Differential and Integral Calculus

(1)Solve the equations:

(2) $\frac{2}{3}x - 3 = 0$ (1) 2x + 5 = 0(3) 2x = 0(4) $\frac{1}{3}x^2 - 3 = 0$ (5) $\frac{1}{2}x^2 + 2 = 0$ (6) $\frac{1}{2}x^3 - 2x = 0$ (7) $x^2 - 3x + 2 = 0$ (8) $x^3 - 3x^2 + 2x = 0$ (9) $x^4 - x = 0$ (12) $2^x = \frac{1}{2}3^x$ (10) $2^x - 3 = 0$ $(11) \ 2^x - 5^x = 0$ $(15) \ 2^{x-1} = \frac{1}{2} 3^{x+1}$ $(14) \ 2^{x+1} - 5^x = 0$ (13) $4 - 2^x = 1$ $(16) (x - 1)2^x = 0$ $(17) (x+1)4^x = 3^x$ $(18) \ 2^x + 3^x = 0$ $(19) \ln(x-1) = 0$ $(21)\ln(x+2) = 3$ $(20) \log x = 1$ $(23)\log_{\frac{3}{4}}(x+1) = 2$ (22) $\log_3 x = -2$ $(24) x \ln(x-3) = 0$

(2)Find the first derivative of each of the following functions:

MTI	Faculty of Pharmacy	Mathematics	Dr. Mohamed Eid
(31) <i>y</i>	$y = \ln x^8 + [\ln x]^8$	$(32) y = \ln x^7$	$+ [\log_5 x]^{-6}$
(33) <i>y</i>	$x = \sqrt{x + \sqrt{1 + x}}$	(34) $y = \sqrt[4]{x + 1}$	$+\sqrt{x-1}$
(35) <i>y</i>	$x = 2\sin x + \frac{x^3}{\ln x}$	$(36) y = 3\cos^2 x$	$5x + \frac{x^4}{\log x}$
(37) <i>y</i>	$r = \frac{\ln x}{\log x} + \frac{\cos x}{\sin x}$	$(38) \ y = \frac{\log x}{\ln x}$	$+\frac{\sin x}{\cos x}$
(39) <i>y</i>	$r = \frac{2^x}{3^x} + \ln\frac{1}{\sin x}$	$(40) \ y = \frac{3^x}{4^x} + $	$\log \frac{1}{\cos x}$
. ,	y`where:		
(1) y =	$= 2^{x^3} + \log(x^5 + 1)$	(2) $y = 3^{x^2} - $	$ln(1 + x^4)$
(3) y =	$=5^{\sqrt{x}}+\sin x^3$	(4) $y = 4^{\sqrt[3]{x}} +$	$-3\cos x^4$
(5) y =	$= 6 + x^3 \sin(2x + 3)$	(6) $y = \frac{3}{2} + x^4$	$1.\cos(3-4x)$
(7) y :	$= 3x - \ln(8^x + x^8)$	(8) $y = \frac{1}{2}x + 1$	$\log(2^x + \ln x)$
(9) y =	$= 3x + \sin(x + \log x)$	(10) $y = \frac{3}{4}x - $	$\cos(x.3^x)$
(11) y	$x = 3^{\sin x} + \cos \sqrt{x}$	(12) $y = 8^{\cos y}$	

(4)Find y` and y`` from the following functions: (1) y = 2x + 1(2) $y = 3^x + x^4$ (3) $y = \sin x \cdot \log x$ (4) $y = \cos x \cdot \ln x$ (6) $y = \frac{3}{4}x + \sqrt{x}$ (5) $y = \frac{x}{2} + \frac{2}{x}$

(5) Find y` at the given points in the following: (2) $y = 3^x + \ln x$ at x = 1(1) $y = x^3 + \sin x$ at x = 0(4) $y = x^2 \cdot 2^x$ at x = 2(3) $y = \cos x + \ln x$ at x = 0

(6)Find the extrema of the following functions:

(1) $f(x) = 2x + 1$	(2) $f(x) = 3^x + 2$
$(3) f(x) = \log x$	$(4) f(x) = \ln x$
(5) $f(x) = \frac{x}{2} + \frac{2}{x}$	(6) $f(x) = \frac{3}{4} + \frac{1}{1+x^2}$
(7) $f(x) = 2x^2 - 8x + 1$	$(8) f(x) = 4x - x^2$
(9) $f(x) = x^3 - 12x$	$(10) f(x) = 3 + (x - 2)^4$
$(11) f(x) = 2x^3 - 6x$	$(12) f(x) = x^3 - 3x^2 - 9x$
$(13) f(x) = x + \cos x$	(14) $f(x) = 3x - (x - 2)^3$

Faculty of Pharmacy

Dr. Mohamed Eid

(7)Find the following integrals:

(1)
$$\int (x^3 + 2x^2 - 1) dx$$

(3) $\int (x^{-3} + \sqrt{x} + \frac{3}{2}) dx$
(5) $\int (3^x + 5^x + x) dx$
(7) $\int [(\frac{3}{5})^x + \frac{2^x}{3^x}] dx$
(9) $\int [x^4 + \frac{1}{3^x}] dx$
(11) $\int [2 - x^3]^2 dx$
(13) $\int [1 + 3^x]^2 dx$
(15) $\int [2^x + 3^x]^2 dx$
(17) $\int 3x^2 [2 - x^3]^9 dx$
(19) $\int 3^x [2 + 3^x]^9 dx$
(21) $\int 2x \cdot 3^{x^2} dx$
(23) $\int \frac{1}{\sqrt{x}} e^{\sqrt{x}} dx$
(25) $\int [3x + \cos 2x] dx$
(26) $\int [3x + \cos 2x] dx$
(27) $\int [3^{2x} - 2\cos 3x] dx$
(29) $\int \frac{3}{x-2} dx$
(31) $\int \frac{1}{2x+1} dx$
(33) $\int \frac{x}{3+x^2} dx$
(35) $\int \frac{1+\cos x}{1+e^x} dx$
(36) $\int \frac{1+\cos x}{1+e^x} dx$
(37) $\int \frac{e^x}{1+e^x} dx$
(39) $\int \frac{x}{1+x} dx$
(41) $\int \frac{x}{3-4x+x^2} dx$
(42) $\int \frac{x}{\sqrt{3+x^2}} dx$
(43) $\int \frac{x+1}{x^2-9} dx$
(43) $\int \frac{x+1}{x^2-9} dx$
(45) $\int \frac{x}{\sqrt{3+x^2}} dx$
(47) $\int \frac{4}{x^2+6x+9} dx$
(49) $\int \frac{x}{\sqrt{3+x^2}} dx$
(51) $\int 3 \ln x dx$
(53) $\int \ln(2+x) dx$
(55) $\int x \log x dx$

$$(2) \int (2x^4 - 3x^2 + 3) dx$$

$$(4) \int (x^{-2} + \frac{2}{x^3} + \frac{2}{3}) dx$$

$$(6) \int (4^x - 2^x + x^3) dx$$

$$(8) \int [(\frac{2}{3})^x + \frac{4^x}{3^x}] dx$$

$$(10) \int [\frac{1}{4^x} - x^{-3}] dx$$

$$(12) \int [3 - x^2]^2 dx$$

$$(14) \int [2 - 3^x]^2 dx$$

$$(16) \int [4^x - 3^x]^2 dx$$

$$(20) \int e^x [2 + 3e^x]^8 dx$$

$$(20) \int e^x [2 + 3e^x]^8 dx$$

$$(21) \int \frac{1}{x^2} e^{\frac{1}{x}} dx$$

$$(22) \int 3x^2 \cdot 4^{x^3} dx$$

$$(24) \int \frac{1}{x^2} e^{\frac{1}{x}} dx$$

$$(25) \int [2x - \sin 3x] dx$$

$$(30) \int \frac{2}{x+3} dx$$

$$(30) \int \frac{2}{x+3} dx$$

$$(30) \int \frac{2}{x+3} dx$$

$$(30) \int \frac{2}{x+3} dx$$

$$(30) \int \frac{3}{2x-5} dx$$

$$(31) \int \frac{x}{x^{2-4}} dx$$

$$(32) \int \frac{3}{2x-5} dx$$

$$(33) \int \frac{1+e^{2x}}{2x+e^{2x}} dx$$

$$(40) \int \frac{x}{x-2} dx$$

$$(42) \int \frac{x+2}{x^2+4x+4} dx$$

$$(43) \int \frac{2}{x^2+4x+4} dx$$

$$(44) \int \frac{x^{-2}}{x^2+4x+4} dx$$

$$(45) \int \frac{x}{\sqrt{x^2-3}} dx$$

$$(50) \int \frac{x}{\sqrt{x^2-3}} dx$$

$$(52) \int 2\log x dx$$

$$(54) \int \log(x-1) dx$$

$$(56) \int x \ln x dx$$

MTI	Faculty of Pharmacy	Mathematics	Dr. Mohamed Eid
(57)∫	$(x+1)\ln xdx$	$(58)\int (x+2)\log x$	dx
(59)∫	$x \cdot \sin 2x dx$	$(60) \int x \cdot \cos 3x dx$	
(61)∫	$x.3^x dx$	$(62) \int x. 4^x dx$	
(63)∫	$(x+1)3^x dx$	(64) $\int (x-2)4^x dx$	x
(65) ∫ ₍	$\int_{0}^{2} (x^{3} + 2) dx$	$(66) \int_0^1 (3+x^3) dx$	c
(67) <u>∫</u>	$\int_{-1}^{1} (2x + x^3) dx$	$(68) \int_{-2}^{2} (3+x^2) dx$	x
(69) ∫ ₁	$\int_{1}^{2} \ln x dx$	$(70) \int_1^3 \log x dx$	
(71) ∫ ₍	$\int_{0}^{1} x \cdot 2^{x} dx$	$(72) \int_0^\pi x \cdot \cos x dx$	
(73) ∫ ₍	$\int_{0}^{1} \frac{3}{x+2} dx$	$(74) \int_0^2 \frac{2}{3x+1} dx$	
(75) ∫ ₍	$\int_{0}^{1} \frac{x+1}{x^2-5x+6} dx$	(76) $\int_{1}^{2} \frac{3}{x^2 + 2x} dx$	

Matrices

(1)If $A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & 3 \\ 4 & 1 \end{bmatrix}$ Find A + B, A + B + C, A + 2B + 3C, 2A - 3B - 4C, $A^{`}$, $B^{`}$, $C^{`}$, AB, BA, AC, ABC, |A|, |B|, |C|, |AB|, |BA|, |AC|(2)If $A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & 3 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$. Find AB, BA, $A^{`}$, $B^{`}$, $A^{`}B^{`}$, $(BA)^{`}$. (3)If $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & 8 \\ -2 & 4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 5 & 6 \\ 0 & 4 & 1 \end{bmatrix}$

Find A + B, A - B, AB, BA, |A|, |B|, |A + B|, |AB|(4)Find the inverse of the following matrices, if exists:
 MTI
 Faculty of Pharmacy
 Mathematics
 Dr. Mohamed Eid

 $A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix}, C = \begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 2 & 3 & 1 & 2 \end{bmatrix}$
 $E = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 5 & 6 \\ 0 & 4 & 1 \end{bmatrix}, F = \begin{bmatrix} -2 & 2 & 1 \\ 1 & 3 & 6 \\ 0 & 1 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 0 & 1 & 1 \end{bmatrix}$

(5)Find the eigenvalues and eigenvectors of the following matrices:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0 & 8 \\ 2 & 0 \end{bmatrix}$$

(6)Find the eigenvalues and eigenvectors of the following matrices:

$A = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$	-2 1 3	$\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$,	$\mathbf{B} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix}, \qquad \mathbf{C} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	0 0 1	$ \begin{array}{c} 1\\ -1\\ 1 \end{array} $
			$\mathbf{E} = \begin{bmatrix} 3 & -2 & -5 \\ 4 & -1 & -5 \\ -2 & -1 & -3 \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$		

Linear Systems

(1)Write the augmented matrix of each of the following linear systems and discuss its
consistence:

(a) $x + y = 4$	(b) $x + y = 5$	(c) $x + y = 0$
2x - y = 5	x - y = -1	x - y = 4
(d) $x + 2y = 5$	(e) $2x + y = 3$	(f) $x + 3y = 7$
2x - y = 1	2x - y = 1	$2\mathbf{x} - \mathbf{y} = 0$
3x + y = 6	$\mathbf{x} + 2\mathbf{y} = 8$	x + 2y = 8
(g) $x + y - z = 4$	(h) $x + 2y - z = 2$	(i) $x + y - 2z = 2$
2x - y + 3z = 5	2x - y + 3z = 4	2x - y + z = 3
-x-y+z=-4	-x + y + 2z = 4	-x - y + 4z = 0

(a) $x + y = 3$	(b) $2x + y = 6$	(c) $x + y = 4$
3x - y = 1	3x - y = 4	4x - y = 1
(d) $x + y + z = 5$	(e) $x + y - z = 4$	(f) $2x + y + 2z = 8$
2x - y + z = 3	$\mathbf{x} - \mathbf{y} + 2\mathbf{z} = 3$	x - y + z = 1
2x + 2y - z = 7	$\mathbf{x} + \mathbf{y} - 2\mathbf{z} = 3$	2x + y - z = 5
(g) x - y + 2z = 6	(h) $2x + y + 2z = 8$	(i) $x + y - z = 0$
$\mathbf{x} + \mathbf{y} + 2\mathbf{z} = 10$	$\mathbf{x} - \mathbf{y} + \mathbf{z} = 1$	$\mathbf{x} - \mathbf{y} + 2\mathbf{z} = 0$
$\mathbf{x} + \mathbf{y} - \mathbf{z} = 2$		$\mathbf{x} + \mathbf{y} - 2\mathbf{z} = 0$

(2)Solve the following linear systems:

(3)Solve the following linear system:

 $x_1 + x_2 + x_3 + x_4 = 10,$ $x_1 - x_2 + 2x_3 - x_4 = 1$

 $2x_1 + x_2 - x_3 + x_4 = 5, \quad x_1 + x_2 + 2x_3 - 2x_4 = 1$

Rate of change

(1)A medicine in the blood decreases according to equation $y_0 - y = ct$. If c = 5 units / hour and the initial quantity $y_0 = 150$ units. Find

(a)The time at which 25 % of medicine exists in the blood.

(b)The time at which 50 % of medicine exists in the blood.

(c)The time at which 75 % of medicine exists in the blood.

(d)The time at which there is no medicine in the blood.

(e)The quantity of medicine exists in blood after 3 hours.

(2)A medicine in the blood decreases according to equation $y_0 - y = ct$.

If c = 4 units / hour and the initial quantity $y_0 = 200$ units. Find

(a)The time at which 25 % of medicine exists in the blood.

(b)The time at which 50 % of medicine exists in the blood.

(c)The time at which 75 % of medicine exists in the blood.

(d)The time at which there is no medicine in the blood.

(e)The quantity of medicine exists in blood after 4 hours.

(3)A drug in the blood decreases according to equation $\sqrt{y_0} - \sqrt{y} = \frac{1}{2}ct$. If c = 4 units / hour and the initial quantity $y_0 = 144$ units. Find

(a)The time at which 80 % of drug exists in the blood.

(b)The time at which 75 % of drug exists in the blood.

(c)The time at which 60 % of drug exists in the blood.

- (d)The time at which 50 % of drug exists in the blood.
- (e)The time at which 25 % of drug exists in the blood.
- (f)The time at which there is no drug in the blood.

(g)The quantity of drug exists in blood after 2 hours.

(4)A drug in the blood decreases according to equation $\sqrt{y_0} - \sqrt{y} = \frac{1}{2}ct$. If c = 4

units / hour and the initial quantity $y_0 = 256$ units. Compute

- (a)The time at which 80 % of drug exists in the blood.
- (b)The time at which 75 % of drug exists in the blood.
- (c)The time at which 50 % of drug exists in the blood.
- (d)The time at which 25 % of drug exists in the blood.
- (e)The time at which there is no drug in the blood.
- (f)The quantity of drug exists in blood after 3 hours.

(5)A drug in the blood decreases according to equation $\sqrt{y_0} - \sqrt{y} = \frac{1}{2}ct$. If c = 6

units / hour and the initial quantity $y_0 = 144$ units. Calculate

(a)The time at which 80 % of drug exists in the blood.

(b)The time at which 60 % of drug exists in the blood.

(c)The time at which 50 % of drug exists in the blood.

(d)The time at which 22 % of drug exists in the blood.

(e)The time at which there is no drug in the blood.

Dilution Problem

(1) If a medicine exists in 3 dosage forms :

First type of concentration: 1 mg /tablet

Second type of concentration: 2 mg /tablet

Third type of concentration: 4 mg /tablet

If the pharmacist wanted to produce 20 tablets containing 3 mg / tablet by mixing whole tablets of each type. Find all possible solutions.

(2) If a medicine exists in 3 dosage forms :

First type of concentration: 2 mg /tablet

Second type of concentration: 4 mg /tablet

Third type of concentration: 5 mg /tablet

If the pharmacist wanted to produce 16 tablets containing 3 mg / tablet by mixing whole tablets of each type. Find all possible solutions.

(3) If a medicine exists in 3 dosage forms :

First type of concentration: 1 mg /tablet

Second type of concentration: 3 mg /tablet

Third type of concentration: 5 mg /tablet

If the pharmacist wanted to produce 20 tablets containing 2 mg / tablet by mixing whole tablets of each type. Find all possible solutions.

(4) If a medicine exists in 3 dosage forms :

First type of concentration: 2 mg /tablet

Second type of concentration: 4 mg /tablet

Third type of concentration: 6 mg /tablet

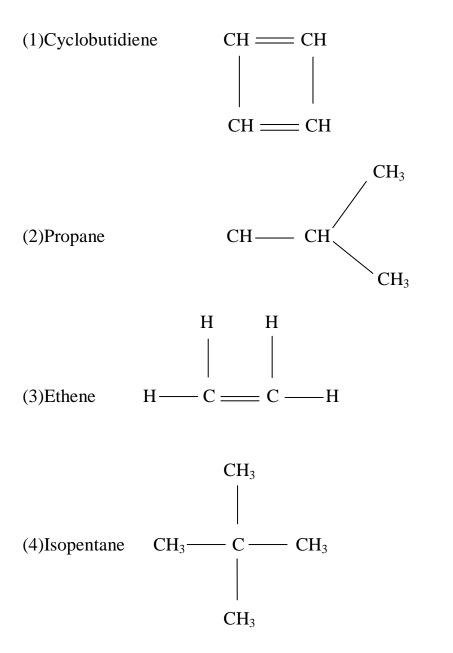
If the pharmacist wanted to produce 25 tablets containing 3 mg / tablet by mixing whole tablets of each type. Find all possible solutions.

(5) If a medicine exists in 3 dosage forms :
First type of concentration: 2 mg /tablet
Second type of concentration: 4 mg /tablet
Third type of concentration: 6 mg /tablet

If the pharmacist wanted to produce 24 tablets containing 5 mg / tablet by mixing whole tablets of each type. Find all possible solutions.

(6) If a medicine exists in 3 dosage forms :

First type of concentration: 1 mg /tablet


Second type of concentration: 4 mg /tablet

Third type of concentration: 5 mg /tablet

If the pharmacist wanted to produce 20 tablets containing 3 mg / tablet by mixing whole tablets of each type. Find all possible solutions.

> Energy Levels

Draw the molecular graph of the following chemical compounds. Also write its matrix and determine the eigenvalues (energy levels):

> Curve Fitting

(1)Find the curves y = a + bx, $y = a e^{bx}$ and $y = a x^{b}$ that fit data:

(i) (2, 3), (4, 4), (6, 7), (8, 9), (10, 12)
(ii) (1, 2), (2, 3), (3, 5), (4, 8), (5, 9)
(iii) (1, 2), (1.5, 3), (2, 4.4), (2.5, 6), (3, 8)
(iv) (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3), (1, 4)
(v) (10, 1), (20, 3), (30, 4), (40, 5), (50, 8)

(2)If the quantity of a drug in the blood decreases according to the data:

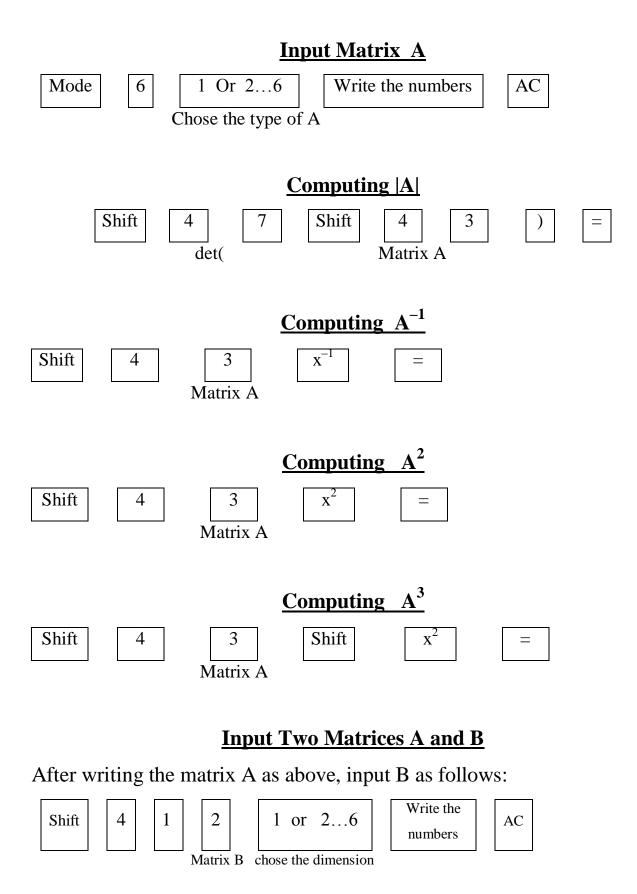
Time: t	0	1	2	3	4	5	Hours
Quantity: y	40	35	28	18	7	1	Units

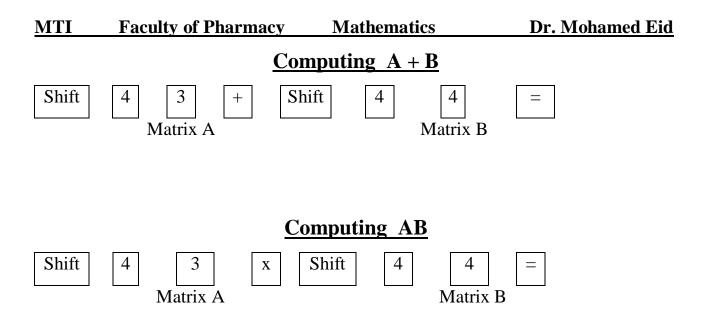
Find the curves: y = a + bt and $y = a e^{bt}$ that fit the data.

(3)If the quantity of a drug in the blood decreases according to the data:

Time: t	0	1	2	3	4	5	Hours
Quantity: y	50	40	28	15	4	1	Units

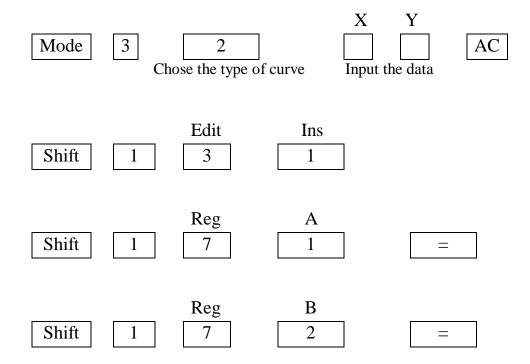
Find the curves: y = a + bt and $y = a e^{bt}$ that fit the data.


(4)If the quantity of a drug in the blood decreases according to the data:

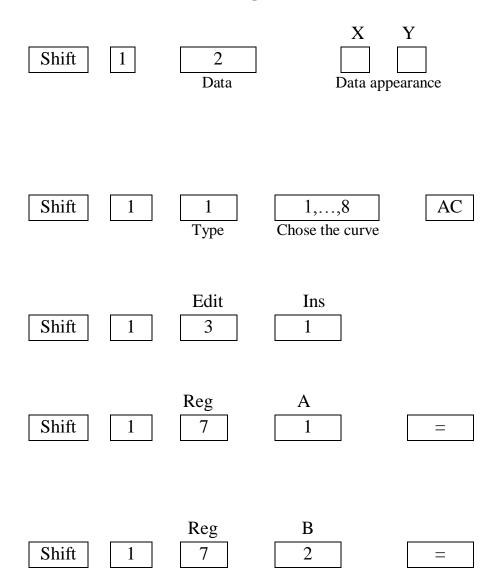

Time: t	0.5	1	1.5	2	2.5	3	Hours
Quantity: y	20	12	7	4	2	1	Units

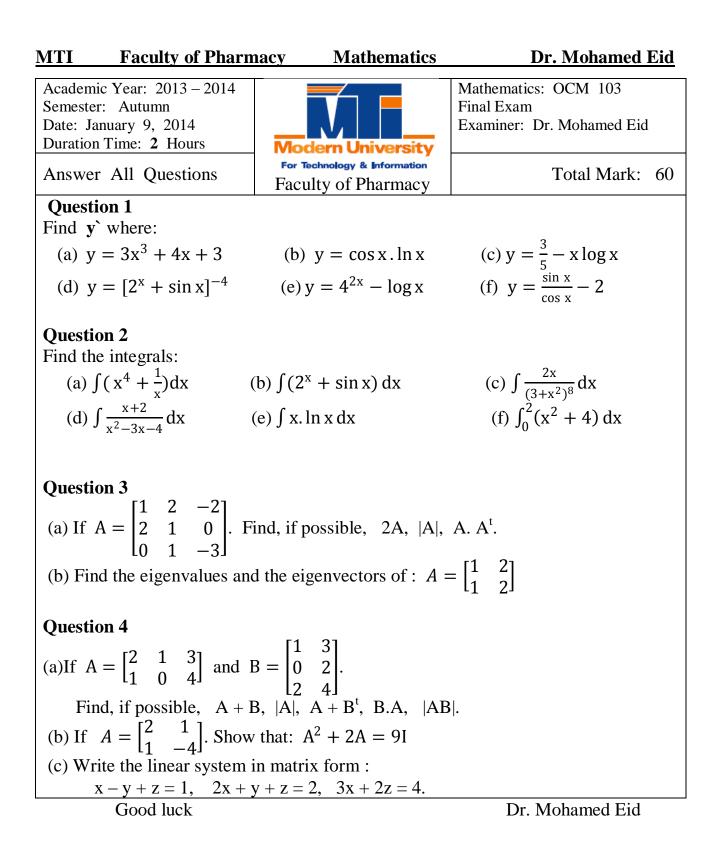
Find the curves: $y = a + b \ln t$ and $y = a t^{b}$ that fit the data.

Mathematics


Algebra Of Matrices Using Calculator

Curve Fitting Using Calculator

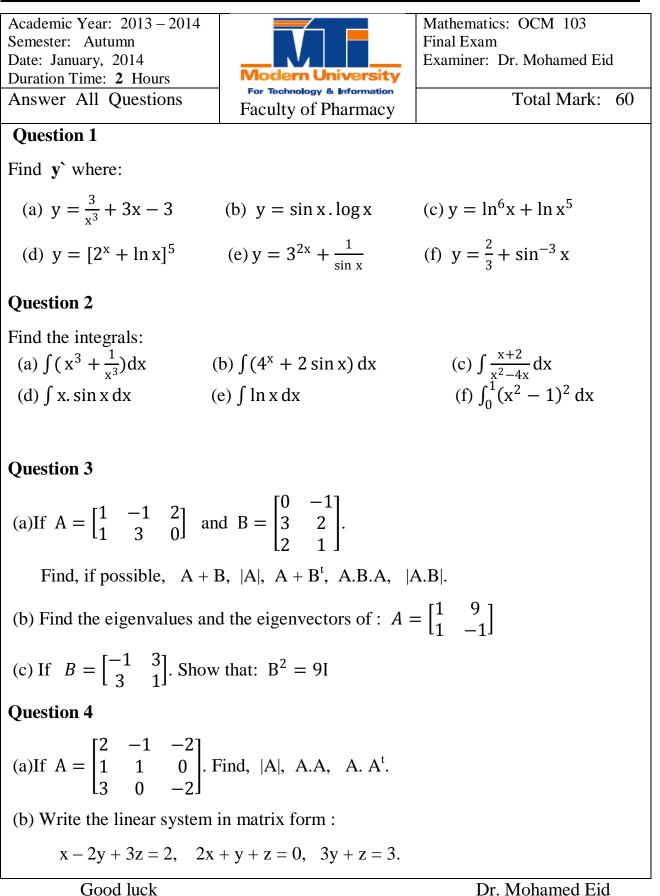

The line: y = a + bx

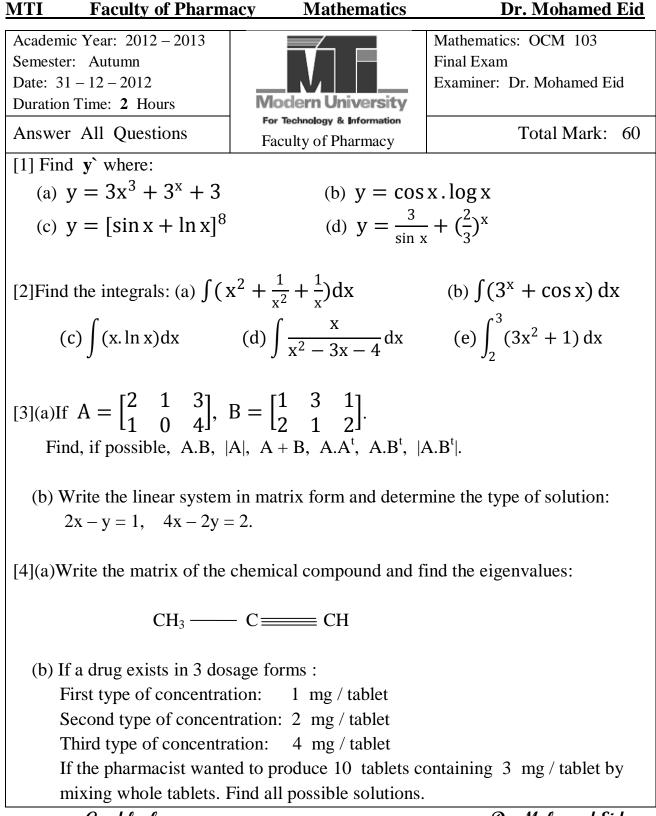


This procedure is used for computing the curves:

 $y = a + b \ln x$, $y = a t^b$ and $y = a e^{bt}$

To obtain another curve using the saved data:

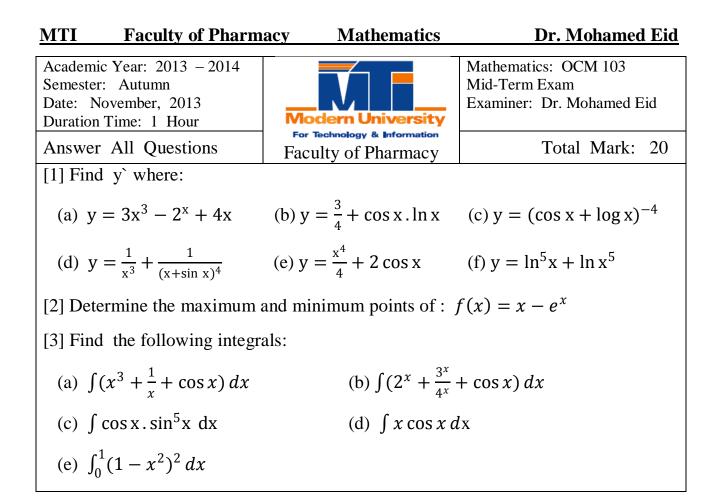


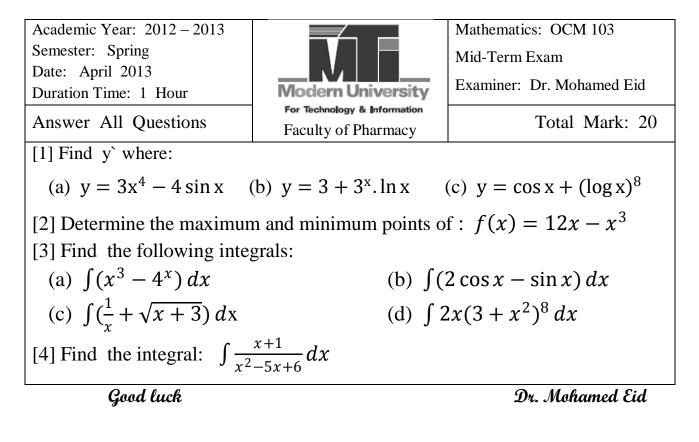


MTI Faculty of Pharmacy

Mathematics

Dr. Mohamed Eid





Good luck

Dr. Mohamed Eid

MTI Faculty of Pharma	acy Mathematics	Dr. Mohamed Eid
Academic Year: 2012 – 2013 Semester: Spring Date: May, 2013 Duration Time: 2 Hours	Modern University	Mathematics: OCM 103 Final Exam Examiner: Dr. Mohamed Eid
Answer All Questions	For Technology & Information Faculty of Pharmacy	Total Mark: 60
Question 1		
Find y ` where:		2
(a) $y = 3x^4 + 4x + 4$	(b) $y = \sin x \cdot \ln x$	(c) $y = \frac{3}{5} - x \log x$
(d) $y = [3^x + \cos x]^8$	(e) $y = (\frac{2}{3})^x - \log (\frac{2}{3})^x = \log (\frac{2}{3})^x + \log (2$	x (f) $y = \frac{x}{\sin x}$
Question 2		
Find the integrals: (a) $\int (x^4 + x^4)$	$+\frac{4}{x}+4x)dx$	(b) $\int (2^x + \cos x) dx$
	21	(e) $\int_0^2 (3x^2 + 2) dx$
Question 3		
(a) If $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 4 \end{bmatrix}$, B Find, if possible, $A + B$,	$= \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ 2 & 4 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$	
(b) Solve linear system: $\begin{bmatrix} 1\\3\\1 \end{bmatrix}$	$\begin{bmatrix} -1 & 1 \\ 0 & 1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$	
Question 4		
(a) Write the following linear	•	
$\mathbf{x} - \mathbf{y} + \mathbf{z} = 1, 3\mathbf{x} - 2\mathbf{y}$	y + 2z = 2, $4x - 3y + 4z =$	= - 2.
(b) If a drug exists in 3 dosag	ge forms :	
First type of concentratio	n: 1 mg / tablet	
Second type of concentra	tion: 2 mg / tablet	
Third type of concentration	on: 4 mg / tablet	
If the pharmacist wanted	to produce 10 tablets con	taining 3 mg / tablet by
mixing whole tablets. Fin	nd one possible solution.	
Good luck		Dr. Mohamed Eid

