Lecture 02
Semiconductor Physics

Prepared By
Dr. Eng. Sherif Hekal
Assistant Professor, CCE department
• **In this section, we will learn:**

 • The **basic properties of semiconductors** and, in particular, silicone – the material used to make most modern electronic circuits.

 • How **doping a pure silicon crystal** dramatically changes electrical conductivity – the fundamental idea in underlying the use of semiconductors in the implementation of electronic devices.

 • The two mechanisms by which current flows in semiconductors – **drift and diffusion charge carriers**.

 • The **structure and operation of the pn junction** – a basic semiconductor structure that implements the diode and plays a dominant role in semiconductors.
Agenda

- Introduction
- Intrinsic Semiconductors
- Extrinsic (Doped) Semiconductors
- Current Flow in Semiconductors
- The pn Junction with Open-Circuit Terminals (Equilibrium)
- The pn Junction with Applied Voltage
- Capacitive Effects in the pn Junction
Solid state electronic devices

Solid-state electronics are those circuits or devices built entirely from solid materials and in which the electrons, or other charge carriers, are confined entirely within the solid material.

The term is often used to contrast with the earlier technologies of vacuum and gas-discharge tube devices, and it is also conventional to exclude electro-mechanical devices (relays, switches, hard drives and other devices with moving parts) from the term solid state.
Earlier Technologies

Vacuum Tubes
Earlier Technologies

Vacuum Tubes

Glass Envelope
Plate (anode)
Cathode
Grid

250v

input voltage

6.3v
First - BJT

The transistor was probably the most important invention of the 20th Century, and the story behind the invention is one of clashing egos and top secret research.

Reference:
Bell Labs Museum
Point-Contact Transistor - first transistor ever made

The first transistor was a point-contact transistor

The first point-contact transistor

John Bardeen, Walter Brattain, and William Shockley
Bell Laboratories, Murray Hill, New Jersey (1947)
How did first point-contact transistor work?

Schematic of the first point-contact transistor

Emitter
Spring
Collector
Wedge (insulator)
Gold foil
Base
Semiconductor (Ge)

Gap between E and C cut by razor blade

Emitter
Spring
Collector
Base
Qualitative basic operation of point-contact transistor

A gold foil was glued to a triangular insulating wedge.

A narrow gap was cut with a razor blade to form the E and C.

The gap was approximately 50 \(\mu \text{m} \) wide.

Under forward bias of the EB junction, minority carriers are injected into base (In case of point-contact transistor, strong forward bias is required).

Most minority carriers are collected by the reverse-biased BC junction.

Thus the base controls the current flow between E and C.

Problems with first transistor...

The point-contact transistor is a surface-effect device, i.e. important effects occur at the semiconductor surface.

Surfaces are easily contaminated.

Surface-effect devices are unstable (e.g. mechanical vibrations).
First Bipolar Junction Transistors

W. Shockley invented the p-n junction transistor
The physically relevant region is moved to the bulk of the material
Why semiconductors?

SEMICONDUCTORS: They are here, there, everywhere and in anything “intelligent”

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers, laptops</td>
<td>Silicon (Si) MOSFETs, ICs, CMOS</td>
</tr>
<tr>
<td>Cell phones, pagers</td>
<td>Si ICs, GaAs FETs, BJTs</td>
</tr>
<tr>
<td>CD players</td>
<td>AlGaAs and InGaP laser diodes, Si photodiodes</td>
</tr>
<tr>
<td>TV remotes, mobile terminals</td>
<td>Light emitting diodes (LEDs)</td>
</tr>
<tr>
<td>Satellite dishes</td>
<td>InGaAs MMICs (Monolithic Microwave ICs)</td>
</tr>
<tr>
<td>Fiber networks</td>
<td>InGaAsP laser diodes, pin photodiodes</td>
</tr>
<tr>
<td>Traffic signals, car taillights</td>
<td>GaN LEDs (green, blue)</td>
</tr>
<tr>
<td></td>
<td>InGaAsP LEDs (red, amber)</td>
</tr>
<tr>
<td>Air bags</td>
<td>Si MEMs, Si ICs</td>
</tr>
</tbody>
</table>

Lecture 02 - Semiconductors
Why semiconductors?

Semiconductor devices are WIDELY used
Why semiconductors?

The graph illustrates the increase in transistor count over time. The curve shows that the transistor count doubles every two years, starting from 1971.
Solid Materials

- **Conductors:** Allow Electric current to flow through them

- **Insulators:** Do not Allow Electric current to flow through them

- **Semiconductors:** Materials whose conductivity lies in between that of Conductors (copper) and insulators (glass). They have conductivities in the range of 10^{-4} to 10^{+4} S/m.
Semiconductors

- **single-element** – such as germanium and silicon. (column IV of periodic table) – compose of single species of atoms

- **compound** – such as gallium-arsenide. – combinations of atoms of column III and column V and some atoms from column II and VI. (combination of two atoms results in binary compounds).

<table>
<thead>
<tr>
<th>(a)</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td></td>
<td>Si</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>Zn</td>
<td>Ga</td>
<td></td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
</tr>
<tr>
<td>Cd</td>
<td>In</td>
<td></td>
<td>Sb</td>
<td>Te</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b)</th>
<th>Elemental</th>
<th>IV compounds</th>
<th>Binary III-V compounds</th>
<th>Binary II-VI compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>SiC</td>
<td>AlP</td>
<td>ZnS</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>SiGe</td>
<td>AlAs, AlSb</td>
<td>ZnSe, ZnTe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GaP, GaAs</td>
<td>CdS, CdSe</td>
<td></td>
</tr>
</tbody>
</table>
Semiconductor materials
<table>
<thead>
<tr>
<th>Period</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
</tr>
<tr>
<td>5</td>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
</tr>
<tr>
<td>6</td>
<td>Hg</td>
<td>Pb</td>
<td>Bi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Period

- **II**: B, Mg, Zn, Cd, Hg
- **III**: Al, Ga, In
- **IV**: Si, Ge, Sn
- **V**: P, As, Sb
- **VI**: S, Se, Te

Elements

- **Non-Metallic Elements**: B, C, N, O, P, S, As, Se, Te
- **Metallic Elements**: Mg, Al, Ga, In, Sn, Sb, Bi

Lecture 02 - Semiconductors

10/15/2017
Atomic Structure

A lithium atom

Electric Current Flow in conductors
Atomic Structure

Electron shells and sub-shells

<table>
<thead>
<tr>
<th>shell n</th>
<th>K 1</th>
<th>L 2</th>
<th>M 3</th>
<th>N 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>sub-shell l</td>
<td>s 0</td>
<td>s 0</td>
<td>s 0</td>
<td>s 0</td>
</tr>
<tr>
<td></td>
<td>p 1</td>
<td>p 1</td>
<td>d 2</td>
<td>p 1</td>
</tr>
<tr>
<td>electron number</td>
<td>2 2</td>
<td>6 2</td>
<td>6 10</td>
<td>2 6</td>
</tr>
<tr>
<td></td>
<td>2 8</td>
<td>18</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Figure 2 Energy Levels of an Atom
The octet rule

Atoms are most stable if they have a filled or empty outer layer of electrons.

Except for H and He, a filled layer contains 8 electrons – an octet.

Atoms will

- gain or lose (ionic compounds)
- share (covalent compounds)

Electrons to make a filler or empty outer layer.
Atomic Structure

- **valence electron** – is an electron that participates in the formation of chemical bonds. It can exist only in the outermost electron shell.
 - Atoms with one or two valence electrons more than are needed for a "closed" shell are highly reactive because the extra electrons are easily removed to form positive ions.
- **covalent bond** – is a form of chemical bond in which two atoms share a pair of atoms.
Covalent Bonding And Intrinsic Materials

Covalent bonding of the silicon atom.

Covalent bonding of the GaAs crystal.
Solid state structures

A crystalline solid is distinguished by the fact that atoms making the crystal are arranged in a periodic fashion. That is, there is some basic arrangement of atoms that is repeated throughout the entire solid. Thus the crystal appears exactly the same at one point as it does at a series of other equivalent points, once the basic periodicity is discovered. However, not all solids are crystals; some have no periodic structure at all (amorphous solids), and other are composed of many small regions of single-crystal material (polycrystalline solids).

The periodic arrangement of atoms in crystal is called the lattice; the lattice contains a volume, called a unit cell, which is representative of the entire lattice and is regularly repeated throughout the crystal.
Solid state structures

• Cubic lattices:

Unit cells for types of cubic lattice structure.

The basic lattice structure for many important semiconductors is the diamond lattice, which is characteristic of Si and Ge. In many compound semiconductors, atoms are arranged in a basic diamond structure but are different on alternating sites. This is called a zincblende lattice and is typical of the III-V compounds. The diamond lattice can be thought of as an fcc structure with an extra atom placed at \(\frac{a}{4} + \frac{b}{4} + \frac{c}{4} \) from each of the fcc atoms.
The Bohr model

To develop the atom model, Bohr made several postulates:
1. Electrons exist in certain stable, circular orbits about the nucleus.
2. The electron may shift to an orbit of higher or lower energy, thereby gaining or losing energy equal to the difference in the energy levels (by absorption or emission of a photon of energy $h\nu$).
The Silicon Atom

Finally, the work of Bohr, Boltzmann, Plank, Einstein and others has developed an understanding of the atomic structure which shows that electrons circle the nucleus in orbits having different associated energies. The electrons also spin on their own axes. The energy of electrons is quantised in that only certain discrete levels of energy can be possessed by electrons and no values in between these discrete levels are allowed. The levels exist in groups which are referred to as shells and there are sub-shells (l) within main shells (n).

Silicon, Si, is a group IV material having an atomic number of 14. Consequently it has 14 positively charged protons and 14 neutrons in its nucleus. It has 14 orbiting negatively charged electrons: 2 in a full K shell; 8 in a full L shell and 4 in a half-full M sub-shell. With a half full outer sub-shell the atom has an affinity for 4 additional electrons to try to complete the outer sub-shell.

The Pauli’s Exclusion Principle states that no two electrons in an atom or molecule can share the exact same quantum specification. In practice, this means that no more than two electrons can share precisely the same orbit or energy level and the two must have opposite spins.
The Silicon Atomic Structure

Silicon: our primary example and focus
Atomic no. 14
14 electrons in three shells: 2 \(\rightarrow \) 8 \(\rightarrow \) 4
i.e., 4 electrons in the outer "bonding" shell
Silicon forms strong covalent bonds with 4 neighbors

However, like all other elements it would prefer to have 8 electrons in its outer shell
Band theory of a solid

- A solid is formed by bringing together isolated single atoms.
- Consider the combination of two atoms. If the atoms are far apart there is no interaction between them and the energy levels are the same for each atom. The numbers of levels at a particular energy is simply doubled.

 \[
 \begin{array}{ll}
 n=3 & \quad n=3 \\
 n=2 & \quad n=2 \\
 n=1 & \quad n=1 \\
 \end{array}
 \]

- If the atoms are close together the electron wave functions will overlap and the energy levels are shifted with respect to each other.

 \[
 \begin{array}{llll}
 n=3 & \quad n=3 & \quad n=3 & \quad n=3 \\
 n=2 & \quad n=2 & \quad n=2 & \quad n=2 \\
 n=1 & \quad n=1 & \quad n=1 & \quad n=1 \\
 \end{array}
 \]
• A solid will have millions of atoms close together in a lattice so these energy levels will create bands each separated by a gap.

• **Conductors:**
 If we have used up all the electrons available and a band is still only half filled, the solid is said to be a good conductor. The half-filled band is known as the conduction band.

• **Insulators:**
 If, when we have used up all the electrons the highest band is full and the next one is empty with a large gap between the two bands, the material is said to be a good insulator. The highest filled band is known as the valence band while the empty next band is known as the conduction band.
Semiconductors:

- Some materials have a filled valence band just like insulators but a small gap to the conduction band.
- At zero Kelvin the material behave just like an insulator but at room temperature, it is possible for some electrons to acquire the energy to jump up to the conduction band. The electrons move easily through this conduction band under the application of an electric field. This is an intrinsic semiconductor.

So where are all these materials to be found in the periodic table?
Semiconductors
Semiconductors

<table>
<thead>
<tr>
<th>Group</th>
<th>Semi-</th>
<th>Bandgap</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>Si</td>
<td>1.06 eV</td>
</tr>
<tr>
<td></td>
<td>Ge</td>
<td>0.67</td>
</tr>
<tr>
<td>III-V</td>
<td>GaAs</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>GaP</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>InP</td>
<td>1.3</td>
</tr>
<tr>
<td>II-VI</td>
<td>CdTe</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>CdS</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Possible Semiconductor Materials

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.</td>
<td>Very Expensive</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>Band Gap Large: 6eV</td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td>Difficult to produce without high contamination</td>
</tr>
<tr>
<td>Silicon</td>
<td>Si</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1.</td>
<td>Cheap</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>Ultra High Purity</td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td>Oxide is amazingly perfect for IC applications</td>
</tr>
<tr>
<td>Germanium</td>
<td>Ge</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>1.</td>
<td>High Mobility</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>High Purity Material</td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td>Oxide is porous to water/hydrogen (problematic)</td>
</tr>
<tr>
<td>Gallium Arsenide</td>
<td>GaAs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.</td>
<td>High Mobility</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>High speed switching</td>
</tr>
</tbody>
</table>
Silicon: It’s a Group 4 element which means it has 4 electrons in outer shell.

However, like all other elements it would prefer to have 8 electrons in its outer shell.
Bonding of Si atoms

This results in the covalent bonding of Si atoms in the crystal matrix

A Covalent Bond Formed by the Sharing of Electrons in an Outer Energy Level
Si and Ge are tetravalent elements – each atom of Si (Ge) has 4 valence electrons in crystal matrix.

For $T > 0$ thermal fluctuations can break electrons free creating electron-hole pairs.

Both can move throughout the lattice and therefore conduct current.
Electrons and Holes

For T>0

some electrons in the valence band receive enough thermal energy to be excited across the band gap to the conduction band.

The result is a material with some electrons in an otherwise empty conduction band and some unoccupied states in an otherwise filled valence band.

An empty state in the valence band is referred to as a **hole**.

If the conduction band electron and the hole are created by the excitation of a valence band electron to the conduction band, they are called an **electron-hole pair** (EHP).

Electron-hole pairs in a semiconductor. The bottom of the conduction band denotes as E_c and the top of the valence band denotes as E_v.
Silicon Lattice Structure

At 0K, all electrons are tightly shared with neighbours → no current flow

Adding heat (even to room temperature) allows some bonds to break, and electrons can flow

Shares electrons with 4 neighbouring atoms → 8 electrons in outer shell

Vacancy left by electron. Overall charge on silicon is zero → this “hole” must be positive

Free electron
Intrinsic Material

A perfect semiconductor crystal with no impurities or lattice defects is called an **intrinsic** semiconductor.

At T=0 K –
No charge carriers
Valence band is filled with electrons
Conduction band is empty

At T>0
Electron-hole pairs are generated
EHPs are the only charge carriers in **intrinsic material**

Since electron and holes are created in pairs – the electron concentration in conduction band, \(n \) (electron/cm\(^3\)) is equal to the concentration of holes in the valence band, \(p \) (holes/cm\(^3\)).

Each of these intrinsic carrier concentrations is denoted \(n_i \).

Thus for intrinsic materials
\[n = p = n_i \]
Intrinsic Material

- At a given temperature there is a certain concentration of electron-hole pairs \(n_i \). If a steady state carrier concentration is maintained, there must be recombination of EHPs at the same rate at which they are generated. Recombination occurs when an electron in the conduction band makes a transition to an empty state (hole) in the valence band, thus annihilating the pair. If we denote the generation rate of EHPs as \(g_i \) (EHP/cm\(^3\)·s) and the recombination rate as \(r_i \), equilibrium requires that

\[
 r_i = g_i
\]

- Each of these rates is temperature dependent. For example, \(g_i(T) \) increases when the temperature is raised, and a new carrier concentration \(n_i \) is established such that the higher recombination rate \(r_i(T) \) just balances generation. At any temperature, we can predict that the rate of recombination of electrons and holes \(r_i \) is proportional to the equilibrium concentration of electrons \(n_0 \) and the concentration of holes \(p_0 \):

\[
 r_i = \alpha_r n_0 p_0 = \alpha_r n_i^2 = g_i
\]

- The factor \(\alpha_r \) is a constant of proportionality which depends on the particular mechanism by which recombination takes place.
Increasing conductivity by temperature

As temperature increases, the number of free electrons and holes created increases exponentially.

Therefore the conductivity of a semiconductor is influenced by temperature.
Intrinsic Semiconductors

- Silicon at low temps
 - All covalent bonds are intact
 - No electrons are available for conduction
 - Conductivity is zero

- Silicon at room temp
 - Some covalent bonds break, freeing an electron and creating a hole, due to thermal energy
 - Some electrons will wander from their parent atoms, becoming available for conduction
 - Conductivity is greater than zero

The process of freeing electrons, creating holes, and filling them facilitates current flow...
Increasing conductivity

- The conductivity of the semiconductor material increases when the temperature increases.
- This is because the application of heat makes it possible for some electrons in the valence band to move to the conduction band.
- Obviously the more heat applied the higher the number of electrons that can gain the required energy to make the conduction band transition and become available as charge carriers.
- This is how temperature affects the carrier concentration.
- Another way to increase the number of charge carriers is to add them in from an external source.
- Doping or implant is the term given to a process whereby one element is injected with atoms of another element in order to change its properties.
- Semiconductors (Si or Ge) are typically doped with elements such as Boron, Arsenic and Phosphorous to change and enhance their electrical properties.
Extrinsic Material

By doping, a crystal can be altered so that it has a predominance of either electrons or holes. Thus there are two types of doped semiconductors, n-type (mostly electrons) and p-type (mostly holes). When a crystal is doped such that the equilibrium carrier concentrations \(n_0 \) and \(p_o \) are different from the intrinsic carrier concentration \(n_i \), the material is said to be extrinsic.

When impurities or lattice defects are introduced, additional levels are created in the energy bands structure, usually within the band gap.

Donor impurities (elements of group V): P, Sb, As
Acceptor elements (group III): B, Al, Ga, In

The valence and conduction bands of silicon with additional impurity energy levels within the energy gap.

Total number of electrons
III – Al – 13
IV – Si – 14
V - P - 15
• Inject Arsenic into the crystal with an implant step.
• Arsenic is Group 5 element with 5 electrons in its outer shell, (one more than silicon).
• This introduces extra electrons into the lattice which can be released through the application of heat and so produces and electron current
• The result here is an N-type semiconductor (n for negative current carrier)
Increasing conductivity by doping

- Inject Boron into the crystal with an implant step.
- Boron is Group3 element is has 3 electrons in its outer shell (one less than silicon)
- This introduces holes into the lattice which can be made mobile by applying heat. This gives us a hole current
- The result is a P-type semiconductor (p for positive current carrier)
The Fermi - Dirac distribution function

• The density of electrons in a semiconductor is related to the density of available states and the probability that each of these states is occupied.

• The density of occupied states per unit volume and energy is simply the product of the density of states and the Fermi-Dirac probability function (also called the Fermi function):
The Fermi - Dirac distribution function

Electrons in solids obey Fermi - Dirac distribution given by:

\[F(E) = \frac{1}{1 + e^{(E-E_F)/kT}} \] (2.1)

where \(k \) is Boltzmann’s constant \(\Rightarrow k = 1.38 \times 10^{-23} \text{ J/K.} \)

\(T \) is the temperature in kelvin

The function \(F(E) \) called the Fermi-Dirac distribution function which gives the probability that an electron occupies an electronic state with energy \(E \).

The quantity \(E_F \) is called the Fermi level, and it represents the energy level at which the probability to find an electron is 50%. For an energy \(E = E_F \) the occupation probability is

\[F(E_F) = \left[1 + e^{(E_F-E_F)/kT}\right]^{-1} = \frac{1}{1+1} = \frac{1}{2} \]

This is the probability for electrons to occupy the Fermi level.
The Fermi–Dirac distribution function

At T=0 K, $F(E)$ has rectangular shape
the denominator of the exponent is
$1/(1+0) = 1$ when $(E<E_F)$, exp. negative
$1/(1+\infty) = 0$ when $(E>E_F)$, exp. positive

At 0 K every available energy state up to E_F is filled with electrons, and all states above E_F are empty.

At temperatures higher than 0 K, some probability $F(E)$ exists for states above the Fermi level to be filled with electrons and there is a corresponding probability $[1 - F(E)]$ that states below E_F are empty.

The Fermi function is symmetrical about E_F for all temperatures.
$F(E) = \frac{1}{e^{(E-E_F)/kT} + 1}$

- E_F: Fermi level
- k: Boltzmann’s constant
- T: temperature in kelvins
The Fermi - Dirac distribution function

Approximations in Fermi distribution function

\[F(E) = \frac{1}{1 + e^{(E - E_F)/kT}} \]

for \((E - E_F) > 3kT \) \hspace{1cm} \text{(high E)}

\[F(E) \approx e^{-(E - E_F)/kT} \]

\(\Rightarrow \) distribution of electrons in the C.B

for \((E - E_F) < 3kT \) \hspace{1cm} \text{(low E)}

\[F(E) \approx 1 - e^{-(E_F - E)/kT} \]

\(\Rightarrow \) distribution of holes in the V.B
\[F(E) \approx e^{-\frac{(E-E_F)}{kT}} \]

for \((E - E_F) > 3kT\)

\[F(E) \approx 1 - e^{-\frac{(E-E_F)}{kT}} \]

for \((E - E_F) < 3kT\)
carrier concentration in Intrinsic Semiconductor

\[n = p = n_i = \int_{E_c}^{\infty} F(E)S(E)dE \]
Electron and Hole Concentrations at Equilibrium

The Fermi distribution function can be used to calculate the concentrations of electrons and holes in a semiconductor if the densities of available states in the valence and conduction bands are known. The concentration of electrons in the conduction band is

$$n_o = \int_{E_c}^{\infty} F(E)S(E)dE$$

(2.2)

where $S(E)dE$ is the density of states (cm^{-3}) in the energy range dE. The subscript o used for the electron and hole concentration symbols (n_o, p_o) indicates equilibrium conditions.
Calculation of Density of Electrons

Let ‘dn’ be the Number of Electrons available between energy interval ‘E and E+ dE’ in the Conduction band

\[dn = F(E)S(E)dE \]

\[n_o = \int_{E_c}^{\infty} F(E)S(E)dE \]

Where \(S(E) \) \(dE \) is the Density of states in the energy interval \(E \) and \(E + dE \) and \(F(E) \) is the Probability of Electron occupancy.
Number of electrons in an energy level \((E)\) in the conduction band is given by
\[
n_o(E) = S_C(E)F(E)
\]

Number of holes in an energy level \((E)\) in the valence band is given by
\[
p_o(E) = S_v(E)[1 - F(E)]
\]

Where \(S_C\) and \(S_v\) are the density of energy states and given by:
\[
S_C(E) = \frac{4\pi}{h^3}(2m_e)^{3/2}\sqrt{E - E_c}
\]
\[
S_v(E) = \frac{4\pi}{h^3}(2m_h)^{3/2}\sqrt{E_v - E}
\]

Where:
\(h\): Planck's constant,
\(m_e\): effective mass of electron,
\(m_h\): effective mass of hole

Hence, the carrier densities can be given by
\[
n_o = \int n_o(E)dE
\]
\[
p_o = \int p_o(E)dE
\]
\[n_o = \int_{E_c}^{\infty} F(E)S_C(E)dE = N_C e^{-(E_C - E_F)/kT} \] \hspace{2cm} (2.3)

\[p_o = \int_{-\infty}^{E_v} [1 - F(E)]S_v(E)dE = N_v e^{-(E_F - E_V)/kT} \] \hspace{2cm} (2.4)

\(N_c \) and \(N_v \) are the effective density of states in the conduction band and the valence band, respectively.

\[N_c = 2\left(\frac{2\pi m_e kT}{\hbar^2}\right)^{3/2} = \frac{4\sqrt{2}}{\hbar^3} \left(\pi m_e kT\right)^{3/2} \] \hspace{2cm} (2.5)

\[N_v = 2\left(\frac{2\pi m_h kT}{\hbar^2}\right)^{3/2} = \frac{4\sqrt{2}}{\hbar^3} \left(\pi m_h kT\right)^{3/2} \] \hspace{2cm} (2.6)
The product of \(n_o \) and \(p_o \) at equilibrium is a constant for a particular material and temperature (what is called the mass action law), even if the doping is varied:

\[
n_o p_o = (N_c e^{[-(E_c - E_F)/kT]})(N_v e^{[-(E_F - E_v)/kT]})
\]

\[
= N_c N_v e^{[-(E_c - E_v)/kT]} = N_c N_v e^{-E_g / kT}
\]

(2.7)

For intrinsic semiconductors:

\[
n_i p_i = (N_c e^{[-(E_c - E_{Fi})/kT]})(N_v e^{[-(E_{Fi} - E_v)/kT]})
\]

\[
n_i^2 = N_c N_v e^{-E_g / kT}
\]

\[
\therefore n_i = \sqrt{N_c N_v} e^{-E_g / 2kT}
\]

(2.8)
The intrinsic electron and hole concentrations are equal (since the carriers are created in pairs), \(n_i = p_i \); thus the intrinsic concentration is

\[
n_i = \sqrt{N_c N_v} e^{(-E_g / 2kT)}
\]

(2.8)

The constant product of electron and hole concentrations can be written conveniently as

\[
n_o p_o = n_i^2
\]

(2.9)

This is an important relation, and we shall use it extensively in later calculations. The intrinsic concentration for Si at room temperature is approximately \(n_i = 1.5 \times 10^{10} \text{ cm}^{-3} \).
From \[n_i = N_C e^{-(E_C - E_{Fi})/kT} \] and \[p_i = N_v e^{-(E_{Fi} - E_V)/kT} \]

\[
E_{Fi} = \frac{E_C + E_V}{2} + \frac{kT}{2} \ln \frac{N_v}{N_C}
\]

(2.10) - a

\[
E_{Fi} = \frac{E_C + E_V}{2} + \frac{3}{4} kT \ln \frac{m_h}{m_e}
\]

(2.10) - b

At room temperature (300°C or 25°C)

<table>
<thead>
<tr>
<th></th>
<th>(n_i)</th>
<th>(E_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAS</td>
<td>2.25x10^6cm^-3</td>
<td>1.42eV</td>
</tr>
<tr>
<td>Si</td>
<td>9.65x10^9cm^-3</td>
<td>1.11eV</td>
</tr>
<tr>
<td>Ge</td>
<td>2.0x10^{13}cm^-3</td>
<td>0.66eV</td>
</tr>
</tbody>
</table>
Temperature effect on band gap

\[E_g = 1.170 \text{ eV} - 4.73 \times 10^{-4} \text{ eV} \cdot \text{K}^{-1} \frac{T^2}{T + 636 \text{ K}} \]

\[E_g = 1.519 \text{ eV} - 5.405 \times 10^{-4} \text{ eV} \cdot \text{K}^{-1} \frac{T^2}{T + 204 \text{ K}} \]
Temperature effect on carrier concentration

![Graph showing the relationship between temperature and carrier concentration for Si and GaAs. The graph plots $n_i = 10^{10}$, $n_i = 10^6$, and $n_i = 10^0$ at different temperatures (1000K, 250K, 300K). The graph illustrates how carrier concentration decreases as temperature decreases.](image)
extrinsic semiconductor

An extrinsic semiconductor is one that has been doped, that is, into which a doping agent has been introduced, giving it different electrical properties than the intrinsic (pure) semiconductor.

<table>
<thead>
<tr>
<th></th>
<th>Intrinsic semiconductor</th>
<th>Donor atoms</th>
<th>Acceptor atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group IV semiconductors</td>
<td>Silicon, Germanium</td>
<td>Phosphorus, Arsenic, Antimony</td>
<td>Boron, Aluminium, Gallium</td>
</tr>
<tr>
<td>Group III-V semiconductors</td>
<td>Aluminum phosphide, Aluminum arsenide, Gallium arsenide, Gallium nitride</td>
<td>Selenium, Tellurium, Silicon, Germanium</td>
<td>Beryllium, Zinc, Cadmium, Silicon, Germanium</td>
</tr>
</tbody>
</table>
n-type extrinsic semiconductors

Formed by adding donor atoms to the intrinsic semiconductor (Si)

donors: pentavalent elements from group V (P, As, Sb, Bi) →
release of electrons → n-type semiconductor

e.g., Arsenic “As”, antimony “Sb”, and Phosphorus “P”
n-type semiconductors

Before doping

density of states

Fermi distribution function

carrier concentration

Lecture 02 - Semiconductors

10/15/2017 66
n-type semiconductors

After doping

\[n = \int_{E_c}^{\infty} F(E) S(E) dE \]
n-type semiconductors

Under complete ionization condition

\[n = N_D \]

Number of donor atoms

\[n = N_C e^{\frac{(E_C - E_{Fn})}{kT}} = N_D \] \hspace{1cm} (2.11)

\[E_C - E_{Fn} = kT \ln\left(\frac{N_C}{N_D}\right) \]

\[\therefore E_{Fn} = E_C - kT \ln\left(\frac{N_C}{N_D}\right) \] \hspace{1cm} (2.12)
Electron concentration in doped semiconductor

\[n = N_C e^{-\frac{(E_C - E_{Fn})}{kT}} \]

\[= N_C e^{-\frac{(E_C - E_{Fi} + E_{Fi} - E_{Fn})}{kT}} \]

\[= N_C e^{-\frac{(E_C - E_{Fi})}{kT}} e^{-\frac{(E_{Fi} - E_{Fn})}{kT}} \]

\[n_i \]

\[n = n_i e^{\frac{(E_{Fn} - E_{Fi})}{kT}} \] \hspace{1cm} (2.13)

\[E_{Fn} = E_{Fi} + kT \ln \frac{n}{n_i} \] \hspace{1cm} (2.14)

Ascending Fermi level
p-type semiconductors

Formed by adding acceptor atoms to the intrinsic semiconductor (Si)

acceptors: trivalent elements from group III (B, Al, Ga, In) → capture of electron → hole remains → p-type semiconductor

e.g., Aluminum “Al”, Boron “B”, and Gallium “Ga”
carrier concentrations (p-type)

Before doping

density of states

Fermi distribution function

carrier concentration

E

CB

VB

E_G

N(E)

0

0.5

1

F(E)

E

CB

VB

E_V

E_G

n(E), p(E)
carrier concentrations (p-type)

\[p = \int_{-\infty}^{E_v} \left[1 - F(E) \right] S(E) dE \]

After doping
p-type semiconductors

Under complete ionization condition

\[p = N_A \]

\[p = N_V e^{-(E_{Fp} - E_V) / kT} = N_A \] \hspace{1cm} (2.15)

\[E_{Fp} - E_V = kT \ln(N_V / N_A) \]

\[\therefore E_{Fp} = E_V + kT \ln(N_V / N_A) \] \hspace{1cm} (2.16)
Electron concentration in doped semiconductor

\[
p = N_V e^{-(E_{Fp} - E_V) / kT}
\]

\[
= N_C e^{-(E_{Fp} - E_{Fi} + E_{Fi} - E_V) / kT}
\]

\[
= N_C e^{-(E_{Fi} - E_V) / kT} e^{-(E_{Fp} - E_{Fi}) / kT}
\]

\[
p = n_i e^{(E_{Fp} - E_{Fi}) / kT}
\]

\[
E_{Fp} = E_{Fi} - kT \ln \frac{p}{n_i}
\]

(2.17)

(2.18)

Descending Fermi level
Mass Action Law

For any S.C., at thermal equilibrium, there is a unique law which governs the carrier densities n and p

Since

$$n = N_c e^{-(E_C - E_F)/kT} \quad \text{and} \quad p = N_v e^{-(E_i - E_v)/kT}$$

$$\therefore n \times p = N_c N_v e^{-E_g/kT} = n_i^2$$

$$\therefore n \times p = n_i^2$$
Band diagram, density of states, Fermi-Dirac distribution, and the carrier concentrations at thermal equilibrium

Intrinsic semiconductor

n-type semiconductor

p-type semiconductor
Charge neutrality

Both acceptors and donors can be present simultaneously

The Fermi level must adjust itself to preserve charge neutrality (zero net charge)

\[n + N_A = p + N_D \]

(2.19)

negative ions

Positive ions
Majority and minority carriers

<table>
<thead>
<tr>
<th></th>
<th>electrons</th>
<th>holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-doped</td>
<td>MAJORITY carrier</td>
<td>MINORITY carrier</td>
</tr>
<tr>
<td>(N_D > N_A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-doped</td>
<td>MINORITY carrier</td>
<td>MAJORITY carrier</td>
</tr>
<tr>
<td>(N_D < N_A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
n-type Majority and minority carrier

In n-type semiconductors, electrons are the majority carriers and holes are the minority carriers. N-type semiconductors are created by doping an intrinsic semiconductor with donor impurities.
n-type Majority and minority carrier

from \(n_n \times p_n = n_i^2 \) and \(n_n + N_A = p_n + N_D \)

Majority electrons:

\[
n_n = \frac{1}{2} \left[N_D - N_A + \sqrt{(N_D - N_A)^2 + 4n_i^2} \right]
\]

\(|N_D - N_A| \gg 2n_i \Rightarrow n_n \approx N_D - N_A \)

Minority holes:

\[
p_n = n_i^2 / n_n
\]
p-type Majority and minority carrier

In p-type semiconductors, holes are the majority carriers and electrons are the minority carriers.

P-type semiconductors are created by doping an intrinsic semiconductor with acceptor impurities.
p-type Majority and minority carrier

from \(n_p \times p_p = n_i^2 \) and \(n_p + N_A = p_p + N_D \)

Majority electrons:

\[
p_p = \frac{1}{2} \left[N_A - N_D + \sqrt{(N_A - N_D)^2 + 4n_i^2} \right]
\]

\(|N_A - N_D| \gg 2n_i \Rightarrow p_p \approx N_A - N_D \)

Minority holes:

\[
n_p = \frac{n_i^2}{p_p}
\]
Summary

Intrinsic semiconductors

\[n_i = N_c \exp\left[\frac{-(E_c - E_i)}{kT}\right] \]

\[p_i = N_v \exp\left[\frac{-(E_i - E_v)}{kT}\right] \]

Doped semiconductors

n-type

\[n_o = n_i e^{\frac{(E_F - E_i)}{kT}} \]

p-type

\[p_o = n_i e^{\frac{(E_i - E_F)}{kT}} \]
Production steps of silicon

“95% of materials used by the electronic industry is silicon”

\[
\text{SiO}_2 \text{ sand (quartzite)}
\]

\[
\text{SiC (solid)} + \text{SiO}_2 \text{ (solid)} \rightarrow \text{Si (solid)} + \text{SiO} \text{ (gas)} + \text{CO} \text{ (gas)}
\]

98% pure silicon

\[
\text{Si (solid)} + 3\text{HCl} \text{ (gas)} \xrightarrow{300^\circ C} \text{SiHCl}_3 \text{ (gas)} + \text{H}_2 \text{ (gas)}
\]

gaseous trichlorosilane

\[
\text{SiHCl}_3 \text{ (gas)} + \text{H}_2 \text{ (gas)} \rightarrow \text{Si (solid)} + 3\text{HCl} \text{ (gas)}
\]

rods of ultrapure polycrystalline silicon
Raw material of Silicon (pure sand SiO₂)

Step 1: Preparing the Molten Silicon Bath
The sand (SiO₂) is put into a rotating crucible and is heated above its melting point. The molten sand will become the source of the silicon that will form the wafer.

Step 2: Making the Ingot
A pure silicon seed crystal is now placed into the molten sand bath. This crystal will be pulled out slowly as it is rotated.

Photo: http://cnfolio.com/ELMnotes15
Summary (1)

• Today’s microelectronics technology is almost entirely based on the semiconductor silicon. If a circuit is to be fabricated as a monolithic integrated circuit (IC), it is made using a single silicon crystal, no matter how large the circuit is.

• In a crystal of intrinsic or pure silicon, the atoms are held in position by covalent bonds. At very low temperatures, all the bonds are intact; No charge carriers are available to conduct current. As such, at these low temperatures, silicone acts as an insulator.
Summary (2)

- At room temperature, thermal energy causes some of the covalent bonds to break, thus generating free electrons and holes that become available to conduct electricity.
- Current in semiconductors is carried by free electrons and holes. Their numbers are equal and relatively small in intrinsic silicon.
- The conductivity of silicon may be increased drastically by introducing small amounts of appropriate impurity materials into the silicon crystal – via process called doping.
Summary (3)

- There are two kinds of doped semiconductor: *n*-type in which electrons are abundant, *p*-type in which holes are abundant.