RESULTS AND DISCUSSION

The collected data could be presented and disscussed under the following topics:

I. Effect of irrigation regime, nitrogen fertilizer level, planting density and their interactions on growth characters of the plant crop sugar cane.

II. Effect of irrigation regime, nitrogen fertilizer level, planting density and their interactions on cane quality and chemical attributes of the plant crop sugar cane.

III. Effect of irrigation regime, nitrogen fertilizer level and planting density, and their interactions on yield and yield components of the plant crop sugar cane.

IV. Water use efficiency (W.U.E.).

I. Effect of Irrigation Regime, Nitrogen Fertilizer Level, Planting Density and Their Ineractions on Growth Characters of the Plant Crop Sugar Cane at Different Growth Stages:

1. Number of plants/m:

Sugar cane is propagated vegetatively by planting stem cuttings (setts) from which axillary buds grow to produce primary stalks (main stem). Secondary and tertiary stalks (tillers) are produced at the base of the primary stalks. The number of plants emergened on soil surface is mainly affected by agronomical treatments as well as genetical make-up.

Means of the number of plants/m at different samplang dates as affected by irrigation regime, nitrogen fertilizer levels, planting density and their interactions on the plant crop sugar cane in 1994/1995 and 1995/1996 seasons are presented in Tables (4) and (5).

Results obtained showed that there was no significant effect on the number of sugar cane plants due to the used water regimes at the various growth stages in both seasons. However, it was observed that the second water regime positively affected number of plants/m at 120 and 150 days from planting as well as in both seasons, compared with the traditional regime (first regime) and the third irrigation regime as well.

Table (4) Effect of irrigation regime, N fertilizer level, planting density and their interactions on number of plants/m in 1994/1995 growing season.

Irrioation regime	Nitrogen	120	120 davs		051	150 days	
Season and Irrigation	kg N/	Planting density	density	Average	Planting	Planting density	Average
Interval	Fed	1.5 drill	2 drills		1.5 drill	2 drills	
1. Summer (10-dav).	120	17.000	17.600	17.300	16.850	17.750	17.300
Moderates (15-day) and	180	18.100	16.550	17.325	17.950	18.100	18.025
Winter (20-dav)	240	16.950	20.100	18.525	15.900	19.650	17.775
Average		17.350	18.083	17.717	16.900	18.500	17.700
2 Summer (7-dav).	120	19.500	18.100	18.800	18.300	17.450	17.875
Moderates(14-day) and	180	18.700	16.800	17.750	16.950	18.000	17.475
Winter (21-day)	240	17.150	20.200	16.675	17.500	19.150	18.325
Average		18.450	18.367	18.408	17.583	18.200	17.892
3 Summer (14-day).	120	15.400	18.350	16.875	16.700	16.800	16.750
Moderates (21-day) and	180	19.200	17.650	18,425	16.450	17.200	16.825
Winter (28-day)	240	17.400	18.200	17.800	17.800	18.100	17.950
Average		17.333	18.067	17.700	16.983	17.367	17.175
Interaction of	120	17.300	18.017	17.658	17.283	17.333	17.308
Nitrogen X	180	18.667	17.000	17.833	17.117	17.767	17.442
Planting density	240	17.167	19.500	18.333	17.067	18.967	18.017
Total average of planting density	ensity	17.71	18.172	17.942	17.156	18.022	17.589

	SN	NS	0.826	SZ	SN	SN	NS
	SN	NS	SZ	NS	SN	1.762	SN
Ľ	(4)	(B)	(0)	•			
L.S.D at 5 % level for	Irrigation regime	N level	Planting density	AxB	AxC	BxC	AxBxC

Table (5) Effect of irrigation regime, N fertilizer level, planting density and their interactions on number of plants/m in 1995/1996 growing season.

N/ Planting density A d. 1.5 drill 2 drills 2 drills (0) 12.650 15.000 15.250 (0) 14.100 15.250 14.550 (0) 14.550 14.550 14.550 (0) 14.950 15.800 15.800 (0) 14.950 15.700 16.400 (1) 11.950 15.483 16.400 (1) 11.950 14.100 14.100 (1) 14.100 14.183 14.483 (2) 13.183 14.483 18.81 (3) 14.183 14.533 14.532 (40) 14.183 14.532 14.532								
ation kg N/ Planting density Average Planting density 1, 5 drill 2 drills 1.5 drill 2 drills 1.5 drill 1, 120 12.650 15.250 14.675 13.065 1 1, 120 14.100 15.250 14.675 14.135 1 1, 120 14.550 14.550 14.550 14.570 15.780 15.780 1, 120 14.950 15.800 15.355 14.570 14.570 14.570 1y) and 180 15.220 15.450 14.570 15.355 14.570 1y) and 180 15.220 15.450 15.355 14.445 14.500 1y, 120 11.950 12.650 12.300 12.285 14.445 1, 120 11.950 14.100 14.100 13.05 13.05 1, 240 14.100 14.100 14.100 14.100 14.100 1, 120 13.183 14.483 13.833	Irrigation regime	Nitrogen	120	days		150	days	
Fed. 1.5 drill 2 drills 1.5 drill 1.5	Season and Irrigation	kg N/	Planting	density	Average	Planting	density	Average
1), 120 12.650 15.000 13.825 13.065 1 lay) and lay and lays 180 14.100 15.250 14.675 14.135 1 lage 1240 14.550 14.550 14.550 14.550 15.780 15.375 14.570 ly and lage 120 14.950 15.800 15.355 14.570 ly and lage 15.20 15.700 15.450 15.355 ly and lage 14.250 14.950 14.600 13.100 ly, and lays and lage 13.250 16.400 14.825 13.065 lay) and lage 13.100 14.100 14.100 13.105 loge 12.0 14.100 14.100 14.100 14.185 loge 12.0 14.130 14.483 13.833 14.185 sity 240 14.183 14.483 14.417 14.400 sity 240 14.300 14.533 14.417 14.400 sity 240	Interval	Fed	1.5 drill	2 drills		1.5 drill	2 drills	
lay) and lay and lay and lay and lay and lay and lay lay and lay and lay and lay	1 Summer (10-dav).	120	12.650	15.000	13.825	13.065	15.000	14.033
ige 14.550 14.550 14.550 15.780 15.780 iy) and 120 14.950 15.800 15.375 14.570 iy) and 180 15.220 15.700 15.450 15.355 age 14.250 14.950 14.600 13.710 age 14.800 15.483 15.142 14.445 i, 120 11.950 12.650 12.285 i, 120 14.100 14.100 14.100 age 13.250 16.400 14.100 13.05 of 120 14.100 14.100 13.05 sic 120 14.183 13.333 14.185 x 180 14.183 15.783 14.400 sity 240 14.183 15.783 14.417 14.400 sity 240 14.183 14.483 14.417 14.400 sity 240 14.300 14.533 14.417 14.400 f	Moderates (15-day) and	180	14.100	15.250	14.675	14.135	14.425	14.280
ige 13.767 14.933 14.350 14.327 iy) and 120 14.950 15.800 15.375 14.570 age 15.220 15.700 15.450 15.355 age 14.800 15.483 15.142 14.445 1, 120 11.950 12.650 12.285 1, 120 11.950 12.650 12.285 1, 240 14.100 14.100 13.065 age 13.100 14.100 14.100 13.05 of 120 13.183 14.483 13.83 14.185 x 180 14.183 15.783 14.983 14.185 sity 240 14.300 14.533 14.417 14.400 x 180 14.183 15.783 14.417 14.400 x 180 14.300 14.532 14.417 14.400	Winter (20-day)	240	14.550	14.550	14.550	15.780	14.495	15.138
y) and 120 14.950 15.800 15.375 14.570 19.335 19.335 19.340 18.240 15.220 15.700 15.450 15.355 19.240 14.250 14.950 14.600 13.710 19.0 12.00 12.285 19.0 13.250 14.000 14.825 13.065 19.0 14.100 14.100 14.100 13.710 14.100 14.100 14.100 13.307 18.0 14.83 13.337 14.83 14.83 14.483 14.485 14.400 14.100 14.112 13.964	Average		13.767	14.933	14.350	14.327	14.640	14.483
iy) and 180 15.220 15.700 15.450 15.355 age 14.800 15.483 15.142 14.445 1, 120 11.950 12.650 12.300 12.285 1, 240 13.250 16.400 14.825 13.065 age 13.100 14.100 14.100 13.00 of 120 13.183 14.483 13.33 13.307 sity 240 14.183 15.783 14.983 14.185 sity 240 14.300 14.533 14.417 14.400 folanting density 13.889 14.932 14.112 13.964	2 Summer (7-dav).	120	14.950	15.800	15.375	14.570	14.656	14.568
ge 14.250 14.950 14.600 13.710 iv) and 120 11.950 12.650 12.300 12.285 iv) and 180 13.250 16.400 14.825 13.065 ge 13.100 14.100 14.100 13.742 13.020 iv 120 13.183 14.483 13.742 13.020 iv 240 14.183 15.783 14.185 iv 240 14.300 14.533 14.417 14.400 planting density 13.889 14.932 14.112 13.964	Moderates(14-day) and	180	15.220	15.700	15.450	15.355	14.855	15.105
ge 14.800 15.483 15.142 14.445 (v) and 120 11.950 12.650 12.300 12.285 (v) and 180 13.250 16.400 14.825 13.065 ge 14.100 14.100 14.100 13.710 r 120 13.183 14.483 13.742 13.020 r 180 14.183 14.483 14.983 14.185 r 240 14.183 15.783 14.983 14.185 r 240 14.300 14.533 14.417 14.400 r 240 14.300 14.533 14.417 14.400	Winter (21-day)	240	14.250	14.950	14.600	13.710	16.995	15.352
y) and 120 11.950 12.650 12.300 12.285 y) and 180 13.250 16.400 14.825 13.065 ge 13.100 14.100 14.100 13.710 12.0 13.183 14.483 13.833 13.307 y 240 14.183 15.783 14.983 14.185 h] 240 14.300 14.533 14.417 14.400 h] 240 14.300 14.533 14.112 13.964	Average		14.800	15.483	15.142	14.445	15.472	15.008
y) and 180 13.250 16.400 14.825 13.065 240 14.100 14.100 13.710 13.100 14.183 13.742 13.020 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.	3. Summer (14-day).	120	11.950	12.650	12.300	12.285	14.780	13.532
40 14.100 14.100 14.100 13.742 13.020 20 13.183 14.483 13.833 13.307 80 14.183 15.783 14.983 14.185 40 14.300 14.533 14.417 14.400 13.889 14.932 14.112 13.964	Moderates (21-day) and	180	13.250	16.400	14.825	13.065	13.425	13.245
13.100 14.383 13.742 13.020 20 13.183 14.483 13.833 13.307 80 14.183 15.783 14.983 14.185 40 14.300 14.533 14.417 14.400 13.889 14.932 14.112 13.964	Winter (28-day)	240	14.100	14.100	14.100	13,710	13.355	13.533
20 13.183 14.483 13.833 13.307 80 14.183 15.783 14.983 14.185 40 14.300 14.533 14.417 14.400 13.889 14.932 14.112 13.964	Average		13.100	14.383	13.742	13.020	13.853	13.437
80 14.183 15.783 14.983 14.185 40 14.300 14.533 14.417 14.400 13.889 14.932 14.112 13.964	Interaction of	120	13.183	14.483	13.833	13.307	14.782	14.044
40 14.300 14.533 14.417 14.400 13.889 14.932 14.112 13.964	Nitrogen X	180	14.183	15.783	14.983	14.185	14.235	14.210
13.889 14.932 14.112 13.964	Planting density	240	14.300	14.533	14.417	14.400	14.948	14.674
	Total average of planting density	density	13.889	14.932	14.112	13.964	14.655	14.309

L.S.D at 5 % level for:		
(rrigation regime (A)	SZ	SZ
N level (B)	NS	SN
density	SN	SN
	SZ	SN
) (C	SZ.	SN
BxC	SZ	SN
4xBxC	NS	2.393

In 1994/1996 season, the application of the second water regime insignificantly increased number of stalks/m by 3.9 and 6.24% at 120 days from planting, compared with the first (traditional) and third regime, respectively. Also, in the same season, the second regime insignificantly increased number of stalks/m by 1.08 and 4.17% at 150 days from planting compared with the first and third regime, respectively. Similarly, in 1995/1996 season, the second irrigation regime insignificantly increased number of stalks/m by 5.25 and 10.19% at 120 days from planting compared with the first and third irrigation regimes, respectively. Also, in the same season and at 150 days from planting, increases of 3.62 and 11.69% were recorded in number of stalks/m due to applying the second regime compared with the first and third regimes.

It could be concluded that scheduling irrigation rotations at shorter intervals of the second regime favourably affected number of stalks/m compared with adopting irrigation at longer intervals in the first and third regimes. However, all differences in number of stalks/m due to irrigation regimes were not great enough to reach the level of significance.

The data presented in Table (2) showed that the amount of water applied in the second regime at 120 days in 1994/1995 season was 4964.3 m³ against 3879.1 and 4032.2 in the first and third regime, respectively. Also, in 1995/1996 season, 5423.8 m³ of water were applied to cane plants in the second regime against 4073.8 and 4272.8 m³ with the first and third regime, respectively. Similarly, at 150 days, the amount of water applied to cane plants increased by 26 and 27% compared with the first and third regime in the first season, corresponding to 32 and 31% in the second season for the respective regimes.

Such result may be due to the availability of sufficient moisture around sugar cane cuttings by reducing irrigation intervals (in April, May, June, July and August) leading to accelerate bud growth and root development which ensured sprouting and germination.

The present results are in general agreement with those reported by Lakshmikantham (1983) who found that increasing water content of the setts increased the moisture in the bud and root primordia until they attained the critical level when sprouting was hastened.

Concerning the effect of N level, results in Tables (4 and 5) indicated no significant effect of N level on number of stalks/m either at 120 or 150 days from planting as well as in both seasons. However, in most cases, the increase in N level insignificantly increased number of stalks/m at both growth stages and in both seasons. In 1994/1995, increasing N level from 120 to 180 and 240 kg/ fed insignificantly increased number of stalks/m by 0.99 and 3.82% at 120 days from planting, respectively. Similarly, increases of 0.77 and 4.10% due to increasing N level from 120 to 180 and 240 kg/fed were observed at 150 days from planting in the same season.

In 1995/1996 season, the increase in N level from 120 to 180 kg/fed insignificantly increased number of stalks/m by 8.31 and 1.18% at 120 and 150 days from planting, respectively. Similarly, increasing N level from 120 to 240 kg/fed in 1995/1996 insignificantly increased number of stalks/m by 4.22 and 4.49% at 120 and 150 days, respectively. However, all these increases were below the significant level.

It could generally concluded that the increases in N level favourably affected stalks number/m at the different stages of growth. This result may be due to the role of N in stimulating plant growth and the production of plant organs.

The present results are in general agreement with those reported by Jayabal et al. (1989) and Abd El-Gawad et al. (1992-a).

Planting density markedly affected number of stalks/m as showedn in Tables (4 and 5) The effect of planting density on number of stalks/m reached the significant level in one case only, being at 150 days from planting in 1994/1995 season.

In general, it was observed, that planting double drills increased number of stalks/m by 2.60 and 7.51% at 120 days in the first and second season, respectively when compared with growing 1.5 drill. Similarly, double drills surpassed 1.5 drill in number of stalks/m at 150 days from planting by 5.05 and 4.95% in 1994/1995 and 1995/1996 season, respectively.

It could be concluded that growing double drills produced higher number of cane plants/m. The present result coincides with that obtained by Ahmed (1995).

Interaction Effects:

Results in Table (4) indicated that the interaction between Nitrogen level and planting density significantly affected number of stalks/m at 120 days from planting in 1994/1995 season.

The results showed clearly that double drills outnumbered 1.5 drill at 120 and 240 kg/fed N levels, but on the other hand, 1.5 drill outnumbered double drills at 180 kg N/fed Also, the highest number of stalks/m was recorded at 180 kg N/fed by growing 1.5 drill, whereas by growing double drills, the highest number of stalks was recorded at 240 kg N/fed level.

In general, the maximum number of stalks/m at 120 days in 1994/1995 season was 19.500 which was recorded by growing double drills supplied with 240 kg N/fed

Also, results in Table (5) showed that the second order interaction was sgnificant on number of stalks/m at 150 days in 1995/1996 season. These results revealed that the maximum number of stalks /m at this stage was 16.995 which was recorded by applying the second irrigation regime and growing double drills combined with 240 kg N /fed

All other effects of interaction were not significant.

2. Stalk height:

Tables (6 and 7) reveals the effect of irrigation regimes, nitrogen fertilizer level, planting density and their interactions on stalk height (cm) of the plant crop sugar cane at different sampling dates in 1994/1995 and 1995/1996 seasons.

Results showed that there was no significant response in respect to stalk height could be referred to the used water regimes at all sampling dates in both growing seasons. Meanwhile, it could be observed that the most

Table (6) Effect of irrigation regime, N fertilizer level, planting density and their interactions on stalk height (cm) in 1994/1995 growing season.

	Average		315.175	316.575	321.550	317.767	320.400	323.650	330.000	324.688	302.450	319.525	321.650	314.533	312.675	319.917	324.392	318.994							
	,	11	00	00	00	33	00	00	00	19 = 61	-50	50	-50	83	17	17	050	94							
lays	densi	2 dr	310.	330.	323.	321.	325.	325.	342	331.	302.	324.	342.	323.	313.	326.	336.	325.	SN	SN	999	S	S	Š	S
330 days	Planting	1.5 drill	319.550	303.150	319,300	314.000	315.000	321.500	317.500	318.000	302.450	314.100	300.800	305.783	312.333	312.917	312.533	312.594	Z	Z	6	Z	Z	Z	SN
	Average)	292.500	298.800	306.700	299.333	302.050	302.725	310.725	305.167	272.800	296.800	303.475	291.025	289.117	299.442	306.967	298.805							
265 days	density		289,000	305.100	308.600	300.900	296.300	297.300	325.300	306.300	272.150	304.300	315.800	297.417	285.817	302.233	316.567	301.539	SN	11.846	SN	SN	SN	SN	SN
265	Planting	1.5 drill	296,000	292.500	304.800	297.767	307.800	308,150	296.150	304.033	273.450	289.300	291.150	284.633	292.417	296.650	297.367	295.478							
	Average	0	245.650	242.750	253.250	250.217	235.500	261.750	264.150	259.800	238.500	253.250	252.250	248.000	248.883	252.583	256.550	252.672	!						
200 days	Planting density	2 drills	264 800	251 500	251 500	255.767	261.500	263.000	270.500	265.000	245 000	247.500	250,000	247.500	257 100	254.000	257.167	256.089	SN	SZ	080'9	SN	SZ	SN	SN
	Planting	1 5 drill	244 500	234 000	252.500	244.667	245.500	260.500	275.800	254.600	232.000	259.000	254.500	248.500	240.676	251.167	255.933	249.256							
	Average	9 13 15	150 900	143 050	152.800	149.217	161.100	155.550	165.650	160.767	143.900	139.000	148.250	143.717	151 967	146.167	155.567	151.233							
135 days	dencity		165 500	148 200	156 800	156.167	166 000	148.800	173.100	162.633	125.100	135,400	155 100	147.533	160 533	144,133	161.667	155,444	y Z	6 797	5.550	SZ	SZ	9,612	SN
135 days	Planting	1 S drill	138 300	139.500	148 800	142.267	156 200	162 300	158 200	158.900	135.700	142,600	141 400	139 900	143 400	148 200	149.467	147.002							
Nitrogen	ko N/	T PO I	130	180	240		120	180	240		120	180	240		120	98	240	ting density							
				7	3							Ģ	3					ting c							

304.8 298.9 301.0 301.6 307.8 305.32 304.93 303.900 305.450 311.250 297.800 306.867 311.500 Planting density 320.600 309.967 299.900 301.100 304.9000 300.933 307.550 310.317 301.967 306.267 330 days 305.250 303.350 1.5 drill 299.350 302.650 308.700 307.950 297,900 309.300 309,700 300.183 292.950 302.367 308.083 303.594 300.333 Average 281.750 286.750 285.750 284.750 288.000 293.750 291.667 282.250 282.750 293.250 286.000 283.667 284.000 287.750 288.333 286.694 Table (7) Effect of Irrigation regime, N fertilizer level, planting density and their in 1995/1996 growing season 287.5000 288.667 293.000 285.500 2 drills 287.000 284.500 293.000 Planting density 287.500 282.000 288.167 288.000 285.833 288.500 287.333 286.833 287.556 265 days l.5 drill 280.5000 276.000 286.000 289.000 280.833 303.000 295.167 293.500 277.000 277.500 290.000 281.500 287.000 280.667 289.833 285.833 Average 268.500 265.083 265.750 268.000 261.000 273.250 260.750 264.250 266.750 268.500 263.083 261.750 268.583 265.750 262.333 2 drills 270.500 270.5000 262.000 261.500 267.667 Planting density 275.500 270.00 260.500 270.500 269.00 265.000 265.333 265.667 264,167 272.167 267.333 200 days 266.500 261.000 262.500 1.5 drill 260.000 271.000 274.500 258.500 261.000 263.000 258.500 260.833 268.000 267.333 259.000 263.778 265.000 Average 187.250 191.000 188.350 189.350 188.867 188.500 188.400 196.250 191.367 181.050 185.400 184.950 188.583 190.633 185,967 188.394 200.000 2 drills 187.000 187.200 196.500 189.000 191.400 Planting density 191.400 192.300 177.800 187.300 182,100 190.267 182.400 188.933 188.700 186.900 135 days NS 189.5000 182.000 187.500 L.S. drill 189.700 186.333 196.000 185.600 190.433 193.000 189.500 180.000 187.500 188.233 191.000 185.033 188.089 kg ⊠ Fed 2 8 2 2 3 3 2 8 240 2 2 25 Total average of planting density Moderates (15-day) and Season and Imgation Moderates (21-day) and Moderates(14-day) and Irrigation regime Average Average Summer (10-day), Average Winter (20-day) Irrigation regime (A) Interval 2. Summer (7-day), 3. Summer (14-day), Planting density Interaction of L.S.D at 5 % level for: Winter (21-day) Nitrogen X Winter (28-dav) Planting density N level AXB AxC

Ave

301 310. 314, 308. 299. frequent irrigation (The second irrigation regime) mostly gave the highest stalk length followed by the traditional water regime (Irrigating at average intervals of 10 days in Summer, 15 days in Spring, Autumn and 20 days in Winter), then the least frequent irrigation treatment.

The results in Table (5) showed that in 1994/1995 season, stalk height at 135 days insignificantly increased due to applying the second irrigation regime by 7.74 and 11.86% over the first regime (traditional regime) and the third regime, respectively. The corresponding increase in stalk hight due to the second regime at the same period in 1995/1996 season was 1.32 and 3.47% compared with the first and third regime, respectively. Similarly, the second regime insignificantly increased stalk height compared with the first regime (traditional) by 3.83, 1.95 and 2.18% at 200, 265 and 330 days in 1994/1995 respectively. The corresponding increases in plant height in 1995/1996 season were 1.30, 2.43 and 1.01%, for the respective growth periods.

The second irrigation regime positively affected stalk height compared with the third regime where increases in plant height of 4.76, 4.86 and 3.23% at 200, 265 and 330 days in 1994/1995, respectively, corresponding to 2.06, 2.82 and 2.62% for the same respective growth stages in 1995/1996 season.

It could be concluded that scheduling irrigation at 7-day intervals in Summer, 14-day in Spring and Autumn, 21-day in Winter positively affected stalk height of sugar cane through out the different growth stages. However, the increases were below the level of significance, probably due to high experimental error.

The good effect of the second regime is mainly due to the shorter intervals of irrigation throughout the growing season, particularly during the Summer season.

The data presented in Table (1) showed that the amount of water applied in the second regime was higher than that applied in the first regime by 21.1, 22.5, 23.7 and 19.7% at 135, 200, 265 and 330 days, respectively in the first season, corresponding to 27.1, 28.0, 28.5 and 24.0% in the second season at the same growth stages. Similarly, in the second irrigation regime, the amount of irrigation water was increased by 23.4, 28.5, 29.8 and 28.6%

over the third regime at 135, 200, 265 and 330 days, respectively in 1994/1995 season, corresponding to 20.1, 31.5, 31.8 and 30.5% in 1995/1996 season.

The present results are in general agreement with those obtained by Lakshmikantham (1983) who stated that growth is largely a process of cell elongation associated with intake of water and a close relationship exists between the water content of cane plant and its elongation rate.

The results in Tables (6 and 7) indicated that the increase in N level almost increased stalk height at the different stages but without significant differences except at 135 and 265 days from planting in 1994/1995 season where the differences in plant height reached the level of significance.

The results showed that increasing N level from 120 to 240 kg/fed increased stalk height by 2.37, 3.45, 6.17 and 3.75% at 135, 200, 265 and 330 days from planting, respectively in 1994/1995 season. The increases in stalk height in 1995/1996 season due to increasing N level from 120 to 240 kg/fed were very slight even a reduction in plant height was recorded at 135 and 200 days. The effect of N in the second season was not evident on stalk height as in the first season.

It was observed in 1995/1996 season, that the 180 Kg N level was more effective on stalk height than the higher level. In that season, increasing N level from 120 to 180 kg/fed induced an increase of 1.09, 1.07, 1.32 and 2.04% at 135, 200, 265 and 330 days, respectively.

The present results are in general agreement with those reported by Abd El-Gawad et al. (1992-a).

Concerning the effect of planting density on stalk height, results in Tables (6 and 7) indicated that using double drills increased stalk height at all growth stages as well as in both seasons. The effect of planting density on stalk height recorded the significant level at 3 growth stages (at 135, 200 and 330 days) in 1994/1995 season, but in 1995/1996 season all differences were below the level of significance.

The results showed that growing double drills increased stalk height by 5.74, 2.74, 2.05 and 4.09% at 135, 200, 265 and 330 days from planting, respectively compared with growing 1.5 drill. The corresponding increases in 1995/1996 season were 0.32, 1.35, 0.60 and 0.88% at the same growth stages.

It is quite evident that the effect of planting density on plant height was more evident in the first season, probably due to the environmental conditions prevailing in that season.

The increase in stalk height by growing double drills is mainly due to the increase in competition for light within plants at denser population leading to the elongation of internodes and consequently taller plants.

Interaction Effects:

The results in Tables (6 and 7) indicated that all effects of the interaction between the stuied factors on stalk height were not significant except that between N level and planting density at 135 days in 1994/1995 season.

The results in Table (6) showed that at 135 days in 1994/1995 season, growing double drills produced taller stalks than 1.5 drill at 120 and 240 kg N level, whereas at 180 kg N level, growing 1.5 drill increased stalk height over double drills.

In general, the highest plant height was 161.67 cm which was recorded by growing double drills and applying 240 kg N/fed at 135 days in 1994/1995 growing seasons.

3. Stalk diameter:

Results in Tables (8 and 9) showed the effects of irrigation regime, N fertilizer level, planting density and their interactions on stalk diameter of the plant crop sugar cane at four different growth stages in 1994/1995 and 1995/1996 seasons.

Table (8) Effect of irrigation, N fertilizer, planting density and their interactions on stalk diameter (cm) in 1994/1995 growing season.

			medactions on sta	us ou stat	תומוווכו	1 (200) 15	11774/13	vy grow	in diameter (Cili) ili 1994/1993 growing season	n.			
Irrigation regime	Nitrogen	135 days	lays		200 days	days		265 days	days		330 days	days	
Season and Irrigation	kg N/	Planting density	density	Average	Planting density	density	Average	Planting	density	Average	Planting	dencity	Average
Interval	Fed.	1.5 drill	2 drills		1.5 drill	2 drills	D	1.5 drill	r		1.5 drill		79 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1. Summer (10-day),	120	2.440	2.550	2.495	2.510	2.560	2.535	2.715	2.810	2.762	2.855	2 950	2 903
Moderates (15-day) and	180	2.470	2.550	2.510	2.630	2.600	2.615	2.795	2.665	2.730	2.935	2.805	2.870
Winter (20-day)	240	2.620	2.500	2.560	2.640	2.560	2.600	2.830	2.895	2.863	2.970	3.035	3.002
Average		2.510	2.533	2.522	2.593	2.573	2.583	2.780	2.790	2.785	2.920	2.930	2.925
2. Summer (7-day),	120	2.610	2.580	2.595	2.670	2.570	2.620	2.530	2.780	2.655	2.670	2.925	2.797
Moderates(14-day) and	180	2.730	2.710	2.720	2.670	2.620	2.645	2.810	2.880	2.845	2.960	3.025	2.993
winter (21-day)	240	2.710	2.590	2.650	2.580	2.670	2.625	3.005	2.845	2.925	3.155	3.000	3.077
Average		2.683	2.627	2.655	2.640	2.620	2.630	2.782	2.835	2.808	2.928	2.983	2.956
5. Summer (14-day),	120	2.420	2.380	2.400	2.570	2.300	2.435	2.715	2.615	2.665	2.845	2.750	2.798
Moderates (21-day) and	180	2.420	2.430	2.425	2.570	2.460	2.515	2.600	2.765	2.683	2.740	2.900	2.820
Winter (28-day)	240	2.460	2.370	2.415	2.600	2.650	2.580	2.800	2.480	2.640	2.940	2.615	2.778
Average		2.433	2.393	2.413	2.580	2.440	2.510	2.705	2.620	2.663	2.842	2.755	2 798
interaction of	120	2.490	2.503	2.497	2.583	2.477	2.530	2.653	2.735	2.694	2.790	2.875	2.833
Nitrogen X	180	2.540	2.563	2.552	2.623	2.560	2.592	2.735	2.770	2.752	2.878	2.910	2.894
Planting density	240	2.597	2.487	2.542	2.607	2.597	2.602	2.878	2.740	2.809	3.002	2.883	2.952
lotal average of planting density	ensity	2.542	2.518	2.530	2.604	2.544	2.574	2.756	2.748	2.752	2.897	7 889	2 803
L.S.D. at 5% level for:												700.	2.0.2
Irrigation regime (A)			SN			S Z		<i>~</i>	V		SIX	ŭ	
N level (B)			SN			S Z		→	2 2		ŹŽ	กย	
Planting density (C)			SN					-	27		ŹŽ	ח מ	
AxB			VZ) IV		•) [Ź	n i	
ر د د						2	•	4	2		Ź	'n	
7 6			Z Z			SZ		~	S		Ź	S	
bxc 			SZ			SN		~	4S		Ż	S	
AXBXC			SZ			SN		_	Sh		NS	ß	

Table (9) Effect of irrigation regime, N fertilizer level, planting density and their interaction on stalk diameter (cm) in 1995/1996 growing season.

							11/0/11	70 SIONI	merchanism on status dampers (our) in 1775/1770 growing season				
Irrigation regime	Nitrogen	135	135 days		200 days	days		265	265 days		330 days	days	
Season and Irrigation	kg N/	Planting	Planting density	Average	Planting	density	Average	Planting	Planting density	Average	Planting	density	Averag
Interval	Fed.	1.5 drill	2 drills		1.5 drill	2 drills)	1.5 drill	2 drills		1.5 drill	2 drill	
1. Summer (10-day),	120	2.490	2.370	2.430	2.420	2.490	2.455	2.660	2.490	2.575	2.715	2.690	2.703
Moderates (15-day) and	1 8 0	2.500	2.530	2.515	2.650	2.540	2.595	2.680	2.680	2.680	2.805	2.750	2.778
Winter (20-day)	240	2.510	2.360	2.435	2.640	2.570	2.605	2.800	2.655	2.728	2.880	2.685	2.783
Average		2.500	2.420	2.460	2.570	2.533	2.525	2.713	2.608	2.661	2.800	2.708	2.754
2. Summer (7-day),	120	2.480	2.560	2.520	2.560	2.570	2.565	2.700	2.660	2.680	2.755	2.735	2.745
Moderates(14-day) and	180	2.640	2.510	2.475	2.640	2.450	2.590	2.730	2.700	2.715	2.840	2.770	2.805
Winter (21-day)	2+0	2.480	2.410	2:445	2.780	2.560	2.670	2.800	2.720	2.760	2.830	2.725	2.778
Average		2.533	2.493	2.513	2.660	2.557	2.608	2.743	2.693	2.718	2.808	2.743	2.776
3. Summer (14-day),	120	2.400	2.470	2.435	2.460	2.480	2.470	2.660	2.420	2.540	2.590	2.615	2.602
Moderates (21-day) and	180	2.510	2.540	2.525	2.520	2.610	2.565	2.700	2.690	2.695	2.900	2.710	2.805
Winter (28-day)	240	2.560	2.440	2.500	2.555	2.530	2.542	2.595	2.570	2.542	2.780	2.810	2.795
Average		2.490	2.483	2.487	2.512	2.540	2.526	2.652	2.560	2.606	2.575	2.712	2.734
Interaction of	120	2.457	2.467	7.462	2.480	2.513	2.497	2.673	2.523	2.598	2.687	2.680	2.683
Nitrogen X	180	2.550	2.529	2.538	2.603	2.563	2.583	2.2.703	2.690	2.697	2.848	2.743	2.796
Planting density	240	2.517	2.403	2.460	2.658	2.535	2.606	2.732	2.648	2.690	2.830	2.740	2.782
Total average of planting density	density	2.508	2,466	2.487	2.581	2.543	2.562	2.703	2.621	2.662	2.788	2.721	2.755
L.S.D at 5 % level for:													
Irrigation regime (A)			0.023			0.043		•	SN		SZ	v	
N level (B)			SN			0.061			0.061		ā	0.074	
Planting density (C)			SN			SN		_	0.050		Ö	0.061	
AxB			SN			NS		,	SZ		ž	S	
AxC			SN			NS			NS		Z	S	
BxC			SN			SN			SN		Ž	S	
AxBxC			SN			NS			NS		NS	S	

The results showed that irrigation intervals of the second regime, including Summer intervals of 7 days, Spring and Autumn intervals of 14 days and Winter intervals of 21 days, positively affected stalk diameter compared with the first (traditional) regime (10-15-20 days) and the third regime (14-21-28 days). It is also evident that the effect of irrigation regime on stalk diameter was more clear in 1995/1996 season than in 1994/1995 season where differences in stalk diameter at three stages out of four were significant (Table 9).

The results indicated that scheduling irrigation of the second regime increased stalk diameter of sugar cane by 5.27, 1.82, 0.83 and 1.06% at 135, 200, 265 and 330 days, respectively, compared with the traditional regime in 1994/1995 season. The corresponding increases in 1995/1996 season were 2.15, 3.29, 2.14 and 0.80% at the same respective growth stages. Similarly, applying the second regime increased stalk diameter over the third regime by 10.03, 4.78, 5.44 and 5.56% at 135, 200, 265 and 330 days, respectively in 1994/1995, being 1.05, 3.25, 4.30 and 1.54% for the respective growth periods in 1995/1996 season.

Significant differences in this trait were only observed in 1995/1996 season.

It could be concluded that reducing irrigation intervals affected stalk diameter of sugar cane due to increase in the amount of irrigation water.

Concerning the effect of N level, the results in Table (8 and 9) showed that increasing N level from 120 to 180 and 240 kg/fed increased stalk diameter. Significant effect for N level on stalk diameter was detected in 1995/1996 season at three stages out of four.

The results revealed that increasing N level from 120 to 180 kg/fed increased stalk diameter by 2.20, 2.45, 2.15 and 2.15%, respectively at 135, 200, 265 and 330 days in 1994/1995 season, corresponding to 3.09, 3.44, 3.18 and 4.21% in 1995/1996 season. Similarly, increasing N level from 120 to 240 kg/fed increased stalk diameter at the respective growth stages by 1.80, 3.96, 4.27 and 4.20% in 1994/1995, corresponding to (-0.08), 4.37, 3.54 and 3.69% in 1995/1996 season.

The results showed also that there were no any apparent differences in stalk diameter due to applying 180 and 240 kg N level in both season.

The positive effect of N on stalk diameter is mainly due to important role of N as the most important element in building up plant organs.

The present results are in general agreement with those obtained by Abd El-Gawad et al.(1992-a).

The results in Tables (8 and 9) revealed that growing 1.5 drills of cane setts favourably affected stalk diameter compared with growing double drills in both seasons and at the different growth stages.

It was observed that the effect of planting density on stalk diameter was mor evident in 1995/1996 season where this effect reached the level of significance at two periods (265 and 330 days) out of four. The effect of planting density on this trait was not significant in 1994/1995 season throughout the four growth periods.

The results revealed that growing 1.5 drill increased stalk diameter over double drills by 0.95, 2.36, 0.29 and 0.28% at 135, 200, 265 and 330 days in 1994/1995 season, respectively, corresponding to 1.70, 1.49, 3.13 and 2.46% in 1995/1996 season.

The thinner stalks observed with growing double drills is mainly due to the increase in plant population density leading in turn to increase competition among growing cane plants for light, water and nutrients.

The present results agree with those obtained by Ahmed (1995).

Interaction Effects:

The results in Tables (8 and 9) indicated that all effects of the interaction between the experimental factors on stalk diameter at the different growth stages and in both seasons were not significant. These results indicated that each experimental factor affected this trait independently.

4. Elongation rate of cane stalks (ER):

Results presented in Tables (10 and 11) showed the effects of irrigation regime, N fertilizer level, planting density and their interactions at three different growth stages of the plant crop sugar cane on the elongation rate (mm/day) in 1994/1995 and 1995/1996 seasons.

The results indicated that elongation rate tended to decrease with the advance towards maturity. That may be due to the reduction in the meristimatic activity and cell elongation with the progress in plant age.

The results showed that in 1994/1995, elongation rate was 16.622, 7.461 and 2.861 mm/day at the first (135-200 days), second (200-265 days) and third (265-330 days) growth stage, respectively. The corresponding elongation rates were 12.686, 3.725 and 2.972 in 1995/1996 season, respectively. Similar results were also reported by Abd El-Gawad et al.(1992-a) and Ahmed (1995).

The results indicated that irrigation regime had no significant effect on this trait at the different growth periods and in both seasons as well.

In 1994/1995 season, no any specific trend for the effect of irrigation regime on elongation rate could be detected. The arrangement of the three regimes on this trait was quite different in the three periods. The second regime was only of better effect on elongation rate during the last period (265-330 days) where it increased this rate by 19.90% compared with the first and third regimes as well. However, this marked increase failed to reach the level of significance.

In 1995/1996 season, the effect of irrigation regime on elongation rate was also insignificant in spite of the superiority of the second irrigation regime over the two other regimes throughout the growing season. The results in Table (11) indicated that scheduling irrigation at 7-14-21 days in Summer, Moderates and Winter increased elongation rate by 1.18, 3.42 and 2.22%, respectively at 135-200, 200-265 and 265-330 days from planting compared with the first regime (traditional); also, the second regime was superior than the third one in affecting elongation rate where increases of 1.92, 2.02 and

Table (10) Effect of Irrigation regime, N fertilizer level, planting density and their interations on elongation rate (mm/day) in 1994/1995 growing season.

a	ally then interactions on clougation rate (man and) in	CI ALLOIDS		יוורוון ומור	(manual)	, ,,,,	D			
Turinotion north	Nitrogen	135-20	135-200 days		200-265 days	5 days		265-330 days	0 days	
ILLIKAHOH I EKIME					1	don witer	Augusta	Planting	density	Average
Season and Irrigation	kg N	Planting	density	Average	Flanting	Defisity	AVCIABO	4	비	0
Interval	Fed	11.5 drill	2 drills		1.5 drill	2 drills		I.5 drill	z arilis	
1 Cummer (10 day)	120	16 200	16.850	16.525	8.550	4.050	6.300	2.850	2.550	2.700
1. Summer (10-day),	180	15.700	17.150	16.125	9.750	8.900	9.325	1.750	4.100	2.925
Moderates (15-day) and	240	17.750	15.650	16 700	8 150	9.550	8.550	2.350	2.500	2.455
Winter (20-day)	7+7	3,,,,	12.000			1 500	0 150	7217	3.050	2.683
Average		16.550	16.550	16.550	8.81/	/.500	0.130	/1C.7	020.5	20017
7 Cummer (7 dow)	120	14.850	15.850	15,350	8.350	5.750	7.050	1.200	4.830	3.073
Z. Summer (' "day'),	081	16 300	19 00	17.650	7.900	5.650	6.775	3.250	3.700	3.475
Moderates(1+-day) and	01.0	16.650	16 200	16.425	6.350	9.100	7.725	3.500	2.800	3.150
winter (21-day)	0.4.7	10.00	11011	354.21	7 523	813	7.183	2.650	3.783	3.217
Average		15.933	1/.01/	10.4/3	SCC:	0.000	201.	0001	1000	3775
3 Summer (14-dav)	120	16.050	15.450	15.750	6.850	3.950	5.400	1.700	7.850	2.7.7
Madameter (11-day),	081	18 350	18 650	18.500	5.000	9.450	7.225	4.100	1.500	2.800
Midderates (21-day) and	010	16.800	15,800	16.300	6.100	10.900	8.500	1.550	4.400	2.975
willer (20-day)	0±7	17.067	16.633	16.850	5.983	8.100	7.042	2.450	2.917	2.683
Average		17.00/	0.00	00001	1011	1 503	056.9	1 917	3417	2.667
Interaction of	120	15.700	16.050	C/8.CI	/.91/	£.000	0.4.0	,,,,,		1,00
Nitrogen X	081	16.783	18.267	17.525	7.550	8.000	7.775	3.033	3.100	3.00/
in in the contract of the cont	OTC	17.067	15 883	16.475	6.867	9.850	8.358	2.467	3.233	2.850
rianting waishy		16.617	16 723	16.657	7 444	7.478	7.461	2.472	3.250	2.861
Total average of planting density	density	110.01	10.733	10.02						

SZ) (Z	SN	SN	SN	SN	2.544
V Z	CAT	SZ	NS	SZ	SZ	3.102	NS
S. F.	SZ	SZ	v.	y Z	o y	o SZ	SN
L.S.D at 5 % level for:	Irrigation regime (A)	N level (B)	Disating density (C)	radium godinary (C)	AXB	AXC ByC	AXBXC

Table (11) Effect of Irrigation regime, N fertilizer level, planting density and their

		1
	interactions on elongation rate (mm/day) in 1995/1996 growing season.)
•	0	
	Ż	1
(Э,	
	$\overline{}$	
ı	ñ	
(رَّ	
(رح	
۰		
	ш	
•	Ξ	
•	>	ì
	g	
•	\circ	
,	(mm	
	6)	
	≚	
	2	
•	ation	
	ŏĭ)
	Ĕ	
,	2	
	Ø	
	G	
	Ø	
	.9	
	Ţ	
	3	
	H	
	7	
	Ξ.	

Irrioation regime	Nitropen	135-200 days	0 davs		200-265 days	5 days		265-3	265-330 dys	
Season and Irrigation	ke N/	Planting	density	Average	Planting	density	Average	Planting	density	Average
Interval	Fed	1.5 drill	2 drills	0	1.5 drill)	1.5 drill	2 drills	
1 Summer (10-day).	120	14.050	11.700	12.875	3.600	2.800	3.200	3.000	2.700	2.850
Moderates (15-day) and	180	12.200	13.900	13.050	3.200	3.700	3.450	3.600	3.000	3.300
Winter (20-day)	240	11.700	12.450	12.075	3.400	5.300	4.350	2.200	3.300	2.750
Average		12.650	12.683	12.667	3.400	3.993	3,667	2.933	3.000	2.967
2. Summer (7-dav),	120	14.100	12.050	13.075	2.400	3.150	2.775	2.800	2.900	2.850
Moderates(14-dav) and	180	12.450	13,150	12.800	3.600	4.000	3.800	1.000	4.450	2.725
Winter (21-day)	240	12.100	13.050	12.575	5.800	3.800	4.800	2.500	4.550	3.525
Average		12.883	12.750	12.817	3,993	3.650	3.792	2.100	3.967	3.033
3. Summer (14-day),	120	11.300	12.750	12.025	2.650	4.450	3.550	3.450	2.150	2.800
Moderates (21-day) and	180	11.700	13.850	12.775	3.550	3.900	3.725	5.000	2.700	3.850
Winter (28-day)	240	12.550	13,300	12.925	3.700	4.050	3.875	0.450	3.750	2.100
Average		11.850	13.300	12.575	3.300	4.133	3.717	2.967	2.867	2.917
Interaction of	120	13.150	12.167	12.658	2.883	3.467	3.175	3.083	2.583	2.833
Nitrogen X	180	12.117	13.633	12.875	3.450	3.867	3.658	3.200	3.383	3.292
Planting density	240	12,117	12.933	12.525	4.300	4.383	4.342	1.717	3.867	2.792
Total average of planting density	lensity	12.461	12.911	12.686	3.544	3.906	3.725	2.667	3.278	2.972
L.S.D at 5 % level for:										
Irrigation regime (A)			NS			SZ			SN	
N level (B)			SN			SZ			NS	
Planting density (C)			SN			SZ			SN	
AxB			SN			SN			NS	
AxC			SN			SN			1.170	
BxC			SN			SN			1.170	
AxBxC			NS			SN			2.027	

3.98% were recorded at the growth periods of 135-200, 200-265 and 265-330 days, respectively.

It could be concluded that the second irrigation regime insignificantly increased elongation rate in the second season throughout the growth periods due to the increase in the applied water. In the second irrigation regime, the increase in the applied water reached 19.68 and 23.98% over the first regime (traditional) in 1994/1995 and 1995/1996, respectively. Also, the increase of the second regime over the third one was 28.56 and 30.53%, respectively as indicated from Table (1).

The present results are mainly due to the effect of irrigation at shorter intervals on the growth of cane plants.

The results in Tables (10 and 11) showed that the increase in N level did not significantly affect elongation rate at all growth periods and in both seasons in spite of some differences observed in the trait due to the different N levels.

The highest elongation rate was obtained almost at the second N level (180 kg/fed). In general, no any specific trend for the effect of N level on this trait could be detected, probably due to the fertility of the soil. The present results agree with those obtained by **Abd El-Gawad** et al.(1992-a).

Concerning the effect of planting density on elongation rate, the results in Tables (10 and 11) showed that growing double drills insignificantly increased elongation rate at all growth stages and in both seasons as well compared with growing 1.5 drill.

In 1995/1995 season, growing double drills increased elongation rate over 1.5 drill by 1.31, 0.46 and 31.47%, respectively at the first, second and third growth stages. Also, in 1995/1996 season, double drills increased elongation rate over 1.5 drill by 3.61, 10.21 and 9.27% at the first, second and third growth period, respectively. However, all differences in elongation rate due to the different planting densities were below the level of significance.

The increases in elongation rate due to the increase in planting density is mainly due to the increase in plant height as a result of the increased competition for light at dense population.

Interaction Effects:

The results showed that irrigation regime x planting density significantly affected elongation rate at the third growth stages (265-330 days) in 1995/1996. The results showed that at this period, planting density had a significant effect on elongation rate under the second irrigation regime where double drills significantly surpassed 1.5 drill but under the first and third regimes, both densities were similar in their effect on elongation rate.

The results showed that the greatest elongation rate was 3.867 mm/day which was recorded with the second regime combined with double drills planting density or the third regime combined with 1.5 drill.

The results showed also that N level x planting density interaction significantly affected elongation rate at the second growth period (200-265 days) in 1994/1995 season and at the third growth period (265-330 days) in 1995/1996.

The results in Table (10) showed that double drills was more effective on elongation rate than 1.5 drill at 180 and 240 kg N/fed levels, whereas at 120 kg N/fed, growing 1.5 drill significantly surpassed double drills in affecting elongation rate. This effect was evident at the second stage in 1994/1995 season. Also, at the third growth stage in 1995/1996 season, double drills significantly surpassed 1.5 drill in affecting elongation rate at 240 kg N/fed, whereas no significant differences were detected at the lower N level.

The results in Tables (10 and 11) indicated also a significant effect of the second order interaction on elongation rate at the third growth periods and in both seasons of experimentation.

The results showed that the highest elongation rate at the third stage was 4.850 mm/days in 1994/1995 season which was recorded by the second irrigation regime combined with 120 kg N/fed and growing double drills. Also, in 1995/1996 season, the greatest elongation rate at the third stages was 5.000 mm/day which was recorded by the second regime combined with 180 kg N/fed and using 1.5 drill.

5. Total soluble solids percentage (TSS%):

The percentage of total soluble solids (TSS%) throughout the growing season is a good indication in respect to juice quality and cane maturity. In addition, it is also an approximate measurement to the expected sugar recovery.

Results presented in Tables (12 and 13) showed the effect of irrigation regime, N fertilizer level, planting density and their interactions on the percentage of total soluble solids in plant sugar cane at three distinct growth stages in 1994/1995 and 1995/1996 growing seasons.

The results showed some differences in the TSS% due to the different irrigation regimes in both seasons, particularly at the last stage of growth at 265 days from planting where the effect of water regime reached the level of significance. Prolonging the irrigation intervals in the third regime to 14, 21, 28 days in Summer, Moderates and Winter, respectively, significantly increased TSS% by 1.141 and 0.231 compared with the second regime (7-14-21 days) and the first regime (10-15-20 days), respectively in 1994/1995 season, corresponding to 0.574 and 0.312 in 1995/1996 season. Similarly, TSS% of the third irrigation regime was generally higher than in the first and third regimes at 135 and 200 days from planting, but the differences in TSS% were too slight to reach the level of significance.

It could be concluded that the TSS% was influenced by the irrigation intervals. It was reduced by reducing the intervals in the second irrigation regime due to the increase in the amount of applied water. On the other hand, prolonging the irrigation intervals increased TSS% due to the reduction in the irrigation water applied.

The results presented in Table (1) showed that the amount of irrigation water was 6620.8, 7923.9 and 6163.5 m³ for the first, second and third regime, respectively in 1994/1995 season, corresponding to 6982.2, 8657.2 and 6632.2 m³ in 1995/1996 season, respectively.

The effect of water regime was evident at the advanced stage of growth. Similar results were also reported by Said et al. (1991) who found

Table (12) Effect of irrigation regime, N fertilizer level, planting density and their interactions on total suloble solids percentage on in 1994/1995 growing season.

IIIICIACIIOIIS OII IOMI SMOOT	110	125 doug	Joseph		200 davs	davs		265 days	lays	
Irrigation regime	Nitrogen	CCI	cápr				- one-weise	Planting	density	Average
Season and Irrigation	kg Z/	Planting density	density	Average	Planting	ᄗ	ついて ながい	11:-1 2 .	2 44:116)
מייייין מיייין	ь Б	1 5 drill	2 drills		1.5 drill	2 drills		I.S arill	Z Wills	000
Interval	130	4 230	4 300	4.315	10.850	9.280	10.065	18.765	17.395	18.080
 Summer (10-day), 	071	0000	010.0	3.5.10	085 6	10.080	9.830	17.595	17.080	17.337
Moderates (15-day) and	180	5.8/0	0177	0000	0380	10.210	9.795	17.880	17.830	17.855
Winter (20-day)	240	4.100	3.500	5.800	7.200	0.057	0 807	18.080	17,435	17.758
Average		4.100	3.670	3.885	7.93/	7.00.	20,00	17.765	16915	17.340
Commence (7 days)	120	4.650	4.360	4.505	10.200	10.040	10.120	10.70	10.100	273 24
2. Suiting (7-day).	180	4 430	3 880	4.155	9.500	9.550	9.525	18.945	10.180	17.303
Moderates(14-day) and	100	001.4	3 190	3.830	9 9 10	9.650	9.780	14.765	16.515	15.640
Winter (21-day)	0+7	4.170	2:+20	20:5	010	0.717	9 808	17.158	16.537	16.848
Average		4.417	3.910	4.103	7.0.1	, , ,		376	10 265	19.013
	35.	2 010	U65 T	1.250	9.150	10.080	9.615	17.700	10.202	10.01
3. Summer (14-day),	071	01.2.5	200	007	10,620	089 6	10.150	17.715	18.430	18.073
Moderates (21-day) and	180	4.500	+. 500			0170	9 975	17915	17.850	17.883
Winter (28-day)	240	4.320	4.090	4.205	10.3+0	2.010		17 707	18 187	17.989
A condition		4.177	4.393	4.285	10.037	9.790	9.713	1/1/2/	1000	17011
A COLUMN	130	1 207	4417	4.357	10.067	9.800	9.933	18.097	C7C'/1	1/01/1
Interaction of	071	4.627	2 963	4 032	0000	9 770	9.835	18.085	17.230	17.658
Nitrogen X	180	4.200	3.003	4.034	2000	0.002	0 850	16.853	17.398	17.126
Planting density	240	4.197	3.693	3.945	7.07/	7.022	0.020	17.678	17.384	17.531
Total everage of planting density	density	4.231	3.991	4.111	9.948	9.798	2,0,7	1/.0/0		
I Utal average of pressure										

0.879 NS NS NS NS NS NS

Irrigation regime (A)
N level (B)
Planting density (C)

AxB AxC BxC AxBxC

L.S.D at 5 % level for:

Table (13) Effect of irrigation regime, N fertilizer level, planting density and their

	ootione o	in total c	Joble so	interceptions on total sulphie solids percentage in 1995/1996 growing season.	tage in 19	9661/566	growing	season.		
	Nitrogan	11 10tal 3tays	lavs		200 days	lays		265 days	lays	
Irrigation regime	ווווו מפריוו	Division	doneity	Average	Planting	density	Average	Planting density	density	Average
Season and Irrigation	Ž -	1 5 drill		9	1.5 drill	2 drills		1.5 drill	2 drills	
Interval	rea.	1111 C.1	1010	7115	14,000	12.580	13.300	17.325	16.675	17.000
1. Summer (10-day),	120	0.007	1.610	9 105	12,600	12.930	12.765	16.825	17.150	16.887
Moderates (15-day) and	081	8.530	000.7	7.355	12 500	12.800	12.650	17.000	16.675	16.838
Winter (20-day)	7+0	040/	7.612	7 732	13.400	12.770	12.905	17.050	16.833	16.942
Average	ا ا	7.950	0727	7570	12 900	12.900	12.900	16.440	17.290	16.865
2. Summer (7-day),	120	0//-	0/5/	7.765	12 950	12.800	12.875	16.950	16.600	16.775
Moderates(14-day) and	081	8.460	0.707	7 780	12 400	12.300	12.350	16.425	16.375	16.400
Winter (21-day)	240	7697	7.583	7.705	12.750	12.676	12.708	16.605	16.755	16.680
Average		1,20.1	0220	7.935	13.500	12.660	13.080	17.125	17.125	17.125
3. Summer (14-day),	071	0.130	0.700	0 \$10	12 700	13.580	13.140	17.450	17.950	17.700
Moderates (21-day) and	081	97.75	000.6	7.975	13 300	12.600	12.950	17.200	16.675	16.938
Winter (28-day)	240	0.010	0.140	721.9	13.167	12.947	13.057	17.258	17.250	17.254
Average		8.155	2073	1 1 1 1	13 473	12.713	13,093	16.963	17.030	16.997
Interaction of	120	7.527	/96/	1./4/	15.750	13 103	12 927	17.075	17.233	17.154
Nitrogen X	180	8.903	8.077	8.490	12.730	12 567	12,650	16.875	16.575	16.725
Planting density	240	7.500	7.773	7.637	12.733	12.30	00000	16.071	16.716	16.959
Total average of planting density	density	7.977	7.939	7.958	12.986	12.794	12.890	10.9/1	10./10	
L.S.D at 5 % level for:					2			0 104		
Irrigation regime (A)		Z			S S			Z		
N level (B)		SZ			S.					
density (NS			SZ ;			270		
AxB		SZ			Z :			27.0		
AxC		SN			S			5 Z		
BxC		NS			SS			S N		
AxBxC		NS			S			2		

AxC BxC AxBxC

that increasing irrigation intervals adversely affected the quality characters of sugar cane.

Concerning the effect of N fertilizer level on TSS%, the results in Tables 12 and 13 revealed that no significant effect was detected at the three growth stages in both seasons. However, very slight differences could be seen due to N level and in general, the the lowest TSS% was almost observed at the highest N level (240kg N/fed) compared with the medium (180 kg N/fed) or the lowest level (120 kg N/fed).

The present results are in general agreement with those reported by Abd El-Gawad et al. (1992-b) who found that the lower the N fertilizer level the higher the TSS%.

With regard to the effect of planting density on TSS%, the results presented in Tables (12 and 13) showed that no significant effect was observed on this trait at the three growth stages in both seasons of experimentation. However, growing 1.5 drill nevertheless produced higher TSS% compared with growing double drills. That was observed throughout the growth stages. Growing 1.5 drill increased insignificantly TSS% by 0.240, 0.150 and 0.294% at the first, second and third growth stages, respectively in 1994/1995 season, being 0.380, 0.195 and 0.225% in 1995/1996 season for the three respective growth stages. However, all these differences were below the level of significance.

The reduction of TSS% at the higher population density is logical due to the increase in the competition among growing plant for the soil nutrients.

The insignificant effect of planting density on TSS% was also reported by Ahmed (1995).

Interaction Effects:

The results in Tables (12 and 13) indicated that all the interactions between the experimental factors had no significant effect on TSS% at all growth stages in both seasons. This result indicated clearly that each experimental factor acted independently in affecting this trait.

II. Effect of Irrigation Regime, Nitrogen Fertilizer Level, Planting Density and Their Interactions on Cane Quality and Chemical Attributes of the Plant Crop Sugar Cane.

1. Brix percentage:

Results of the effects of irrigation, N fertilizer level, planting density and their interaction on brix percentage of sugar cane juice (plant crop) at harvest in 1994/1995 and 1995/1996 seasons are presented in Table (14).

The results indicated that irrigation regime did not significantly influence brix% in both seasons, where no any marked differences were observed among the three irrigation treatments. However, it was observed from the results that the third irrigation regime slightly increased brix% compared with the two other regimes, probably due to the reduced amount of applied water as a result of prolonging the irrigation intervals and the reduction of the applied water. The present results are in agreement with those reported by **Prasad** et al. (1991) who found that no significant differences were detected in brix% among the applied four IW:CPE ratios of 0.4, 0.6, 0.8 and 1.0.

Concerning the effect of N fertilizer level on brix%, the results in Table (13) showed insignificant response of this trait to N level was detected in both seasons. The results indicated that no any definite trend for the effect of N level was observed. This result agrees with that observed by Abd El-Gawad et al. (1992-b) who found that brix% was not significantly affected by N fertilizer level up to 240 kg/fed

Also, planting density did not significantly affect brix% in both seasons, in spite of the slight increase in this trait due to population density of 1.5 drill. The results showed that reducing the population density by growing 1.5 drill insignificantly increased brix% by 0.426 and 0.465% in 1994/1995 and 1995/1996 season, respectively compared with growing double drills. The present results are in agreement with those obtained by **Dominf and Plane** (1989) who found that planting density had no effect on juice quality of sugar cane.

Table (14) Effect of irrigation regime, N fertilizer level, planting density and their interactions on brix percentage of juice at harvest

in 195	in 1994/1995 and 1995/1996 growing seasons.	nd 1995/	1996 gro	wing sea	sons.		
Irrigation regime	Nitrogen	1994/199	1994/1995 season		1995/1996 season	6 season	
Concon and Irrigation	ko N/	Planting density	density	Average	Planting density	density	Average
Scason and integration	Fed	1.5 drill	2 drills)	1.5 drill	2 drills	ļ
Cummer (10, day)	130	21.125	20.740	20.933	23.030	22.600	22.815
Noderstee (15-day),	180	20.930	20.850	20.890	22.670	22.240	22.455
Winter (20-day) and	240	22.310	21.045	21.678	21.975	23.120	22.548
Average		21.455	20.878	21.167	22.558	22.653	22.606
Common (7 dox)	120	21.650	21.750	21.200	24.150	21.880	23.015
 Summer (/-day), Madagates(14 day) and 	180	21.330	18.925	20.128	22.370	22.335	22.353
Moderates (14-day) and	240	21.070	20.170	20.620	22.295	22.240	22.267
Willer (21-day)	212	21.017	20.282	20.649	22.938	22.152	22.545
Average	120	20.640	21.040	20.840	22.750	23.035	22.893
5. Summer (14-day),	180	22.285	21.805	22.045	23.425	21.690	22.557
Moderates (21-day) and	240	21 510	21.690	21.600	22.750	22.090	22.420
Willer (20-day)	212	21.478	21.512	21.495	22.975	22.272	22.623
Average Interaction of	120	20.805	21.177	20.991	23.310	22.505	22.908
Mittogen X	180	21.515	20.527	21.021	22.822	22.088	22.455
District Association	240	21.630	20.968	21.299	22.340	22.483	22.412
Tital ground of planting density	deneity	21.317	20.891	21.104	22.824	22.359	22.591
I otal average of pranting	i i i i i i i i i i i i i i i i i i i						

OF A	S	SN	SN	SN	SN	SN	SN	
	Z	SZ	S Z	SZ	SZ	NS	SN	
el for:	€	£ &) (
L.S.D at 5 % leve	Irrigation	N lovel	IN ICVCI Dienting density	r idililiig uciisity	γχ. V.V.) <u>(</u>	AxBxC	;

Interaction Effects:

The results presented in Table (14) indicated no significant effects for the interactions between the experimental factors on brix% at harvest in both seasons. The results indicate that each factor acted independently in affecting this trait.

2. Sucrose percentage:

Results of effects of irrigation regime, N fertilizer level, planting density and their interactions on sucrose percentage in suger cane juice of the plant crop sugar cane at harvest in 1994/1995 and 1995/1996 seasons are presented in Table (15).

The results indicated that prolonging irrigation intervals in the third regime to 14-21-28 days in Summer, Moderates and Winter, respectively slightly increased sucrose% of the cane juice at harvest in both seasons. The increase in sucrose % due to applying the third regime was more evident when compared with the second regime in which irrigation was scheduled at 7-14 and 21 days in Summer, Moderates and Winter, respectively. The third regime insignificantly increased sucrose % by 1.021 and 0.730% in 1994/1995 and 1995/1996 seasons, respectively compared with the second regime. These increases were, however, below the level of significance and are mainly due to the reduced amount of irrigation water applied in the third regime.

The trend of sucrose % is geneally similar as that of brix% due to the close relationships between both traits as reported by Lakshnikantham (1983) who stated that there is a highly positive correlation between juice brix and sucrose percentage.

The results obtained here are in general agreement with those reported by El-Gibali et al. (1967) and Patel and Joshi (1990) who found that sucrose% was not significantly affected by irrigation treatments.

Concerning the effect of N level on sucrose%, results in Table (14) indicated no significant effect in both seasons. However, a slight reduction in sucrose% was observed with the increase in N level from 120 to 240 kg/fed where a reduction in sucrose% of 0.764 and 0.232 was recorded in the first

interactions on sucrose percentage at harvest in 1994/1995 and 1995/1996 growing seasons. Table (15) Effect of irrigation regime, N fertilizer level, planting density and their

		20171001	20000		1995/190	1995/1996 season	
Irrigation regime	Nitrogen	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1994/1995 season		12/21	2	_
Coccos and Irrigation	ko N/	Planting	Planting density	Average	Planting density	density	Average
Jeason and migation	Hed.	1 5 drill	2 drills)	1.5 drill	2 drills	
ייים אייים אייים אייי	120	18 665	17 520	18.092	20.850	19.160	20.005
1. Summer (10-day),	22 5	17 885	17 730	17.807	19.640	19.340	19.490
Moderates (15-day) and	240	17 320	16.665	16.993	19.080	19.910	19.495
witter (20-day)	2	17.957	17.305	17.631	19.857	19.470	19.663
Select Comments	120	17 730	17.825	17.778	18.965	18.925	18.945
Anderstee (1-day),	180	18 455	16.065	17.260	19.495	19.730	19.613
Minter (21 day)	240	17 200	16.920	17.060	19.105	19.030	19.067
w III(51 (21-tay))		17 795	16.937	17.366	19.188	19.228	19.208
Average	120	18 510	18 510	18.510	19.860	20.015	19.937
3. Summer (14-day),	031	18 460	18 770	18.615	20.510	19.990	20.250
Moderates (21-day) and	240	18 115	17.955	17.035	19.755	19.500	19,628
Winter (20-day)	22.2	18 362	18.412	18.387	20.042	19.835	19.938
Average	120	18 302	17.952	18.127	19.892	19.367	19.629
Nitrogon V	081	18 267	17.522	17.894	19.882	19.687	19.784
Dioming dentity	07.0	17 545	17.180	17.363	19.313	19.480	19.397
Total average of planting density	lengity	18.038	17.551	17.794	19.696	19.511	19.603
10tal average of planting	Lemance	2					

 L.S.D at 5 % level for:
 NS
 NS
 NS

 Irrigation regime
 (A)
 NS
 NS

 N level
 (B)
 NS
 NS

 Planting density
 (C)
 NS
 NS

 AxB
 NS
 NS
 NS

 AxC
 NS
 NS
 NS

 BxC
 NS
 NS
 NS

 NS
 NS
 NS

 NS
 NS
 NS

 NS
 NS
 NS

and second season, respectively. These increases were too slight to reach the level of significance.

The present results are in general agreement with those reported by Ravindra et al. (1989) who stated that quality parameters of brix, sucrose, purity and recovery percentages were not affected by increasing N level up to 450 kg N/ha.

The results in Table (15) indicated also that planting density had no significant effect on sucrose% in both seasons. A very slight difference was observed in favour of growing 1.5 drill compared with double drills, but the difference was not that great to reach the level of significance.

Similar results were also obtained by Murayama et al. (1990), Singh et al. (1990) and Ahmed (1995) who found that sucrose% was not significantly affected by planting sugar cane at different population densities.

Interaction Effects:

The results in Table (15) showed that none of the interactions between the experimental factors significantly affected sucrose % of juice at harvest in both seasons of experimentation.

3. Purity percentage:

Results presented in Table (16) showed the effects of irrigation regime, N fertilizer level, planting desnity and their interactions on purity percentage of sugar cane juice (plant crop) at harvest in 1994/1995 and 1995/1996 growing seasons.

The results indicated that prolonging the irrigation intervals in the third regime increased purity % compared with irrigating at shorter intervals in the first and second regimes.

In 1994/1995 season, scheduling irrigation at 7,14 and 21 days in Summer, Moderates and Winter, respectively insignificantly increased purity% by 0.904 and 1.260% compared with the first (10-15-20 day intervals) and second (7-14-21 day intervals) regime, respectively. Also, in

Table (16) Effect of irrigation regime, N fertilizer level, planting density and their interactions on purity percentage at harvest in 1994/1995 and 1995/1996 growing seasons.

T: notion vocaime Nitrogen	Nitrogen	!	1994/1995 season		1995/199	1995/1996 season	
Irrigation regime	N 04	Planting	Planting density	Average	Planting	Planting density	Average
Season and Irrigation	201	1 5 drill	2 drills	0	1.5 drill	2 drills	
Interval	120	200 00	007 78	26.347	90.455	84.745	87.600
1. Summer (10-day),	001	00.23	85.010	85.200	86.595	86.935	86.765
Moderates (15-day) and	240	87 975	85.135	84.055	86.835	86.115	86.475
winter (20-day)	25	85.553	84.848	85.201	87.962	85.932	86.947
Average	120	85 780	81.900	83.840	84.455	83.990	84.222
2. Summer (/-day),	180	87.525	84.825	86.175	87.075	88.195	87.635
William (21 dox)	076	83.870	83.370	83.620	85.715	85.540	85.627
Willer (21-day)	2	85.725	83.365	84.545	85.748	82.908	85.828
Average	120	91.800	85.965	88.882	86.620	86.835	86.727
5. Summer (1+-ddy),	180	84 700	84 200	84.450	89.630	90.025	89.827
Moderates (21-day) and	240	84 585	83.580	84.082	86.830	88.260	87.545
Willer (20-day)	2	87.028	84.582	85.805	87.693	88.373	88.033
Average	120	88 625	84.088	86.357	87.177	85.190	86.183
Interaction of	180	85.872	84.678	85.275	87.767	88.385	88.076
Nitrogen A	97,0	83.810	84.028	83.919	86.460	86.638	86.549
Flaming density	loneity	86.102	84.265	85.184	87.134	86.738	86.936
1 otal average of planting uching	CHOIC						

			SN				
L.S.D at 5 % level for:	Imigation regime (A)	Miligation (Series (1.2)	N level	Figuring censity (C)	0.X	AXC	DAC ADC

1995/1996 season, the third regime significantly surpassed the first and second regime in purity% by 1.086 and 2.205%, respectively.

It is worth mentioning that the first regime significantly surpassed the second regime in purity % in 1995/1996 season.

It could be concluded that prolonging the irrigation intervals positively affected purity% due to the reduction of the applied water as shown in Table (1).

The present results are generally in agreement with the results reported by El-Gebali et al. (1978).

Concerning the effect of N fertilizer level on purity%, the results in Table (16) indicated a significant effect of N level on purity% in the second season where the medium N level (180 kg N/fed) recorded the highest purity% which significantly surpassed that recorded at the lowest and the highest level as well. Applying N at 120, 180, and 240 kg/fed recorded purity% of 86.183, 88.076 and 86.549%, respectively in 1995/1996 season.

In 1994/1995 season, a different trend was observed where the increase in N level insignificantly reduced purity%. The results in the first season are in full agreement with the results reported by **Patil and Khot (1986)** who found that the lowest N level resulted in producing the highest purity%.

The results in Table (16) indicated also that planting density had no significant effect on purity % of juice at harvest in both seasons. However, growing 1.5 drill insignificantly increased purity% in both seasons compared with growing double drills.

The present results are in general agreement with the results reported by **Dominf and Plana (1989)** who found the planting density had no significant effect on cane quality.

Interaction Effects:

The results in Table (16) showed that all effects of the interaction between the studied factors on juice purity% were not significant in both seasons.

In general, the highest purity % in 1994/1995 season was 91.80% which was recorded with applying the third irrigation regime supplied with 120 kg N/fed and planted with 1.5 drill.

In 1995/1996 season, applying the first regime combined with 120 kg N/fed and growing 1.5 drill recorded the maximum purity %, being 90.455.

4. Reducing Sugar percentage: (RS%)

Results presented in Table (17) showed the effects of irrigation regime, N fertilizer level, planting density and their interactions on reducing sugar% in the plant crop sugar cane in 1994/1995 and 1995/1996 seasons.

The results indicated no significant effect could be detected for irrigation regime on RS% in both seasons. However, a very slight reduction in RS% was found in the thrid regime where the amount of irrigation water was reduced due to prolonging irrigation intervals (14-21-28 days in Summer, Moderates and Winter, respectively).

It could be concluded that sugar cane grown under the lowest irrigation water applied (6163.5 and 6632.2 m3 in 1994/1995 and 1995/1996, respectively) contained the lowest RS% compared with the first regime (6620.8 and 6982.2 m3 in 1994/1995 and 1995/1996, respectively) as well as the second regime (7923.9 and 8657.2 m3 in 1994/1995 and 1995/1996, respectively).

It is worth mentioning that the third regime recorded also the highest sucrose and purity percentages in both seasons compared with the other regimes. The results indicate clearly the opposite relationship between each of sucrose and purity percentages on one hand and RS% on the other hand where the lower the RS% the higher the sucrose and purity percentages and vice versa.

Table (17) Effect of irrigation regime, N fertilizer level planting density, and their interactions on reducing sugar percentage at harvest in 1994/1995 and 1995/1996 growing seasons.

	Nitaggon	1994/1995 season	5 season		1995/199	1995/1996 season	
Irrigation regime	MILIORCII	1		4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Dlanting density	density	AVELAGE
Season and Irrigation	Kg X	Planting density	density	Average	Lianting	UCIIOTE	9
le: Form	Щ.	1.5 drill	2 drills		1.5 drill	2 drills	
interval	120	0.450	0 200	0.325	0.410	0.400	0.405
1. Summer (10-day),	081	0.310	0.575	0.443	0.455	0.440	0.447
Moderates (15-day) and	240	0.390	0.455	0.422	0.445	0.415	0.430
Willer (20-day)	25.	0.383	0.410	0.397	0.437	0.418	0.427
Average	120	0.215	0.370	0.293	0.475	0.365	0.420
2. Summer (7-day),	071	0.340	0 430	0.385	0.420	0.420	0.420
Moderates(14-day) and	210	0.70	0.555	0.502	0.465	0.450	0.457
Winter (21-day)	7+0	0 334	0.452	0.393	0.453	0.412	0.432
Average	00.1	0.255	0.325	078 0	0.400	0.431	0.415
3. Summer (14-day),	120	0.555	0.325	0.375	0.425	0.495	0.460
Moderates (21-day) and	340	0.405	0.365	0 385	0.370	0.430	0.400
Winter (28-day)	7+7	0.305	0 338	0.367	0.398	0.452	0.425
Average	00:	0.370	2000	0 310	0.428	0.399	0.413
Interaction of	071	0.340	0.343	0.401	0.433	0.452	0.442
Nitrogen A	180	0415	0.458	0.437	0.427	0.432	0.429
Planting density	75-014-	0.371	0 400	0.386	0.429	0.427	0.428
Total average of planting density	density	1.0.0	V.4VV	~~~~			

2	2. Z.	SN	SN	SN	SN	SN	SN
	SZ	0.092	SZ	S Z	SZ	SN	NS
	(A)	(x;)	() ()	2			
L.S.D at 5 % level for:	Imigation regime	IIIIgation regime	IN IEVEI Diesting density	Figuring censity	AXD	AXC B×C	AxBxC

The results in Table (17) indicated also that the increase in N level increased RS% in both seasons with significant differences in 1994/1995 season. Applying N at 120, 180, and 240 kg/fed recorded RS% of 0.319, 0.401 and 0.437% respectively in 1994/1995, corresponding to 0.413, 0.442 and 0.429% in 1995/1996 season.

This result is in general agreement with that reported by Abd El-Gawad et al. (1992-b).

Concerning the effect of planting density on RS% the results in Table (17) showed that planting density had no significant effect on RS% in both seasons.

Interaction Effects:

The results in Table (17) indicated no significant interaction effects between the experimental factors on RS% in both seasons, indicating that each experimental factor acted independently in affecting this trait.

5. Sugar recovery percentage (SR%):

Results presented in Table (18) indicate the effects of irrigation regime, N level, planting density and their interactions on sugar recovery percentage (SR%) in 1994/1995 and 1995/1996 growing seasons of the plant cane.

The results revealed no significant influence for irrigation regime on SR% was recorded in both seasons. However, a general trend was observed where the third regime, with the lowest amount of water applied and the prolonged irrigation intervals (14-21-28 days), recorded the highest SR% in both seasons compared with first (10-15-20 days) and the second (7-14-21 days) regimes.

Concerning the effect of N level, results in Table (18) showed that increasing the level of N from 120 to 180 and 240 kg/fed significantly reduced SR% in the first season. The SR% of the three N levels 120, 180, and 240 kg/fed were 11.579, 11.421 and 10.903%, respectively in 1994/1995 season.

Table (18) Effect of irrigation regime, N fertilizer level planting density, and their interactions on sugar recovery percentage at harvest in 1994/1995 and 1995/1996 growing seasons.

Irrigation regime	Nitrogen	1994/199	1994/1995 season		1995/199	1995/1996 season	
Coscon and Irrigation	ko N/	Planting	Planting density	Average	Planting density	density	Average
Totacol and inspector	Fed	1.5 drill	2 drills)	1.5 drill	2 drills	
1 Summer (10-day)	120	12.000	11.293	11.647	14.225	12.245	13.235
Moderates (15-day) and	180	11.400	11.510	11.455	12.835	12.710	12.773
Winter (20-day)	240	10.877	11.137	11.007	12.535	12.915	12.725
Average		11.426	11.313	11.369	13.198	12.623	12.911
2 Summer (7-dav).	120	11.353	10.893	11.123	11.995	12.385	12.040
Moderates(14-day) and	180	12.013	10.190	11.102	12.515	13.140	12.827
Winter (21-day)	240	11.232	10.610	10.917	12.365	12.295	12.330
Average		11.530	10.564	11.047	12.192	12.607	12.399
3 Summer (11-day)	120	12.080	11.853	11.967	12.865	12.765	12.815
Moderates (21-day) and	180	11.660	11.750	11.705	13.535	13.235	13.385
Winter (28-day)	240	11.250	10.963	11.107	12.930	13.005	12.967
Average		11.663	11.522	11.593	13.110	13.002	13.056
Interaction of	120	11.811	11.347	11.579	12.928	12.465	12.697
Nitrogen X	081	11.691	11.150	11.421	12.962	13.028	12.995
Planting density	240	11.117	10.903	11.010	12.610	12.738	12.674
Total average of planting density	lensity	11.540	11.133	11.336	12.833	12.744	12.789

	2 Z	SN	SN	SN	SN	SN	SN
1	SZ	0.327	NS	SN	SN	SN	SN
::	(*)	(<u>B</u>					
L.S.D at 5 % level it	Irrigation regime	N level	Planting density	AxR	AxC	BxC	AxBxc

In 1995/1996 season, no clear trend was observed and the highest SR% was recorded with the middle N level (180 kg/fed), being 12.995% compared with 12.697 and 12.674% for the lowest (120 kg/fed) and the highest (240 kg/fed) levels, respectively.

The negative effect of the higher N level on SR% is due to the reduction in sucrose% and purity % which were observed at higher N level.

The present results are in general agreement with those reported by Mohamed (1989) and Abd El-Gawad et al. (1992-b) who found negative relationships in respect to the effect of N on sucrose, purity and sugar recovery percentages.

The results in Table (18) revealed that population density of 1.5 drill slightly and insignificantly increased SR% compared with double drills. The differences in SR% due to planting density were not significant in both seasons.

It could be concluded that reducing the population desnity slightly affected SR% due to increasing sucrose%, purity% and decreasing reducing sugar % which were observed by growing 1.5 drill.

Interaction Effects:

The results showed no significant effect of the interactions between all experimental factors on SR% in both seasons.

6. Nitrogen percentage in stalk at harvest:

Table (19) presents the effects of irrigation regime, N fertilizer level, planting density and their interactions on N% in cane stalk at harvest in 1994/1995 and 1995/1996 seasons.

The results revealed that irrigation regime insignificantly affected N% of cane stalk in both seasons. However, it is clear from the Table (19) that irrigation at shorter intervals in the second regime increased N% in stalk

Table (19) Effect of irrigation regime, N fertilizer level, planting density and their interactions on nitrogen percentage in cane stalk at harvest in 1994/1995 and 1995/1996 growing seasons.

Luisotion regime	Nitrogen	1994/199	1994/1995 season		1995/199	1995/1996 season	
II Indianon i chimo	1.2 N	Dianting density	doneite	Average	Planting density	density	Average
Season and Irrigation	Ž .	r (4.11)	2 45.115		1 5 drill	2 drills	
Interval	red.	1.3 ariii	SIIIID 7		1.2 (111		90,0
1 Summer (10-day)	120	0.542	0.450	0.438	0.400	0.400	0.400
Madameter (15 day) and	180	0.525	0.425	0.475	0.485	0.385	0.435
Winter (20-day) and	240	0.550	0.600	0.575	0.520	0.570	0.545
Willer (20-day)		0.500	0.492	0.496	0.468	0.452	0.460
Common (7 day)	120	0.475	0.475	0.475	0.425	0.425	0.425
2. Summer (/ Jusy),) (%)	0.475	0.575	0.525	0.435	0.535	0.485
Minter (31 day)	240	0.625	0.675	0.650	0.595	0.645	0.620
Winter (21-day)	2	0.525	0.575	0.550	0.485	0.535	0.510
Average	001	0.375	0.175	0.125	0.350	0.425	0.388
3. Summer (14-day),	160	277.0	005.0	0.487	0.435	0.460	0.447
Moderates (21-day) and	100	0.475	0.750	0.462	0.445	0.425	0.435
Winter (28-day)	7-7	C44.0	0.475	0.458	0.410	0.437	0.423
Average	130	0.442	2910	977	0.392	0.417	0.404
Interaction of	180	0.492	0.500	967 0	0.452	0.460	0.456
Nirogen A	240	0.550	0.575	0.562	0.520	0.547	0.533
Total and of planting density	density	0.489	0.514	0.501	0.454	0.474	0.464
OLG SVELSEC OF DISTRIBLE	TOTOT	12.00					

014	NZ.	0.055	SN	SN	SN	SN	SN	
i !	SZ	0.065	SZ	SZ	S Z	SZ	SN	
L.S.D at 5 % level for:	irrigation regime (A)	N leviel (B)	Dlasting deneity (C)	Flaining winsity (C)	AXD.	AXC	BXC AxBxC	

compared with irrigation at longer intervals in the first and third regimes. But the differences in N% were too slight to reach the level of significance.

The results here coincided with those reported by **Sharma and Gupta** (1991) who found that N uptake at harvest increased with increasing irrigation rates from 0.75 to 1.5 IW:CPE.

Concerning the effect of N fertilizer level on N% in stalk, the results in Table (19) indicated that the increase in N level from 120 to 240 or from 180 to 240 kg/fed significantly increased N% in stalk in both seasons.

The results of the present study are in general agreement with those obtained by Abd El-Gawad et al. (1992-b).

Planting density did not significantly influence N% in stalk in both seasons.

It could be concluded that N content in cane stalk is adversely corrlated with the quality characters such as sucrose and purity percentages where the higher the N content of cane stalk the lower the sucrose and purity percentages.

Interaction Effects:

The results in Table (19) showed that none of the interactions between the experimental factors had a significant effect on N% in stalk in both seasons indicating that each factor acted independently in affecting the trait.

In general, the highest N% in stalk was 0.625 and 0.595% in 1994/1995 and 1995/1996, respectively, which was recorded by applying the second irrigation regime combined with 240 kg N/fed and using 1.5 drill plant density in both seasons.

On the other hand, applying the third irrigation regime combined with 120 kg N/fed and planting 1.5 drill produced the lowest N% in stalk being 0.375 and 0.350 in the first and second seasons, respectively.

7. Fiber percentage of cane stalk:

The effects of irrigation regime, N fertilizer level, planting density and their interactions on fiber% in cane stalk in 1994/1995 and 1995/1996 growing seasons are presented in Table (20).

The results showed that scheduling irrigation at shorter intervals (7-11-21 days) of the second regime increased fiber% compared with irrigation at longer intervals (14-21-28 days) in the third regime in both seasons. The effect of irrigation regime reached the level of significance in 1995/1996 season. In that season, the third irrigation regime significantly reduced fiber% compared with the second and the first regimes.

It could be concluded that reducing the amount of irrigation water favourably affected juice quality parameters due to the reduction in fiber%. Therefore fiber% is negatively corrlated with sucrose and purity percentages.

The results in Tbale (20) indicated that the increase in N level from 120 to 180 and 240 kg/fed significantly increased fiber% in both seasons. All differences in fiber% were significant due to increasing N level.

The present results are in agreement with those reported by Abd El-Gawad et al. (1992-b).

Concerning the effect of planting density on fiber%, the results in Table (20) showed that increasing plant population density by using double drills significantly increased fiber% compared with growing 1.5 drill in both seasons. Growing sugarcane using double drills of cane cuttings significantly increased fiber% by 0.389 and 0.412% in the first and second season, resepectively.

Interaction Effects:

The results in Table (20) showed that the interactions between N level and planting density significantly affected fiber% in 1995/1996 season. In that season, double drills significantly increased fiber% at 180 and 240 kg N/fed levels compared with 1.5 drills, whereas at 120 kg N/fed, both planting densities did not significantly differ in fiber % of cane stalk at harvest.

Table (20) Effect of irrigation, N fertilizer level, planting density and their interactions on fiber percentage in cane stalk at harvest in 1994/1995 and 1995/1996 growing seasons.

	Nitrogen	1994/1995 season	5 season		1995/1996 season	6 season	
Irrigation regime	/1	Diameting density	doneite	Average	Planting density	density	Average
Season and Irrigation	Ž -	1 S drill	2 drills		1.5 drill	2 drills	
Interval	red.	1.3 min	2 250	37.0.51	11,600	12 150	11.875
1. Summer (10-day).	120	11.800	12.330	12.073		12.200	12 125
Moderates (15-day) and	180	12.350	12.700	12.525	11.950	12.300	14.145
IVICATIONS (12) and	240	12 750	13.200	12.975	12.350	12.800	12.575
winter (20-day)		12 300	12.750	12.525	11.967	12.417	12.192
Average	001	12 400	12 150	12.275	12.150	12.050	12.100
2. Summer (/-day),	001	12.750	12.950	12.850	12.350	12.550	12.450
Moderates(14-day) and	190	12.350	13 150	12.750	11.950	12.750	12.350
Winter (21-day)	0+7	14.330	021.01	13 635	12 150	12.450	12.300
Average		12.500	12.730	14.043	201.1	0.75	307.11
2 Summer (14-day)	120	11.950	11.750	11.850	11.700	05/11	270.11
5. Summer (14-day),	180	11,800	12 700	12.250	11.400	12.300	11.850
Moderates (21-day) and	000	12 450	13.150	12.800	12.050	12.750	12.400
Winter (28-day)	7	12.067	12 533	12.300	11.717	12.200	11.958
Average	130	12.050	12.083	12.067	11.817	11.917	11.867
Interaction of	180	12,000	12 783	12.542	11.900	12.383	12.142
Nitrogen X	190	12.300	13 167	12.842	12.117	12.767	12.442
Planting density	Λ±7	13.300	13.670	12 483	11,944	12.356	12.150
Total average of planting density	density	17.789	12.0/0	17:400			

0.246	044.0	0.226	187	0.104	S.Z.) { -)	SZ,	0.310	0.01	SIZ		
	2 Z	9700	0.200	0.219	NIC		SZ) () 	2Z		ΛZ.	
L.S.D at 5 % level for:	recognition regime (A)	IIIIganoii iogiiiio	N level (B)	Dianting density (C)	Idining denoity	AxB	<u></u>	AXC	Ber	DAC	AxBxC	

III. Effect of Irrigation Regime, Nitrogen Fertilizer Level, Planting Density and Their Interactions on Yield and Yield Components of the Plant Crop Sugar Cane:

1. Number of millable cane:

Millable canes are the stalks which succeeded to reach the maturity stage where they can be delivered to the factories for sugar extraction.

Results of the effects of irrigation regime, N fertilizer level, planting density and their interactions on number of millable cane at harvest in 1994/1995 and 1995/1996 growing seasons are presented in Table (21).

The results showed that the shorter irrigation intervals of the second regime (7-14-21 days during Summer, Moderates and Winter, respectively) insignificantly increased number of millable cane/fed compared with the first (10-15-20 days) and the third (14-21-28 days) regimes in both seasons.

The results in Table (21) indicate that an increase in millable cane of 7.90 and 12.55% was recorded in 1994/1995 season due to applying the second regime compared with the first and third regime, respectively. The corresponding increases due to applying the second regime in 1995/1996 season were 8.27 and 15.07% over the two other regimes. These considerable increases were, however, below the level of significance.

The increase in millable cane is mainly due to the increase in the applied water in the second regime by 19.68 and 23.98% over the first regime in 1994/1995 and 1995/1996, respectively, and over the third regime by 28.56 and 30.53 % in the two successive seasons.

The irrigation at shorter intervals led to an increase in number of cane plants/m at different growth stages due to the increase in tillering in cane plants.

The present results are in line with those obtained by El-Gibali et al. (1978) and Subramanian et al. (1991).

Table (21) Effect of irrigation regime, N fertilizer level, planting density and their interactions on number of millable cane (1000 stalks/fed.) at harvest in 1994/1995 and 1995/1996 growing seasons.

Irrigation regime	Nitrogen	1994/199	1994/1995 season		561/5661	1995/1996 season	
Season and Irrigation	kg N/	Planting	Planting density	Average	Planting density	density	Average
Interval	Fed.	1.5 drill	2 drills		1.5 drill	2 drills	
 Summer (10-day), 	120	58.000	58.400	58.200	026.89	59.280	64.125
Moderates (15-day) and	180	63.333	54.267	58.800	66.120	65.550	65.835
Winter (20-day)	240	52.533	299.89	009'09	001.89	57.570	62.985
Average		57.956	60,444	29.200	028'29	008'09	64.315
 Summer (7-day), 	120	66.933	29.062	63.000	55.290	72.390	63.840
Moderates(14-day) and	180	65.067	67.733	00 †'9 9	060'84	71.250	74.670
Winter (21-day)	240	58.933	62.533	60.733	59.850	016.08	70.395
Average		63.644	63.111	63.378	64.410	74.860	69.635
3. Summer (14-day),	120	55.333	52.800	24.067	49.020	51.300	50.100
Moderates (21-day) and	180	50.800	000'99	58.400	05.69	069'99	68.115
Winter (28-day)	240	54.267	58.667	56.467	57.570	026.89	63.270
Average		53.467	59.156	56.311	58.710	62.320	60.515
Interaction of	120	60.089	56.756	58.422	57.760	066.09	59.375
Nitrogen X	180	59.733	62.667	61.200	71.250	67.830	69.540
Planting density	240	55.244	63.289	59.267	61.940	091.69	65.550
Total average of planting density	ensity	58.356	60.904	59.630	63.650	65.993	64.822

	SN	8.417	SN	NS	NS	NS	SN	
	SZ	NS	SN	SN	SN	SZ	NS	
L.S.D at 5 % level for:	irrigation regime (A)	N level (B)	Planting density (C)	AxB	AxC	BxC	AxBxC	

Concerning the effect of N fertilizer level, results in Table (21) showed that the increase in N level from 120 to 180 kg significantly increased number of millable cane by 17.12 % in 1995/1996 season corresponding to an insignificant increase of 4.76% in 1994/1995 season.

Increasing N level from 180 to 240 kg/fed insignifiaently decreased number of millable cane/fed by 3.16 and 5.73% in the first and second season, respectively.

It could be concluded that the 180 kg/fed N level was quite satisfactory to produce the maximum number of millable cane plants in both seasons. The results are in agreement with those reported by **Ahmed (1995)**.

The results indicated also insignificant increase in number of millable cane due to planting double drills by 4.37 and 3.86% over planting 1.5 drill in 1994/1995 and 1995/1996 growing season, respectively. The results here are mainly due to the increase in number of cane plants/m at the different growth stages. Similar results were also reported by **Ahmed (1995)**.

Interaction Effects:

The results in Table (21) indicate no significant interactions between the experimental factors on number of millable cane /fed in both seasons.

In general, the highest number of millable cane/fed in 1994/1995 was 68667 plants which was recorded by the first regime supplied with 240 kg N /fed and grown by double drills.

In 1995/1996 season, the combination of the second irrigation regime + 240 kg N/fed + planting double drills produced the maximum number of millable cane/fed, being 80940 plants/fed

2. Cane yield:

Cane yield is considered the final expression for the interaction between the genetical make up (variety) and the external factors in terms of micro climatic and agronomical processes (environment). Therefore, any improvement in the agronomical practices will directly be reflected on cane yield which represents the corner stone in sugar production.

Results presented in Table (22) showed the effects of irrigation regime, N fertilizer level, planting density and their interactions on plant cane yield (ton/fed) in 1994/1995 and 1995/1996 seasons.

The results in Table (22) indicated that scheduling irrigation at shorter intervals of the second regime (7-14-21 days in Summer, Moderates and Winter) increased cane yield compared with the traditional irrigation regime of the first treatment (10-15-20 days) and the third regime in which irrigation intervals were prolonged to reach 14-21 and 28 days (in Summer, Moderates and Winter, respectively).

The second regime insignificanly increased cane yield by 5.54 and 4.45% over the yield of the first regime in 1994/1995 and 1995/1996 season, respectively. The superiority of the second regime was more evident on the third regime where yield increases of 8.64 and 6.27% were recorded in the two successive seasons. The increase in cane yield of the second regime is mainly due to the increase in the amount of irrigation water applied in that regime which was 19.68 and 23.98% higher compared with the first regime in 1994/1995 and 1995/1996 season, respectively. Also, the applied water in the second regime was 28.56 and 30.53% higher than that in the third regime in the two successive seasons.

Presented results are quite expected since the second regime markedly increased growth characters and yield components such as number of cane plants/m (at 120 and 150 days), stalk height (at 135, 200 and 330 days), stalk diameter (at 135, 200 and 330 days), fiber%, and number of millable cane/fed

It could be cocluded that irrigation at shorter intervals increased cane yield. The present results are in general agreement with those outlined by El-Gibali et al. (1978) who showed that the frequent irrigation by shorter intervals resulted in higher cane yield.

Concerning the effect of N level, the results in Table (22) indicated no significant effect on cane yield in both seasons. However, a marked increase in cane yield was observed when the N level was raised from 120 to 180

Table (22) Effect of irrigation regime, Nfertilizer level, planting density and their interactions on cane yield (tons/fed.) at harvest in 1994/1995 and 1995/1996 growing seasons.

	71.5	1004/1005 coscon	ž concon		1995/1996 season	6 season	
irrigation regime	Nitrogen	1774/177	Scason		7	7	Anomore
Season and Irrigation	kg N	Planting	density	Average	Planting density	density	Avei age
Interval	Fed	1.5 drill	2 drills		1.5 drill	2 drills	
1 Cummer (10-day)	120	00.400	76.933	199.89	64.250	71.675	67.962
Moderates (15-day),	081	71.110	74.000	72.550	76.975	76.750	76.863
Winter (20-day)	240	67.000	66.967	66.983	72.350	64.650	68.500
Angrey		66.167	72.633	69,400	71.192	71.025	71.108
Check (7-dov)	120	73.200	73.167	73,183	67.375	75.500	71.438
Anderstee (14-day),	180	78.300	68.400	73.350	74.250	77.000	75.625
Winter (31 day)	240	65.500	80,900	73.200	75.075	76.450	75.763
Willer (21-day)		72.333	74.156	73.244	72.233	76.317	74.275
7 Common (1/ down	120	61.000	66.000	63.500	65.375	73.675	69.525
3. Sulfiller (14-day), Moderates (71-day) and	180	64.600	76.600	70.600	74.050	73.175	73.612
Winter (28-day)	240	74.000	62.300	68.158	64.075	69.025	66.550
Willer (20-day)		66.533	68.300	67.417	67.833	71,958	69.896
Interaction of	120	64.867	72.033	68.450	65.667	73.617	69.642
Nitrogen X	180	71.333	73.000	72.167	75.092	75.642	75.367
Planting density	240	68.833	70.056	69.444	70.500	70.042	70.271
Total average of planting density	density	68.344	71.696	70.020	70.419	73.100	71.760
Total average of practices							

1	SZ	S.Z.) i i	S.	SN	<i>y</i> Z	CI A	2	012	
	SZ	SN		SZ	SZ	NC	27	SZ	14 000	14.909
L.S.D at 3 % level lor:	irrigation regime (A)		N level (B)	Planting density (C)	A.B.	CAN.	AxC	RvC		AxBxC

kg/fed where an increase of 5.43 and 8.22% was recorded in the first and second season, respectively. It is worth mentioning that increasing N level from 180 to 240 kg/fed insignificantly reduced cane yield by 3.92 and 7.25% in the first and second season, respectively, indicating a negative effect of the highest N level on cane yield.

It could be concluded that 180 kg N/fed was quite satisfactory to produce the highest cane yielld/fed under the conditions of the experiment.

The results are expected since 180 kg N/fed positively affected number of cane plants/m, stalk height, stalk diameter, elongation rate which were recorded at different growth stages. Also, the 180 kg N/fed level significantly increased number of millable cane/fed

Similar results were also obtained by El-Geddawi et al. (1988), Rahman (1989), Rahman et al. (1989), Rao et al. (1989) and Yadav and Prasad (1992).

In regard to planting density, the results in Table (22) showed a considerable (but insignificant) increase in cane yield/fed due to growing sugar cane by double drills compared with 1.5 drill.

Planting double drills insignificantly increased cane yield by 4.90 and 3.81% compared with 1.5 drill in the first and second season, respectively. This increase in cane yield is mainly due to the increase in number of cane plants/m at different growth stages as well as the increase in number of millable cane/fed obtained by using double drills.

The present results are in line with those obtained by Yadav (1993) and Ahmed (1995).

Interaction Effects:

The results in Table (22) showed that all effects of the interactions between the studied factors on cane yield were not significant except the second order interaction in 1994/1995 season.

The results revealed that the maximum cane yield in 1994/1995 season was 80.900 ton/fed which was produced by applying the second irrigation regime combined with 240 kg N/fed and double drills plant density. Also, in 1995/1996 season, the combination of second irrigation regime + 180 kg N/fed + Double drills produced the highest cane yield, being 77.000 ton/fed

3. Sugar yield:

Sugar is the final product of all biological and agronomical processes and interactions occured in sugar cane plant tissues.

The results of the effects of irrigation regime, N fertilizer level, planting density and their interactions on plant sugar cane in 1994/1995 and 1995/1996 seasons are presented in Table (23).

The results showed no significant effect for irrigation regime on sugar yield in both seasons. However, the second irrigation regime produced higher sugar yield which was 2.81 and 1.91% higher than that of the first and third irrigation regime, respectively, in the first season, corresponding to 0.15 and 7.87% in the second one.

The insignificant effect of the applied irrigation regimes may be due to non-significant effect of irrigation regime on cane yield, sugar recovery%, reducing sugar%, and sucrose%. It is well known that sugar recovery % and cane yield are the two wings of sugar production.

The present results are in line with those reported by **Baram** et al.(1974) who found no significant differences in recoverable sugar yields/ha as a result of applying three irrigation frequencies of 7, 14, 21 days.

Concerning the effect of N level, results in Table (23) indicated that the highest sugar yield was obtained by using 180 kg N/fed in both seasons. The 180 kg N/fed level increased sugar yield over the lower level (120 kg/fed) by 4.39 and 10.45% in the first and second season, respectively. Also, the 180 kg N/fed level increased sugar yield over the highest level (240 kg/fed) by 6.07 and 19.14% in 1994/1995 and 1995/1996 season, respectively. The differences in sugar yield in the second season were quite clear to reach the level of significance.

Table (23) Effect of irrigation regime, N fertilizer level, planting density and their interactions on sugar yield (tons/fed.) at harvest in 1994/1995 and 1995/1996 growing seasons.

	1	,)
irrigation regime	Nitrogen	1994/195	1994/1995 season		561/5661	1995/1996 season	
Season and Irrigation	kg N/	Planting	Planting density	Average	Planting density	density	Average
Interval	Fed.	1.5 drill	2 drills		II:2 drill	2 drills	
 Summer (10-day). 	120	7.240	8.696	7.698	9.090	8.794	8.942
Moderates (15-day) and	081	8.064	8.518	8.291	676'6	9.528	9.728
Winter (20-day)	240	7.273	7.447	7.360	120.6	8.306	8.689
Average		7.526	8.220	7.873	9.364	928.8	9.120
2. Summer (7-day),	120	8.331	7.958	8.145	8.435	9.420	8.928
Moderates(14-day) and	081	9.411	6.927	8.169	10.009	989.6	9.847
Winter (21-day)	2+0	7.359	8.578	7.968	8.296	8.959	8.927
Average		8.367	7.821	8.094	8.913	9.355	9.134
3. Summer (14-day),	120	7.367	7.785	7.576	068.7	9.320	8.605
Moderates (21-day) and	180	7.540	8.998	8.269	6886	9.993	999.6
Winter (28-day)	240	8.331	7.638	7.984	4.789	9.467	7.128
Average		7.746	8.141	7.943	7.339	6.594	8.467
Interaction of	120	7.646	8.146	7.896	8.472	9.178	8.825
Nitrogen X	180	8.338	8.148	8.243	9.759	9.736	9.747
Planting density	240	7.654	7.888	7.71	7.385	8.911	8.148
Total average of planting density	ensity	7.880	8.061	7.970	8.539	9.275	8.907

	NS	1.153	SN	NS	1.631	SN	NS
	NS	NS	NS	SN	SZ	SZ	1.773
L.S.D at 5 % level for:	irrigation regime (A)	N level (B)	Planting density (C)	AxB	AxC	BxC	AxBxC

The negative effect of the highest N level on sugar yield is due to its negative effect on sugar recovery% as well as cane yield.

It could be concluded that the application of 180 kg N/fed is quite satisfactory to produced the highest sugar yield under the conditions of the experiment.

The present results are quite expected since the 180 kg N/fed level/fed produced the highest cane yield and recorded the best recovery%. The present results are in agreement with the results reported by El-Geddawi et al.(1988).

Concerning the effect of planting density on sugar yield, the results in Table (23) revealed insignificant increases of 2.30 and 8.62 % due to growing double drills as against 1.5 drill in 1994/1995 and 1995/1996 seasons, respectively. The results here are mainly due to the insignificant increase in cane yield due to planting double drills. Similar results were also reported by Murayama (1991) and Ahmed (1995).

Interaction Effects:

The results in Table (23) indicated a significant interaction effect between irrigation regime and planting density on sugar yield in 1995/1996 season.

The results revealed that double drills significantly outyielded 1.5 drill under the second irrigation regime (7-14-21 days), whereas under the first regime (10-15-20 days), 1.5 drill insignificantly increased sugar yield over double drills. Under the third irrigation regime, double drills insignificantly increased sugar yield.

Also, the second order interaction significantly influenced sugar yield in 1994/1995 season. In that season, the maximum sugar yield was 9.411 ton/fed which was produced by the second regime combined with application of 180 kg N/fed and growing 1.5 drill.

IV. Water Use Efficiency (W.U.E.):

In arid and semi-arid regions where water is a limiting factor in the expansion of cultivated area, the primary objective of management is the development of water use program that will provide maximum yield per unit of water consumed by plants.

The term water use efficiency has been widely used in irrigated crop production to describe the efficiency of irrigation with respect to crop yields.

The water use efficiency is expressed as kg of produced cane (or sugar) per one cubic meter of water consumed.

The average values of W.U.E. by sugar cane plant has been calculated here for cane yield and also for sugar yield as affected by irrigation regimes, N levels and planting density in 1994/1995 and 1995/1996 seasons. The results of W.U.E. calculated for cane yield and sugar yield are presented in Tables (24) and (25), respectively.

1. Effect of irrigation regime:

Water use efficiency calculated for cane yield was markedly affected by irrigation regime in both seasons as showedn in Table (24).

The third regime in which irrigation was scheduled at longer intervals (14-21-28 days) produced the highest W.U.E. in both seasons. The third regime was followed by the first (traditional) regime and the least W.U.E. was obtained by the second regime where irrigation was scheduled at shorter intervals (7-14-21 days).

The results showed that applying the third regime increased W.U.E. by 4.58 and 18.51% compared with the first and second regime in 1994/1995 season, respectively. In 1995/1996 season, similarly, the third regime surpassed the first and second regimes by 3.63 and 22.98%, respectively.

It is quite clear that the third regime saved a cosiderable amounts of water without serious cane yield reduction, leading to a marked increase in W.U.E. On the other hand, the second regime in which irrigation was

Table (24) Water use efficiency on cane yield basis [cane yield (kg)/water added (m³)] as affected by irrigation regime, N fertilizer level, planting density and their interactions in 1994/1995 and 1995/1996 growing seasons.

9.76	9.91	9.60	10.22	10.47	9.97	У	Total average of planting density
9.53	9.49	9.58	9.99	9.97	10.02	240	Planting density
10.19	10.29	10.09	10.58	10.93	10.24	180	Nitrogen X
9.55	9.96	9.15	10.09	10.53	9.66	120	Interaction of
10.54	10.97	10.11	10.95	11.32	10.58		Average
9.95	10.33	9.57	10.85	9.99	11.71	240	Winter (28-day)
11.02	11.30	10.74	11.51	13.10	9.92	180	Moderates (21-day) and
10.65	11.28	10.02	10.50	10.88	10.13	120	 Summer (14-day),
8.57	8.66	8.48	9.24	9.23	9.25		Average
8.89	8.94	8.84	9.26	10.17	8.35	240	Winter (21-day)
8.58	8.57	8.60	9.12	8.30	9.95	180	Moderates(14-day) and
8.24	8.47	8.02	9.34	9.24	9,45	120	 Summer (7-day),
10.17	10.12	10.23	10.47	10.87	10.08		Average
9.77	9.22	10.33	9.88	9.76	10.00	240	Winter (20-day)
10.98	11.02	10.94	11.12	11.40	10.85	180	Moderates (15-day) and
9.77	10.13	9,42	10.43	11.47	9.400	120	1. Summer (10-day),
	2 drills	1.5 drill		2 drills	1.5 drill	Fed.	Interval
Average	density	Planting density	Average	density	Planting	kg N/	Season and Irrigation
	6 season	1995/1996 season		5 season	1994/1995 season	Nitrogen	irrigation regime

Table (25) Water use efficiency on sugar yield basis [sugar yield (kg)/water added (m³)] as affected by irrigation regime, N fertilizer level, planting density and their interactions in 1994/1995 and 1995/1996 growing seasons.

			•	•			
irrigation regime	Nitrogen	1994/199	1994/1995 season		1995/1996 season	6 season	
Season and Irrigation	kg N/	Planting density	density	Average	Planting density	density	Average
Interval	Fed.	1.5 drill	2 drills		1.5 drill	2 drills	
1. Summer (10-day),	120	1.12	1.29	1.20	1.33	1.28	1.30
Moderates (15-day) and	180	1.23	1.31	1.27	1.41	1.36	1.38
Winter (20-day)	240	1.08	1.08	1.08	1.29	1.18	1.23
Average		1.14	1.22	1.18	1.34	1.27	1.30
2. Summer (7-day),	120	1.07	1.00	1.03	1.00	1.05	1.02
Moderates(14-day) and	180	1.19	0.84	1.01	1.15	1.07	1.11
Winter (21-day)	240	0.93	1.07	1.00	0.97	1.04	1.01
Average		1.06	0.97	1.01	1.04	1.05	1.04
 Summer (14-day), 	120	1.39	1.29	1.34	1.21	1.42	1.31
Moderates (21-day) and	180	1.15	1.48	1.31	1.35	1.54	1.44
Winter (28-day)	240	1.31	1.22	1.26	0.71	1.14	1.06
Average		1.28	1.33	1.30	1.09	1.45	1.27
Interaction of	120	1.13	1.18	1.15	1.16	1.22	1.19
Nitrogen X	180	1.19	1.18	1.18	1.29	1.30	1.29
Planting density	240	1.10	1.12	1.11	0.99	1.20	1.09
Total average of planting density		1.14	1.16	1.15	1.14	1.24	1.19

scheduled at 7-14-21 days, increased markedly the consumptive use of water without great increase in cane yield to compensate the higher water used. The result was a lower value of W.U.E. compared with the traditional irrigation system.

It could be concluded that since water is the limiting factor in the Egyptian agriculture and a rationalized use of water is vitally important, the application of the second regime is not recommended when compared with the traditional regime.

The application of the traditional regime increased W.U.E. by 13.31 and 18.66% in the first and second season, respectively, showeding the superiority of the traditional system over the second one. Similarly, calculating the W.U.E. based on sugar yield indicated clearly the superiority of the third regime in the first season and of the first (traditional) regime in the second season (Table, 25).

The results indicated that the third regime surpassed the first and second regime by 10.16 and 28.71% in 1994/1995 season, respectively. In 1995/1996 season, a very slight increase in W.U.E. compared with the third one due to a higher sucrose%. In that season, applying the first (traditional) regime increased W.U.E. by 25.00 and 2.36% compared with the second and third regime, respectively.

The results indicated clearly that prolonging irrigation intervals in the traditional regime is advisable to save considerable amount of water and to increase W.U.E.

It was indicated that in the first regime, one cubic meter of water produced 1.18 and 1.30 kg sugar in the two successive seasons. With the third regime, one cubic meter of water produced 1.30 and 1.27 kg sugar in the first and second season, respectively. On the other hand, in the second regime with its higher consumptive use of water, one cubic meter of water produced only 1.01 and 1.04 kg sugar in 1994/1995 and 1995/1996 season, respectively.

The present results are in general agreement with those reported by Yasin et al. (1990) who found that W.U.E. increased with an increase in soil moisture stress. Also, Prasad et al. (1991) found that W.U.E. decreased with

increased irrigation frequency. The results are also in general agreement with those obtained by **Khalil (1995)** who found that higher values of W.U.E. were gained from medium irrigation intervals at 1.0 accumulation pan evaporation intervals, whereas the prolonged irrigation intervals or frequent irrigation intervals beyond 1.0 accumulation pan evaporation treatment resulted in decreasing the values of W.U.E. with faba bean crop.

2. Effect of N fertilizer level:

The results presented in Tables (24 and 25) showed that the application of 180 kg/fed produced the highest W.U.E. in both seasons when W.U.E. was calculated either on cane or sugar basis. The lowest W.U.E. was recorded with the highest N level, i.e. 240 kg/fed

Increasing the N level from 120 to 180 kg/fed increased W.U.E. by 4.85 and 6.70% in the first and second season, respectively when the efficincy was based on cane yield. Similarly, when W.U.E. was calculated on sugar yield basis, increasing N level from 120 to 180 kg/fed increased W.U.E. by 2.60 and 8.40% in the two successive seasons.

Increasing N level to the highest level (240 kg/fed) produced the lowest W.U.E. based either on cane or sugar yield in both seasons.

It could be concluded that the medium N level (180 kg/fed) was the optimum N level for plant cane yield when sugar cane was planted in the summer season. The results are mainly due to the effect of N on cane yield.

The results are in agreement with those obtained by Kanwar et al. (1989) and Prasad et al. (1991).

3. Effect of planting density:

Results presented in Tables (24 and 25) showed that increasing the planting density by growing double drills increased W.U.E. in both seasons.

Based on cane yield, double drills increased W.U.E. by 5.01 and 3.23% in 1994/1995 and 1995/1996 growing season, respectively. The increase in W.U.E. based on sugar yield by planting double drills was 1.75

and 8.77% in the first and second season, respectively, compared with planting 1.5 drill.

It could be concluded that increasing the planting density increased W.U.E. as a result of increasing cane yield.

Results reported by Salib (1991) showed that thin planting of sesame reduced W.U.E. and the moderate density of 168000 plants/fed produced the highest W.U.E.

It could be concluded that reducing the amount of applied water by prolonging irrigation intervals at 14 days in Summer, 21 days in Spring and Autumn and 28 days in Winter, combined with the application of 180 kg N/fed and growing sugar cane with double three-budded setts (50400 buds/fed) recorded the highest W.U.E. in both seasons, being 13.10 and 11.30 kg cane/one cubic meter in 1994/1995 and 1995/1996 season, respectively. This treatment achieved the maximum W.U.E. and one cubic meter produced 1.48 and 1.54 sugar in the first and second season, respectively.

SUMMARY

WATER REQUIREMENTS FOR SUGARCANE UNDER DIFFERENT LEVELS OF NITROGEN FERTILIZER

Two field experiments were conducted at Shandaweel Research Station (Sohag governorate) in Upper Egypt in the two successive growing seasons of 1994/1995 and 1995/1996 to study the effect of some irrigation regimes, N fertilizer levels and planting densities on yield and quality of sugarcane.

Each experiment included 18 treatments which represent the combination between three irrigation regimes, three N levels and two planting densities.

The levels of studied factors were as follows:

I- Irrigation Regimes:

- 1- Traditional irrigation regime followed by cane growers [irrigation at 10-day intervals in Summer, 15-day intervals in Spring and Autumn (Moderates), and 15-day intervals in Winter]. The plant cane crop was supplied with a total of 23 irrigations during the whole growing season.
- 2- Irrigation at 7-day intervals in Summer, 14-day intervals in Spring and Autumn, and 21-day intervals in Winter. The plant cane crop was supplied with a total of 28 irrigations during the whole season growing season.
- 3- Irrigation at 14-day intervals in Summer, 21-day intervals in Spring and Autumn, and 28-day intervals in Winter. The plant cane crop was supplied with a total number of 17 irrigations during the whole growing season.

II. Nitrogen Fertilizer Levels:

- 1- 120 kg N/fed.
- 2- 180 kg N/fed.
- 3- 240 kg N/fed.