4) Ariane x S₁ and (3x5) Ariane x Gawahr for both fiber and seed yields. The mentioned combinations might be of interest in breeding programs aiming to produce pure line varieties for high seed or fiber yields or both, whereas most combinations involved at least one good combiner for these propuse.

In most traits, the values of S_{ij} effects differed from one environment to another. This finding coincided with that reached above for significant SCA by environment mean squares (Table, 8).

The previous crosses that showed high (\hat{S}_{ij}) effects had only one good combiner. Such combinations would show desirable transgressive segregates providing that the additive genetic systems present in the good combiner as well as the complementary and epistatic effects present in cross act in the same direction to reduce undersirable plant characteristics and maximize the character in view. Therefore, the previous crosses might be of prime importance in breeding program for traditional breeding procedures.

4.2. Genetic components of variation:

Data were subjected to the diallel cross analysis produced by Hayman (1954a and b) for more information about the genetical behaviour of the agronomic characters under study. The computed parementers for all the studied traits are presented in Table (12).

Significant (D) values were detected for all the studied traits at both nitrogen levels. This finding confirms the results shown above by GCA mean squares in Table (9).

Significant values for the dominance component (H₁) were obtained for all the studied traits at both nitrogen levels. Values of (H₁) were larger in magnitude, than the respective (D) ones for stem diameter and seed yield/plant at both nitrogen levels, and no. of seeds/capsule and fiber yield/plant at 45 kg N/fed. Also, the quantity (H₁/D)^{1/2} is a weighed estimate of the average degree of dominance at each locus. The values of (H₁/D)^{1/2} were higher than the unity for these cases, indicating that the over dominance may be important as previously reported by Ashry (1991), Wang *et al.* (1996) and Foster (1998). This result also revealed that non-additive type of gene action was the most prevalent genetic components for these cases.

The values of (D) in most cross were larger in magnitude than the respective (H₁) ones, indicating that the additive and additive x additive types of gene effects were the most prevalent genetic components. Also, the ratio of (H₁/D)^{1,2} was found to be less than unity, revealing the presence of partial dominance. Similar results were previously reported by Badwal *et al.* (1972), Doucet and Flipescu (1982), Rao and Singh (1985), Sharma *et al.* (1986), Rao and Sing (1987), Stapath *et al.* (1987) and Ashry (1991).

Table (12): Estimates of gener	בוור בסוווססווביו	L+ (cm)	Technical	Stem diameter (mm)	Stem diameter (mm)	eter (mm)
Components	Plant height (Ciri)	gnt (cm)	20.10	45 kg	30 kg	45 kg
	30 kg	45 kg	JU N.B	D 44	**	*
l a	**	** 557 21+73.27	487.89+81.90	655.26+102.27	0.059+0.009	0.017+0.004
) (±	144 10+199 61	75.21+178.99	31.22+200.09	-21.33+249.84	-0.044+0.022	-0.006+0.011
H	528.13+207.42	* 402.22±185.99	* 456.27 <u>+</u> 207.92	558.22+259.62	0.159+0.023	0.081±0.011
H ₂	* 436.95+185.30	341.05+166.15	369.46+185.74	461.21±231.92	0.124+0.020	0.074+0.010
ч	23.57±124.72	37.13+111.83	15.78+125.01	51.10+156.10	0.323+0.014	0.200+0.007
H	1.65+30.88	2.98+27.69	1.36+30.96	3.06+38.65	0.002 ± 0.003	0.002+0.002
20.50	0.990	0.850	196.0	0.923	1.644	7.700
(H ₁ /D)	0.207	0.212	0.202	0.207	0.195	0.228
$K_D/K_R = \frac{(4 D H_1)^{1/2} + F}{(4 D H_2)^{1/2} + F}$	1.312	1.173	1.068	596.0	0.631	0.847
(4DH1) -F Heritability NS narrow	0.687	0.755	0.744	0.766	0.677	0.419
semse	103.0	0.535	0.638	0.624	-0.974**	-0.804*
r	100.0	9800	0.407	0.389	0.948	0.647

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r: Simple correlation between mean performance of parents and (Wr + Vr).

	Table (12): Cont.						
	Components	Fiber	Fiber length	Strawy	Straw vield/plant	Fiber	10/2/02+
		30 kg	45 kg	30 kg	45 kg	201-	Tivel yield plain
	4	**	3	0	TO NOT	30 Kg	45 kg
	ŋ	502 11+82 76	275 00 1100 273	*	-k -k	**	**
-	.44	07.70	0/3.00+102.13	6.68+0.37	24.35+0.99	0.017 + 0.001	0.041+0.005
	(<u>r</u>	24 40+202 19	07 07 07 07 0	* 1		*	
		01.707-01-17	05.444.50	3.27+0.90	2.07+2.41	0.006+0.002	0.002 + 0.011
	H _I	466.52+210.09	562.93+259.26	** 6 53+0 93	**	*	**
-	Н,	**	*	2000	14.00+2.50	0.012+0.002	0.058 ± 0.012
	ı	379.78+187.68	466.12+231.60	5.90+0.83	14774733	**	* *
_	-4			**	C7.7.1.1.4.	0.011+0.002	0.053+0.011
0		14.41+126.32	51.48+155.88	12 53+0 56	35 30 1 50	*	*
	2			00:0	05.1+86.66	0.020+0.002	0.142 + 0.007
	되	1.30+31.28	3.05+38.60	0.12+0.14	0.18+0.37	00000	
_	01:000	0.064	0000		200	0.000+0.000	0.001+0.002
	$(H_1/D)^{-2}$	40.70	0.913	686.0	0.782	0.836	1.195
	H ₂ /4 H ₁	0.204	0.207	0.226	0.248	0.221	0 220
	V W (4DH1) ^{1/2} +F						
	$R_D/R_R = \frac{(4 D H_1)^{1/2} - F}{}$	1.052	0.957	1.657	1.115	1.574	1.035
- 01	Heritability NS narrow semse	0.746	0.770	0.558	0.743	0.683	0.614
		0.647	0.651	*********			
-	-	1000	160.0	-0.990**	-0.988**	-0.993**	-0.941**
	r ²	0.418	0.424	0.981	0.976	0.987	0.885

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r: Simple correlation between mean performance of parents and (Wr + Vr).

0.885

Table (12): Colli.		, , ,	No of sp	No of sped/cansule	1000 seed weight	1 Weight
Components	No. of cap	No. of capsules/plant	10.01	oinca calcain	20 / 02	45 kg
Components	20 60	45 kg	30 kg	45 kg	30 Kg	04 6
	30 Kg	3 VCT	3	*	**	×
	*	*	**	1 18+0 27	2.05+0.13	4.99+0.22
D	92.97+11.28	217.46+14.98	1.33+0.20	1.10101.1	**	*
	*			27 0 120 0	1 00+0.31	2.78+0.53
Ľ.	62.00+27.056	23.69+36.59	0.31+0.48	0.0/10.0	**	**
	**	*	- x	, , , , , , , , , , , , , , , , , , ,	1 56+0 32	3.23+0.55
H,	130.97+28.63	178.76+38.02	1.23+0.49	1.04±0.70	**	*
H	*	* *	× × 1 15±0 44	1.50+0.62	1.40+0.29	2.69+0.49
-	115.62+25.58	175.46+33.97	**************************************	-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X	*	*
	*	**	1.14+0.30	1.33+0.42	2.68+0.20	5.12+0.33
u	279.55+17.22	00:771+0:167		1	30.0.50.0	0.02+0.08
B	1 89+4.26	2.35+5.66	0.02+0.07	0.03+0.10	0.07-0.0	3000
	1911	0.907	0.963	1.143	0.873	coo.u
$(H_1/D)^{1/2}$	1.10/			27.0	0.225	0.208
	0.221	0.245	0.234	647.0		
$(4 D H_1)^{1/2} + F$	1.782	1.128	1.271	1.051	1.777	2.060
(4DH1)1/2 -F					0,713	0 665
Heritability NS narrow	0.429	0.681	0.641	0.586	0.013	
semse		1111000	0.540	-0.619	-0.982**	**066.0-
	-0.972**	-0.995**	0.0-0-			0.081
-	0.044	0.989	0.291	0.383	0.965	0.701

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r: Simple correlation between mean performance of parents and (Wr + Vr).

	+		
(C	500	
1			
1		-	
	0	5	
-	7		

Components	Seed y	Seed yield/plant	Oil ne	Oil percentage
	30 kg	45 kg	30 kg	15 L.
D	*	*	**	4.0 Kg
	0.29 ± 0.03	0.87+0.11	6 87+0 51	* .
ĹŦ,	*		*	8.94+0.95
	0.11+0.06	0.35+0.27	2.50+1.25	CC C 1 90 0
Η,	*	**	*	-0.00+2.32
	0.38+0.07	0.99+0.28	2.91+1 30	× 100
H	*	**	*	3.79+2.41
7	0.30 + 0.06	0.91+0.25	214+116	*
h	**	**	01.1+1.7	3.03+2.15
	0.73 ± 0.04	2.09+0.17	1 31+0 70	
(+)		•	0/.0	0.33+1.45
	0.01+0.01	0.04+0.04	0.10+0.19	0.11+0 36
$(H_1/D)^{1/2}$	1.154	1.066	0.653	0.657
H ₂ /4 H ₁	0.197	0.231	0.184	0000
K. K. = (4 D H1) ^{1/2} + F				007.0
(4DH1) ^{1/2} - F	1.414	1.465	1.783	0.986
NS narrow				
	0.589	0.530	0.801	0.849
L	**886.0-	**066.0-	-0.875*	-0.375
	726.0	0000		

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r: Simple correlation between mean performance of parents and (Wr + Vr).

The overall dominance effects of heterozygous locisymbolized as (h²) were estimated for all the studied traits (Table, 12). Significant (h²) values were detected for all traits indicating that dominance was unidirectional. This finding confirms the results shown above by parent vs. crosses illustrated in Table (6).

The average frequency of negative vs. positive alleles in parental populations was detected by the ratio ($H_2/4H_1$). Values that deviate from one quarter were detected for stem diameter, oil percentage and seed yield/plant at 30 kg N-level, revealing that negative and positive alleles were unequally distributed among the parents. The same conclusion could also be drawn from estimating either (F) component or the corresponding proportion K_D/K_R .

Significant and negative correlation coefficient values between parental mean (Yr) and (Wr + Vr) for each array were obtained for stem diameter, no. of capsules/plant, seed yield/plant, straw yield/plant, 1000-seed weight and fiber yield at both nitrogen levels; and oil percentage at 30 kg N/fed. This indicates that the increasers genes were dominant over decreasers.

With the exception of stem diameter at 45 kg N/fed and number of capsules/plant at 30 kg N/fed., high to moderate heritability values in narrow sense were detected for all traits, indicating that most of genetic variance may be due to additive type of gene action. This finding supported the previous results of genetic components where (D) estimates had a high role for these cases. Consequently, selection could be useful in this respect. For the exceptional cases, both types of gene action

(additive and non-additive) were most prevalent of the genetic variance.

4.3. Fertilizer susceptibility index (FSI):

4.3.1. Mean performance:

The mean performances of the six flax parents and their hybrids for most traits were used for estimating susceptibility to low nitrogen level by using three equations i.e. [1-(Y_S/Y_N)/D] (Fisher and Maurers, 1978), S/NS (Saulescu, *et al.*, 1995), [(NS-S)/NS] (Ali Dib *et al.*, 1990) (Table, 13).

Mean squares of (FSI) for genotypes were significant for all traits except number of seeds/capsule in the three methods and technical length by NS-S/NS only.

Significant (FSI) mean squares of parents were detected for all traits under study except oil percentage in the three methods, number of capsule in the first and second methods, and technical length in the third method.

The mean performances of the six parents of flax for FSI by the three methods are presented in Table (14). The susceptibility index was used to estimate relative stress injury because it accounted for variation in traits potential stress intensity.

Application of the performance of parents of the studied traits based on (FSI) over both fertilizer treatments 30 kg N/fed (low) and 45 kg N/fed (normal) (stress and non stress) indicated that the parental variety P₁ gave the desirable FSI for number of seeds/capsule, parent P₃ for 1000-seed weight, fiber length and

Table (13): Observed mean squares from ordinary analysis of variance for the fertilizer susceptibility index of all the studied traits in flax

700	11 6	Af DIA	of theinh ((111)	Tech	nical length ((cm)	Stem	diameter ((mm)
		F16	an incigin in	1111		0			SINIS	NC CINC
		UV V VD	SNS	NS-S/NS	1-(Y _S /Y _N)/D	SNS	NS-SNS	U(NY/SY)-I	CNIC	CVING-CVI
-	-	Ž		.000	20.0	2000	0000	0.011	0001	0.0003
Don	C	0.187	0.00	0.001	0.173	0.003	0.00	0.01		
, Jan	1 8	******	**1000	**1000	1 570 **	** 0000 ×*1	0.014	1.322**	0.011**	0.012**
Genotype	07	1.623	0.00	0.00	2000	2000			*2000	**0000
	¥	1 231 **	A 0003 ×	0.003*	1.422*	.800.0	0.008	1.062**	0.000	0.003
arents .		1.26.1	0.00	-				11007	*****	0.012**
	-	1 8 J7 * *	0.005××	0.004	1091	0.000	0.017	1.428°°	0.013	CIO.0
CLOSSES	-	1.0.1	0.000				,000	*	0000	0.014**
2		0.017	T000 0	0.00	1.876*	0.011×	0.00	1.1+/	0.000	10.0
ar a Cross	-	0.047	0.000			- 000	0000	27.00	0000	2000
D. maron	101	0.305	0.001	0.001	0.427	0.007	0.008	0.243	0.007	700.0

700	+ 1	Eih	Fiber Length (cm)	("	Stray	Straw vield/plant (g)	(g)	Fibe	Fiber vield/plant	(g)
	:	110	Cl icilgin (C	(11)				40000	CINIC	SNO SNO
			SNAS		1-(Y _s /Y _N)/D	SVNS	NS-SNS	UVNY SYNJO	CKIK	CHIA-CHI
		2010	0.003	0.008	0.001	0.005	0.003	0.000	0.004	0.00
Kep	7	0.123	0.00	0.000				***************************************	******	A * TCO O
1	30	1 8 10 **	0.010**	0.022**	0.205**	0.019**	0.021**	0.7/9"	0.027	0.027
Cenotype	07	7.0.0	**0100	0.0.63**	**9660	0.023**	0.023**	0.491**	0.046	0.046**
Parents	n	1.819	0.010	0.040	0.77	20.0			******	0.011**
	-	1 801 **	0.010**	0.012	0.204**	0.019**	0.021**	0.116**	0.011	0.011
Crosses	1	1.001	0.00		0010	2100	0.011	** 90F 1	0.0150**	0.146**
Pary Crise	_	2,655*	0.015*	0.058	0.108	0.013	0.011	27.17		0000
Prince	. 3	0510	0.003	0.008	0.028	0.004	0.003	0.026	0.002	0.007

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

,	1
Č	5
131.	10)
Jahla /	acon.
-	

	1000 seed weight	+	0.008** 0.006**				
2001	1-(Y _c /Y _v /D		0.1111** 0.0	-	1	1	_
capsule	NS-S/NS	0.001	0.001	0.001	0.0003	0000	7000
No. of seed/capsule	SN/S (I/(X/x/))	65 0.001			0.0001	_	
CAND		0.034** 1.765			-	4	
No. of capsules/plant	+	0.026**	+	1	+	-	
Lf. No	2 0.053**	5 0 1.00	4 0.676**	0.332	0 0.117		<i>t</i>
S.O.V.	Rep	Parents	Crosses 1	Par x Cross	Error +		S.O.V. d

ď.f.	Š	Seed yield/plant	ımt		-:-	
1	I-(Y _s /Y _N)/D	SVNS	NS.S/NC		Oil percentage	36
7	0.003	0.000	0.000	\leq	S/NS	SNS-SN
Genotype 20	**2900	700.0	0.001	0.047	0.019	0000
	104.0	0.033**	0.031**	7 00%**	0.00	0.001
0	0.255**	0.031 **	0.030**	W.C	0.012	0.001 **
7	0.288**	**9200	0.000	1.349	0.001	0.001
Par x Cross 1	0.035	0000	0.003	4.994**	0.017	0.002**
9	0.037	0.005	0.00	3.452	0.002	0.001
* and ** significant at 0	0.000	0.00.0	0.00	0.954	0.012	1000

Genotyne	Plant	Plant height (cm)	m)	Techni	Technical length (cm)	(cm)	Genetical Construction	Stem diameter (mm)	
demonstra	W. 20 20 .	S/NS	SNISSN	UV.V.V.	S/NS	NS-S/NS	1-(Y _s /Y _N)/D	SWS	NS-S/NS
	1-(1×1)-1	000	20.0	0.37	0.97	0.03	1.64	0.85	0.15
IXI	0.30	0.20	110	1.13	0.92	80.0	1.62	0.85	0.15
7.77	0.40	0.08	0.02	0.93	0.93	0.07	1.98	0.88	0.18
CKC	1 27	160	0.07	1.32	06.0	0.10	1.11	0.90	0.10
474	0.81	96.0	0.04	-0.51	1.04	-0.04	0.35	0.97	0.03
CAC.	0.50	0.07	0.03	0.19	0.99	0.01	0.88	0.92	0.08
0x0	0.38	86.0	0.02	0.95	0.93	0.07	1.07	0.94	0.10
2 2	0.63	96.0	0.04	0.25	86.0	-0.14	0.27	0.98	0.03
Ev.	690	0.92	80.0	2.40	0.82	0.18	0.57	0.95	0.05
1.5	1.22	0.94	90.0	1.79	0.87	0.14	0.39	0.97	0.03
yal yal	1 09	0.94	90.0	0.18	66.0	0.02	1.25	0.89	0.12
25.5	1.15	0.94	90.0	1.19	0.91	0.09	2.24	0.81	0.19
C.77	00.0	000	100	1.42	68.0	0.11	1.23	0.89	0.11
+X7	0.20	0.03	0.07	92.0	86.0	0.02	69.0	0.94	90.0
2x5	0.50	000	0.0	110	66.0	0.01	2.26	080	0.21
2x6	0.26	0.00	0.01	111	0.01	60.0	0.47	96.0	0.04
3x4	0.65	0.97	0.00	1.07	0.00	80 0	0.26	0.99	0.02
3x5	0.03	3	0.00	1.02	200	0.13	1.55	0.86	0.14
3x6	1.70	0.92	0.09	1.75	10.0	100	590	1 00	000
4x5	2.50	0.87	0.13	-0.05	10.1	0.01	50.0	0.87	0.13
4x6	2.47	0.88	0.12	1.42	0.50	0.10	À.1	10.0	200
945	0.22	0.99	0.04	0.44	0.97	0.03	0.12	0.99	0.01
	0.91	0.05	0.05	1.08	80.0	0.15	0.82	0.07	0.07
LS.D. 0.01	1.22	0.07	. 0.07	1.44	0.11	0.20	1.09	0.09	0.09
10.0		1		000	0.207	0 168	0 34	0.35	0.39

r - 0.07 - 0.11 -0.34 0.30

			117	.1111
	ζ)
	4	:	t	
	1			1
	1		200	-
E			4	-

	1 11 01	1000		7	L'ALV VIOL	1212	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN	TAP A THE ABOUND WENNESDAY	
Tel	U(NX/SX)-I	SVNS	NS-S/NS	1-(V, V, V)		plant	Fib	Fiber vield/nlant	lant
IVI	0.31	86.0	0.00	N. K.	SVNS	NS-S/NS	1-(Y, N. M.	The state of	Maril
2x2	117	000	CO.O	1.25	0.61	OF 0	CC.	SVINS	NS-S/NS
3x3	0.00	0.92	0.08	1.02	890	0.00	1.22	0.63	0.37
TAF	0.73	0.93	0.07	0.57	000	0.32	0.99	0.70	0.30
SvS	1.38	06.0	0.10	1.10	70.0	0.18	0.50	0.85	0.15
CVC	-0.69	1.05	-0.22	0.63	0.00	0.35	0.07	86.0	000
989	0.07	100	700	0.03	08.0	0.20	0.57	000	0.02
1x2	0.03	0.00	0.01	0.74	0.77	100	000	0.83	0.17
1x3	0.1.0	0.73	0.07	1.25	09.0	0.00	0.80	0.76	0.25
1/1	11:00	0.98	0.02	1.30	0 20	0+10	1.37	0.58	0.42
145	C+-7	0.82	0.18	1.19	0.63	0.41	1.24	0.62	0.38
106	2.02	0.85	0.15	FC 1	70.07	0.38	1.10	0.67	FE 0
72	0.18	86.0	0.02	1.20	0.01	0.40	1.18	0.64	0.36
2.7	1.29	0.91	0.19	1.00	7970	0.38	1.25	0.62	0.38
+X7	1.43	0.89	110	1.02	0.0/	0.33	1.07	0.67	0000
CX7	0.36	0.97	0.03	1.04	0.67	0.33	0.07	0.0	0.00
2x6	0.10	000	CO.O	0.94	0.70	030	100	0.04	0.36
3x4	1 33	0.99	0.02	86.0	69.0	0.31	0.94	0.71	0.29
3x5	1.07	0.91	0.00	1.02	290	0.33	1.16	0.65	0.35
3x6	1.07	0.92	80.0	0.51	0.84	0.33	1.05	89.0	0.32
47.5	1.79	98.0	0.14	0.67	0.70	0.10	0.88	0.73	0.27
4,4	-0.08	1.01	-0.01	0.85	0.73	0.27	89.0	0.79	0.21
576	1.43	0.90	0.10	0.96	0.70	0.27	0.94	0.71	0.29
	0.31	0.98	0.02	0.46	98.0	0.31	96.0	0.71	0.29
L.S.D. 0.03	1.19	80.0		0.28	0.00	0.15	89.0	0.79	0.21
10.01	1.59	0.11		0.37	0.11		0.26	80.0	80.0
* and ** signifficant 2.0 0.30 0.34 (0.28	0.30	0.34	0.82**	0.14	+	0.35	0.10	0.10
Suntaint at 0.05 and 0.01 levels of probability	S and 0.01 levels	f nrohabilia			0.77	0.81**	* 0 × 0 ×	0	

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

r : Correlation coefficient between mid-parent and F₁-performance.

Genotype	No oN	No of capsules/plant	'plant	No. o	No. of seed/capsule	psulc	1000	1000-seed weight	ight
	W. V. V.	SN/S	NS-S/NS	1-(Y _s /Y _N)/D	SNS	NS-S/NS	1-(Y, Y, N))	SNS	NS-S/NS
11	1 20	0.71	0 49	0.19	1.00	0.04	1.04	0.74	0.26
Cac	1.35	0.73	0.30	0.70	86.0	0.02	0.90	0.77	0.23
27.7	101	0.76	0.24	0.29	66.0	0.01	0.63	0.84	0.16
CX5	0.80	0.79	0.21	1.51	0.97	0.03	0.95	92.0	0.24
575	0.78	0.81	0.19	2.09	0.95	0.05	1.30	0.67	0.33
gxy	1.06	0.75	0.25	0.63	0.99	0.02	98.0	0.78	0.22
1v2	1.15	0.74	0.26	1.81	96.0	0.04	1.09	0.72	0.28
143	1.22	0.72	0.28	0.65	86.0	0.02	1.03	0.74	0.26
DE 17.	112	0.75	0.25	0.93	0.97	0.03	1.09	0.73	0.28
15.5	1.23	0.72	0.28	1.04	0.97	0.03	1.01	0.75	0.26
1x6	1.26	0.72	0.28	0.78	86.0	0.02	1.06	0.73	0.27
255	1.23	0.72	0.28	2.94	0.93	0.07	0.81	0.80	0.21
LyC	1 06	92.0	0.24	-0.64	101	-0.01	0.74	0.81	0.19
2×5	1.25	0.71	0.29	0.51	0.99	0.01	1.03	0.74	0.26
9x6	120	0.72	0.27	0.55	86.0	0.02	0.74	0.81	0.19
3v.1	080	0.82	0.18	1.77	96.0	0.04	0.95	0.76	0.24
3.5	0.30	0.92	0.16	1.40	96.0	0.04	1.23	69.0	0.24
386	97.0	=	-0.11	0.43	0.99	0.01	0.98	0.69	0.25
37.5	290	98'0	0.14	0.72	86.0	0.02	1.15	0.71	0.29
9xF	0.75	0.83	0.18	96.0	86.0	0.03	99.0	0.83	0.17
9x5	9.76	0.83	0.17	0.70	0.99	0.02	1.33	99.0	0.34
	1	0.13	0.18	2.84	0.07	0.07	0.29	80.0	90.0
L.S.D. 0.01		0.17	0.24	3.79	0.09	0.09	0.39	0.11	0.08
	-		0.51	96.0	-0.20	-0 21	0.48	0.31	0.50

L.S.D. 0.01 0.75 0.17 0.24 ...

r 0.50 0.44 0.51 4 ...

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r : Correlation coefficient between mid-parent and F₁-performance.

0.31

0.48

-0.21

0.09

3.79

Table (14): Cont.

X1	***************************************	occd yield/plant	lant		1:6	
	$1-(Y_s/Y_s/Y_D)$	S/NS	NS-S/NS	1. V V V	Oll percentage	Se
	1.36	0.54	0.46	OKN INSTA	SNS	NS-S/NS
3 7 9 9 9 9	1.18	09.0	010	1 60	0.95	0.05
	0.91	69.0	0.31	1.40	0.97	0.03
	0.88	0.74	030	1.31	0.97	0.01
80.	0.65	0.78	000	0.74	0.98	0.02
	0.61	0.70	0.22	1.16	0.98	0.00
	1.37	0 53	0.42	0.64	0.99	0.01
	1.36	0.50	0.47	3.50	0.93	0.07
	1.19	0.0	0.46	2.56	0.95	0.05
	33	0.72	0.40	1.41	0.97	0.03
1	61	0.59	0.41	1.64	96.0	0.04
		0.59	0.41	-0.89	1.02	-0.02
1.05	2	0.64	0.41	1.17	0.98	0.02
2x5 0.91	-	0.78	0.30	1.05	0.98	0.02
2x6 1.41	1	0.52	0.47	1.75	0.97	0.03
	-	0.70	0.47	-0.24	1.00	0.00
3x5 0.77		0.74	0.00	0.30	1.00	0.00
3x6 0.47		0.84	910	-0.39	1.00	0.00
4X5 0.64		0.78	0.22	0.10	0.70	0.00
4x6 0.97		0.67	0.33	0.10	0.99	0.01
5x6 0.47		0.84	0.16	1 30	1.016	-0.01
L.S.D. 0.05 0.32		0.12	0.11	06.1	0.98	0.03
0.01 0.42		0.16	0.14		0.19	0.03
r 0.78**	-	0.76××	0.00		0.25	0.04

" and ** significant at 0.05 and 0.01 levels of probability, respectively.

r: Correlation coefficient between mid-parent and F-performance.

fiber yield, parent (P₅) for technical length, fiber length, fiber yield, seed and straw yields in the three methods used in this study. However, the other parents showed undesirable (FSI) for all the studied traits.

Mean squares of hybrids were significant for all traits except technical length, oil percentage and fiber length in method 1, 2 and 3, respectively.

Fertilizer suceptability index values of 15 tested hybrids are presented in Table (14).

For plant height and stem diameter the crosses (2x4) Giza 8 x S₁, (3x5) Ariane x Gawhar and (5x6) Gawhar x Bombay gave desirable susceptibility index for stress of nitrogen fertilizer. While for technical length, the two crosses (1x3) S.2419/1 x Ariane and (4x5) S₁ x Gawhar gave the higher susceptibility index for low nitrogen fertilizer. Two crosses, namelly (3x5) Ariane x Gawhar and (3x6) Ariane x Bombay recorded desirable index for number of capsules/plant, the three crosses (2x4) Giza 8 x S1, (2x6) Giza 8 x Bombay and (3x6) Ariane x Bombay for number of seeds/capsule, the three crosses (2x4) Giza 8 x S_1 , (2x6) Giza 8 x Bombay and (4x6) S_1 x Bombay for 1000-seed weight, the six crosses (1x6) S.2419/1 x Bombay, (2x6) Giza 8 x Bombay, (3x4) Ariane x S₁, (3x5) Ariane x Gawhar, (3x6) Ariane x Bombay and (4x6) S₁ x Bombay for oil percentage, one cross (4x5) S₁ x Gawhar for fiber length, the three crosses (3x5) (Ariane x Gawhar, (3x6) Ariane x Bombay and (4x5) S₁ x Gawhar for seed yield/plant and fiber yield; and the two crosses (3x5) Ariane x Gawhar and (5x6) Gawhar x Bombay for straw yield in the three methods gave desirable susceptibility index for stress of nitrogen fertilizer. The hybrids which showed significant desirable FSI for seed, straw and fiber yields comprised P_5 , which was classified above as being of a desirable (FSI) for these traits. Therefore, it could be concluded that P_5 had higher ability to transmit its desirable FSI to its hybrids.

Significant positive correlation coefficient values between mid-parent and F_1 hybrids mean values for each of the studied traits are presented in Table (14).

Desirable susceptibility index were obtained for seed, straw and fiber yields/plant in the three methods, oil percentage in the first and third methods. Such result clarified good agreement between mid-parent values and F₁ performance. Consequently, the best performance of F₁ combination could be achieved by crossing between parents of high (FSI).

Insignificant correlation values were detected for all the rest cases indicating that certain high and low parental lines/or varieties may produce outstanding F₁ hybrids in this concern.

Mean squares for parents vs. crosses as an indication to average heterosis over all crosses were insignificant for (FSI) in all traits in the three methods except stem diameter, fiber length and fiber yield in the three methods, technical length in the first and second methods, and number of capsules/plant in the third method (Table, 13).

4.3.2. Combining ability variance:

Analysis of variance for combining ability as outlined by Griffing's (1956) method 2 model I for FSI of all the studied traits, is presented in Table (15).

The mean squares associated with general combining ability GCA for (FSI) were significant for all traits except number of seeds/capsule in the three methods, and plant height and oil percentage in the third and second methods, respectively. The mean squares associated with specific combining ability of FSI were significant for all traits except number of seeds/capsule in the three methods, and number of capsules/plant, straw yield/plant and oil percentage in the second method. The mean squares associated with general combining ability were insignificant along with significant specific combining ability for FSI of plant height in the third method indicating that nonadditive type of gene action was the more important part of the total genetic variability for this case. However, the mean squares of general combining ability were significant along with insignificant SCA for FSI in number of capsules/plant and straw yield/plant in the third and second method, revealing that additive type of gene action was the more important part of the total genetic variability. For other cases, the variances associated with GCA and SCA were significant for FSI. In such cases to get an idea about the predicated performance of single-cross progeny in each case, the relative size of general and specific combining ability mean squares may be helpful. Low GCA/SCA ratios of less than unity were detected for plant height in the three methods, indicating the predominance of non-additive gene action

Table (15): FSI observed mean squares for general and specific combining ability using the three methods

lied	П		
all the stuc	0.002 ** 0.001 ** 0.001	0.006 **	NS-S/NS 0.005** 0.0012**
ethods for	Stem diameter S/NS 0.008** 0.002**	Fiber yield/plant (g) YD S/NS NS ** 0.018** 0 ** 0.006** 0	1000 seed weight SNS 0.005** 0.002*
unc unree m	1-(Y _S /Y _N)D 0.901 ** 0.287 ** 0.082	Fibe 0.200** 0.057**	1000 0.086 * 0.020 * 0.010
s and use three methods for all the studied	h (cm) NS-S/NS 0.003 0.005*	t (g) NS-S/NS 0.022** 0.002* 0.0002*	ule NS-S/NS 0.0002 0.0004 0.0005
	1 cchnical length (cm) S/NS NS NS NS NS NS NS	Straw yield/plant (g) **	No. of seed/capsule SNS 0.0001 0.0004 0.0006
F	1-(Y ₅ /Y ₆)/D 0.658** 0.479**	Stra 1-(Y ₅ /Y ₈)D 0.214** 0.009	No. 0.249 0.702 0.984
(cm)	0.0003 0.0003 0.0003	0.003	0.004***
Plant height (cm)	S/NS 0.001** 0.002**	### 1000 Color Col	0.007** 0.007** 0.002
	0.339 ** 0.610 ** 0.102	0.572** 0.572** 0.173	0.295** 0.136** 0.039
d.f.	15 16 40 d.f.	df. df.	5 15 40 d.f.
S.O.V.	GCA SCA Error S.O.V.	GCA SCA Error S.O.V.	GCA SCA Error S.O.V.

C.UAND.	e NS-S/NS	0.001 **	0.0003**
lio		7	0.004
The second second section of the second section sectio	1-(Y _s /Y _N)	3* 0.870**	H
Seed yield/plant	S/NS NS-S/NS 032** 0.030**		0.002 0.001 probability, respectively
Seed		0.031** 0.	levels of
d.f.	w :	0 9	icant at 0.05

in the inheritance of FSI of this trait. Results showed that the other cases expressed high GCA/SCA ratios, which exceeded the unity indicating the predominance of additive and additive by additive gene action in the inheritance of FSI of such cases.

4.3.3. General combining ability effects:

FSI estimates of GCA effects (\hat{g}_i) for individual parents of each trait are presented in Table (16).

The parental line S.2419/1 (P_1) expressed undesirable \hat{g}_i effects of FSI for number of capsules/plant, seed yield/plant, fiber yield and straw yields/plant by the three methods. Also, it showed insignificant \hat{g}_i effects for other traits.

The parental variety Giza 8 (P_2) expressed significant desirable \hat{g}_i effects of FSI for 1000-seed weight in the three methods. On the other hand, it gave undesirable or insignificant \hat{g}_i effects for the rest traits.

The parental variety Ariane-R₃ (P₃) expressed significant desirable \hat{g}_i effects in the used three methods for plant height, no. of capsules/plant, straw yield/plant, 1000-seed weight and fiber yield. However, it was near the average for other traits. The parental line S.strain 1 (P₄) exhibited significant desirable \hat{g}_i effects of FSI for fiber yield. While, it expressed the poorest \hat{g}_i effects for FSI in other traits. The parental variety Gawhar-552 (P₅) expressed significant desirable \hat{g}_i effects for FSI in stem diameter, seed yield/plant, straw yield/plant, 1000-seed weight and fiber length. Therefore, variety Gawhar-552 could be considered as an excellent parent in breeding programes aimed

studied traits in f	Stem diameter	SNS-SNS	0.004 -0.004	-0.040** 0.040**	-0.005 0.018*	0.008	*	+	0.015 0.016	0.021 0.021		0.032 0.032
dex of all the	St	I-(Y _s /Y _s /VD	-0.065	0.420**	0.175	-0.094	-0.570**	0.134	0.186	0.249	0.289	0.386
eptibility in	(cm)	SN/S-SV	-0.009	0.000	-0.001	0.035*	-0.026	-0.009	0.033	0.045	0.052	0.069
Parent Plant height (cm)	1-(Y _s /Y _s)/D S/NS NS		0.035	+	*	1	+	+	+	0.381	-	0.03/
; ability cff cm)	SN/S-SN	-0.010	0.002	-0.012	-0.016**	0.004	0.001	0.012	0.016	0.019	0.025	0.56
combining ant height (SNS	0.008	-0.003	0.013*	-0.018**	0.0001	0.0002	0.012	0.016	0.019	0.025	09.0
cs of genera	1-(Y ₂ /Y _N /VD	-0.237	0.104	-0.210*	0.295**	0.039**	0.030	0.21	0.28	0.32	0.43	0.35
Parent	S. 2419/1	Giza 8	Ariane R.	Satrain	Gawhar 557	Rombay		L.S.D. (gi) 0.05	0.01	L.S.D. (gi-gi) 0.03	0.01	THE PERSON AND AND ADDRESS OF THE PERSON NAMED IN

	0.35	090	0.56	0.92**	0.037	0.069	0.73	0.032	0.024 0.032 0.74
Parent		Fiber length	-	6					
6 241071	$1-(Y_s/Y_N)D$	SNS	NS-S/NS	1.0 V V VD	Straw yield/plant	ant	F	Fiber vield/nlant	int
Cia. 6	0.046	-0.005	0.008	0.051.00	SNS	NS-S/NS	1-(Y.Y.N.)/D	SNS	Ne civio
01/28 8	0.072	-0.005	0.020	0.070	-0.078**	0.080**	0.255**	-0.075××	0.071
Ariane Ky	0.175	-0.013	0.028	0.13311	-0.022	0.024*	0.118**	-0.41**	0.0/4
S. strain,	0.406**	-0.029**	0.032*	0.072	0.032**	-0.038**	-0.075*	0.026**	0.041**
Cannar-227	-0.456**	0.033 **	-0.073**	0.070	-0.021 *	0.024*	-0.17**	**2500	070.0
Bombay	-0.242	0.020**	F10 0-	0 113.2	0.058**	-0.055**	-0.099**	0.033**	0.048**
L.S.D. (gi) 0.05	0.27	0.02	000	-0.112**	0.030*	-0.036**	-0.025	0.010	0.000
- 1	0.01	0.36	0.03	0.00	0.02	0.02	0.060	0.010	0.000
L.S.D. (gi-gi) 0.05	0.01	0.42	0.03	0.09	0.03	0.03	0.081	0.024	0.018
10.0	0.01	0.56	0.00	0.098	0.04	0.03	0.093	2200	0.024
.	0.92**	0.94××	0.00	0.13	0.05	0.04	0.130	0.020	0.027
and ** significant at 0.05	and 0.01 levels of probability respectively	of probability r	o control	0.9/**	0.95**	0.97**	0.92**	0.00	0.040
. Correlation hotwoon no.			Specifically.					47.0	* × C

0.92**

2	5
_)
4	5
	7
c	2
9	5
C	3
	2

Parent	No	No of capsules/plant	plant	No.	No. of seed/capsule	sulc	10(000 seed weight	ght
	1-(V,/V,V)	SVNS	SN/S-SN	1-(Y ₈ /Y _N)/D	S/NS	SN/S-SN	U\NyNN)	S/NS	NS-S/NS
S 2419/1	0.240**	-0.053**	0.090**	-0.134	0.004	0.005	0.062	-0.013	0.018*
Giza 8	0.244**	-0.048**	0.043*	-0.009	-0.001	-0.002	-0.081*	0.023*	-0.018*
Ariane R	-0.192**	0.040	_	0.140	-0.003	0.001	-0.074*		-0.024**
S. strain.	-0.057	0.012	-0.025	0.013	-0.0001	0.002	-0.045		-0.009
Gawhar-552	-0.109	0.022	-0.025	0.238	-0.007	0.005	0.184**	_	0.041**
Bombav	-0.126	0.027	-0.040	-0.248	0.007	-0.007	-0.046	_	-0.009
	0.129	0.028	0.041	0.647	0.016	0.015	990'0	-	0.014
L.S.D. (gi) 0.01	1	0.038	0.054	998'0	0.021	0.020	0.089		0.019
i	1	0.044	0.063	1.002	0.025	0.024	0.102		0.022
L.S.D. (gi-gi) 0.01	+	0.059	0.084	1.340	0.033	0.031	0.137	-	0.029
	1	0.73	10.01×	0.56	89.0	89.0	*68.0	-	0.93**

Parent	Se	Seed vicld/plant	nt	0	Oil percentage	၁ရ
	1-(Y _s /Y _N)/D	S/NS	NS-S/NS	1-(Y _S /Y _N)/D	S/NS	NS-S/NS
S. 2419/1	0.236**	-0.085**	0.080**	0.839**	-0.004	0.017**
Giza 8	0.192**	-0.059**	0.064**	0.451*	0.005	0.008*
Ariane R ₃	-0.031	0.005	-0.010	-0.126	-0.023	-0.005
S. strain,	-0.035	0.015	-0.011	-0.418*	0.020	-0.006
Gawhar-552	-0.231**	-0.085**	-0.078**	0.034	0.011	0.002
Bombav	0.130**	0.039**	-0.045**	-0.780**	-0.009	-0.015*
0.05	0.07	0.03	0.02	0.37	0.04	0.01
.S.D. (gi) 0.01	0.10	0.04	0.03	0.49	90.0	0.01
	0.11	0.04	0.04	0.57	0.07	0.01
L.S.D. (gi-gi) 0.01	0.15	90.0	90.0	9.76	0.09	0.01
	0.97**	**96.0	**860.0	0.93**	0.18	0.92**

* and ** significant at 0.05 and 0.01 levels of probability, respectively. r : Correlation between parental mean performance and its \hat{g}_1 effects.

to release a high yielding (seed and fiber) variety under low nitrogen levels. The parental variety Bombay (P_6) gave significant desirable \hat{g}_i effects of FSI for oil percentage and straw yield, but was near the average for other traits.

The three methods used to estimate FSI gave the same results for each parent in all traits.

4.3.4. Specific combining ability effects:

Specific combining ability of parental combinations which were computed for (FSI) for all traits, are presented in Table (17).

For FSI of plant height, the three crosses (2x4) Giza 8 x S_1 , (2x6) Giza 8 x Bombay and (3x5) Ariane x Gawhar expressed significant desirable S_{ij} effects in the three methods. The first two crosses involving only one good combiner.

For FSI of technical length, the cross (1x3) S .2419/1 x Ariane gave significant desirable \hat{S}_{ij} effects in the three methods. While, the cross (4x5) S₁ x Gawhar exhibited significant desirable S_{ij} effects in the first and second methods.

Regarding stem diameter, the two crosses (1x3) S.2419/1 x Ariane and (3x4) Ariane x S_1 expressed significant S_{ij} effects of FSI in the three methods.

The two crosses (1x5) S.2419/1 x Gawhar and (4x6) S_1 x Bombay and the cross (3x6) Ariane x Bombay expressed significant desirable S_{ij} effects of FSI in the three methods for 1000-seed weight and seed yield/plant, respectively. Also, the two crosses (1x6) S.2419/1 x Bombay and (4x5) S_1 x Gawhar

exhibited significant negative S_{ij} effects and FSI in the first and third method.

Significant desirable S_{ij} effects of FSI in the three methods were exhibited by the crosses (1x3) S.2419/1 x Ariane and (4x5) S_1 x Gawhar for fiber length, and (1x3) S.2419/1 x Ariane and (3x4) Ariane x S_1 for straw yield.

From the previous results, the three methods used to estimate FSI were similar.

The previous crosses that showed desirable S_{ij} effect of FSI had one or two good combiners. Such combination, would show desirable transgressive segregates providing that the additive genetic system presents in the good combiner as well as the complementary of epistatic effects present in the cross act in the same direction to reduce undesirable plant characteristics and maximize the character in view. Therefore, the previous crosses might be of prime importance in breeding program for traditional breeding procedures to stress environments (low nitrogen fertilizer).

Stress tolerant genotypes, as defined by FSI values, need not have a high yield potential sine FSI provides a measure of tolerance based on minimization of yield loss under stress rather than on stress yield per season.

Genotypes identified as stress tolerant using FSI should posses tolerance mechanisms, which may need to be incorporated into germplasm with higher yield potential for development of high yielding, and stress tolerant cultivars.

Table (17): Estimates of specific combining ability effects of fertilizer susceptibility index for the studied crosses in all traits.

Cross	Pla	Plant height (cm)	cm)	Techn	Technical length (cm)	(cm)	Stem	Stem diameter (mm)	(mm)
AN ADDRESS AND ADDRESS OF MY WHITE WAS EXPENDED.	1-(Y ₅ /Y _N)/D	S/NS	NS-S/NS	1-(Y ₂ /Y _N)/D	SNS	SN/S-SN	1-(Y-VY-V)D	SNS	NS-SNS
1x2	-0.42	0.03	-0.03	0.02	-0.01	0.02	-0.34	**900	-0.03
1x3	-0.15	-0.01	0.01**	-0.81*	*90.0	-0.18**	-080-	**900	**800
1x4	-0.30	-0.02	0.02	1.11**	-0.08**	0.00×	-0.32	0.00	20.02
1x5	0.49	-0.02	0.02	1.33**	-0.10**	0.11*	-0.03	0.00	70.00
1x6	0.36	-0.02	-0.01	-0.50	0.04	-0.02	0.13	-0.01	0.01
2x3	0.30	-0.02	0.02	0.15	-0.01	0.02	0.59*	0.06**	*100
2x4	-1.16**	0.06**	-0.06**	91.0	-0.01	0.01	-0.15*	0.01	-0.01
2x5	0.30	-0.02	0.01	-0.19	0.01	-0.02	-0.21	0.012	-0.014
2x6	-0.83**	0.04*	-0.04*	-0.56	0.04	-0.05	₩990	-0.06**	0.06*
3x4	-0.39	0.03	-0.03	-0.22	0.02	-0.00	-0.66*	0.043*	-0.06*
3x5	-0.75*	0.04*	-0.02	0.45	-0.03	0.05	-0.40	0.03	-0.03
3x6	0.93**	-0.05**	0.04*	0.93**	-0.07**	0.00	0.19	-0.03	0.02
4x5	1.21**	-0.06**	0.05**	-0.85*	.90.0	-0.07	0.24	0.02	-0.02
4x6	1.19**	-0.06**	0.05**	0.40	-0.03	0.02	0.38	-0.03	0.04
9XÇ	-0.81**	0.04	-0.02	0.24	-0.02	0.01	-0.49	0.04*	0.01
LS.D 0.05	0.57	0.03	0.03	89.0	0.05	0.09	0.51	0.04	0.04
	92.0	0.05	0.04	06.0	0.07	0.12	69'0	90.0	0.07
L.S.D, elletto	0.85	0.05	0.05	1.01	0.07	0.14	0.76	90.0	90.0
	1.14	0.07	0.02	1.35	0.10	0.18	1.02	80.0	0.00
L.S.D./gill.gt.) 0.05	0.79	0.05	0.05	0.93	0.07	0.13	0.71	90.0	90.0
0.01	1.06	90.0	90.0	1.25	60 0	0.17	0.05	000	000

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Cross		iber lengt	h	Straw yield	viel
	1-(Y _S /Y _N)/D	S/NS	NS-S/NS	1-(Y _s /Y _s)/D	S.N
1x2	-0.04	0.007	-0.02	-0.03	0.0

Cross		Fiber length	1	Strav	Straw yield/plant (g)	nt (g)		Fiber yield	
	1-(Y _s /Y _N)D	S/NS	NS-S/NS	1-(Y _s /Y _s)/D	SVNS	SN/S-SN	1-(Y _s /Y _s /V)	S/NS	NS-S/NS
1x2	-0.04	0.002	-0.02	-0.03	0.01	-0.01	90.0	-0.01	0.02
1x3	-0.94*	0.07*	-0.08	0.22*	-0.06	0.07*	0.13	-0.04	0.04
1x4	1.15**	-0.08**	80.0	-0.085	0.02	-0.03	0.09	-0.02	0.02
1x5	1.58**	-0.12**	0.16**	0.21*	-0.07*	0.07*	0.09	-0.03	0.03
1x6	-0.48	0.03	+0.0+	0.107	-0.03	0.03	0.09	-0.03	0.03
2x3	0.192	-0.012	0.079	0.112	-0.03	0.04	0.10	-0.02	0.02
2x4	0.00	-0.009	-0.005	-0.07	0.02	-0.02	0.09	-0.08**	0.08**
2x5	-0.104	0.004	0.03	0.00	-0.03	0.03	-0.01	0.01	-0.01
2x6	-0.50	0.034	-0.051	0.07	-0.02	0.02	0.13	-0.03	0.03
3x4	-0.214	0.016	-0.03	0.12	-0.03	0.04	0.37**	-0.11**	0.11
3x5	0.503	-0.036	0.07	-0.14	0.05	-0.05	0.12	-0.04	0.04
3x6	1.00**	-0.08**	90.0	-0.05	-0.04	-0.02	-0.15	0.04	-0.05
4x5	-0.88*	0.07*	-0.03	-0.01	-0.003	0.001	0.27**	-0.08**	0.08**
4x6	0.415	-0.03	0.02	0.05	-0.009	0.015	0.23**	-0.0e×	.90°0
5x6	0.16	-0.01	0.05	-0.20*	0.072*	-0.07 ∗	-0.13	0.04	-0.04
c D 0.05	5 0.75	0.05	0.09	0.17	0.07	90'0	0.17	0.05	0.05
L3. U.sij 0.01	1.00	0.07	0.12	0.23	0.09	0.07	0.22	0.07	0.07
c D 0.05	5 1.11	80.0	0.14	0.26	0.10	0.08	0.25	0.07	0.07
0.0 (sij-sik) 0.0	1.49	0.11	0.18	0.35	0.13	0.11	0.33	0.10	0.10
c.n 0.05	5 1.03	0.07	0.13	0.24	0.00	80.0	0.23	0.07	0.07
L.S. D. (stj. sk1) 0.01	1.38	0.10	0.17	0.32	0.12	0.10	0.31	0.00	0.09

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Ή.
Col
~
e (1
abl
-

	No.	INO. OI capsules/plant	/plant	No. c	No. of seeds/cansule	ansinle	101	- 00	
	U(N/SI)-1	SVNS	NS-S/NS	1-(Y _N /Y _N)D	CINIC	- Carlo	IOI	1000 seed weight	aght
IXZ	-0.28	0.054	-0.100	0000	CHIA	NS-SNS	I-(Ys/Ys/yD	S/NS	SN/S-SN
1x3	0.23	-0.047	0.001	0.00	+70.024	0.015	0.13	-0.04*	0 03
1x4	100	0000	0.001	405.04	0.005	-0.014	0.06	0.01	000
1.5	10.0	0.004	-0.042	0.097	-0.007	-0 000	000	0.03	0.07
T.C.	0.15	-0.031	-0.018	-0.013	0.001	0000	0.03	-0.03*	0.05
OVI	0.20	-0.041	0.004	0.213	0.005	0.005	-0.21×	0.05*	-0.05*
CX2	0.23	-0.055	0.049	1862*	0.030	00.0-	0.07	-0.01	0.013
2x4	-0.07	0.011	-0 008	1 502	0.000	0.041	-0.01	0.01	0.003
2x5	0.16	-0.044	0.037	0.665	0.037	-0.036	-0.11	0.03*	-0.03
2x6	0.13	-0.041	0.030	0.003	0.017	-0.016	-0.06	0.01*	-0.01
3x4	0.10	-0.000	1000	-0.142	-0.002	0.002	-0.12	0.04*	-0.03
3x5	-0.35	0.073	0.021	0.000	-0.014	0.016	0.00	-0.02*	0.03
3x6	-1.11**	0.257**	0.055**	0.008	9000	800.0	0.13	-0.03*	-0.02
4x5	-0.11	0.038	-0.037	U.413	0.010	-0.009	0.12	-0.08**	0.04
4x6	-0.01	0.003	0.00	674/8	0.011	-0.009	0.03	-0.01	0.01
5x6	0.05	-0.006	0.00	0.241	9000	0.008	-0.23**	*90.0	-0.06**
LS.D 0.05	5 0.35	80.0	0 11	1 70	0.003	-0.009	0.21*	-0.05*	0.06**
0.01	1 0.47	0.11	0.15	7.70	10.04	0.04	0.18	0.01	0.04
L.S.D 0.05	5 0.53	0.12	0.17	2,50	0.00	0.06	0.24	0.07	0.05
(xij-sik) 0.01	0.71	0.16	0.22	2.65	0.07	90.0	0.27	0.07	90.0
SD 0.05		0.11	0.15	5.55	0.09	80.0	0.36	0.10	0.08
(xij-sk1) 0.01		F1 0	0.1.0	0.43	90.0	90.0	0.25	0.07	0.05
" and " significant of 0.65 and 0.01	200		0.71	3.28	80.0	800	0.34	000	2010

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table (17): Cont.

Cross	•	Sce	Seed yield/plant(g)	nt(g)	Ö	Oil percentage	ge
CONTRACTOR SECURE SECURE SALVEY		1-(Y _S /Y _N)/D	SN/S	NS-S/NS	1-(Y _S /Y _N)/D	SNS	NS-SNS
1x2		-0.02	0.003	-0.007	1.28*	0.04	0.02*
1x3		0.19	-0.06	0.064	0.91	0.01	0.02*
1x4		0.02	-0.011	0.006	90.0	-0.01	-0.001
1x5		-0.14	-0.042	-0.049	-0.16	-0.01	-0.002
9X1		0.12	-0.036	0.041	-1.88**	90:0	-0.04**
2x3		0.09	-0.035	0.029	-0.90	0.03	0.001
2x4		-0.07	800.0	-0.023	80.0	-0.014	0.003
2x5		-0.02	0.086	-0.007	0.33	-0.013	0.002
2x6		0.38**	-0.135**	0.121 **	-0.84	0.04	-0.014
3x4		-0.02	0.001	-0.006	-0.50	0.04	90.00
3x5		0.07	-0.031	0.023	-1.23*	-0.49	-0.019×
3x6		-0.33**	0.117**	-0.112**	-0.35	-0.23**	-0.0004
4x5		90.0-	0.005	-0.021	0.364	0.010	-0.002
4x6		0.17	-0.061	0.058	-0.57	0.04	-0.012
5x6		-0.14	0.041	-0.048	1.11*	0.007	0.019×
LS.D.	0.05	0.20	0.07	0.07	1.01	0.12	0.02
R	0.01	0.27	0.10	0.09	1.35	0.16	0.03
LSD	0.05	0.30	0.11	0.10	1.51	0.18	0.03
(All All All All All All All All All All	0.01	0.49	0.15	0.13	2.02	0.24	0.04
LSD	0.05	0.28	0.10	0.09	1.40	0.16	0.03
(sleski)	0.01	0.37	0.14	0.12	1.87	0.22	0 03

* and ** significant at 0.05 and 0.01 levels of probability, respectively.