

4. RESULTS AND DISCUSSION

It is axiomatic that the genetic variability present in the germplasm be utilised either for direct selection or hybridization for further augmentation of variability through recombination. For quantitative characters, selection can be effective only when the segregating generations of a cross posses potential genetic variability which is further utilized to develop appropriate superior genotypes.

Previous work on cotton refers to that additive, dominance and epistatic gene effects are the major components of genetic variance. Therefore, a sound program for improving cotton depends on the relative importance of these components. Generally, maximum progress in improving a trait would be attained with pedigree selection when the additive gene action is the main component, and the presence of high non-additive gene action would suggest hybrid breeding program. Results will be presented and discussed in two major parts as follows:

4.1. Type of Gene Action

4.1.1. Generation means

The mean performance of the six populations P₁, P₂, F₁, BC₁, BC₂, F₂ of the two crosses (G. 45 x G. 75) and (G. 88 x G. 89) showed existence of substantial variability in the material for the improvement of most characters dealt with in this study (Table 9). Parents showed wide divergence for lint yield/plant, bolls/plant and micronaire reading in both crosses. Also, parents showed wide

Generation means, standard errors for lint yield and lint components, seed characters and fiber quality in the two studied crosses.

Character	Cross	P ₁	P_2	F	BC,	BC.	IJ
Lint yield/ plant (g)	I	9.59±0.261	16.15±0.310	11.55±0.336	9.68±0.292	8.84+0.302	9.57+0.251
	П	8.73±0.343	12.81±0.385	13.01±0.346	10.75±0.319	10.82+0.325	9.68+0.267
Bolls/plant	I	13.87±0.374	15.43±0.280	13.55±0.373	12.68+0.342		11.64+0.274
	Ш	12.16±0.451	16.05±0.484	16.20±0.419	14.11+0.349	14.06+0.400	12.25+0.296
Seeds/boll	I	16.99±0.157	18.20±0.171	17.14±0.190	17.29+0.135	16.71+0.149	16.89+0.112
	Ш	16.41±0.149	17.53±0.151	16.44±0.143	17.69+0.144	16.04+0.142	15 60+0 107
Lint/seed (g)	I	0.040+0.0006	0.059 ± 0.0007	0.048+0.0006	0.045+0.0005	50+0.0006	0.048+0.0004
•	П	0.044+0.0007	0.046+0.0006	0.049±0.0005	0.042+0.0007	0.049+0.0007 0.050+0.0005	0.050+0.0005
Lint percentage		32.49±0.219	38.21±0.217	32.90±0.220	32.45+0.195	34.23+0.193	33.83+0.158
	П	33.53±0.268	35.42±0.205	33.18 ± 0.209	31.68±0.235	33.82+0.200	34.71+0.183
Seed index (g)	-	8.32+0.084	9.39 ± 0.085	9.79±0.097	9.27±0.079	9.56+0.074	9.42+0.061
3	Ш	8.86+0.095	8.31 ± 0.095	9.90 ± 0.088	9.11±0.081	9.67+0.083	9.34+0.066
100-seed volume (cm ³)	I	9.44 ± 0.070	10.15 ± 0.104	10.29±0.090	10.07+0.076	9.97+0.077	9.81+0.055
	п	9.51±0.082	7.93 ± 0.080	8.82±0.078	9.25+0.061	8.15+0.059	9.24+0.054
Seed density (g/cm ³)	l	0.88+0.008	0.93 ± 0.008	0.95+0.008	0.92±0.006		0.96+0.004
	П	0.93+0.010	1.05+0.009	1.13±0.010	0.99+0.007	1.19+0.007	1.01+0.005
Heavy seed (%)	I	41.48+1.668	67.28 <u>+</u> 1.213	59.99±1.714	52.01±1.279	55.50±1.266	50.09+0.938
	=	54.55±1.793	56 52+1 701	53.60±1.786	54.84+1.355	51.45±1.332	54.64+1.036
Micronaire reading	-	2.88+0.028	00.02-1.701	3.41±0.050	3.17±0.031	3.79±0.037	3.47+0.032
-	=	3.13+0.047	4.20±0.046	3.43+0.049	3.36±0.039	3.63±0.041	3.55+0.034
Pressley index	I	10.85±0.068	4.20±0.046 3.93±0.055		10.99+0.056	10.39+0.057	10.44+0.042
	=	11 03+0 075	4.20±0.046 3.93±0.055 10.65±0.072	10.79+0.067			

variations for lint/seed, lint percentage and heavy seed percentage in cross I (G. 45 x G. 75). On the other hand, seeds/ boll, seed index, seed density and Pressley index in the two crosses did not exhibit wide variations between parents.

Table 9 shows in general that F₁ mean performance was better than either parents for seed index and seed density in the two crosses, 100-seed volume in cross I, lint yield/plant, bolls/plant and lint/seed in cross II, indicating overdominance.

With regard to both BC_1 and BC_2 mean performance results show that they are relatively associated with both P_1 and P_2 means, respectively for most characters investigated in the two crosses.

Concerning F_2 mean performance, it was lower than its F_1 mean for lint yield/plant, bolls/plant, seeds/boll, seed index and Pressley index in the two crosses, 100-seed volume and heavy seed percentage in cross I and seed density in cross II, suggesting the presence of dominance and epistatic interaction (Table 10). On the other hand, F_2 means were higher than F_1 mean for lint/seed, lint percentage and micronaire reading in both crosses, seed density in cross I, 100-seed volume and heavy seed percentage in cross II. This indicates no distinct depression occurring from F_1 to F_2 .

4.1.2. Scaling test, F2-deviation and BC-deviation

Results of the scaling tests (A, B and C) are shown in (Table 10). These tests demonstrated the presence of non-allelic gene interactions for all studied characters except micronaire reading in the two crosses. These results indicated the inadequacy of the additive-dominance model.

Table 10. Scaling test values (A, B and C) and epistatic deviations (E₁ and E₂) for the eleven cotton characters in the two studied crosses.

Character	Cross		Scaling test		Epis	Epistasis
		Α	В	С	E ₁	E_2
Lint yield/ plant (g)	I	-1.78*±0.723	-10.02**±0.758	-10.56 ** ±1.273	-2.64**±0.318	-5.90**±0.575
	П	-0.24±0.803	4.18**±0.832	-8.84**±1.374	-2.21**±0.344	-2.21**+0.628
Bolls/plant	I	$-2.06*\pm0.864$	-8.48**±0.784	-9.84**±1.405	-2.46**±0.351	-5.27**+0.640
	П	-0.14 ± 0.931	4.13**±1.025	-11.61**+1.593	-2.90**±0.398	-2.14**+0.753
Seeds/boll	I	0.45±0.366	-1.92**±0.393	-1.91**±0.632	-0.48**+0.158	-0.74*+0.300
	П	$2.53**\pm0.354$	-1.89**±0.351	4.42**±0.557	-1.11**+0.139	0.32+0.269
Lint/seed (g)	I	0.002 ± 0.0013	-0.007**±0.0014	-0.003 ± 0.0023	-0.001±0.0006	-0.003**+0.0011
	П	-0.009**±0.0016	0.003±0.0016	0.012**±0.0026	0.003**±0.0007	-0.003*+0.0012
Lint percentage	П	-0.49±0.498	-2.65**±0.495	-1.18±0.829	-0.30±0.207	-1.57**+0.384
	П	-3.35**±0.580	-0.96*±0.488	3.53**+0.908	0.88**+0.227	-2.16**+0.407
Seed index (g)	-	0.43*±0.204	-0.06±0.197	0.39±0.335	0.10 ± 0.084	0.19+0.158
	П	-0.54**±0.208	1.13**±0.211	0.39±0.344	0.10±0.086	0.30 ± 0.161
100-seed volume (cm ³)	I	0.41*±0.190	-0.50*±0.207	-0.93**±0.311	-0.23**+0.078	-0.05+0.154
	П	0.17±0.167	-0.45**±0.163	1.88**±0.289	0.47**±0.072	-0.14+0.129
Seed density (g/cm ³)	-	0.01±0.016	0.04*±0.016	0.13**±0.025	0.03**±0.006	0.03**+0.013
	п	-0.08**±0.020	0.20**±0.020	-0.20 ** ±0.032	-0.05**+0.008	0.06**+0.016
Heavy seed (%)	I	2.55±3.502	-16.27**±3.289	-28.38**+5.484	-7.09** <u>+</u> 1.371	-6.86*+2.691
	п	1.53±3.708	-7.22*±3.630	0.29 ± 6.004	0.07±1.501	-2.85 <u>+</u> 2.886
Micronaire reading	ı	0.05±0.085	-0.03 <u>+</u> 0.101	-0.02±0.170	-0.01 <u>+</u> 0.043	0.01 ± 0.075
	П	0.16±0.104	-0.10 <u>+</u> 0.111	0.28±0.181	0.07 ± 0.045	0.03 ± 0.083
Pressley index	П	0.34*+0.148	-0.66** <u>+</u> 0.151	-1.32**±0.235	-0.33**±0.059	-0.16 <u>+</u> 0.116
	П	-0.33*+0.137	-0.07±0.140	$-0.58* \pm 0.236$	-0.15*+0.059	-0.20 + 0.111

Results and Discussion

I = G. 45 N G. 75II = G. 88 N G. 89

E₁ refer to F₂-deviation E₂ refer to BC-deviation

* Significant at 1% probability level
** Significant at 1% probability level

F₂-deviation (E₁) and BC-deviation (E₂) Table 10 showed significant values for all studied characters in the two crosses except seed index and micronaire reading in the two crosses and heavy seed percentage in cross II. Also, epistatic deviations E₁ and E₂ for the studied characters were in the same direction with the outcome of A, B and C scaling tests (Table 10) indicating that there were non-allelic gene interactions. Similar results were obtained by El-Okkia *et al.* (1989), El-Okkia *et al.* (1990), El-Lawendey (1999) and Awad (2001).

4.1.3. Gene action effects

Genetic analysis of generation means to give estimates of additive (a), dominance (d) and the three epistatic effects; additive x additive (aa), additive x dominance (ad) and dominance x dominance (dd) were calculated according to the relationships illustrated by **Gamble (1962)**.

Types of gene effects using generation means are shown in (Table 11). Estimated mean effects parameters (m), which reflects the contribution due to the overall mean plus the locus effects and interaction of the fixed loci were found to be highly significant for all characters in both crosses. Initially, it is clear that all the studied characters were quantitatively inherited. The additive gene effects were significant and positive or negative for all studied characters except lint yield/plant and bolls/plant (cross II), 100-seed volume (cross I) and heavy seed percentage (both crosses), suggesting the potentiality for attaining further improvements of most studied characters. El-Adl and Miller (1971), found that the additive genetic effects appeared to be predominant for lint yield, bolls/plant

studied crosses. Types of gene effects using generation means of the eleven cotton characters in the two

Character	7	T					
Cimiacici	C1033	r ₂ means m			Types of gene effects	ts	
Time and the second			а	р	aa	ad	dd
Lint yield/ plant (g)	-	9.57**	0.84*+0.420	-2.56±1.366	-1.24+1.308	4.12**+0.467	13.04**+2.100
	П	9.68**	-0.07±0.456	6.66**+1.470	4.42**+1.405	1 97**+0 524	0.00+2.202
Bolls/plant	I	11.64**	2.43**±0.465	-1.80+1.503	-0.70+1.437	3.21**+0.520	11 24**+2 221
	П	12.25**	0.05±0.531	9.44**+1.677	7.34**+1.589	2.00**+0.626	-3 07+2 656
Seeds/boll		16.89**	0.58**±0.201	-0.02±0.642	0.44+0.602	1.19**+0.232	1 03+1 023
	П	15.60**	1.65**±0.202	4.53**+0.615	5.06**+0.589	2 21**+0 228	5 70**+0 001
Lint/seed (g)	_	0.048**	-0.005**±0.0007	200	-0.002+0.0022	0.005**+0.0009	- 1
	П	0.050**	-0.007**+0.0010	-0.014**+0.0030	-0.007**+0.0010 $-0.014**+0.0030$ $-0.018**+0.0029$ $-0.006**+0.0011$ $0.024**+0.0035$	-0.006**+0.0011	0.024**+0.0046
Lint percentage	I	33.83**	-1.78**±0.274	4.41**+0.878	-1.96*+0.837	1 08**+0 315	5 10**+1 375
		34.71**	-2.14**±0.306	-9.14**+0.991	-7.84**+0.954	-1.20**+0.349	12 15**+1 522
Seed index (g)	-	9.42**	-0.29**±0.109	0.92**+0.348	-0.02+0.328	0.25*+0.124	-0 35+0 549
	=	9.34**	-0.56**±0.116	1.52**±0.368	0.20+0350	-0.84**+0.134	-0 79+0 578
100-seed volume (cm ²)	-	9.81**	0.10±0.108	1.34**±0.327	0.84**+0.308	0.46**+0.125	-0.75+0.533
C		9.24**	1.10**+0.085	-2.06**±0.291	-2.16**±0.275	0.31**+0.103	2.44**+0.448
seed density (g/cm ⁻)	-	0.96**	-0.04**+0.008	-0.035±0.025	-0.08**±0.023	-0.015+0.010	0.03+0.042
77		1.01**	-0.20**±0.010	0.46**±0.032	0.32**+0.030	-0.14**+0.015	-0 44**+0 052
neavy seed (%)	-	50.09**	-3.49±1.799	20.27**+5.570	14.66**+5.198	9.41**+2.074	-0 94+9 049
		54.64**	3.39±1.900	-7.92 <u>+</u> 6.028	-5.98+5.623	3.39*+1.720	11 67+9 685
Micronaire reading	-	3.47**	-0.62**+0.049	-0.09±0.169	0.04+0.159	0.04+0.055	-0.06±0.258
	П	3.55**	-0.27**±0.057	-0.32+0.187	-0.22+0.176	0 13+0 068	0.16±0.202
Pressley index	I	10.44**	0.60**+0.080	1.04**+0.245	1.00**+0.231	0.50**+0.094	862.0+89.0-
		10.53**	0.29**+0.071	0.31 ± 0.232	0.18+0.216	-0.13*+0.060	892 0+00 0

I = G. 45 x G. 75 II = G. 88 x G. 89

* Significant at 5% probability level
** Significant at 1% probability level

and seed index. On the other hand, both types of genetic variance were involved for lint yield (Meredith and Bridge, 1972).

Dominance gene effects were found to be significant for lint yield/plant, bolls/plant, seeds/boll, lint/seed and seed density (cross II), lint percentage, seed index and 100-seed volume (both crosses), heavy seed percentage and Pressley index (cross I).

Significant additive x additive epistatic type was detected for lint percentage, 100-seed volume and seed density (the two crosses), heavy seed percentage and Pressley index (cross I), lint yield/plant, bolls/plant, seeds/boll and lint/seed (cross II). Additive x dominance type of digenic epistasis was significant for all characters under investigation except seed density (cross I) and micronaire reading (both crosses). Dominance x dominance type of gene action was significant for lint percentage (the two crosses), both lint yield and bolls/plant (cross I), seeds/boll, lint/seed, 100-seed volume and seed density (cross II).

Generally, it may be concluded from the results of the present studies that all types of gene effects were significant and govern the inheritance of most studied characters with some exceptions indicating that selection index and phenotypic trait selection based on the accumulation of additive effects were successful in improving most of the characters under investigation. However to maximize selection advance, procedures known to be effective in shifting gene frequency-viz., recurrent selection when both additive and non additive genetic variations are involved would be preferred. These findings were in conformity with those obtained

by Bedair et al. (1973), El-Fawal et al. (1974), Khan et al. (1980), Khattab et al. (1984), El-Kilany and El-Okkia (1986), Hassoub (1986), El-Okkia et al. (1989), El-Okkia et al. (1990), Jagtap (1993), Esmail (1996), Gomaa (1997), Khalil and Khattab (1997), El-Lawendey (1999), Gomaa et al. (1999), Ahmmed and Mehra (2000), Abdel-Gelil (2001), Nassar (2002) and Abd El-Bary (2003).

4.1.4. Potence ratio and heritability estimates

Potence ratio values in (Table 12) indicated existence of overdominance for bolls/plant, seed index and seed density (both crosses), 100-seed volume (cross I), lint yield/plant, lint/seed, lint percentage and heavy seed percentage (cross II), however, other characters under investigation expressed partial dominance. The existence of overdominance in lint yield/plant was previously reported (Abdel-Gelil, 2001; Awad, 2001) in bolls/plant and seed index by Khalil and Khattab (1997), El-Lawendey (1999) and Awad (2001) in lint percentage El-Agamy (1971) and El-Lawendey (1999). On the other hand, El-Okkia et al. (1989) found overdominance for seeds/boll and Pressley index, but lint yield/plant, lint/seed, lint percentage and seed index expressed partial dominance.

Phenotypic and genotypic coefficients of variation, broad and narrow sense heritabilities and expected genetic advance ($\Delta g\%$) are presented in Table 12. The estimates of phenotypic and genotypic coefficients of variation (PCV % and GCV%) were higher for lint yield/plant, bolls/plant and heavy seed percentage (both crosses) than all other characters. Generally, there were relatively distinct

Table 12. Phenotypic (PCV) and genotypic (GCV) coefficients of variation in F_2 generations, potence ratio (P), heritability in broad (h_b^2) and narrow (h_n^2) sense, and expected genetic advance (Anola) of the eleven cotton characters in the two studied crosses

			2	10.0-	4.0	6.7	=	1 103510]
	6.9	50.0	347	0.10	3.0	6.9	Н	Pressley index
	1.9	13.1	30.7	-0 40	3 8	10.4	=	
	10	0.00	44.0	0.25	10.9	16.4		Micronaire reading
	18.9	0.35	01.	0.20	11.6	15.8	-	· · · · · · · · · · · · · · · · · · ·
	26.5	81.7	547	0.00	17.3	32.8	=	
	21.6	31.9	27.8	1 0%	10.5	32.4	I	Heavy seed (%)
	10.7	15.9	31.9	-0 43	10.7	9.0	=	
	10.7	5.8	18.6	-2.33	39	0.0	: -	Seed density (g/cm ⁻)
	-	2.0	10.4	-1.80	2.4	75	-	
	0.4	28	10.0	-0.13	6.9	10.2	=	100-3000 1010111
	15.9	76.1	156	21.3	3.7	9.7	-	100 seed volume (cm ³)
	1.3	6.3	34.0	-1 30	0.0	12.2	=	
	10.0	43.1	50.2	-4.78	86	13.3	: -	Seed index (g)
	10.8	10.7	4/.8	-1.75	7.8	11 2	-	S
	10.2	137	470	1.37	7.1	9.1	П	Dim person
	11.4	60.6	609	1 27	0.0	8.1	-	I int percentage
	0.1	48.8	52.1	0.86	50	10.0	F	
	0 1	+5.0	64.1	-4.00	14.9	186	11	Lint/seed (g)
	16.4	13.0	10.	0.16	9.4	14.8	-	
	11.6	38.0	40.7	0.75	0.0	11.9	П	
	5.6	22.8	52.7	0.95	0.0	11.5	-	Seeds/boll
1	7.1	38.3	40.1	0.75	73	11.0	F	
	0 1	2000	4.14	-1.08	26.9	118		Bolls/plain
	33.0	38.4	1111	1.+1	31.6	40.7	-	D-II-/plant
_	46.8	55.8	603	1	20.0	41.8	П	
_	00.0	34./	55.0	-1.10	35.5	170	-	Lint yield/ plant (g)
	53.0		03.3	0.40	36.1	45.4	-	Character
	55.6	595	22	ξ.	GCV %	PCV %	Cross	Character
	Δg %	h'n	h ² ,	(D)	advance (\Delta government) of the back of	HIE CICACII	18%) OI	advance (2
_		,	O Student	ובוא ווו חול נאי	official characters	the eleven	10/10	

differences between phenotypic and genotypic coefficients of variation for most characters in the two crosses indicating that environmental effects had their important on these characters under the circumstance of this study. These results were in agreement with those reported by Younis (1986), El-Okkia et al. (1989) and Gooda (2001).

High heritability values in broad sense (> 50%) were observed for lint yield/plant and lint percentage (the two crosses), bolls/plant and micronaire reading (cross I), seeds/boll, lint/seed and seed index (cross II). Similar results were obtained by Younis (1980). Moderate heritability values in broad sense (from 30 to 50%), were obtained for the remaining characters in both crosses except seed density and heavy seed percentage in cross II. High to moderate narrow sense heritability estimates were found for all characters except seed density in the two crosses, 100-seed volume, heavy seed percentage and Pressley index (cross I) and seeds/boll (cross II) where low narrow sense heritability values (< 30%) were observed for these characters. The difference between broad and narrow sense heritabilities may be due to the presence of nonadditive gene action in the inheritance of most characters. These results were in coincidence with those reported by Yousef (1979), Atta et al. (1982), Jagtap and Kolhe (1986), El-Okkia et al. (1989), El-Helw (1990), Esmail (1996), Abo-Arab et al. (1997), Khalil and Khattab (1997), El-Lawendey (1999), Gomaa et al. (1999), Awad (2001), El-Disouqi and Ziena (2001) and Nassar (2002).

Regarding heritability estimates in narrow sense of some studied characters in both crosses (Table 12), it is noticeable that these estimates were higher than their corresponding broad sense heritability estimates. This may be attributed to using samples of different sizes. It is worth mentioning that samples of 75 plants for each P₁, P₂ and F₁, 150 plants for each BC₁ and BC₂ and 300 plants for F₂. These results were in agreement with those obtained by Gomaa and Shaheen (1995 a, b), El-Lawendey (1999) and Awad (2001).

4.1.5. Predicted genetic advance

The highest predicted genetic advances as percentage of F_2 mean ($\Delta g\%$) (Table 12) were achieved for lint yield/plant and bolls/plant in the two crosses, lint/seed, 100-seed volume and heavy seed percentage in the cross II. On the other hand, low predicted genetic advances were detected for seed density in the two crosses, 100-seed volume and Pressley index in the cross I. Awaad (1989) found that high expected genetic advance were observed for seed index. While, low genetic gains were calculated for yield characters, lint percentage and most fiber properties.

High to moderate values of heritability estimates in narrow sense were found to be associated with high and moderate genetic advance in most characters investigated, so selection for these characters may be highly effective. Similar conclusions were found by Hendawy et al. (1989) and Hendawy (1994).

4.2. Selection Procedures

Different selection methods-phenotypic individual character selection, selection index and recurrent selection-were used to improve lint yield in three populations of Egyptian cottons (*G. barbadense*). Information on type of gene action, phenotypic and genotypic variances, phenotypic and genotypic correlation coefficients and phenotypic weights are important to examine the effectiveness of selection procedures.

4.2.1. Selection index and phenotypic trait selection

Estimates of variance components for lint yield and its components in each of the three populations are presented in Tables 13, 14 and 15. Both phenotypic and genotypic variances were larger in F₂ of populations I and II than population III for lint yield/plant

in F₂ of populations I and II than population III for lint yield/plant, bolls/plant and lint percentage. In F₃ and S₁ generations, significant phenotypic variances were observed for all studied characters except seeds/boll in populations II and III, lint/seed and lint percentage in population III. The phenotypic variances in F₄ and S₂ generations were higher than F₃ and S₁ for all studied characters with the exception of lint percentage in populations I and II. The increase in phenotypic and most genotypic variances in F₄ and S₂ generations is due to the efficiency of selection procedures in creating substantial genetic variation. This finding is in agreement with those obtained by El-Okkia (1979) and Gooda (2001). As to environmental variances, it is clear that all values with the exception of these pertaining to lint yield and bolls/plant were small in magnitude, would be minor to effect genetic parameters.

Table 13. Estimates of phenotypic, genotypic and environmental variances for lint yield and its components in F₂, F₃ and F₄ generations of population I (G. 45 x G. 75).

ura 14	B	• •		
Characters	Generations	$\hat{\sigma}^2_{p}$	$\hat{\sigma}^2_{g}$	$\hat{\sigma}^2_{e}$
W 10 0000	F ₂	184.4941+	122.6641	61.8300
Lint yield/	F ₃	3.6217**	2.2413	1.3804
plant (g) (X _w)	F ₄	7.7098*	5.4495	2.2603
	F ₂	202.3592+	125.4782	76.8810
Bolls/plant	F ₃	3.5376**	1.9603	1.5773
(X_1)	F ₄	7.5165*	4.5034	3.0131
Seeds/boll	F ₂	2.3770+	0.9786	1.3984
(X_2)	F ₃	0.5982**	0.3200	0.2782
X 2/	F ₄	1.3178*	0.8600	0.4578
Lint/seed (g)	F ₂	0.000038+	0.000023	0.000015
(X_3)	F ₃	0.000007**	0.000004	0.000003
	F ₄	0.000015*	0.000010	0.000005
Lint	F ₂	4.5966+	2.5532	2.0434
percentage	F ₃	2.0813**	1.4081	0.6732
	F ₄	1.6041*	1.1552	0.4489
Seed index	F ₂	0.8668+	0.4658	0.4010
(g)	F_3	0.2063**	0.1445	0.0618
107	F ₄	0.2988	0.1234	0.1754

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

⁺ Estimates of phenotypic variance for 300 F₂ plants in population I.

Table 14. Estimates of phenotypic, genotypic and environmental variances for lint yield and its components in F₂, F₃ and F₄ generations of population II (G. 87 x G. 89).

		A 2		
Characters	Generations	$\hat{\sigma}_{p}^{2}$	σ^2_g	$\hat{\sigma}^2_{e}$
Lint yield/	F ₂	184.1051+	104.5882	79.5169
plant (g) (X _w)	F ₃	5.3651**	3.4099	1.9552
1 (8) (4-W)	F ₄	13.7356	7.2286	6.5070
Bolls/plant	F ₂	203.6194+	92.9098	110.7096
(X_1)	F ₃	6.3466**	4.0014	2.3452
	F ₄	26.4393*	15.9157	10.5236
Seeds/boll	F ₂	2.9449+	1.1281	1.8168
(X_2)	F_3	0.2925	0.0495	0.2430
	F ₄	0.5350	0.2174	0.3176
Lint/seed (g)	F ₂	0.000035+	0.000020	0.000015
(X_3)	F ₃	0.000009**	0.000006	0.000003
	F ₄	0.000011	0.000005	0.000006
Lint	F ₂	4.1027+	1.6761	2.4266
percentage	F_3	2.0763**	1.1693	0.9070
	F ₄	1.7457	0.7236	1.0221
Seed index	F ₂	0.6629+	0.3223	0.3406
(g)	F ₃	0.1509**	0.0876	0.0633
	F ₄	0.2298	0.0263	0.2035

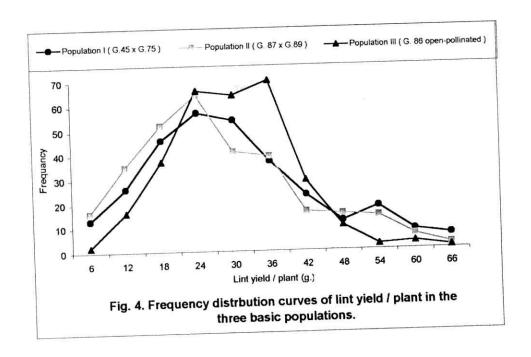
^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

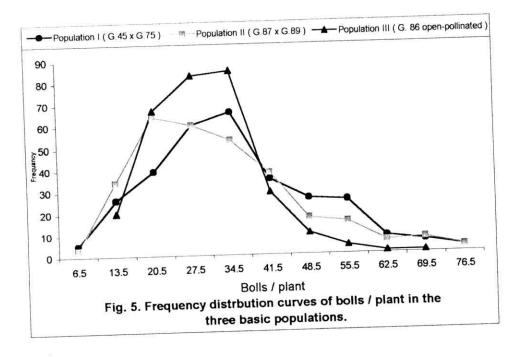
⁺ Estimates of phenotypic variance for 300 F₂ plants in population II.

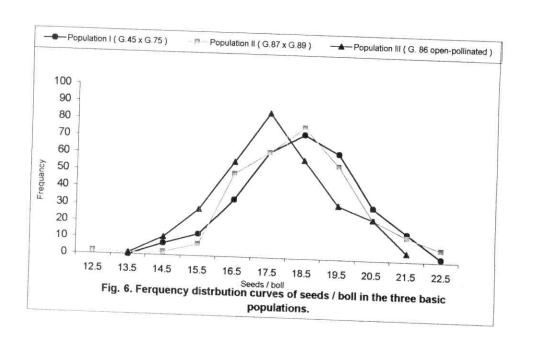
Estimates of phenotypic, genotypic and environmental Table 15. variances for lint yield and its components in So, S1 and S₂ generations of population III (G. 86 openpollinated).

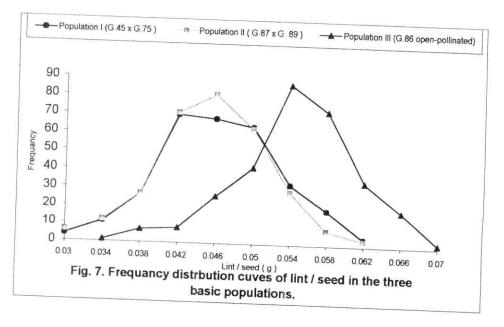
inated).	- 12	1.2	$\overset{\wedge}{\sigma}^{2}_{e}$
Generations	σ ² p		
So	95.7682+	67.2987	28.4695
	6.4089**	4.1599	2.2490
		6.8461	3.4513
		54.7160	32.1469
		3.9515	1.8119
		2.4743	3.4231
		0.9973	1.4457
		0.1677	0.3696
		0.3487	0.3899
		0.000014	0.000025
A			0.0000048
			0.000023
			1.7745
S_0			0.6093
S_1	0.7175		
S_2	1.3939	0.5940	0.7999
	0.7057+	0.4472	0.2585
		0.2137	0.2484
		0.1592	0.3563
	$\begin{tabular}{c c} Generations & \\ \hline S_0 & \\ S_1 & \\ S_2 & \\ S_0 & \\ \hline S_1 & \\ S_2 & \\ \hline S_0 & \\ \hline S_1 & \\ S_2 & \\ \hline S_0 & \\ \hline S_1 & \\ S_2 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_0 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_0 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_0 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_0 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_0 & \\ \hline S_1 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_3 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_3 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_3 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_3 & \\ \hline S_4 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_2 & \\ \hline S_3 & \\ \hline S_4 & \\ \hline S_1 & \\ \hline S_2 & \\ \hline S_3 & \\ \hline S_3 & \\ \hline S_4 & \\ \hline S_5 & \\$	$\begin{array}{c cccc} Generations & \sigma^2_p \\ S_0 & 95.7682+ \\ S_1 & 6.4089** \\ S_2 & 10.2974* \\ S_0 & 86.8629+ \\ S_1 & 5.7634** \\ S_2 & 5.8974 \\ S_0 & 2.4430+ \\ S_1 & 0.5373 \\ S_2 & 0.7386 \\ S_0 & 0.000039+ \\ S_1 & 0.0000064 \\ S_2 & 0.000040 \\ S_2 & 0.7175 \\ S_2 & 1.3939 \\ S_0 & 0.7057+ \\ S_1 & 0.4621** \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.


⁺ Estimates of phenotypic variance for 300 S₀ plants in population III.


4.2.1.2. Means, ranges, phenotypic and genotypic coefficients of variation and heritability estimates


Results of the base generations of the three studied populations, are shown graphically in Figures 4, 5, 6 and 7 for lint yield/plant, bolls/plant, seeds/boll and lint/seed, respectively. Means, ranges, phenotypic and genotypic coefficients of variation and heritability are presented in Tables 16, 17 and 18.


Both F₂ and S₀ means for lint yield/plant, bolls/plant and seeds/boll were higher than those of the succeeding generations although intensive selection was practiced. Similarly, wide ranges in lint yield, bolls/plant and seeds/boll in F₂ and S₀ generations were noticed compared with those of the other segregating generations. The difference between generation means was due to skipping of one row between each two planted rows in both F₂ and S₀ generations. However, this method was not applied in succeeding generations. Furthermore, one plant was left per hill that was spaced 50 cm apart, but this was not the case in the other succeeding generations.

The observed phenotypic and genotypic coefficients of variability were larger in F₂ and S₀ than those of the succeeding generations for all the studied characters of populations I, II and III. This indicates that, the magnitude of the genetic variability persisted in these material was sufficient for providing rather substantial amounts of improvement through the selection of superior progenies. Similar results were obtained by El-Okkia (1979), Mahdy et al. (1987a), Meena et al. (1991), Younis (2000) and Meena et al. (2001).

Table 16. Means, standard errors, ranges, phenotypic (PCV) and genotypic (GCV) coefficients of variation and broad sense heritability (h²_b) for six characters in F₂, F₃ and F₄ generations of population I (G. 45 x G. 75).

	0	$\frac{\text{ons of popul}}{\text{Mean} \pm S \overline{x}}$	Range	PCV%	GCV%	h^2_b
Characters			3.4–68.7	46.2	37.7	66.5
Lint yield/	F_2	29.37±0.784	8.7–16.4	15.6	12.3	61.9
plant (g)	F ₃	12.22±1.175		18.0	15.2	70.7
(X_w)	F ₄	15.40±1.503	11.2–19.1	42.3	33.3	62.0
Bolls/plant	F_2	33.63 <u>+</u> 0.821	5.0-79.0	17-02-0107	9.1	55.4
(X_1)	F ₃	15.31±1.256	11.5–19.5	12.3		59.9
(1)	F ₄	16.63±1.736	12.9-21.5	16.5	12.8	41.2
Seeds/boll	F ₂	18.34±0.089	14.6-22.0	8.4	5.4	
	F ₃	17.25+0.527	15.0-19.1	4.5	3.3	53.5
(X_2)	F ₄	15.71±0.677	14.4-17.9	7.3	5.9	65.3
. 17		0.046+0.0004	0.030-0.062	13.4	10.4	60.5
Lint/seed (g	1	0.046±0.002	0.041-0.053	-	4.3	57.1
(X_3)	F ₃	0.040±0.002	0.052-0.064		5.4	66.7
	F ₄		26.4–39.7	6.4	4.8	55.5
Lint	F ₂	33.58±0.124	30.6–37.3	4.3	3.5	67.7
percentage	F_3	33.94±0.820			3.1	72.0
	F ₄	34.60±0.670			7.5	53.7
Seed index	x F ₂	9.05±0.054	6.1–11.4	10.3	4.2	70.0
(g)	F ₃	8.99+0.249	8.0-10.3	5.1		41.3
10/	F ₄	11.22±0.419	10.0-12.0	4.9	3.1	41.3

Table 17. Means, standard errors, ranges, phenotypic (PCV) and genotypic (GCV) coefficients of variation and broad sense heritability (h²_b) for six characters in F₂, F₃ and F₄ generations of population II (G. 87 x G. 89).

Characters	Generations	Mean \pm S \overline{x}	Range	PCV%	GCV%	h ² _b
Lint yield/	F ₂	27.47 <u>+</u> 0.783	3.9-67.6	49.4	37.2	56.8
plant (g) (X _w)	F ₃	15.6 <u>+</u> 1.398	9.3-19.6	14.8	11.8	63.6
	F ₄	17.36±2.551	11.9-24.9	21.3	15.5	52.6
Bolls/plant	F ₂	31.40 <u>+</u> 0.824	6.0-74.0	45.4	30.7	45.6
(X_1)	F ₃	19.37 <u>+</u> 1.531	13.7-23.9	13.0	10.3	63.0
	F_4	20.53 <u>+</u> 3.244	14.3-33.6	25.0	19.4	60.2
Seeds/boll	F ₂	18.32 <u>+</u> 0.099	12.0-23.0	9.4	5.8	38.3
(X_2)	F ₃	17.44 <u>+</u> 0.493	16.3-18.7	3.1	1.3	16.9
	F_4	16.36±0.564	14.9–17.7	4.5	2.9	40.6
Lint/seed (g)	F ₂	0.045±0.0003	0.029-0.063	13.1	9.9	57.1
(X_3)	F ₃	0.046±0.002	0.038-0.053	6.5	5.3	66.7
	F ₄	0.053±0.002	0.046-0.057	6.3	4.2	45.5
Lint	F ₂	34.36±0.117	27.7-40.5	5.9	3.8	40.9
percentage	F ₃	34.33±0.952	30.4-37.1	4.2	3.1	56.3
	F ₄	34.42 <u>+</u> 1.011	32.1–36.6	3.8	2.5	41.5
Seed index	F ₂	8.55±0.047	5.4-10.6	9.5	6.6	48.6
(g)	F ₃	8.78±0.252	8.0-9.4	4.4	3.4	58.1
	F.4	9.99+0.451	9.0-10.6	4.8	1.6	11.4

Table 18. Means, standard errors, ranges, phenotypic (PCV) and genotypic (GCV) coefficients of variation and broad sense heritability (h²_b) for six characters in S₀, S₁ and S₂ generations of population III (G. 86 openpollinated).

Characters	Generations	Mean $\pm S\overline{x}$	Range	PCV%	GCV%	h ² _b
Lint yield/	S_0	29.70±0.565	6.0-63.1	32.9	27.6	70.3
plant (g)	S ₁	16.85±1.500	11.9–24.5	15.0	12.1	64.9
(X _w)	S ₂	22.82 <u>+</u> 1.858	17.9-27.4	14.1	11.5	66.5
3 55	S_0	29.20±0.538	10.0-69.0	31.9	25.3	63.0
Bolls/plant	S_1	16.40±1.346	11.1-21.8	14.6	12.1	68.6
(X_1)	S_2	20.95±1.850	15.7-24.7	11.6	7.5	42.0
Seeds/boll	S ₀	17.60±0.090	13.2-21.4	8.9	5.7	40.8
(X_2)	S_1	17.31 <u>+</u> 0.608	15.3-18.8	4.2	2.4	31.2
,	S_2	16.08±0.624	14.8-17.5	5.3	3.7	47.2
Lint/seed (g)	S_0	0.054+0.0004	0.032-0.071	11.6		35.9
(X_3)	S_1	0.060±0.002	0.054-0.065	4.2	2.1	25.0
(5)	S_2	0.069±0.005	0.060-0.076	9.2	6.0	42.5
Lint	S ₀	37.86±0.095	30.0-41.7	4.4	2.6	34.9
percentage	S_1	38.40 <u>+</u> 0.781	36.0-40.6	2.2	0.9	15.1
porconno	S_2	38.46±0.894	36.1-40.0	3.1	2.0	42.6
Seed index		8.89+0.049	5.3-10.6	9.4	7.5	63.4
(g)	S_1	9.45±0.498	8.9–10.2	7.2	2 4.9	46.2
(6)	S ₂	10.96+0.597	9.9–12.2	6.0	3.6	30.

Comparing means of F_3 and S_1 generations with those of F_4 and S_2 , it is apparent that the means of F_4 and S_2 were higher than those of F_3 and S_1 for all studied characters except seeds/boll in the three populations. Also, comparing the lowest and highest values of F_3 and S_1 with those of F_4 and S_2 (Tables 16, 17 and 18), it is clear that the lowest and the highest for F_4 and S_2 surpassed those for F_3 and S_1 for all studied characters except seeds/boll and lint percentage in the three populations. This may be attributed to the efficiency of selection procedures application in this study.

Concerning both phenotypic and genotypic coefficients of variation in F₃ generations, these were lower than F₄ for lint yield/plant, bolls/plant, seeds/boll and lint/seed in populations I and II, with the exception of lint/seed in population II. On the other hand, phenotypic and genotypic coefficients of variation in S₁ generation were larger than S₂ for lint yield/plant, bolls/plant and seed index in population III. Both lint yield and bolls/plant exhibited the highest estimated of phenotypic and genotypic coefficients of variation in the three populations, however, seeds/boll, lint/seed, lint percentage and seed index showed moderate to low variability.

Regarding heritability values in broad sense, high estimates (>50%) were observed for lint yield and bolls/plant in the three populations, yet for remaining characters, estimates fluctuated widely over the successive generations of selection probably due to varied environmental factors. Similar conclusions were found by Lasheen and Abo-Sen (1998). However, higher estimates were noticed from F_3 to F_4 and from S_1 to S_2 generations for most characters in populations I and III. On the other hand, a decrease

from F_3 to F_4 generations is shown for most characters in population II.

Burton (1952), Shaheen et al. (2000) and Meena et al. (2001) suggested that the genetic coefficient of variation with heritability would give the best indication of the amount of genetic variance to be expected from selection.

Mean lint yield/plant for the best 5% selection intensity scored for each selection index in F_2 and F_3 for populations I and II, and for S_0 and S_1 generations for population III are shown in Table 19. In the three populations, mean estimates of lint yield/plant for the three different phenotypic trait selection; Ixw, Ix₁ and Ix₃ were consistently higher than their generation means. While, phenotypic selection for seeds/boll (Ix₂) exhibited lower mean of lint yield/plant than its F_2 and S_0 generation mean in the three populations.

Mean lint yield/plant for the eight different selection indices and the four phenotypic trait selection were higher than their F_3 and S_1 generation means in the three populations, except phenotypic selection for lint/seed (Ix_3) in population III. However, means were extensively variable among indices with obvious higher means for all indices including lint yield/plant.

Means, phenotypic and genotypic variances and phenotypic and genotypic coefficients of variation for lint yield and its components for the eight different selection indices and the four phenotypic trait selection, parental inbred lines, and random sample of the generation under study for population I, II and III are presented in Tables 20, 21 and 22.

Table 19. Means of lint yield (g)/plant for the best 5% selection intensity scored by each selection index and phenotypic traits selection in F₂ and F₃ for populations I and II, and S₀, S₁ generations for population III.

	Po	pulation I	30, 31 g	enerations	for populat		
Indices	(G	45 x G. 75)	Po	pulation II	Popu	ılation III	
	()	13 4 0. 75)	(6.	87 x G. 89)	(G. 86 op	en-pollinated	1)
	F ₂ selected			20100100	S _o selected	\overline{S}_1	
I_{w123}		15.99		19.10		22.41	1
l ₁₂₃		16.03		18.79		22.08	
I_{w1}		15.99		19.10		22.41	
I_{w2}		15.99		19.10		22.41	
I_{w3}		16.03		19.01		22.41	
I ₁₂		16.03		18.38		22.41	
I ₁₃		15.30		18.79		22.08	
I_{23} I_{X_w}	60.05	15.12		17.31		20.35	
	60.87	16.03	57.74	19.10	49.65	22.41	
I_{X_1} I_{X_2}	59.31	15.01	55.69	18.38	49.09	22.08	
	28.43	13.45	24.40	15.95	28.41	19.22	
Ix ₃	33.07	14.13	32.77	17.31	32.55	16.44	
Generation mean	29.37	12.22	27.47	15.60	29.70	16.85	

 $(\sigma^2 p)$ and Means, standard errors, phenotypic Table 20. genotypic $(\sigma^2 g)$ variances and phenotypic (PCV) and genotypic (GCV) coefficients of variation for lint yield and its components in the twelve different selection procedures as evaluated from F₃ selected families and their F₄ progenies for population I (G. 45 x G. 75).

(G. 45 x G	Mean $\pm S\overline{X}$	σ^{2}_{p}	σ^2_{g}	PCV %	GCV %
		10.000	6.510	21.7	16.8
Lint yield/plant (g)					4.2
				8.3	7.7
			2007.	3.0	2.9
	0.001-0.000				1.2
			1997 (1971) (1971)		4.6
					-
Lint yield/plant (g)					-
					4.7
					-
					2.1
					-
	11.24±0.42				16.8
					4.2
					7.7
			N2021		2.9
					1.2
	35.01±0.32				4.6
					16.8
	15.21 <u>+</u> 2.09				4.2
	14.87+2.00				7.7
	16.63+0.52			_	2.9
	0.061±0.0004				1.2
	35.01±0.32				4.6
	11.34+0.17				-
Lint yield/plant (g)	14.11+2.03	2.016			_
	14.76+2.38				
0 1 7 11	16.09±0.47				_
A STATE OF THE PARTY OF THE PAR	0.060+0.001		200		
		0.735	C4045-		
			0.000+	3.3	
	Characters Lint yield/plant (g) Bolls/plant Seeds/boll Lint/seed (g) Lint percentage Seed index (g) Lint yield/plant (g) Bolls/plant Seeds/boll Lint/seed (g) Lint percentage Seed index (g) Lint percentage Seed index (g) Lint yield/plant (g) Bolls/plant Seeds/boll Lint/seed (g) Lint percentage Seed index (g) Lint yield/plant (g) Bolls/plant Seeds/boll Lint/seed (g) Lint yield/plant (g) Bolls/plant Seeds/boll Lint/seed (g) Lint percentage Seed index (g) Lint percentage Seed index (g) Lint yield/plant (g) Bolls/plant Seeds/boll Lint/seed (g) Lint yield/plant (g) Bolls/plant Seeds/boll Lint/seed (g) Lint percentage Seed index (g)	Characters Mean ± S x Lint yield/plant (g) 15.21±2.09 Bolls/plant 14.87±2.00 Seeds/boll 16.63±0.52 Lint/seed (g) 0.061±0.0004 Lint percentage 35.01±0.32 Seed index (g) 11.34±0.17 Lint yield/plant (g) 14.76±2.38 Seeds/boll 16.09±0.47 Lint/seed (g) 0.060±0.0017 Lint percentage 34.81±0.46 Seed index (g) 11.24±0.42 Lint yield/plant (g) 15.21±2.09 Bolls/plant 14.87±2.00 Seeds/boll 16.63±0.52 Lint percentage 35.01±0.32 Seed index (g) 11.34±0.17 Lint yield/plant (g) 15.21±2.09 Bolls/plant 14.87±2.00 Seeds/boll 16.63±0.52 Lint/seed (g) 11.34±0.17 Lint percentage 35.01±0.32 Seed index (g) 11.34±0.17 Lint yield/plant (g) 14.11±2.03 Bolls/plant 14.76±2.38 Seeds/boll 16.09±0.47	Characters Mean ± S x σ²p Lint yield/plant (g) 15.21±2.09 10.889 Bolls/plant 14.87±2.00 4.381 Seeds/boll 16.63±0.52 1.921* Lint/seed (g) 0.061±0.0004 0.0000034* Lint percentage 35.01±0.32 0.268 Seed index (g) 11.34±0.17 0.308* Lint yield/plant (g) 14.76±2.38 3.685 Bolls/plant 14.76±2.38 3.685 Seeds/boll 16.09±0.47 0.796 Lint/seed (g) 0.060±0.0017 0.0000014 Lint percentage 34.81±0.46 0.735 Seed index (g) 11.24±0.42 0.152 Lint yield/plant (g) 15.21±2.09 10.889 Bolls/plant 14.87±2.00 4.381 Seeds/boll 16.63±0.52 1.921* Lint yield/plant (g) 15.21±2.09 10.889 Bolls/plant 14.87±2.00 4.381 Seeds/boll 16.63±0.52 1.921* Lint yield/plant (g) 15.21±2.09 10.889 </td <td>Characters Mean ± S x σ² p σ³ g Lint yield/plant (g) 15.21±2.09 10.889 6.510 Bolls/plant 14.87±2.00 4.381 0.397 Seeds/boll 16.63±0.52 1.921* 1.649 Lint/seed (g) 0.061±0.0004 0.0000034* 0.0000032 Lint percentage 35.01±0.32 0.268 0.167 Seed index (g) 11.34±0.17 0.308* 0.278 Seed index (g) 14.76±2.38 3.685 0.000+ Lint yield/plant (g) 14.76±2.38 3.685 0.000+ Seeds/boll 16.09±0.47 0.796 0.572 Lint percentage 34.81±0.46 0.735 0.525 Seed index (g) 11.24±0.42 0.152 0.000+ Lint yield/plant (g) 15.21±2.09 10.889 6.510 Bolls/plant 16.63±0.52 1.921* 1.649 Lint yield/plant (g) 15.21±2.09 10.889 6.510 Lint yield/plant (g) 15.21±2.09 10.899 6.510</td> <td>Characters Mean ± S x G²p G³g 1 € √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √</td>	Characters Mean ± S x σ² p σ³ g Lint yield/plant (g) 15.21±2.09 10.889 6.510 Bolls/plant 14.87±2.00 4.381 0.397 Seeds/boll 16.63±0.52 1.921* 1.649 Lint/seed (g) 0.061±0.0004 0.0000034* 0.0000032 Lint percentage 35.01±0.32 0.268 0.167 Seed index (g) 11.34±0.17 0.308* 0.278 Seed index (g) 14.76±2.38 3.685 0.000+ Lint yield/plant (g) 14.76±2.38 3.685 0.000+ Seeds/boll 16.09±0.47 0.796 0.572 Lint percentage 34.81±0.46 0.735 0.525 Seed index (g) 11.24±0.42 0.152 0.000+ Lint yield/plant (g) 15.21±2.09 10.889 6.510 Bolls/plant 16.63±0.52 1.921* 1.649 Lint yield/plant (g) 15.21±2.09 10.889 6.510 Lint yield/plant (g) 15.21±2.09 10.899 6.510	Characters Mean ± S x G²p G³g 1 € √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

⁺ Negative value for genotypic variance component.

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table 20. Continued.

Indices	- Turacters	Mean \pm S \overline{X}	σ_{p}^{2}	σ_{g}^{2}	PCV %	GCV %
	Lint yield/plant (g)	14.11 <u>+</u> 2.03	2.016	0.000+	10.1	00 7
I ₁₂	Bolls/plant	14.76+2.38	3.685	0.00+	13.0	-
	Seeds/boll	16.09+0.47	0.796	0.572	5.5	4.7
	Lint/seed (g)	0.060±0.0017		0.00000+	2.0	4.7
	Lint percentage	34.81±0.46	0.735	0.525	2.5	2.1
	Seed index (g)	11.24+0.42	0.152	0.000+	3.5	2.1
	Lint yield/plant (g)	14.36+1.97	1.714	0.000+	9.1	-
	Bolls/plant	15.21±1.79	4.006	0.807	13.2	-
I_{13}	Seeds/boll	15.62±0.89	1.565	0.770	8.0	5.9
	Lint/seed (g)	0.061+0.0033	0.0000023	0.00000+	2.5	5.6
	Lint percentage	34.88±0.65	0.067	0.000+		-
	Seed index (g)	11.36±0.38	0.178	0.030	0.7	1.5
	Lint yield/plant (g)	14.59±1.22	0.905	0.000+	3.7	1.5
	Bolls/plant	15.79±0.96	1.002	0.000+	6.5	-
I ₂₃	Seeds/boll	15.03±1.04	0.348	0.000+	6.3	1.7
	Lint/seed (g)	0.061±0.0033	0.0000003	0.0000+	3.9	-
	Lint percentage	34.97±0.72	0.168	0.000+	0.9	
	Seed index (g)	11.44+0.28	0.080	0.000+	1.2	-
	Lint yield/plant (g)	14.11±2.03	2.016	0.003	2.5	0.5
	Bolls/plant	14.76 <u>+</u> 2.38	3.685	0.000+	10.1	-
Ix _w	Seeds/boll	16.09±0.47	0.796	0.572	13.0	-
1	Lint/seed (g)	0.060±0.0017	0.0000014	0.00000+	5.5	4.7
	Lint percentage	34.81+0.46	0.735		2.0	-
5	Seed index (g)	11.24+0.42	0152	0.525	2.5	2.1
I	Lint yield/plant (g)	14.02±1.60	2.158	0.000+	3.5	-
	Bolls/plant	15.60+2.20	5.514	0.000+	10.5	-
Ix ₁	Seeds/boll	15.84±0.29	1.676**	0.692	15.1	5.3
I	int/seed (g)	0.058+0.0015	0.0000084	1.592	8.2	8.0
	int percentage	34.69±0.59	0.0000084	0.0000062	5.0	4.3
	seed index (g)	10.87±0.35		0.207	2.1	1.3
	e for genotypic variance comp	10.07_0.33	0.668	0.546	7.5	6.8

Negative value for genotypic variance component.

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Continued. Table 20.

able 20		14 1 C V	σ^2_p	σ_{g}^{2}	PCV %	GCV %
Indices	Characters	Mean ± S X	14.780**	14.135	26.4	25.8
	Lint yield/plant (g)	14.56±0.80	19.514**	18.800	26.9	26.4
	Bolls/plant	16.43±0.85	0.610	0.347	5.0	3.8
Ix_2	Seeds/boll	15.63±0.51	0.0000238*	0.0000213	8.6	8.1
	Lint/seed (g)	0.057±0.0016	4.323	3.657	6.1	5.6
	Lint percentage	33.90±0.82	0.031	0.000+	1.6	-
	Seed index (g)	11.10±0.56	5.825	4.875	14.7	13.5
	Lint yield/plant (g)	16.41±0.97	5.333*	4.639	13.0	12.2
	Bolls/plant	17.70±0.83	0.352	0.000+	4.0	-
Ix_3	Seeds/boll	14.92±1.09	0.0000018	0.00000+	2.2	
	Lint/seed (g)	0.062±0.0031	0.894	0.390	2.7	1.8
	Lint percentage	35.28±0.71	0.090	0.000+	2.6	-
	Seed index (g)	11.43±0.45	0.090	0.000+	4.7	-
	Lint yield/plant (g)	9.88±0.91	0.123	0.045	2.6	1.6
	Bolls/plant	13.36±0.28	1.914*	1.680	8.3	7.8
Pı	Seeds/boll	16.67±0.48		0.000019	9 11.5	9.9
G. 45	Lint/seed (g)	0.045±0.0026	0.000207	0.000+		-
350	Lint percentage	32.11±0.62	1.068*	0.935	10.8	3 10.1
1	Seed index (g)	9.54±0.36	0.563	0.422	5.4	4.7
	Lint yield/plant (g)	13.97±0.38		1.977	_	6 10.3
l .	Bolls/plant	13.69±0.35		0.557	_	7 4.5
P ₂	Seeds/boll	16.43±0.18			_	0 11.0
G. 75	Lint/seed (g)	0.062±0.000		0.717		
	Lint percentage	37.32±0.25		0.568	3 7.	
1	Seed index (g)	10.41±0.14		1.59	8 12	
	Lint yield/plant (g	15.24±1.33		0.17	6 10	0.9 2.3
1	Bolls/plant	18.11±1.92		1.41	_	.1 7.3
Rand	om Seeds/boll	16.41±0.9				1.6 10.6
samı		0.053±0.003		0.00		.0 -
1	Lint percentage	34.89±0.8				1.7 8.2
1	Seed index (g)	9.94±0.83	1.302	5,00		

⁺ Negative value for genotypic variance component.

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table 21. Means, standard errors, phenotypic (σ^2_p) and genotypic (σ^2_g) variances and phenotypic (PCV) and genotypic (GCV) coefficients of variation for lint yield and its components in the twelve different selection procedures as evaluated from F_3 selected families and their F_4 progenies for population II (G. 87 x G. 89).

Indices	Characters	Mean ± S \overline{x}		σ_{g}^{2}	PCV %	GCV %
	Lint yield/plant (g)	16.16+3.03	3.207	0.000+		
	Bolls/plant	18.83+3.17		0.212	11.1	-
Iw_{123}	Seeds/boll	16.40+0.66	0.164	0.000+	17.0	2.4
	Lint/seed (g)	0.052±0.0030			2.5	-
	Lint percentage	33.90+0.60	3.445*	3.079	3.3	-
	Seed index (g)	10.22±0.51	0.394	0.132	5.5	5.2
	Lint yield/plant (g)	18.58 <u>+</u> 1.28	30.880**		6.1	3.6
	Bolls/plant	23.79+2.93	79.922*		29.9	29.1
I_{123}	Seeds/boll	16.02±0.42	0.979	71.340	37.6	35.5
	Lint/seed (g)	0.051±0.0018		0.804	6.2	5.6
	Lint percentage	33.99+1.37	0.294		8.3	7.5
	Seed index (g)	9.84±0.44	0.700	0.000+	1.6	•
	Lint yield/plant (g)	16.16+3.03	3.207	0.507	8.5	7.2
	Bolls/plant	18.83±3.17	-	0.000+	11.1	-
Iw_1	Seeds/boll	16.40±0.66	10.290	0.212	17.0	2.4
	Lint/seed (g)	0.052±0.0030	0.164	0.000+	2.5	
	Lint percentage	33.90±0.60	0.0000030	0.000+	3.3	(#
	Seed index (g)	10.22±0.51	3.445*	3.079	5.5	5.2
	Lint yield/plant (g)		0.394	0.132	6.1	3.6
Ì	Bolls/plant	16.16±3.03	3.207	0.000+	11.1	-
Iw ₂	Seeds/boll	18.83±3.17	10.290	0.212	17.0	2.4
	Lint/seed (g)	16.40±0.66	0.164	0.000+	2.5	-
	Lint percentage	0.052+0.0030	0.0000030	0.000+	3.3	-
	Seed index (g)	33.90±0.60	3.445*	3.079	5.5	5.2
	Lint yield/plant (g)	10.22±0.51	0.394	0.132	6.1	3.6
-	Bolls/plant	15.60±1.80	1.003	0.000+	6.4	
-	Seeds/boll	18.64 <u>+</u> 2.60	8.414	1.632	15.6	6.9
		15.98 <u>+</u> 0.47	0.953	0.728	6.1	5.3
	Lint/seed (g)		0.0000001	0.000+	0.6	-
	Lint percentage	34.69 <u>+</u> 1.02	1.367	0.335	3.4	1.7
Se	Seed index (g) ue for genotypic variance comp	10.02+0.44	0.327	0.133	5.7	3.6

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Continued. Table 21.

able 2			σ_{p}^{2}		σ^2_{g}	PCV %	GCV %
ndices	Characters	Mean ± S X	9.397		.622	17.8	14.9
	Lint yield/plant (g)	17.24 <u>+</u> 1.67	15.083	_	1.355	19.8	17.2
Ī	Bolls/plant	19.59±1.93	0.727		000+	5.2	-
I ₁₂	Seeds/boll	16.48±0.90	0.00000		000001	4.3	0.6
	Lint/seed (g)	0.054±0.0023	0.00000	9.5	.000+	2.0	-
	Lint percentage	34.08±0.76	0.085	_	.000+	2.8	-
	Seed index (g)	10.43±0.33	30.880		9.249	29.9	29.1
	Lint yield/plant (g)	18.58±1.28			71.340	37.6	35.5
	Bolls/plant	23.79 <u>+</u> 2.93	79.922		0.804	6.2	5.6
I ₁₃	Seeds/boll	16.02 <u>+</u> 0.42	0.979		0000147	8.3	7.5
21.5	Lint/seed (g)	0.051±0.0018	0.0000		0.000+	1.6	
	Lint percentage	33.99±1.37	0.294		0.507	8.5	7.2
	Seed index (g)	9.84±0.44	0.70	_	24.837	30.4	28.9
	Lint yield/plant (g)	17.26±1.64	27.52		24.837	30.4	25.9
1	Bolls/plant	19.13±3.05	33.8		0.537	4.4	4.3
I ₂₃	Seeds/boll	16.89±0.13	0.553		0.000+	3.5	-
123	Lint/seed (g)	0.054±0.0034			0.000+	2.4	
1	Lint percentage	35.60±0.91	0.75	-	0.000+	2.3	
1	Seed index (g)	9.78±0.78	0.04	_		11.1	-
-	Lint yield/plant (g)	16.16±3.03	3.2		0.000+	17.0	
	Bolls/plant	18.83±3.17			0.212	2.5	
Ixw	11	16.40 <u>+</u> 0.66			0.000+	3.3	
1 IA	Lint/seed (g)	0.052±0.003	630 10 12651250	00030	0.000+	5.5	
	Lint percentage	33.90±0.60		45*	3.079	6.1	
1	Seed index (g)	10.22±0.51	2	394	0.132	17.5	
-	Lint yield/plant (g)	17.24±1.6		397	6.622		
1	Bolls/plant	19.59±1.9		.083	11.355		•
Ix		16.48 <u>+</u> 0.9	0	727	0.000+	the state of the s	
1 18	Lint/seed (g)	0.054±0.00		00055	0.00000	100	
	Lint percentage	34.08 <u>+</u> 0.7		.446	0.000		
1	Seed index (g)	10.43+0.3	33 0	.085	0.000-	+ 2.	0

⁺ Negative value for genotypic variance component.

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table 21. Continued.

Indice	es Characters	Mean \pm S \overline{X}	σ_{p}^{2}	σ_{g}^{2}	PCV %	COVA
	Lint yield/plant (g			6.065		GCV %
	Bolls/plant	18.32±2.72		0.526	21.1	15.7
Ix ₂	Seeds/boll	16.36±0.68	7.56.56.56	0.000+	15.4	4.0
	Lint/seed (g)	0.052±0.0013			4.0	-
	Lint percentage	33.97±0.71	3.010	2.502		9.7
	Seed index (g)	10.12±0.18	0.064	0.032	5.1	4.7
	Lint yield/plant (g	17.87+1.05	39.301**		2.5	1.8
	Bolls/plant	21.79±1.71	106.492**	38.194	35.1	34.6
I_{X_3}	Seeds/boll	16.40+0.14	0.031	103.553	47.4	46.7
	Lint/seed (g)	0.052±0.0024		0.011	1.1	0.6
	Lint percentage	35.18±1.41	- Control of the Cont	0.0000224	10.2	9.1
	Seed index (g)	9.56±0.72	1.962	0.000+	4.0	
	Lint yield/plant (g)		0.294	0.000+	5.7	-
	Bolls/plant	19.07±0.43	2.668**	2.550	11.9	11.6
P_1	Sceds/boll		2.055*	1.873	7.5	7.2
G. 87	Lint/seed (g)	16.02±0.84	0.267	0.000+	3.2	-
	Lint percentage	0.045±0.0035	0.0000267	0.0000147	11.5	8.5
	Seed index (g)	32.58±0.57	0.872	0.551	2.9	2.3
	Lint yield/plant (g)	9.21±0.46	0.445	0.231	7.2	5.2
	Bolls/plant	17.04±0.46	0.018	0.000+	0.8	-
P_2	Seeds/boll	19.74±0.99	0.010	0.000+	0.5	
G. 89	Lint/seed (g)	16.62 <u>+</u> 0.64	1.034	0.623	6.1	4.7
0.07		0.052±0.0021	0.0.000203	0.0000160	8.7	7.7
	Lint percentage	36.18 <u>+</u> 0.24	0.055	0.000+	0.6	-
	Seed index (g)	9.19 <u>+</u> 0.08	0.063*	0.057	2.7	2.6
	Lint yield/plant (g)	15.62 <u>+</u> 1.58	1.323	0.000+	7.4	-
andor	Bolls/plant Seeds/boll	20.09 <u>+</u> 2.10	0.080	0.000+	1.4	
ļ		16.69 <u>+</u> 0.25	1.103**	1.042	6.3	6.1
ample	Lint/seed (g)		0.0000514**	0.0000488	15.3	14.9
-	Lint percentage	33.06±0.50	1.247	0.995	3.4	3.0
S	Seed index (g)	9.41±0.23	1.000**	0.949	10.6	10.4

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table 22. Means, standard errors, phenotypic (σ^2_p) and genotypic (σ_{g}^{2}) variances and phenotypic (PCV) and genotypic (GCV) coefficients of variation for lint yield and its components in the twelve different selection procedures as evaluated from S_1 selected families and their S_2 progenies for population III (G. 86 open-pollinated).

	progenies for	population	σ^2_p	σ^2_g	PCV %	GCV %
ndices	Characters	Mean + S X	5.578	0.387	10.1	2.7
	Lint yield/plant (g)	23.42+2.28	5.903	3.967	11.7	9.6
	Bolls/plant	20.74±1.39	0.500	0.188	4.2	2.6
I_{w123}	Seeds/boll	16.69±0.56	0.0000339	0.0000082	8.4	4.2
-112-	Lint/seed (g)	0.069±0.0051	1.294	0.999	3.0	2.6
	Lint percentage	38.54±0.54	0.553	0.122	6.8	3.2
	Seed index (g)	10.92 <u>+</u> 0.66	The state of the s	14.537	18.2	17.1
	Lint yield/plant (g)	22.30 <u>+</u> 1.40	16.501*	0.000+	8.1	-
	Bolls/plant	21.40 <u>+</u> 2.77	3.040 1.791*	1.542	8.2	7.7
I ₁₂₃	Seeds/boll	16.23±0.50		0.0000038	10.7	3.0
1123	Lint/seed (g)	0.066±0.0068	0.0000500	0.730	3.2	2.3
	Lint percentage	37.32±0.83	1.416	0.000+	6.7	
	Seed index (g)	10.93±0.82	0.543	0.387	10.1	2.7
	Lint yield/plant (g)	23.42±2.28	5.578	3.967	11.7	9.6
	Bolls/plant	20.74±1.39	5.903	0.188	4.2	2.6
I_{w1}	Seeds/boll	16.69±0.56	0.500			4.2
	Lint/seed (g)	0.069±0.0051	0.0000339	0.999	3.0	2.6
1	Lint percentage	38.54±0.54	1.294	0.122	6.8	3.2
1	Seed index (g)	10.92±0.66	0.553	0.122	10.1	2.7
-	Lint yield/plant (g)	23.42 <u>+</u> 2.28	5.578	3.967	11.7	
	Bolls/plant	20.74±1.39	5.903	0.188	4.2	
I _{w2}		16.69±0.56	0.500		_	1000
1w2	Lint/seed (g)	0.069±0.005		0.999	3.0	
	Lint percentage	38.54±0.54		0.122	6.8	
	Seed index (g)	10.92±0.66		0.122		
-	Lint yield/plant (g)	23.42±2.28			_	
1	Bolls/plant	20.74±1.39	The second secon			
I _w :	1 71 11	16.69±0.56				
1y	Lint/seed (g)	0.069+0.005				
1	Lint percentage	38.54±0.54				0
	Seed index (g)	10.92±0.66	6 0.553	0.122	- 1 0.	

⁺ Negative value for genotypic variance component.

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table 22. Continued.

Indices	- Indianters	Mean $\pm S\overline{X}$	σ_{p}^{2}	σ_R^2	PCV %	GCV %
	Lint yield/plant (g)	23.42±2.28	5.578	0.387	10.1	2.7
	Bolls/plant	20.74+1.39	5.903	3.967	11.7	9.6
I_{12}	Seeds/boll	16.69±0.56	0.500	0.188	4.2	2.6
	Lint/seed (g)	0.069±0.0051	0.000033	9 0.0000082	8.4	4.2
	Lint percentage	38.54±0.54	1.294	0.999	3.0	2.6
	Seed index (g)	10.92±0.66	0.553	0.122	6.8	3.2
	Lint yield/plant (g)	22.30±1.40	16.501*		18.2	17.1
	Bolls/plant	21.40+2.77	3.040	0.000+	8.1	
I_{13}	Seeds/boll	16.23±0.50	1.791*	1.542	8.2	7.7
	Lint/seed (g)	0.066+0.0068	0.0000500		10.7	3.0
	Lint percentage	37.32±0.83	1.416	0.730	3.2	
	Seed index (g)	10.93+0.82	0.543	0.000+	6.7	2.3
	Lint yield/plant (g)	24.07+2.06	2.721	0.000+	6.9	14
	Bolls/plant	21.06+1.81	1.583	0.000+	6.0	-
I ₂₃	Seeds/boll	16.82±0.88	1.247	0.477	6.6	4.1
	Lint/seed (g)	0.069±0.0031		0.0000374	9.9	8.9
	Lint percentage	38.60±0.66	0.323	0.000+	1.5	0.9
	Seed index (g)	10.98±0.36	0.889	0.758	8.6	7.9
	Lint yield/plant (g)	23.42+2.28	5.578	0.387	10.1	2.7
_	Bolls/plant	20.74 <u>+</u> 1.39	5.903	3.967	11.7	9.6
_	Seeds/boll	16.69+0.56	0.500	0.188	4.2	2.6
-	Lint/seed (g)	0.069±0.0051		0.0000082	8.4	4.2
	Lint percentage	38.54±0.54	1.294	0.999	3.0	2.6
	Seed index (g)	10.92±0.66	0.553	0.122	6.8	3.2
	Lint yield/plant (g)	22.30±1.40	16.501*	14.537	18.2	17.1
	Bolls/plant	21.40+2.77	3.040	0.000+	8.1	17.1
Ix ₁	Seeds/boll	16.23±0.50	1.791*	1.542	8.2	7.7
	Lint/seed (g)	0.066+0.0068		0.0000038	10.7	3.0
_	int percentage	37.32±0.83	1.416	0.730	3.2	
	Seed index (g) ne for genotypic variance comp	10.93+0.82	0.543	0.000+	6.7	2.3

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Continued. Table 22.

ndices		Mean ± S \overline{X}	σ^2_p	σ_{g}^{2}	PCV %	GCV %
	Lint yield/plant (g)	25.47±1.43	5.101	3.062	8.9	6.9
	Bolls/plant	21.78+1.28	6.277	4.634	11.5	9.9
	Seeds/boll	16.11±0.59	1.460	1.117	7.5	6.6
			0.0000005	+000.0	1.0	=
4.0	Lint percentage	39.23±0.67	0.640	0.192	2.0	1.1
S	Seed index (g)	11.29+0.22	0.205	0.156	4.0	3.5
1	Lint yield/plant (g)	23.14+1.98	17.760	13.837	18.2	16.1
-	Bolls/plant	19.24+1.37	10.090	8.211	16.5	14.9
T.	Seeds/boll	16.21±0.62	0.016	0.000+	0.8	-
Ix ₃	Lint/seed (g)		0.0000041	+0000	2.7	-
	Lint percentage	38.91+0.97	0.194	+000.0	1.1	-
	Seed index (g)	11.69±0.52	0.185	+000.0	3.7	-
	Lint yield/plant (g)	20.51+0.63	0.490	0.089	3.4	1.5
}	Bolls/plant	20.99+0.68	6.003*	5.547	11.7	11.2
P_1	Seeds/boll	16.37±0.97	0.081	0.000+	1.7	-
G. 86	Lint/seed (g)	0.060+0.0009	0.0000028	0.0000020	2.8	2.4
pure	Lint percentage	38.42±0.75	0.514	0.000+	1.9	-
pare	Seed index (g)	9.69+0.18	0.303*	0.272	5.7	5.4
	Lint yield/plant (g)	24.49±1.37	6.003	4.117	10.0	8.3
	Bolls/plant	21.08±0.91	3.122	2.286	8.4	7.2
P_2	Seeds/boll	16.70±0.27	0.008	0.000+	0.5	-
G. 86	Lint/seed (g)	0.069±0.0014	0.0000007		1.2	-
open-	Lint percentage	38.81±0.51	0.090	0.000+	0.8	
pollinated	d Seed index (g)	10.92±0.13	0.0003	0.000+	0.2	- 0.7
Politica	Lint yield/plant (g)	16.38 <u>+</u> 0.59	2.890*	2.539	10.4	9.7
	Bolls/plant	16.06±0.32	1.323*	1.222	7.2	6.9
Random		15.81±0.33	0.090	0.000+	1.9	- 0.4
sample		0.062±0.002				8.4
	Lint percentage	38.16±0.35	119	0.00002		0.01
	Seed index (g)	10.08±0.23	1.210**	1.158	10.9	10.7

⁺ Negative value for genotypic variance component.

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

As shown in Table 20 application selection indices I_{w123} , I_{w1} and I_{w2} resulted in the same selected families also, application of the indices I_{123} , I_{w3} , I_{12} and I_{xw} involved the same selected families. Mean lint yield/plant, bolls/plant and seed index increased over the better parent in the twelve selection procedures. The phenotypic selection (I_{x3}) had high influence on both lint yield and bolls/plant. Similar results were obtained by **El-Okkia** (1979) and Gooda (2001). The twelve selection procedures were highest in means of lint/seed and seed index than those in random sample.

With regard to σ_p^2 , σ_g^2 , PCV and GCV, the results showed that sufficient genetic variability persisted for lint yield/plant (index Ix₂), bolls/plant (indices Ix₂ and Ix₃), seeds/boll (indices I_{w123}, I_{w1}, I_{w2} and Ix₁), lint/seed (indices I_{w123}, I_{w1}, I_{w2} and Ix₂) and seed index (indices I_{w123}, I_{w1} and I_{w2}).

Concerning genetic variability between selected families, the twelve selection procedures were not sufficient to improve lint percentage.

The data indicated slight discrepancy between PCV and GCV for seeds/boll and lint/seed. This was reflected in high heritability estimates for the two traits in the three generations (Table 16). Similar results were obtained by **Younis** (1993).

Results in Table 21 indicate that the selected families using the indices I_{w123} , I_{w1} , I_{w2} and Ixw were the same families for each index also, the selected families by the indices I_{123} and I_{13} included the same families for each index.

Means of the selected families for lint yield, bolls/plant and seed index exceeded those of the better parent and random sample of indices I₁₂₃, I₁₃ and Ix₃. Means of the lint/seed exceeded the better parent and random sample for indices I_{w3}, I₁₂, I₂₃ and Ix₁. Means of seeds/boll were higher than the better parent and random sample in index I₂₃ only. While the means of seed index surpassed their respective better parent and random sample for the twelve different selection procedures. The selection index involving lint/seed was effective for improving lint yield. The same results were recorded by El-Okkia (1979), Younis (1986) and Gooda (2001).

Estimated σ_p^2 , σ_g^2 , PCV and GCV for both lint yield and bolls/plant were sufficient and the highest in indices I_{123} , I_{12} , I_{13} , I_{23} I_{x_1} , I_{x_2} and I_{x_3} , indicating that further improvements could be attained through more cycles of selection. Similar results were detected by Singh *et al.* (1985), El-Kilany (1986) and Younis (1993).

With respect to σ_p^2 , σ_g^2 , PCV and GCV, the results indicated that genetic variation persisted for both lint/seed and seed index in indices I_{123} , I_{13} and I_{x_2} . Sufficient genetic variability was observed for lint percentage in indices I_{w123} , I_{w1} , I_{w2} and I_{xw} , while it was also observed for seeds/boll in index I_{23} only.

Table 22 indicates that the selected families by each of the indices I_{w123} , I_{w1} , I_{w2} , I_{w3} , I_{12} and Ixw involved the same families also, the indices I_{123} , I_{13} and Ix_1 resulted in the same families.

Means of most selection indices showed values over the parent Giza 86 pure line and random sample for lint yield, lint/seed, lint percentage and seed index. Means bolls/plant exceeded Giza 86 pure line and random sample for selection indices I_{123} , I_{13} , I_{23} , I_{x_1} and I_{x_2} , while the means of seeds/ boll surpassed Giza 86 pure line and random sample in indices I_{w123} , I_{w1} , I_{w2} , I_{w3} , I_{12} , I_{23} and I_{xw} .

The magnitude of the genetic variability for both lint yield/plant and seeds/boll which persisted in selection indices I_{123} , I_{13} and Ix_1 was large enough to lead to further appreciable improvement in S_2 . These results are in agreement with Mahdy et al. (1987a) and Gooda (2001).

Some characters exhibited negative value for genotypic variance in various indices due to the large magnitude of the experimental error, which masked the genetic variations and led to inaccurate estimates of genetic parameters.

4.2.13Phenotypic and genotypic correlation

Estimates of phenotypic (r_p) and genotypic (r_g) correlation coefficients between studied characters in F_2 , F_3 and F_4 for populations I and II, and S_0 , S_1 and S_2 generations for population III are presented in Tables 23, 24 and 25.

The phenotypic and genotypic correlations between lint yield/plant and bolls/plant in the three populations were positive and highly significant in the three generations except S₂ generation indicating that bolls/plant was the most effective yield-contributing variable. Similar results were reported by Walker (1960), Singh et al. (1985), Hassaballa et al. (1987), El-Okkia et al. (1989), Younis

Results and Discussion -

Table 23. Estimates of phenotypic (r_p) and genotypic (r_g) correlation coefficients between studied characters in F_2 , F_3 and F_4 generations for population I (G. 45 x G. 75).

Relationships	F	2	F	3	F	4
	rp	rg	rp	rg	rp	Гg
1. Lint yield (g)/plant and bolls/plant	0.957**	0.957**	0.917**	0.935**	0.843**	0.845**
2. Lint yield (g)/plant and seeds/boll	-0.025	-0.029	0.237	0.300*	0.046	0.104
3. Lint yield (g)/plant and lint (g)/seed	0.096	0.096	0.499**	0.522**	0.641**	0.789**
4. Lint yield (g)/plant and lint percentage	0.245**	0.244**	0.440**	0.535**	0.476	0.549
5. Lint yield (g)/plant and seed index (g)	0.167**	0.170**	-0.045	-0.180	0.330	0.567
6. Bolls/plant and seeds/boll	-0.113*	-0.116*	0.043	0.150	-0.393	-0.340
7. Bolls/plant and lint (g)/seed	0.043	0.043	0.295*	0.364**	0.312	0.476
8. Bolls/plant and lint percentage	0.138*	0.137*	0.350*	0.487**	0.448	0.581
9. Bolls/plant and seed index (g)	0.048	0.052	-0.138	-0.277	-0.080	-0.010
10. Seeds/boll and lint (g)/seed	-0.066	-0.068	-0.322*	-0.385**	0.009	0.064
11. Seeds/boll and lint percentage	-0.219**	-0.229**	-0.183	-0.145	-0.431	-0.588
12. Seeds/boll and seed index (g)	-0.073	-0.076	-0.151	-0.245	0.520	1.018**
13. Lint (g)/seed and lint percentage	0.194**	0.192**	0.633**	0.666**	0.684**	0.836**
14. Lint (g)/seed and seed index (g)	0.301**	0.301**	0.293*	0.247	0.552	0.454
15. Lint percentage and seed index (g)	-0.121*	-0.119*	-0.513**	-0.582**	-0.226	-0.117

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Relationships	F	2	F	3	F	4
	rp	Тg	Гр	rg	rp	Гg
1. Lint yield (g)/plant and bolls/plant	0.950**	0.951**	0.896**	0.905**	0.950**	0.977**
2. Lint yield (g)/plant and seeds/boll	0.099	0.099	0.122	0.148	0.032	0.468
3. Lint yield (g)/plant and lint (g)/seed	0.304**	0308**	0.464**	0.552**	-0.192	-0.823**
4. Lint yield (g)/plant and lint percentage	0.311**	0.329**	0.566**	0.757**	0.037	-0.310
5. Lint yield (g)/plant and seed index (g)	0.124*	0.118*	-0.091	-0.242	-0.299	-1.266**
6. Bolls/plant and seeds/boll	0.007	0.006	-0.001	-0.045	-0.111	0.250
7. Bolls/plant and lint (g)/seed	0.135*	0.138*	0.101	0.184	-0.389	-0.926**
8. Bolls/plant and lint percentage	0.176**	0.196**	0.350*	0.570**	-0.111	-0.468
9. Bolls/plant and seed index (g)	0.022	0.011	-0.280	-0.416**	-0.401	-1.252**
10. Seeds/boll and lint (g)/seed	-0.181**	-0.181**	-0.402**	0.034	-0.307	-0.298
11. Seeds/boll and lint percentage	-0.025	-0.033	-0.224	-0.198	-0.186	-0.007
12. Seeds/boll and seed index (g)	-0.217**	-0.219**	0.022	0.446**	-0.138	-0.474
13. Lint (g)/seed and lint percentage	0.693**	0.702**	0.702**	0.670**	0.710**	0.967**
14. Lint (g)/seed and seed index (g)	0.989**	1.000**	0.378**	0.274	0.502	0.443
15. Lint percentage and seed index (g)	0.014	0.027	-0.352*	-0.607**	-0.248	0.169

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table 25. Estimates of phenotypic (r_p) and genotypic (r_g) correlation coefficients between studied characters in S_0 , S_1 and S_2 generations for population III (G. 86 open-pollinated).

Relationships	S	0	S	1	S_2	
	rp	rg	rp	rg	rp	rg
1. Lint yield (g)/plant and bolls/plant	0.920**	0.920**	0.906**	0.912**	0.542	0.437
2. Lint yield (g)/plant and seeds/boll	0.023	0.022	0.054	-0.057	0.346	0.467
3. Lint yield (g)/plant and lint (g)/seed	0.279**	0.278**	0.349*	0.280	0.568	1.141**
4. Lint yield (g)/plant and lint percentage	0.202**	0.201**	0.161	-0.038	0.516	0.989**
5. Lint yield (g)/plant and seed index (g)	0.203**	0.206**	0.138	0.113	0.441	1.090**
6. Bolls/plant and seeds/boll	-0.075	-0.077	-0.265	-0.334*	-0.154	-0.423
7. Bolls/plant and lint (g)/seed	0.086	0.083	0.090	0.069	-0.313	0.106
8. Bolls/plant and lint percentage	0.063	0.061	-0.078	-0.478**	-0.155	0.223
9. Bolls/plant and seed index (g)	0.068	0.072	0.117	0.220	-0.334	0.049
10. Seeds/boll and lint (g)/seed	0.167**	0.173**	-0.055	0.005	0.194	0.713*
11. Seeds/boll and lint percentage	-0.050	-0.057	0.119	1.069**	0.210	0.843**
12. Seeds/boll and seed index (g)	-0.160**	-0.172**	-0.131	-0.499**	0.145	0.451
13. Lint (g)/seed and lint percentage	0.570**	0.573**	0.747**	0.961**	0.752**	0.816**
14. Lint (g)/seed and seed index (g)	0.808**	0.818**	0.240	-0.046	0.889**	0.946*
15. Lint percentage and seed index (g)	-0.029	-0.028	-0.062	-0.118	0.358	0.563

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

(1993), Gomaa et al. (1999), Younis (2000), Younis et al. (2000) and Abo-Sen (2001).

Insignificant correlations between lint yield/plant and seeds/boll were shown in almost all generations for populations I, II and III indicating weak relationship between the two traits. El-Okkia (1979) and Hassaballa et al. (1987) also reported similar findings.

The phenotypic and genotypic correlations of lint yield with lint/seed increased from F_2 to F_4 and from S_0 to S_2 generations for the three populations except population II which showed increase from F_2 to F_3 only. The change in correlation coefficient form low to high was also observed by El-Okkia (1979), Younis (1993) and Gooda (2001).

Concerning both phenotypic and genotypic correlation coefficients between lint yield and lint percentage, they were positively high and increased from F₂ to F₄ and from S₀ to S₂ generations in most studied generations. Similar results were reported by Younis (2000), Younis *et al.* (2000) and Gooda (2001).

Lint yield/plant showed significant positive relationship with seed index in F_2 and S_0 generations of the three populations. This relationship increased from S_0 to S_2 in population III, while decreased from F_2 to F_4 in population II. Regarding pseudo-genotypic correlation coefficients (-1.266 and 1.090) these were due to lower values of genotypic variances (σ_g^2 of seed index) than genotypic covariances in both population II and III. These results coincided with those reported by El-Kilany (1976) and Singh *et al.* (1985).

Bolls/plant showed low negative or positive association with seeds/boll and seed index in most generations of the three studied populations. **EL-Kilany (1976)** also found that genetic associations between bolls/plant and seeds/boll were negative and minor to the extent that would make them mutually incompatible in a selection program.

The phenotypic and genotypic correlations between bolls/plant and each of lint/seed and lint percentage were positive and either moderate or low in magnitude in most studied generations. The result obtained here was similar to those obtained by El-Kilany (1976), Singh et al. (1985) and El-Harony (1999a).

Generally, seeds/boll exhibited negative associations with each of lint/seed, lint percentage and seed index in F₂, F₃, S₀ and S₁ generations of the three populations. On the other hand, this relationship changed in relation to F₄ generation for population I, due to seed index showing large increase from F₃ to F₄, while seeds/boll exhibited slight decrease from F₃ to F₄ (Table 16). **Kittock and Pinkas (1975), Okasha (1998) and Gooda (2001)** found that the phenotypic and genotypic correlations between seeds/boll and each of lint/seed, lint percentage and seed index were negative and low in magnitude.

In the three studied populations, the phenotypic and genotypic correlations between lint/seed and each of lint percentage and seed index were positive and highly significant for most studied generations. Similar results were reported by El-Kilany (1970), Singh et al. (1985), Okasha (1998), Gooda (2001) and Abdel-Zaher and Nagib (2002).

Lint percentage was negatively significant or insignificant associated with seed index in most generations for the three populations. Singh *et al.* (1985) and El-Harony (1999a) also reported similar findings.

4.2.1.4. The phenotypic weights (b's)

Phenotypic weights for various indices used in the selection of the three populations are presented in Tables 26, 27 and 28. Phenotypic weights for lint yield (b_w) were positive for the four selection indices involving lint yield character in F_3 , F_4 and S_1 , S_2 generations in the three populations. The phenotypic weights for bolls/plant (b_1) were consistently positive in all indices of the three populations except selection indices involving lint yield (I_{w123} and I_{w1}) in both populations I and III. The weights of seeds/boll (b_2) and lint/seed (b_3) varied in both magnitude and sign over different indices, however, the magnitudes of the phenotypic weights in general were increased during selection since the weights of the four characters were higher in F_4 and S_2 compared with F_3 and S_1 generations with some exceptions.

The complete model was used for comparison. Deletion of lint yield (X_w) resulted in major adjustments of phenotypic weights of other yield components to compensate for the loss of this variable. While the deletions of bolls/plant (X_1) and/or seeds/boll (X_2) and/or lint/seed (X_3) had little effects on the magnitude of weights of lint yield. This was related to the extremely small magnitudes of phenotypic weights for these characters in the complete model. These results were in agreement with those

Table 26. generations of population I (G. 45 x G. 75). Phenotypic weights (b's) for various selection indices constructed in F3 and F4

183.8151	143.9622	0.6718	0.3422	ı	ı	Ę	ı	I_{23}
248.0290	182.3809	1	ı	0.5566	0.4450	1	ı	I_{13}
ı	í	0.7214	0.4909	0.5869	0.4583	1	100	I_{12}
1800.0780	244.5754	ļ	ı	ï	ŗ	9.5073	7.5218	I_{w3}
ı	•	2.0655	1.2034	ï	ı	10.8845	7.5089	I_{w2}
(1)	1	·	Ļ	-2.0672	-1.2950	13.1196	9.1813	I_{w1}
250.5009	180.4918	0.7567	0.4934	0.5929	0.4610	ı	1	I_{123}
1.8170	-0.3754	-0.0174	-0.0039	-2.6582	-1.6274	13.8326	9.6518	I_{w123}
F ₄	F_3	F_4	F_3	F_4	F 3	F_4	F ₃	
b 3	t	b ₂	G.	-	ь	¥	bw	
Lint (g)/seed (X ₃)	Lint (g)/s	oll (X_2)	Seeds/boll (X2)	ant (X ₁)	Bolls/plant (X1)	// plant (Xw)	Indices Lint yield (g)/ plant (Xw)	Indices

Table 27. Phenotypic weights (b's) for various selection indices constructed in F3 and F4 generations of population II (G. 87 x G. 89).

				1	1	1	d	ri
	Г3	1 4	13	+	5	3		
L	10.2681	0.9047	0.2680	6.8542	-0.2139	0.5919	23.7797	-122.8476
0			0 5 1 0 2	0 4003	0 4363	1 0616	251 0487	-188.9598
1123								
I_{w1}	9.6935	0.4826	0.7014	7.2465	ı	1	21	Ü
I_{w_2}	9.9397	9.2968	ŕ	ī	-1.8254	18.4325	1	ì
•		0 07/0		17 17 18	ı	ı	822 9589	-5651 1604
Lw3	7.0434	i	1					
I_{12}	ı	(1)	0.5031	0.5668	0.0975	1.6360	ı	1
I	U	ı	0.5237	0.3545	ſ	1	228.1840	-263.8460
3	ı	L	ı	ï	0.4478	0.4502	218.0112	139.1706
- 6-2								

Table 28. Phenotypic weights (b's) for various selection indices constructed in S1 and S2 generations of population III (G. 86 open-pollinated).

172.4466	75.5116	1.2285	0.3208	Ų		ì	i	I_{23}
247.4956	37.3251	1	ı	0.7068	0.7125	į	ï	I_{13}
	# I	0.2593	0.3844	0.3834	0.6926	,		I_{12}
4023	-2143.3223 4023.2102	ı	,	ï	ı	11.3631	11.7678	I_{w3}
	ı	3.7448	-3.2428	i	•	15.2080	11.0309	I_{w2}
	Rei	1	ı	-5.1727	2.7700	17.7703	9.2022	$\mathbf{I}_{\mathbf{w}1}$
286.8746	45.2623	0.7722	0.3990	0.6847	0.6980	1	,	I_{123}
8.6830	2.5123	-0.5200	0.0444	-5.8336	2.4557	18.5837	9.4953	I _{w123}
S_2	Sı	S_2	\mathbf{S}_1	S_2	S_1	S_2	Sı	
3	b ₃	2	b ₂	J ₁	Œ	W	bw	
seed (X ₃)	Lint (g)/seed (X ₃)	oll (X_2)	Seeds/boll (X ₂)	ant (X ₁)	Bolls/plant (X ₁))/plant (Xw)	Lint yield (g)/plant (Xw)	Indices

obtained by Walker (1960), El-Kilany (1976), El-Okkia (1979), Younis (1986) and Gooda (2001).

4.2.1.5. Predicted and realized genetic advances of lint yield

Table 29 shows predicted and realized genetic advances of lint yield (g)/plant and percent advances estimated from F₃ and F₄ means for different selection procedures in population I (G. 45 x G. 75). The results indicated that the highest predicted genetic advance of F₃ generation for lint yield occurred when selecting for lint/seed with bolls/plant (I₂₃). On the other hand, the lowest predicted genetic advances for lint yield were when selecting for seeds/boll (Ix₂) or lint/seed alone (Ix₃). El-Okkia (1979) showed that the selection for yield and the other two yield components (seeds/boll and lint/seed) resulted in reduction of predicted advance.

The highest predicted genetic advance of F_4 generation for lint yield was when selecting for lint yield alone (I_{xw}). The lowest predicted genetic advances for lint yield occurred with the indices I_{w1} and I_{w123} .

The results indicated that overall estimates of predicted genetic advances either as lint (g)/plant or as percentage of generation mean were obviously higher in the F_3 than those of the F_4 generations.

The highest realized genetic advance for lint yield occurred when selecting for lint/seed only (Ix₃). Estimates of phenotypic and genotypic correlation coefficients between lint yield/plant and lint/seed indicated that lint/seed was the most effective yield contributing character and was positively associated with lint yield. On the other hand, the index Ix₁ exhibited lowest realized gain in lint yield/plant but, it was a desirable and a useful value.

Results and Discussion —

Table 29. Predicted and realized genetic advances of lint yield (g)/plant and advances % as estimated from F₃ and F₄ means for different selection procedures in population I (G. 45 x G. 75).

Indices	Genetic ac	lvances lint	(g)/plant	Advance	es from ger mean %	neration
	Realized F ₃ /F ₄	Predicted F ₃ /F ₄	Predicted F ₄	Realized % F ₃ /F ₄	Predicted % F ₃ /F ₄	Predicted % F ₄
I _{w123}	2.99	2.11	0.12	22.43	17.27	0.78
I ₁₂₃	1.89	3.00	1.21	14.18	24.55	7.86
I_{w1}	2.99	2.17	0.12	22.43	17.76	0.78
I_{w2}	2.99	2.80	0.16	22.43	22.91	1.04
I_{w3}	1.89	3.00	1.10	14.18	24.55	7.14
I ₁₂	1.89	2.74	1.08	14.18	22.42	7.01
I ₁₃	2.14	2.45	0.90	16.05	20.05	5.84
I ₂₃	2.37	4.90	0.94	17.78	40.10	6.10
Ixw	1.89	2.43	4.04	14.18	19.89	26.23
Ix_1	1.80	2.15	3.14	13.50	17.59	20.39
Ix ₂	2.34	0.68	0.40	17.55	5.56	2.60
Ix ₃	4.19	1.24	3.09	31.43	10.15	20.06

 $\overline{F_3} = 12.22$

 $\overline{F_4} = 15.40$

Check mean = 13.33

Predicted and realized genetic advances of lint yield (g)/plant and percentage advance estimated from F_3 and F_4 means for different selection procedures in population II (G. 87 x G. 89) are presented in Table 30. In F_3 generation, the selection index involving seeds/boll and lint/seed (I_{23}) was the most effective in improving lint yield/plant. Direct phenotypic individual character selection for seeds/boll (I_{x_2}) proved in efficient in improving lint yield in comparison with other selection procedures.

Concerning F₄ generation, the highest predicted genetic advances of lint yield were obtained for both phenotypic individual selection bolls/plant (Ix₁) and lint yield (Ix₃). Direct phenotypic individual trait selection for lint/seed (Ix₃) provided a poor estimate for lint yield improvement due to negative genetic correlation between lint yield and lint/seed in F₄ generation (Table 24).

The indices I_{123} and I_{13} were superior to all selection procedures in amount of realized advance. Therefore, selection based on bolls/plant, seeds/boll and lint/seed is recommended in lint yield improvement for population II (G. 87 x G. 89). On the other hand, the lowest realized genetic advance for lint yield occurred when selecting for lint yield with lint/seed (I_{w3}) due to negative genetic correlation of lint yield with lint/seed in F_4 generation (Table 24).

Predicted and realized genetic advances of lint yield (g)/plant and percent advances estimated from S_1 and S_2 means for different selection procedures in population III (G. 86 open-pollinated) are presented in Table 31. The indices I_{12} , I_{w3} , I_{w2} and I_{123} gave high values of predicted genetic advance in S_1 generation. This may be interpreted on the basis of the kind of association between lint yield/plant and each

Results and Discussion ___

Table 30. Predicted and realized genetic advances of lint yield (g)/plant and advances % as estimated from F₃ and F₄ means for different selection procedures in population II (G. 87 x G. 89).

Indices	Genetic a	dvances lint	(g)/plant	Advances fr		
	Realized	Predicted	Predicted	Realized %		Predicted
	F ₃ /F ₄	F_3/F_4	F ₄	F ₃ /F ₄	$% F_3/F_4$	% F ₄
I_{w123}	0.56	1.97	0.57	3.86	12.63	3.28
I_{123}	2.98	2.56	0.84	20.57	16.41	4.84
I_{w1}	0.56	1.98	0.58	3.86	12.69	3.34
$I_{\rm w2}$	0.56	2.77	0.90	3.86	17.76	5.18
I_{w3}	0.00	2.71	1.45	0.00	17.37	8.35
I_{12}	1.64	2.01	0.08	11.32	12.88	0.46
I ₁₃	2.98	2.53	0.81	20.57	16.22	4.67
I_{23}	1.66	5.10	-0.17	11.46	32.69	-0.98
Ix_w	0.56	3.03	4.02	3.86	19.42	23.16
$\mathbf{I}\mathbf{x}_1$	1.64	2.73	4.20	11.32	17.50	24.19
Ix_2	0.04	0.23	1.65	0.28	1.47	9.50
Ix_3	2.27	1.61	-2.92	15.67	10.32	-16.82

 $\overline{F_3} = 15.60$

 $\overline{F}_4 = 17.36$

Check mean = 14.49

Table 31. Predicted and realized genetic advances of lint yield (g)/plant and advances % as estimated from S_1 and S_2 means for different selection procedures in population III (G. 86 open-pollinated).

Indiana	Camadia	1	(-)/-1A	A 1 C		. 0/
Indices		dvances lint		Advances fi		
	Realized	Predicted	Predicted	Realized %	Predicted	Predicted
1	S_1/S_2	S_1/S_2	S_2	S_1/S_2	$% S_1/S_2$	%
						S ₂
I_{w123}	6.57	3.28	0.43	39.77	19.47	1.88
I_{123}	5.45	4.35	0.68	32.99	25.82	2.98
I_{w1}	6.57	3.26	0.44	39.77	19.35	1.93
I_{w2}	6.57	4.52	0.47	39.77	26.82	2.06
I_{w3}	6.57	4.56	0.53	39.77	27.06	2.32
I ₁₂	6.57	4.61	0.37	39.77	27.36	1.62
I ₁₃	5.45	4.20	0.63	32.99	24.93	2.76
I_{23}	7.22	1.67	2.07	43.70	9.91	9.07
Ix_w	6.57	3.38	4.39	39.77	20.06	19.24
Ix_1	5.45	3.17	1.53	32.99	18.81	6.70
Ix_2	8.62	-0.13	1.73	52.18	-0.77	7.58
Ix ₃	6.29	0.58	4.02	38.08	3.44	17.62

 $S_1 = 16.85$

 $\overline{S}_2 = 22.82$

Check mean = 16.52

of bolls/plant, seeds/boll and lint/seed (Table 25). The indices Ix_2 and Ix_3 gave low values of predicted genetic advance in S_1 generation that could be due to the rather negative and/or low genetic correlation of lint yield with seeds/boll and lint/seed (Table 25).

The highest predicted genetic advances of lint yield were achieved by the indices Ixw and Ix₃. On the other hand, the indices I_{w123} and I₁₂ gave lowest values of predicted genetic advances in S₂ generation. These results are in good agreement with those obtained by El-Okkia (1979), Al-Rawi and Ahmed (1984), El-Kilany (1986), Mahdy et al. (1987a), Younis (1999) and Gooda (2001).

In general, the results indicated that overall estimates of predicted genetic advances were higher in F_3 and S_1 than those of the F_4 and S_2 generations. This is not in parallel with the magnitudes of phenotypic and genotypic variances in these generations.

All selection procedures indices in population III gave high values of realized genetic advances. This may be due to the unexpected favourable environmental conditions prevailing in 2002 season which resulted in high actual yield for this material.

Deviations of the realized advance from the predicted for lint yield/plant using different selection procedures in the three populations are presented in Table 32. These deviations were positive and high for all indices in population III. Selection indices I_{w123} , I_{w1} , I_{w2} , I_{x2} and I_{x3} in population I result in the realized advance that is higher than the predicted. While the indices I_{123} , I_{13} and I_{x3} gave high value of realized advances in population II. There was very close agreement between predicted and realized advance of lint yield in population I with using

Table 32. Deviations of realized advance from predicted advance for lint yield/plant using different selection procedures in the three populations.

Indices	Population I	Population II	Population III (G.
	(G. 45 x G. 75)	(G. 87 x G. 89)	86 open-pollinated)
	F ₃ /F ₄	F ₃ /F ₄	S ₁ /S ₂
I _{w123}	+0.88*	-1.41	+3.29
I ₁₂₃	-1.11	+0.42	+1.10
I_{w1}	+0.82	-1.42	+3.31
I_{w2}	+0.19	-2.21	+2.05
I_{w3}	-1.11	-2.71	+2.01
I ₁₂	-0.85	-0.37	+1.96
I ₁₃	-0.31	+0.45	+1.25
I_{23}	-2.53	-3.44	+5.55
Ixw	-0.54	-2.47	+3.19
Ix_1	-0.35	-1.09	+2.28
Ix ₂	+1.66	-0.19	+8.75
Ix ₃	+2.95	+0.66	+5.71

[•] The deviations of realized advance from predicted advance are given as lint gram per plant.

Results and Discussion -

the indices I_{w2}, I₁₃, Ix_w and Ix₁. While those of using the indices I₁₂₃, I₁₂, I₁₃, Ix₂ and Ix₃ in population II were in very close agreement for lint yield. The close agreement between predicted and realized responses to selection indices may be due to the non additive effects (dominance, epistasis and interactions) which were relatively of minor importance and the additive genetic effects would appear to be predominant. On the other hand, there was disagreement between predicted and realized advance in lint yield when using the various models of selection indices for population III. Such large discrepancies between predicted and realized gains did not raise doubt as to the validity of the general theory of selection index.

4.2.1.6. Correlated response to selection for lint yield and unselected traits

Predicted and realized responses to selection obtained from using twelve different selection procedures for lint percentage and seed index in the three populations are given in Tables 33, 34 and 35.

As shown in Table 33, the indices I₂₃, Ix₃, Ixw and I₁₃ gave high values of predicted advances for lint percentage in F₃ generation, while the indices Ix₃, I₂₃ and I₁₃ exhibited positive values of predicted advance for seed index. The highest predicted advances for both lint percentage and seed index in F₄ generation were obtained by using Ix₃ and Ix₂, respectively. There was close agreement between the predicted and realized responses for lint percentage obtained from most selection procedures. On the other hand, there was disagreement between predicted and realized responses for seed index obtained from all indices. The large discrepancies between predicted and realized gains were expected

Table 33. Predicted and realized responses to selection using twelve different selection population I (G. 45 x G. 75). procedures as estimated from F₃ and F₄ means for lint percentage and seed index in

Check	Gener	4	- 1	-	- Ix	Ţ	_	I		Ţ	Ţ		Iw			Ind
mear	ation	3	5		W	23	13	I_{12}	V3	I_{w2}	w1	23	123			ndices
Check mean of lint percentage	means of	1.34	-0.04	0.75	0.87	1.03	0.94	0.87	0.87	1.07	1.07	0.87	1.07	F ₃ /F ₄	Realized	
ercentage	Generation means of lint percentage	1.25	-0.26	0.89	1.03	2.01	1.01	0.26	0.33	0.64	0.50	0.34	0.49	F ₃ /F ₄	Predicted	
	ntage	1.51	-1.05	1.00	1.02	0.14	0.15	0.06	0.10	0.16	0.13	0.10	0.13	F ₄	Predicted	Lint per
$F_4 = 34.60$ = 34.55	$F_3 = 33.94$	3.88	-0.12	2.17	2.52	2.98	2.72	2.52	2.52	3.10	3.10	2.52	3.10	% F ₃ /F ₄	Realized	int percentage
5 .60	.94	3.68	-0.77	2.62	3.03	5.92	2.98	0.77	0.97	1.89	1.47	1.00	1.44	% F ₃ /F ₄	Predicted	
Chec	Gene	4.36	-3.03	2.89	2.95	0.40	0.43	0.17	0.29	0.46	0.38	0.29	0.38	% F ₄	Predicted	
k mean o	ration me	2.44	2.11	1.88	2.25	2.45	2.37	2.25	2.25	2.35	2.35	2.25	2.35	F_3/F_4	Realized	
Check mean of seed index	Generation means of seed index	0.149	-0.140	-0.161	-0.111	0.073	0.012	-0.037	-0.027	-0.057	-0.041	-0.028	-0.039	F_3/F_4	Predicted	
ex	ed index	0.265	0.595	-0.006	0.345	0.130	0.021	0.005	0.005	0.031	0.024	0.006	0.024	F_4	Predicted	Seed in
	Ŧ	27.82	24.06	21.44	25.66	27.94	27.02	25.66	25.66	26.80	26.80	25.66	26.80	% F ₃ /F ₄	Realized	Seed index (g)
$F_4 = 11.22$ = 8.77	$\tau_3 = 8.99$	1.66	-1.56	-1.79	-1.23	0.81	0.13	-0.41	-0.30	-0.63	-0.46	-0.31	-0.43	% F ₃ /F ₄	ealized Predicted Predicte	
, ,		2.36	5.30	-0.05	3.07	1.16	0.19	0.04	0.04	0.28	0.21	0.05	0.21	% F ₄	Predicted	

Results and Discussion

Table 34. as estimated from F_3 and F_4 means for lint percentage and seed index in population II (G. 87 x G. 89) Predicted and realized responses to selection using twelve different selection procedures

Generation means of lint percentage	I _{w123} -0.43 I ₁₂₃ -0.34 I _{w1} -0.43 I _{w2} -0.43 I _{w2} -0.36 I ₁₂ -0.25 I ₁₃ -0.34 I ₁₃ 1.27 I ₁₃ -0.43 I ₁₃ -0.25 I ₁₃ -0.36 I ₁₄ -0.36 I ₁₅ -0.36	Indices Realized F_3/F_4	
s of lint percent	0.28 1.07 0.28 0.39 0.94 0.36 1.07 4.72 1.34 1.01 -0.18	Predicted Pro	87 x G. 89).
	-0.09 -1.35 -0.12 -1.06 -0.10 -1.35 -0.11 -1.35 -0.10 1.13 -0.08 -0.78 -0.13 -1.06 1.59 3.98 -0.39 -1.35 -0.63 -0.78 -0.01 -1.13	dicted Realize F ₄ % F ₃ /F	int percentage
$F_3 = 34.33$ $F_4 = 34.42$	3.12 0.82 1.14 2.74 1.05 3.12 13.75 3.90 2.94 -0.52 3.32	d Predicted Pr	
Genei Checl	-0.25 -0.35 -0.29 -0.29 -0.29 -0.23 -0.38 -0.38 -0.38 -1.00 -1.13 -1.13 -1.83 -1.83 -1.65 -1.13 -1.13 -1.13 -1.13 -1.13 -1.24 -1.13 -1.24 -1.13 -1.24 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34 -1.33 -1.34	edicted Realized $\% F_4$ F_3/F_4 F_4/F_4	
Generation means of seed index Check mean of seed index		zed Predicted P F_4 F_3/F_4 F_4 $F_0.012$	
of seed ind index	-0.027 -0.031 -0.047 -0.006 -0.082 -0.026 0.039 -0.307 -0.325 -0.101 0.092	redicted F ₄ -0.031	Seed index (
ex	12.60 17.12 17.12 14.74 19.62 12.60 11.89 17.12 19.62 15.93 9.27	% F ₃ /F ₄	ex (g)
$F_3 = 8.78$ $F_4 = 9.99$ = 8.41	-0.39 -0.15 -0.19 -0.60 -1.25 -0.44 3.15 -1.33 -2.29 1.28 1.46	zed Predicted Predicted F_4 % F_3/F_4 % F_4 % F_4 12 -0.14 -0.31	11
3.78	-0.27 -0.31 -0.47 -0.06 -0.82 -0.26 -0.39 -3.07 -3.25 -1.01 -0.92	% F ₄	Prodicted

Table 35. population III (G. 86 open-pollinated). procedures Predicted and as estimated from S1 and S2 means for lint percentage and seed index in realized responses to selection using twelve different selection

		-	/	-								
Indices			Lint per	int percentage					Seed index	dex (g)		
	Realized	Predicted	Predicted	Realized	Predicted	Predicted	Realized	Predicted	Predicted	Realized	ized Predicted Predicte	Predicted
	S_1/S_2	S_1/S_2	S_2	$% S_1/S_2$	% S ₁ /S ₂	$%S_2$	S_1/S_2	S_1/S_2	S_2	$% S_1/S_2$	% S ₁ /S ₂	% S ₂
I_{w123}	0.14	-0.002	0.03	0.36	-0.01	0.08	1.47	0.000	0.012	16.44	0.00	0.11
I_{123}	-1.08	-0.055	0.72	-2.81	-0.14	1.87	1.48	0.012	0.013	16.55	0.13	0.12
I_{w1}	0.14	-0.002	0.03	0.36	-0.01	0.08	1.47	0.000	0.012	16.44	0.00	0.11
I_{w2}	0.14	-0.002	0.03	0.36	-0.01	0.08	1.47	0.000	0.013	16.44	0.00	0.12
I_{w3}	0.14	-0.003	0.04	0.36	-0.01	0.10	1.47	0.000	0.014	16.44	0.00	0.13
\mathbf{I}_{12}	0.14	-0.004	0.02	0.36	-0.01	0.05	1.47	0.000	0.005	16.44	0.00	0.05
I_{13}	-1.08	-0.063	0.60	-2.81	-0.16	1.56	1.48	0.013	0.011	16.55	0.14	0.10
I_{23}	0.20	0.327	0.13	0.52	0.85	0.34	1.53	0.021	0.012	17.11	0.22	0.11
Ixw	0.14	-0.020	1.28	0.36	-0.05	3.33	1.47	0.087	0.731	16.44	0.92	6.67
I_{X_1}	-1.08	-0.270	0.23	-2.81	-0.70	0.60	1.48	0.173	0.026	16.55	1.83	0.24
Ix_2	0.83	0.400	0.92	2.16	1.04	2.39	1.84	-0.265	0.255	20.58	-2.80	2.33
Ix_3	0.51	0.330	0.85	1.32	0.86	2.21	2.24	-0.022	0.523	25.06	-0.23	4.77
Generation means of lint percentage	n means c	of lint perc	entage	$S_1 = 38.40$ $S_2 = 38.46$	= 38.40 = 38.46	0	reneration	Generation means of seed index	f seed ind	ex	$S_1 = 9.45$ $S_2 = 10.96$	96
Check mean of lint percentage	an of lint	percentag	O	= 38.50	0	0	heck mea	Check mean of seed index	index		= 8.94	ò

Results and Discussion

because genotypic variances and covariances used to calculate predicted gains were likely biased by certain genotypic x environment interaction. Similar results were obtained by Culp and Harrell (1975), Singh et al. (1986), Mahdy et al. (1987a), Younis (1993) and Gooda (2001).

As shown in Table 34, the index involving bolls/plant and lint/seed (I₂₃) showed the highest predicted and realized responses for lint percentage. Most selection procedures gave high values of predicted advance for lint percentage. However, with all selection procedures except index I₂₃, predicted responses were in agreement with the realized ones for lint percentage in population II.

Also, in population II, the predicted advance of seed index was negative for most indices in both generations. In general, the realized responses for seed index were greater than the predicted with all indices.

As shown in Table 35, the results indicated close agreement between the predicted and the realized responses in S_1 of population III for lint percentage of majority selection indices. The predicted responses of lint percentage in most different selection procedures were higher in S_2 than S_1 generation.

The direct selection for bolls/plant exhibited the highest expected gain of 1.83% in seed index relative to S_1 mean. Concerning S_2 generation, direct selection for lint yield/plant exhibited the highest expected gain of 6.67% in seed index. The realized responses for seed index were greater than the predicted with all indices.

4.2.2. Recurrent selection

4.2.2.1. Mean performance and mean square estimates

All possible mating among four selections of the highest lint percentage and four selections of the highest seed index were made of each population to produce desirable recombinations. Mean performance of the eight selected plants used in recurrent selection for lint yield and its components in the three populations are presented in Table 36. In population I, selection for lint percentage gave high means for both lint percentage and lint/seed, but the mean of selected parents for seed index was high for lint yield/plant, bolls/plant, seeds/boll and seed index. Concerning population II, selection for lint percentage gave high means for lint yield/plant, bolls/plant, lint/seed and lint percentage, the mean of selected parents for seed index was high for seeds/boll and seed index. In population III, selection for lint percentage gave high means for lint yield/plant, bolls/plant and lint percentage, the mean of selected parents for seed index was high for seeds/boll, lint/seed and seed index

Table 37 shows mean square estimates for lint yield and its components of recurrent selection in the three populations. Mean squares of genotypes were highly significant for lint yield and its components at the three populations except seeds/boll in population III. Original parents mean squares were significant for lint percentage in both population I and II, and lint/seed in population I. Mean squares of selected parents were highly significant for lint yield and its components in populations I and II, while these mean squares were highly significant for lint percentage and seed index in population III. Random

Results and Discussion —

Table 36. Mean performance of the eight selected plants used in recurrent selection for the studied characters of populations I II and III

			3	pollinated)	(G. 00 open	(C 86 onen-	Population III											(G. 87 x G. 89)	Population II	n Lation II										(G. 45 x G. 75)	Population I	02 61				I obaimment	Donulations	CII
Mean		seed index	Selected for			Mean		percentage	- Carcontage	Selected for lint		Mean			seed index	Selected for		Mean	W	0	percentage	Selected for lint		Mean	Man		seed index	Selected for		Mean		percentage	Selection to the	Selected for lint			Parents	Characters or populations 3, 3
	4	·	, ,	٠, د	_		4	٠,	w	2	-	+	1	-	w	2	, -	+		4	w	2	, ,_	+		4	w	2	_			٠.		2	_		No.	
23.5	22.0	33.0	25.0	170	18.2	30.4	20.0	30.6	38.9	25.6	20.4	26.0	27.8	24.3	30.1	19.0	100	270	33.7	43.5	23.9	20.9	40.0	7.71	32.3	46.4	23.2	25.7	33.8	20.0	37.0	13.9	38.4	22.1	32.6	plant (g)	Lint yield/	
20	10	10	30 :	14	18	63	30	30	33	3 5	3 (79	29	28	20	3 5	2 5	37	31	39	2	2 6	3 :	44	34	58	18	. 20	30	21	38	15	39	21	S		Bolls/plant	
17.4	11.1	17.2	17.8	18.8	15.0	10.0	16.8	18.2	17.0	17.6	17 4	14.0	19.1	1/.0	10.1	18.4	19.2	21.8	19.0	10.0	10.0	196	18.0	19.6	19.0	10.2	10.0	300	18.7	18.8	18.0	16.8	18.6	17.0	17.0	107	Secus/por	Cande/holl
0.000	820.0	0.071	0.067	0.068	0.007	0.064	0.063	0.000	0.000	0 067	0.064	0.065	0.051	0.001	0 051	0.063	0.043	0.047	0.000	0.000	0 060	0.058	0.058	0.054	0.000	0.043	0 044	0.062	0.047	0.058	0.054	0.055	0.000	0.000	0.059	0.050	(g)	Lint/seed
	39.0	40.1	38.8	30.0	30 3	37.7	41.4	41./	417	41.3	41.2	41.3	33.1	221	33.3	37.1	30.1	31./	2	39 4	40.1	38.5	40.5	38.4	20.5	225	33.9	35.2	30.3	34.7	38.6	38.0	30.1	38 1	39.7	38.0	percentage	Lint
	10.6	10.6	10.5	10.5	10.5	10.6	0.7	0.0	7.8	9.5	9.2	9.1	0.0	10.3	10.2	10.6	10.1	10.1	10.1	8.8	8.9	9.3	ŏ.5	0.0	3.8	11.0	10.9	11.4	10.9	10.9	0.0	0.0	×0	8.6	8.9	8.2		Seed Index (g)

Results and Discussion

Table 37. Mean square estimates for the studied characters of recurrent selection in the three populations.

Populations	S.O.V.	d.F	Lint	Bolls/plant	Seeds/boll	Lint/seed (g)	Lint	Seed index (g)
	:		(5)				principage	
	Replications	2	6.408	54.610	4.325	0.00001	0.316	0.158
	Genotypes	(39)	37.460**	144.222**	4.588**	0.00015**	15.629**	3.279**
	Original parents	-	54.602	3.082	0.240	0.00052**	54.602**	0.540
Population I	Selected parents	7	64.627**	152.410**	8.188**	0.00007*	11.640**	3.726**
_	Random samples	_	0.135	22.427	2.282	0.00003	1.500	0.007
H-73	Hybrids	27	31.243*	153.318**	3.992**	0.00014**	16.716**	3.070**
	Hybrid Vs. original parent	-	92.449*	312.107**	5.041	0.00042**	13.620**	3.878*
	Hybrid Vs. selected parent Hybrid) made	16.427	1.886	1.761	0.00020*	0.097	7.714**
	Vs. random sample	-	1.380	78.700	4.524	0.00060**	6.894	6.761**
42274	Error	78	15.859	42.837	1.928	0.00003	1.930	0.965
	Replications	2	9.944	12.104	1.810	0.00001	0.421	0.048
	Genotypes	(39)	70.9923**	194.038**	3.378**	0.00013**	9.847**	3.066**
	Original parents		0.082	12.327	0.015	0.00007	8.882*	0.082
Population II	Selected parents	7	100.412**	269.317**	4.832**	0.00022**	16.192**	3.984**
(G. 87 x G. 89)	Random samples	_	0.882	0.482	0.082	0.000002	5.607	0.540
	Hybrids	27	73.910**	204.845**	3318**	0.00012**	9.133**	3.170**
	Hybrid Vs. original parent	1	10.902	49.207	1.844	0.00005	1.170	0.622
	Hybrid Vs. selected parent Hybrid	_	45.296	2.156	5.622*	0,00018**	4.159	3.710**
	Vs. random sample	_	13.085	87.269	0.783	0.00009*	4.276	1.134
	Error	78	32.677	67.328	1.370	0.00002	1.979	0.425
	Replications	2	49.017	55.715	1.001	0.00005	1.226	0.383
	Genotypes	(39)	74.506**	67.985**	2.215	0.00009**	2.802**	2.507**
	Original parents	1	9.627	61.440	0.002	0.00007	0.882	1.127
Population III	Selected parents	7	25.690	28.930	2.687	0.00004	4.536**	1.652**
(G. 86 open-	Random samples	-	51.627	13.202	1.815	0.00001	2.535	0.082
pollinated)	Hybrids	27	80.200**	71.262**	2.411	0.00011**	2.693*	3.087**
	Hybrid Vs. original parent	_	17.620	20.983	0.138	0.000002	0.912	0.075
	Hybrid Vs. selected parent Hybrid	_	480.208**	420.006**	0.427	0.0000004	0.465	0.167
٤				9.189		0.00004		
	Vs. random sample	-	1.440	1	0.086	0.0000	0.008	1.393

significant at 0.05 and 0.01 levels of probability, respective

Results and Discussion

samples mean squares were not significant for all studied characters at the three populations.

Hybrid mean squares were highly significant for lint yield and its components in the three populations except seeds/boll in population III. Mean squares of hybrid vs original parent as an indication to average heterosis overall hybrids were significant for lint yield/plant, bolls/plant, lint/seed, lint percentage and seed index in population I only. Mean squares of hybrid vs selected parent were significant for lint/seed and seed index in population II, lint yield/plant and bolls/plant in population III. Hybrid vs random sample mean squares were significant for lint/seed in populations I and II, and seed index in population I only. These results may be due that some hybrids were superior and others were inferior compared to original parents, selected parental lines and random samples.

4.2.2.2. Genetic variability and predicted genetic advance

Estimates of variance components, phenotypic and genotypic coefficients of variation and predicted genetic advances for lint yield and its components of recurrent selection according to hybrids data in the three populations are presented in Table 38. Both phenotypic and genotypic variances were significant and large in magnitude for all studied characters in the three populations except seeds/boll in population III. The increase in phenotypic and genotypic variances in the three populations is due to new recombinations which create substantial genetic variation. These results are in same line with that obtained by Manning (1963), Mahdy (1983), Younis (1986) and Ahmmed and Mehra (2000).

Results and Discussion.

Table 38. characters of recurrent selection according to hybrids data in the three populations. genotypic (GCV) coefficients of variation and predicted genetic advance for studied Estimates of phenotypic (σ^2_p) and genotypic (σ^2_g) variances, phenotypic (PCV) and

Populations	Characters	q و و	q g	PCV %	GCV %	Predicted (unit) Predicted (%)	Predicted (%
	 Lint yield/plant (g) 	10.414*	4.939	18.54	12.76	3.15	18.09
	2. Bolls/plant	51.106**	35.628	32.67	27.28	10.27	46.94
Population I	3. Seeds/boll	1.331*	0.595	7.03	4.70	1.06	6.46
(G. 45 x G. 75)	Lint/seed (g)	0.000045**	0.000037	13.15	11.93	0.01	19.61
	Lint percentage	5.572**	4.946	7.02	6.61	4.32	12.85
	Seed index (g)	1.023**	0.808	10.08	8.96	1.65	16.45
	 Lint yield/plant (g) 	24.637*	11.723	26.57	18.33	4.87	26.07
	2. Bolls/plant	68.282**	40.327	34.39	26.43	10.05	41.82
Population II	3. Seeds/boll	1.106**	0.656	6.52	5.02	1.28	7.94
(G. 87 x G. 89)	4. Lint/seed (g)	0.000041**	0.000036	12.81	12.00	0.01	20.00
	Lint percentage	3.044**	2.389	5.09	4.51	2.82	8.23
	Seed index (g)	1.057**	0.950	10.65	10.10	1.90	19.69
	Lint yield/plant (g)	26.733**	18.272	22.01	18.20	7.28	30.99
Population III	Bolls/plant	23.754**	14.989	21.54	17.11	6.34	28.02
(G. 86	3. Seeds/boll	0.804	0.217	5.63	2.92	0.50	3.14
open-pollinated)	4. Lint/seed (g)	0.000037**	0.000030	9.22	8.30	0.01	15.15
	Lint percentage	0.898*	0.374	2.46	1.59	0.81	2.10
	6. Seed index (g)	1.029**	0.844	9.62	8.71	1.71	16.21

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Results and Discussion

The estimates of phenotypic and genotypic coefficients of variation (PCV % and GCV%) were large in magnitude for all the studied characters in the three populations except for seeds/boll and lint percentage in population III. This indicates that the magnitude of the genetic variability which persisted in these materials was sufficient for providing rather substantial amounts of improvement through the selection of superior hybrids. Also, the data indicated slight discrepancy between PCV and GCV for seeds/boll, lint/seed, lint percentage and seed index in the three populations, as well as lint yield and bolls/plant in population III. The same results were recorded by Al-Jibouri et al. (1958), Galal (1960), Seyam (1977), El-Okkia (1979), Singh et al. (1985), Mahdy et al. (1987a), Mahdy et al. (1987b), Meena et al. (1991), Younis (1993), El-Harony (1999b) and Gooda (2001).

Table 38 indicates that the highest predicted genetic advances were achieved for lint yield/plant, bolls/plant, lint/seed and seed index in the three populations. On the other hand, moderate to low predicted genetic advances as percentage of hybrids mean were detected for both seeds/boll and lint percentage in the three populations. High to low values of GCV were found associated with high to low genetic advances in most studied characters in the three populations.

4.2.2.3. Evaluation of recurrent selection hybrids

Table 39 shows means of original parents, selected parental lines, random samples, 28-hybrids, 6-hybrids for lint percentage, 6-hybrids for seed index and 16-hybrids between lint percentage and seed index for lint yield and its component characters in the three populations.

Populations	lable 39.
	Means of the studied characters of recurrent selection in the three popul
	he studied
Character 1	characters
int vield/	of recu
Rolle/plant	rrent sele
Ilod/shees	ection in
aracter Lint vield/ Rolls/hlant Seeds/holl Lint/seed (a)	the three
	population
Can in it	1S.

Populations	Character	Lint yield/	Bolls/plant	Seeds/boll	Lint/seed	(g)
	Estimate	plant (g)	î			
	P ₁ (Giza 45)	10.33	13.70	15.27	0.050	
	P ₂ (Giza 75)	16.37	15.13	15.67	0.069	
	F ₄ Random samples	16.92	18.13	15.52	0.061	
	8- Selected parental lines	16.48	22.20	16.11	0.048	
	28-Hybrids	17.41	21.88	16.42	0.051	
	6-Hybrids for lint percentage	14.71	17.81	16.64	0.050	4
_	6-Hybrids for seed index	18.29	21.07	16.49	0.055	_
_	16- Hybrids between lint percentage and	18.10	23.72	16.30	0.050	_
_	seed index					
-	P ₁ (Giza 87)	17.40	22.50	15.50	0.050	-
-	P ₂ (Giza 89)	17.17	19.63	15.60	0.057	\rightarrow
	F ₄ Random samples	17.15	20.08	15.75	0.055	\rightarrow
_	8- Selected parental lines	17.12	24.37	15.58	0.047	_
_	28-Hybrids	18.68	24.03	16.12	0.050	\rightarrow
_	6-Hybrids for lint percentage	17.65	19.59	17.33	0.053	-
_	6-Hybrids for seed index	18.01	24.12	15.65	0.049	-
	16- Hybrids between lint percentage and seed index	19.31	25.66	15.85	0.050	
$\overline{}$	P ₁ (Giza 86 pure)	26.53	27.77	16.07	0.062	\neg
$\overline{}$	P ₂ (Giza 86 open-pollinated)	24.00	21.37	16.10	0.069	_
_	S ₂ Random samples	24.00	21.35	16.05	0.069	
	8- Selected parental lines	18.42	17.89	15.78	0.066	
T	28-Hybrids	23.49	22.63	15.93	0.066	
T	6-Hybrids for lint percentage	23.48	23.41	16.07	0.063	\neg
	6-Hybrids for seed index	25.37	24.01	15.90	0.067	\neg
	16- Hybrids between lint percentage and seed index	22.79	21.83	15.88	0.067	

Results and Discussion.

In population I, the 28-hybrids resulted in higher means of lint yield/plant, bolls/plant and seeds/boll compared with the better parent. Six-hybrids for lint percentage resulted in higher means of seeds/boll and lint percentage compared with 6-hybrids for seed index and 16-hybrids between lint percentage and seed index. Six-hybrids for seed index exceeded means for lint yield/plant, lint/seed and seed index compared with 6-hybrids for lint percentage and 16-hybrids between lint percentage and seed index. Sixteen-hybrids between lint percentage and seed index resulted in higher means of bolls/plant compared with rest hybrids. These results indicated that selection for seed index in this population was more important than selection for lint percentage in improving lint yield.

In population II, mean performance of twenty eight-hybrids was higher than of better parent mean for lint yield/plant, bolls/plant and seeds/boll. Six-hybrids for lint percentage showed high means of seeds/boll, lint/seed and lint percentage, while 6-hybrids for seed index exhibited high mean of seed index only. Both lint yield and bolls/plant showed high means in 16-hybrids between lint percentage and seed index. These results indicated that selection from hybrids between lint percentage and seed index in this population was more efficient than selection from both hybrids for lint percentage and for seed index. **Meredith and Bridge (1973)** found that a modified form of recurrent selection for lint percentage, which is also highly correlated with yield, can result in yield increases.

In population III, the 28-hybrids resulted in higher means of lint/seed, lint percentage and seed index compared with Giza 86 pure line. Six-hybrids for lint percentage showed high means of seeds/boll and lint percentage, while 6-hybrids for seed index exhibited high

means of lint yield/plant, bolls/plant, lint/seed and seed index. These results indicated that selection for seed index in population III was more efficient than selection for lint percentage in improving lint yield.

Generally, this could explain that the superiority of hybrids in lint yield and its components is due to the existence of average heterosis contributed by the particular set of parents used in hybrids and specific heterosis that occurs when a given parent is mated (hybrid) to other parent. Also, using recurrent selection in each population increases the frequency of favourable genes so that the populations and population crosses are improved with each selection cycle. In this phase recombination of desirable characters should be increased (Opondo and Pathak, 1982).

Mean performances of lint yield and its components for recurrent selection hybrids in the three populations are presented in Tables 40, 41 and 42. The superior parental lines for lint percentage were from P_1 to P_4 and those for seed index from P_5 to P_8 .

Regarding population I (Table 40), only one hybrid ($P_3 \times P_7$) showed significant positive increase for lint yield/plant over selected parents mean and better parent mean. The hybrids $P_2 \times P_8$, $P_3 \times P_7$, $P_4 \times P_7$ and $P_7 \times P_8$ exhibited significant positive increases for bolls/plant over selected parents mean and better parent mean. The best hybrids which exhibited the high performance for both lint yield and bolls/plant were a combination among selection for lint percentage and selection for seed index, except the hybrid $P_7 \times P_8$. Three hybrids ($P_2 \times P_4$, $P_2 \times P_7$ and $P_4 \times P_5$) exhibited significant positive increases for seeds/boll over the better parent, while only two hybrids out of them showed significant positive increases for this character over selected parents mean.

Results and Discussion -

Table 40. Mean performances of recurrent selection hybrids for lint yield and its components in population I (G. 45 x G. 75).

yield an			Seeds/	Lint/	Lint	Seed
	int yield/	Bolls/		seed (g)	percentage	
Hybrids	plant (g)	plant	boll		36.97*	9.27
$P_1 \times P_2$	16.50	18.23	16.57	0.055 0.045	33.33	8.97
$P_1 \times P_3$	12.50	19.73	14.70		34.57	11.00*
$P_1 \times P_4$	13.03	14.50	15.33	0.058*	34.20	10.07
$P_1 \times P_5$	18.10	25.47	15.07	0.053	33.93	11.33*
$P_1 \times P_6$	15.07	15.17	17.27	0.058*	33.60	9.40
$P_1 \times P_7$	17.13	24.63	15.63	0.047	36.13*	8.73
$P_1 \times P_8$	16.70	22.83	15.17	0.050	36.90*	8.83
$P_2 \times P_3$	14.03	15.30	17.70	0.052	35.43	8.57
$P_2 \times P_4$	16.10	18.30	18.97*+	0.047	35.43	10.90
$P_2 \times P_5$	19.47	19.73	16.33	0.061*	34.37	9.57
$P_2 \times P_6$	17.33	21.63	16.07	0.050		8.83
$P_2 \times P_7$	20.57	22.50	18.57*+	0.049	35.87	10.37
$P_2 \times P_8$	20.63	34.13*+	16.43	0.037	26.13	9.53
$P_3 \times P_4$	16.10	20.77	16.60	0.047	32.83	11.20*
$P_3 \times P_5$	13.47	15.57	15.53	0.055	32.87	10.93
$P_3 \times P_6$	13.80	16.53	16.57	0.052	31.97	9.30
$P_3 \times P_7$	25.73*+	34.20*+	16.37	0.047	33.70	10.00
$P_3 \times P_8$	16.33	19.73	16.00	0.052	34.13	10.00
$P_4 \times P_5$	20.73	21.57	18.17+	0.053	34.30	9.50
$P_4 \times P_6$	13.60	18.17	17.10	0.045	31.73	8.10
$P_4 \times P_7$	22.73	45.57*+	14.87	0.035	30.00	10.57
P ₄ x P ₈	18.17	22.03	15.67	0.054	33.93	11.10*
$P_5 \times P_6$	15.93	16.57	17.20	0.056	33.53	11.10*
$P_5 \times P_7$	15.97	15.93	16.73	0.060*		10.57
P ₅ x P ₈	16.47	16.30	17.60	0.057*		11.47*
$P_6 \times P_7$	20.27	21.33	16.27	0.057*	and the second s	11.47*
P ₆ x P ₈	22.07	22.87	16.83	0.058*	100000000000000000000000000000000000000	
$P_7 \times P_8$	19.03	33.40*+		0.040		
$\overline{\mathbf{x}}$	17.41	21.88	16.42			
Selected parents mea	n 16.48	22.20	16.11	0.048		
\overline{x} of better parent		15.13	15.67	0.069		
L.S.D. 0.05	6.47	10.63	2.26	0.009		

Significant at 0.05 level of probability was of the difference among the hybrid mean and selected parents

Significant at 0.05 level of probability was of the difference among the hybrid mean and original better parent mean.

Table 41. Mean performances of recurrent selection hybrids for lint vield and its components in population II (G. 87 x G. 89)

yielu a	ma its co	mponen	ts in pop	ulation II	(G. 87 x	(G. 89)
Characters	Lint yield/	Bolls/	Seeds/	Lint/	Lint	Seed
Hybrids	plant (g)	plant	boll	seed (g)	percentage	
$P_1 \times P_2$	22.63	24.27	18.57*+	0.050	33.40	10.03
$P_1 \times P_3$	18.07	20.00	16.60	0.054*	35.80	9.73
$P_1 \times P_4$	7.33	9.23	17.17	0.048	36.13*	8.40
$P_1 \times P_5$	12.00	15.47	15.40	0.051	35.00	9.47
$P_1 \times P_6$	15.67	18.47	15.73	0.055*	33.57	10.83*
$P_1 \times P_7$	14.37	16.00	15.83	0.057*	35.60	10.83*
$P_1 \times P_8$	23.90	31.17	17.27	0.045	35.93	8.00
$P_2 \times P_3$	13.63	14.30	16.97	0.056*	36.20*	9.87
$P_2 \times P_4$	14.67	14.43	17.60*+	0.057*	37.40*	9.60
$P_2 \times P_5$	22.07	49.00*+	14.27	0.032	31.77	6.93
$P_2 \times P_6$	23,60	28.17	16.60	0.051	33.60	10.10
$P_2 \times P_7$	18.17	21.53	15.73	0.055*	33.23	10.10
$P_2 \times P_8$	21.10	28.30	16.93	0.045	34.07	8.80
P ₃ x P ₄	29.57*+	35.30	17.10	0.050	36.57*	8.63
$P_3 \times P_5$	19.23	31.63	15.00	0.040	33.20	8.13
$P_3 \times P_6$	18.10	22.27	15.37	0.055*	34.47	10.37*
$P_3 \times P_7$	29.47*+	34.33	15.13	0.058*	36.30*	10.37
$P_3 \times P_8$	19.40	21.93	16.03	0.055*	35.40	10.20
$P_4 \times P_5$	18.13	28.43	14.33	0.045	32.97	9.17
$P_4 \times P_6$	17.77	27.93	15.87	0.041	30.87	9.07
$P_4 \times P_7$	23.47	23.40	16.50	0.061*	34.97	11.40*+
$P_4 \times P_8$	12.60	12.57	17.57*+	0.058*	35.53	10.47*
$P_5 \times P_6$	19.03	25.77	15.70	0.048	31.50	10.30*
P ₅ x P ₇	18.50	24.93	14.73	0.051	30.87	11.33*+
$P_5 \times P_8$	12.67	16.43	16.70	0.047	33.63	9.23
$P_6 \times P_7$	20.00	26.27	15.33	0.051	34.50	9.63
P ₆ x P ₈	17.87	25.60	15.23	0.046	33.03	9.30
P ₇ x P ₈	20.00	25.73	16.20	0.051	33.77	9.90
X	18.68	24.03	16.12	0.050	34.26	9.65
Selected parents mean	17.12	24.37	15.58	0.047	33.79	9.20
x of better parent	17.40	22.50	15.60	0.057	35.93	10.10
L.S.D. 0.05	9.29	13.33	1.90	0.007	2.29	1.06

^{*} Significant at 0.05 level of probability was of the difference among the hybrid mean and selected parents mean.

Results and Discussion —

⁺ Significant at 0.05 level of probability was of the difference among the hybrid mean and original better parent mean.

Table 42. Mean performances of recurrent selection hybrids for lint yield and its components in population III (G. 86 open-

int yield/ plant (g) 22.87	Bolls/ plant	Seeds/ boll	Lint/	Lint	Seed index
plant (g)	plant	hall			9 190
		DOII	seed (g)	percentage	(g)
	24.27	17.00	0.056	39.40	8.70
15.23	15.70	16.47	0.059	39.60	9.00
	24.47	17.10	0.060	38.77	9.43
	32.17*	14.13	0.051		8.80
Value of the Contract of the C	18.40	17.50	0.060		9.47
1000443/3/00/10/10	26.20	16.43	0.072		11.50
	25.80	16.10	0.074*	120012000000000000000000000000000000000	11.70
	24.20	15.80	0.065		10.37
10000	26.37*	15.13	0.065	38.47	10.37
		15.97	0.068	39.27	10.50
	DOMESTICAL	16.20	0.063	37.83	10.43
	24.23	16.50	0.068	39.00	10.63
		16.10	0.067	39.27	10.30
	Committee of the Commit	14.93	0.072	38.20	11.70
	Verio-0000-0000-00-	15.13	0.069	39.17	10.70
		16.43	0.068	40.10	10.10
		16.47	0.073	38.57	11.53
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.27	0.067	38.47	10.77
		15.43	0.072	38.17	11.73
		15.53	0.072	38.73	11.30
		15.23	0.069		11.93*
	Administration of the Control of the	14.67	0.056	36.57	9.70
		14.27	0.066	36.73	11.33
		16.77	0.071		11.27
	2000	14.77	0.056	See 15.	8.77
	100000000000000000000000000000000000000	16.37	0.070	1000 1000 1000	11.70
		15.87	0.073	38.77	11.60
		17.37	0.066	39.60	10.10
		15.93	0.066	38.49	10.55
	1 1000000000000000000000000000000000000	15.78	0.066	38.33	10.65
10.12		1			
26.53	27.77	16.10	0.069	38.47	
			0.008	1.97	1.21
	24.50 23.10 19.07 31.17* 30.73* 25.07 25.63 22.37 9.63 27.47* 29.43* 27.60* 23.87 16.87 21.67 20.33 24.47 20.03 21.87 22.60 22.23 35.43*+ 21.10 21.97 22.87 28.63* 23.49 18.42	23.10 32.17* 19.07 18.40 31.17* 26.20 30.73* 25.80 25.07 24.20 25.63 26.37* 22.37 21.03 9.63 9.60 27.47* 24.23 29.43* 27.63* 27.60* 25.43 23.87 22.90 16.87 15.27 21.67 17.97 20.33 18.57 24.47 21.63 20.03 18.13 21.87 21.50 22.60 28.17* 22.23 23.97 35.43*+ 29.60* 21.97 19.47 22.87 19.83 28.63* 25.80 23.49 22.63 18.42 17.89 26.53 27.77 8.07 8.33	23.10 32.17* 14.13 19.07 18.40 17.50 31.17* 26.20 16.43 30.73* 25.80 16.10 25.07 24.20 15.80 25.63 26.37* 15.13 22.37 21.03 15.97 9.63 9.60 16.20 27.47* 24.23 16.50 29.43* 27.63* 16.10 27.60* 25.43 14.93 23.87 22.90 15.13 16.87 15.27 16.43 21.67 17.97 16.47 20.33 18.57 16.27 24.47 21.63 15.43 20.03 18.13 15.53 21.87 21.50 15.23 22.60 28.17* 14.67 22.23 23.97 14.27 35.43*+ 29.60* 16.77 21.97 19.47 16.37 28.63* 25.80 17.37	23.10 32.17* 14.13 0.051 19.07 18.40 17.50 0.060 31.17* 26.20 16.43 0.072 30.73* 25.80 16.10 0.074* 25.07 24.20 15.80 0.065 25.63 26.37* 15.13 0.065 25.63 26.37* 15.13 0.065 22.37 21.03 15.97 0.068 9.63 9.60 16.20 0.063 27.47* 24.23 16.50 0.068 29.43* 27.63* 16.10 0.067 27.60* 25.43 14.93 0.072 23.87 22.90 15.13 0.069 16.87 15.27 16.43 0.068 21.67 17.97 16.47 0.073 20.33 18.13 15.53 0.072 24.47 21.63 15.43 0.072 22.60 28.17* 14.67 0.056 22.23	23.10 32.17* 14.13 0.051 36.80 19.07 18.40 17.50 0.060 38.73 31.17* 26.20 16.43 0.072 38.73 30.73* 25.80 16.10 0.074* 38.63 25.07 24.20 15.80 0.065 38.57 25.63 26.37* 15.13 0.065 38.47 22.37 21.03 15.97 0.068 39.27 9.63 9.60 16.20 0.063 37.83 27.47* 24.23 16.50 0.068 39.00 29.43* 27.63* 16.10 0.067 39.27 27.60* 25.43 14.93 0.072 38.20 23.87 22.90 15.13 0.069 39.17 16.87 15.27 16.43 0.068 40.10 21.67 17.97 16.47 0.073 38.57 24.47 21.63 15.43 0.072 38.17 20.03<

Significant at 0.05 level of probability was of the difference among the hybrid mean and selected parents mean.

Results and Discussion —

Significant at 0.05 level of probability was of the difference among the hybrid mean and original better parent mean.

Regarding lint/seed, seven out of the twenty eight hybrids exhibited significant positive increases for such trait over selected parents mean only. Three hybrids (P₁ x P₂, P₁ x P₈ and P₂ x P₃) showed significant positive increases for lint percentage over the selected parents mean only. With regard to seed index, seven out of the twenty eight hybrids were surpassed the selected parents mean and manifested significant positive increases.

In population II (Table 41), only two hybrids (P₃ x P₄ and P₃ x P7) showed significant positive increases for lint yield/plant over selected parents and better parent means. The hybrid P2 x P5 exhibited significant positive increase for bolls/plant over the selected parents mean and better parent. Concerning seeds/boll, the three hybrids (P1 x P2, P2 x P4 and P4 x P8) showed significant positive increases over the selected parents mean and the better parent. Eleven out of the twenty eight hybrid combinations were over the selected parents mean exhibited significant positive increases for lint/seed. Five hybrids (P1 x P₄, P₂ x P₃, P₂ x P₄, P₃ x P₄ and P₃ x P₇) were over the selected parents mean and manifested significant positive increases for lint percentage. These results indicated that selection for lint percentage in this population was more efficient than selection for seed index in improving lint percentage. With regard to seed index, eight out of the twenty eight hybrid combinations exhibited significant positive increases over the selected parents mean, while only tow hybrids (P4 x P₇ and P₅ x P₇) out of them appeared significant positive increases for this character over the better parent.

In population III (Table 42), seven out of the twenty eight hybrids showed significant positive increases for lint yield/plant relative to the selected parents mean, while only one hybrid ($P_5 \times P_7$) out of

Results and Discussion -

them exhibited significant over the better parent. Regarding bolls/plant, five hybrids (P₁ x P₅, P₂ x P₄, P₂ x P₈, P₄ x P₈ and P₅ x P₇) appeared significant positive increases over the selected parents mean only. No useful increases were found to be significant over the better parent and selected parents mean for both seeds/boll and lint percentage. The best hybrids which exhibited significant positive increases for lint/seed (P1 x P₈) and lint percentage (P₄ x P₇) were the combinations among selections of lint percentage and seed index.

Generally, an examination of the individual hybrids for the lint yield and its components revealed that certain hybrids significantly exceeded their respective selected parents and better parents. The same findings were obtained by El-Kilany and El-Shishtawy (1986), Mahdy et al. (1987a) and Singh et al. (1989).

4.2.2.4. Phenotypic and genotypic correlation

Estimates of phenotypic (rp) and genotypic (rg) correlation coefficients between studied characters of recurrent selection for the three populations are presented in Table 43.

genotypic correlations between lint Phenotypic and yield/plant and bolls/plant were positive and significant indicating that bolls/plant was more important in improving lint yield. Similar results were reported by Walker (1960), Singh et al. (1985), Hassaballa et al. (1987), El-Okkia et al. (1989), Younis (1993), Gomaa et al. (1999), Younis (2000), Younis et al. (2000) and Abo-Sen (2001).

Both lint yield/plant with seeds/boll and seeds/boll with seed index in the three populations showed insignificant positive or

Results and Discussion -

Table 43. Estimates of phenotypic (r_p) and genotypic (r_g) correlation coefficients between studied characters of recurrent selection according to hybrids data for the three

populations.

Populations	Population I (G. 45 x G. 75)		Population II (G. 87 x G. 89)		Population III (G. 86 open- pollinated)	
Relationships	r _p	rg	Гp	Γg	Гр	r _g
1. Lint yield (g)/plant and bolls/plant	0.739**	0.711**	0.785**	0.646**	0.799**	0.773**
2. Lint yield (g)/plant and seeds/boll	0.027	0.071	-0.077	-0.012	0.060	-0.039
3. Lint yield (g)/plant and lint (g)/seed	-0.236	-0.348	-0.069	-0.019	0.359	0.470*
4. Lint yield (g)/plant and lint percentage	-0.244	-0.379*	-0.038	-0.037	0.086	0.113
5. Lint yield (g)/plant and seed index (g)	-0.080	-0.069	-0.054	-0.005	0.305	0.408*
6. Bolls/plant and seeds/boll	-0.403*	-0.496**	-0.433*	-0.558**	-0.314	-0.420*
7. Bolls/plant and lint (g)/seed	-0.744**	-0.870**	-0.605**	-0.716**	-0.192	-0.165
8. Bolls/plant and lint percentage	-0.611**	-0.720**	-0.387*	-0.510**	-0.190	-0.196
9. Bolls/plant and seed index (g)	-0.402*	-0.442*	-0.465*	-0.538**	-0.123	-0.124
10. Seeds/boll and lint (g)/seed	0.258	0.554**	0.342	0.494**	0.147	0.196
11. Seeds/boll and lint percentage	0.365	0.598**	0.515**	0.761**	0.596**	1.318**
12. Seeds/boll and seed index (g)	0.007	0.155	0.047	0.105	-0.096	-0.162
13. Lint (g)/seed and lint percentage	0.657**	0.680**	0.582**	0.572**	0.144	0.039
14. Lint (g)/seed and seed index (g)	0.663**	0.640**	0.805**	0.838**	0.924**	0.960**
5. Lint percentage and seed index (g)	-0.114	-0.128	-0.018	0.009	-0.261	-0.250
and ** significant at 0.05 and 0.01 levels of pro						

* and ** significant at 0.05 and 0.01 levels of probability, respectively.

negative r_p and r_g. El-Okkia (1979) showed a weak negative and inconsistent phenotypic and genotypic associations between lint yield and seeds/boll characters for the three studied generations. Kittock and Pinkas (1975) and Okasha (1998) reported that the increase in seeds/boll was concomitant with decreased mean seed weight.

Lint yield/plant with lint/seed and seed index exhibited weak negative phenotypic and genotypic associations in populations I and II, while r_g was significant and positive in population III. These results indicated that seed index was associated with lint/seed in influencing lint yield in the three populations. **El-Harony (1999a)** found that phenotypic and genotypic correlation coefficients of lint yield had high to moderate positive values with all characters except seed index. On the other hand, **Zeina (2002)** found that r_p and r_g of lint yield had high positive values with seed index. Table 39 indicates that selection for seed index in population III was more important to improve lint yield.

Bolls/plant was significant or insignificant and negatively associated with seeds/boll, lint/seed, lint percentage and seed index for the three populations. El-Kilany (1976) and Singh et al. (1985) also reported similar findings.

In populations I and II, the genotypic correlations between seeds/boll and lint/seed were positively and highly significant, but in population III it was positive and insignificant. Generally, seeds/boll exhibited positive and significant associations with lint percentage in the three populations. The pseudo-genotypic correlation coefficient (1.318) between seeds/boll and lint percentage in population III was due to lower values of genotypic variance for seeds/boll and lint percentage than the genotypic covariances. Thus, breeding procedures (recurrent selection) have been successful in breaking negative linkage between seeds/boll and lint percentage can be adopted. Similar conclusions were found by **Smith and Coyle (1997)**. The correlations of seeds/boll with lint/seed and lint percentage in recurrent selection hybrids tended to increase compared to any other selection procedure.

Lint/seed showed positively and highly significant associations with lint percentage and seed index in the three populations. These results indicated that selection for both lint percentage and seed index was more important in improving lint/seed. Our results are similar to those obtained by El-Kilany (1970), Singh et al. (1985), Okasha (1998), Gooda (2001) and Abdel-Zaher and Nagib (2002).

Lint percentage was insignificantly and negatively associated with seed index in the three populations except r_g in population II. **Zeina (2002)** found that lint percentage with seed index showed highly significant negative values for both phenotypic and genotypic correlation coefficients.

4.2.3. Comparative efficiency of the different selection procedures

Predicted and actual relative efficiencies for different selection procedures for improving lint yield (g)/plant as estimated from F₄ and S₂ in the three populations are shown in Table 44.

In population I, the ranks of expected relative efficiencies relative to selection for lint yield alone (Ixw) in F₃ generation were 201.65% for I₂₃, 123.46% for I₁₂₃, 123.46% for I_{w3}, 115.23% for I_{w2} and 112.76% for I₁₂. On the other hand, the direct phenotypic selection procedure for lint yield only (Ixw) was superior to the other selection procedures in F₄ generation. The ranks of actual relative efficiencies relative to selection for lint yield alone (Ixw) were 274.60% for recurrent selection, 221.69% for Ix₃, 158.20% for I_{w123}, 158.20% for I_{w1}, 158.20% for I_{w2}, 125.40% for I₂₃, 123.81% for Ix₂ and 113.23% for I₁₃. This indicates that the recurrent selection method was more efficient than the other selection procedures in improving lint yield due to the enhanced genetic variability provided by the recurrent selection compared to selection index. Similar results were obtained by Ali (1977), Mahdy (1983) and Younis (1986).

Concerning population II, the selection index involving seeds/boll and lint/seed (I_{23}) was more efficient than the other selection procedures in F_3 generation. Both recurrent selection and index Ix_1 were more efficient than the other selection procedures in F_4 generation. The ranks of actual relative efficiencies relative to selection for lint yield alone (Ixw) were 550.00% for recurrent selection, 532.14% for I_{123} , 532.14% for I_{13} , 405.36% for Ix_3 ,

Table 44. Predicted and actual relative efficiencies for the different selection procedures for improving lint yield (g)/plant as

estimated from F₄, and S₂ in the three populations

Domulations	pulations Selection Actual advance Predicted Predicted and							
ropulations	1 redicted			Predicted advance				
					ance			
	procedures		(S_1/S_2)	F ₃ /F ₄	(S_1/S_2)	F ₄ (S ₂)		
		i	ii %	i	ii %	i	ii %	
	I _{w123}	2.99	158.20	2.11	86.83	0.12	2.97	
,	I ₁₂₃	1.89	100.00	3.00	123.46	1.21	29.95	
	I_{w1}	2.99	158.20	2.17	89.30	0.12	2.97	
	I_{w2}	2.99	158.20	2.80	115.23	0.16	3.96	
D 1 1	I_{w3}	1.89	100.00	3.00	123.46	1.10	27.23	
Population I	I ₁₂	1.89	100.00	2.74	112.76	1.08	26.73	
(G. 45 x G. 75)	I ₁₃	2.14	113.23	2.45	100.82	0.90	22.28	
	I ₂₃	2.37	125.40	4.90	201.65	0.94	23.27	
	Ix _w	1.89	100.00	2.43	100.00	4.04	100.00	
	Ix ₁	1.80	95.24	2.15	88.48	3.14	77.72	
	Ix ₂	2.34	123.81	0.68	27.98	0.40	9.90	
	Ix ₃	4.19	221.69	1.24	51.03	3.09	76.49	
	Recurrent selection	5.19	274.60	-	-	3.15	77.97	
	I _{w123}	0.56	100.00	1.97	65.02	0.57	14.18	
	I ₁₂₃	2.98	532.14	2.56	84.49	0.84	20.90	
	I_{w1}	0.56	100.00	1.98	65.35	0.58	14.43	
	I_{w2}	0.56	100.00	2.77	91.42	0.90	22.39	
Domulation II	I_{w3}	0.00	0.00	2.71	89.44	1.45	36.07	
Population II	I ₁₂	1.64	292.8	2.01	66.34	0.08	1.99	
(G. 87 x G. 89)	I ₁₃	2.98	532.14	2.53	83.50	0.81	20.15	
	I ₂₃	1.66	296.43	5.10	168.32	-0.17	-4.23	
	Ix _w	0.56	100.00	3.03	100.00	4.02	100.00	
	Ix ₁	1.64	292.86	2.73	90.10	4.20	104.48	
	Ix ₂	0.04	7.14	0.23	7.59	1.65	41.04	
	Ix ₃	2.27	405.36	1.61	53.14	-2.92	-72.64	
	Recurrent selection	3.08	550.00	-	-	4.87	121.14	
	I _{w123}	6.57	100.00	3.28	97.04	0.43	9.79	
	I ₁₂₃	5.45	82.95	4.35	128.70	0.68	15.49	
	I_{w1}	6.57	100.00	3.26	96.45	0.44	10.02	
	I _{w2}	6.57	100.00	4.52	133.73	0.47	10.71	
Population III	I _{w3}	6.57	100.00	4.56	134.91	0.53	12.07	
(G. 86 open-	I ₁₂	6.57	100.00	4.61	136.39	0.37	8.43	
pollinated)	I ₁₃	5.45	82.95	4.20	124.26	0.63	14.35	
politiated)	I ₂₃ Ix _w	7.22	109.89	1.67	49.41	2.07	47.15	
	Ix _i	6.57	100.00	3.38	100.00	4.39	100.00	
		5.45	82.95	3.17	93.79	1.53	34.85	
	Ix ₂ Ix ₃	8.62	131.20	-0.13	-3.85	1.73	39.41	
	Recurrent selection	6.29	95.74	0.58	17.16	4.02	91.57	
) Predicted and		6.64	101.07	-	-	7.28	165.83	

⁽i) Predicted and actual advances as lint (g)/plant.

Results and Discussion -

⁽ii%) Predicted and actual advances as a percentage of the response to truncation selection to lint yield only.

296.43% for I₂₃, 292.86% for I₁₂ and 292.86% for Ix₁. These results indicted that the recurrent selection, selection index involving seeds/boll and lint/seed (I₂₃) and direct phenotypic selection procedure for bolls/plant were superior to the other selection procedures in population II. **Kamalanathan (1967), El-Kilany (1976) and Gooda (2001)** reported that the selection index involving seeds/boll and lint/seed (I₂₃) ranked first so as to improving lint yield in both generations relative to the higher-yielding parent.

Regarding population III, the ranks of predicted relative efficiencies relative to selection for lint yield alone (Ixw) in S₁ generation were 136.39% for I₁₂, 134.91% for I_{w3}, 133.73% for I_{w2}, 128.70% for I₁₂₃ and 124.26% for I₁₃. Both recurrent selection and direct phenotypic selection procedure for lint yield/plant (Ixw) were superior to the other selection procedures in S₂ generation. Phenotypic selection of seeds/boll (Ix₂), index I₂₃ and recurrent selection showed the highest percent of actual advance compared with phenotypic selection for lint yield alone (Ixw). Gooda (2001) found that the highest predicted and actual advances for lint yield were obtained from using the indices I_{w12}, I_{w2}, Ix₃ and I_{w1} in population II (G. 45 open-pollinated).

4.2.4. Effect of phenotypic selection for seed index on seed characters

Estimates of means, phenotypic and genotypic variances, phenotypic and genotypic coefficients of variation, heritability, correlation coefficients and actual advance of seed characters in the three populations are presented in Tables 45, 46 and 47.

Results and Discussion –

Table 45. Means, phenotypic (σ^2_p) and genotypic (σ^2_g) variances, phenotypic (PCV) and genotypic (GCV) coefficients of variation, heritability (h^2_b) , phenotypic (r_p) correlation coefficients and actual advance as estimated from F_4 of

seed characters in population I (G. 45 x G. 75)

Paramete	Characters	Oil percentage	Seed index (g)	100-Seed volume (cm ³)	Seed density (g/cm³)	Heavy seed (%)
	P ₁ (G. 45)	25.20	10.57	10.00	1.05	62.17
Mean	P ₂ (G. 75)	22.00	11.17	10.67	1.05	67.70
	Random sample	23.80	11.10	11.00	1.00	52.60
	Selected families	23.96 <u>+</u> 0.634	11.37 <u>+</u> 0.782	11.11 <u>+</u> 0.509	1.02 <u>+</u> 0.039	59.03 <u>+</u> 10.381
$\sigma^2_{\ p}$		1.0026	0.0178	0.2592	0.00166	32.6878
σ_{g}^{2}		0.6006	0.0000+	0.0000+	0.00016	0.0000+
PCV %		4.18	1.17	4.58	3.99	9.69
GCV %		3.23		\- <u>-</u>	1.24	
h ² _b		59.90	•	-	9.64	
rp (with oil percentage)		-	0.848	0.734	-0.709	0.325
Actual advance (unit)		1.890++	0.500+++	0.775+++	-0.030+++	-5.905+++
Actual advance (%)		7.84	4.60	7.50	-2.86	-9.09

Negative value for genotypic variance component.

++ Actual advance of oil percentage estimated from

$$\overline{F}_3 = 22.07$$

$$\overline{F}_4 = 23.96$$

Check mean = 24.10

+++ Actual advance of other characters estimated from mid-parent.

Results and Discussion -

Table 46. Means, phenotypic (σ^2_p) and genotypic (σ^2_g) variances, phenotypic (PCV) and genotypic (GCV) coefficients of variation, heritability (h^2_b) , phenotypic (r_p) correlation coefficients and actual advance as estimated from F_4 of

seed characters in population II (G. 87 x G. 89).

Paramet	Seed charact Characters	Oil percentage	Seed index (g)	100-Seed volume (cm ³)	Seed density (g/cm ³)	Heavy seed (%)
	P ₁ (G. 87)	23.9	9.87	9.33	1.06	58.60
Mean	P ₂ (G. 89)	25.3	10.10	9.67	1.05	66.50
	Random sample	23.7	10.40	9.33	1.12	75.10
	Selected families	23.53±0.764	10.09 <u>+</u> 0.631	9.33 <u>+</u> 0.471	1.08 <u>+</u> 0.018	58.84 <u>+</u> 8.92
σ_{p}^{2}		4.2133*	0.5082	0.4444	0.00214	60.0159
σ^2_{g}		3.6300	0.1106	0.2222	0.00181	0.0000+
PCV	%	8.72	7.07	7.15	4.28	13.17
GCV	-	8.10	3.30	5.05	3.94	•
h ² _b		86.16	21.76	50.00	84.58	-
- 100	ith oil percentage)	-	0.942	0.974	-0.066	-0.138
	al advance (unit)	0.310++	0.105+++	-0.170+++	0.025+++	-3.710++
	al advance (%)	1.26	1.05	-1.79	2.37	-5.93

Negative value for genotypic variance component

++ Actual advance of oil percentage estimated from

 $\overline{F}_3 = 23.22$

 $\overline{F}_4 = 23.53$

Check mean =

24.65

+++ Actual advance of other characters estimated from mid-parent.

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

Table 47. Means, phenotypic (σ^2_p) and genotypic (σ^2_g) variances, phenotypic (PCV) and genotypic (GCV) coefficients of variation, heritability (h^2_b) , phenotypic (r_p) correlation coefficients and actual advance as estimated from S_2 of seed characters in population III (G. 86 open-pollinated).

Paramete	Characters	Oil percentage	Seed index (g)	100-Seed volume (cm ³)	Seed density (g/cm³)	Heavy seed (%)
	P ₁ (G. 86 pure)	18.94	10.23	10.33	1.00	62.70
Mean	P ₂ (G. 86 open-pollinated)	18.62	10.93	11.33	0.97	59.63
	Random sample	20.00	11.17	11.00	1.02	72.60
	Selected families	20.42 <u>+</u> 1.145	11.03 <u>+</u> 0.151	11.22 <u>+</u> 0.192	0.99 <u>+</u> 0.024	61.08 <u>+</u> 2.414
$\sigma^2_{\ p}$		7.8048	0.0634	0.4815*	0.00156	46.5248*
$\sigma^2_{\ g}$		6.4928	0.0406	0.4445	0.00098	40.6978
PCV %		13.68	2.28	6.18	3.99	11.17
GCV %	3	12.48	1.83	5.94	3.16	10.44
h² _b		83.19	64.04	92.32	62.82	87.48
rp (with	oil percentage)	-	-0.773	-0.958	0.996	0.083
Actual a	dvance (unit)	1.78++	0.450+++	0.390+++	0.005+++	-0.085+++
Actual advance (%)		9.83	4.25	3.60	0.51	-0.14

⁺⁺ Actual advance of oil percentage estimated from

 $\overline{S}_1 = 18.64$

 $\overline{S}_2 = 20.42$

Check mean = 18.10

⁺⁺⁺ Actual advance of other characters estimated from mid-parent.

^{*} and ** significant at 0.05 and 0.01 levels of probability, respectively.

4.2.4.1. Mean performance

Means of the selected families for oil percentage, seed index and 100-seed volume showed useful values over the mid-parent and random sample in population I (Table 45). Means of the selected families for seed index and seed density exhibited increases over mid-parent in population II (Table 46). Means of the selected families for oil percentage and seed index showed increases over mid-parent value and better parent value, while 100-seed volume and seed density exhibited increases over mid-parent value only in population III (Table 47). Phenotypic selection for seed index in F₂ and S₀ generations and for oil percentage in F₃ and S₁ generations afterwards was effective for improving oil percentage due to the presence of transgressive segregation for oil percentage in population III. El-Ashry (1979) and Narayanan et al. (1988) showed transgressive segregation for seed-oil content and seed-oil index.

4.2.4.2. Genetic variability for seed characters

Residual genetic variability as expressed by σ_g^2 and GCV, in general indicates that large magnitude of variability still left in oil percentage and 100-seed volume in populations II and III, and heavy seed percentage in population III. This indicates that the magnitude of the genetic variability which persisted in both population II and III was sufficient for providing rather substantial amounts of improvement in oil percentage through the selection of superior progenies. Some characters exhibited negative genotypic variance component in selected families. These results may be due to the

inflated experimental error, which masked the genetic variations and led to inaccurate estimates of genetic parameters and heritabilities.

4.2.4.3. Heritability estimates

High heritability values in broad sense (> 50%) were observed for oil percentage in the three populations, seed index, 100-seed volume and heavy seed percentage in population III, and seed density in populations II and III. Low heritability values in broad sense (< 30%) were found for seed density in population I and seed index in population II. On the other hand, El-Ashry (1979) found low heritability values in narrow sense for oil percentage.

4.2.4.4. Phenotypic correlations and actual advances

Oil percentage showed positive and high correlation with seed index and 100-seed volume in populations I and II, and with seed density in population III. On the other hand, oil percentage exhibited negative and high correlation with seed density in population I, with seed index and 100-seed volume in population III. In the three populations, the phenotypic correlations between oil percentage and heavy seed percentage were rather low either positive or negative. These results indicated that seed index and 100-seed volume were the most effective of oil percentage in populations I and II, while seed density was the most effective in population III. Meena and Deshmukh (1990) found that the phenotypic correlation coefficient between oil percentage and fuzzy seed index was 0.205 at the genotypic level in *G. hirsutum* and – 0.259 in *G. arboreum*.

Results and Discussion.

Both population I and III showed high values of actual advance for oil percentage, seed index and 100-seed volume. As shown in Table 46, the selected families exhibited low values of actual advance for all seed characters. Pandey (1977), Singh et al. (1991), Dani (1999) and Shanthi et al. (1999) showed that there was a significant improvement in seed-oil content and seed-oil index compared to the base populations.