82

General Purpose I/O

Embedded Systems

ARM

83

Overview

How do we make a program light up LEDs in response to a switch!?

GPIO
= Basic Concepts
= Port Circuitry
= Control Registers
= Accessing Hardware Registers in C

Circuit Interfacing
= Inputs
= Qutputs

Additional Configuration
= GPIO as Interrupt

ARM

84

Basic Concepts

= GPIO = General-purpose input and output (digital)
= |nput: program can determine if input signalisa | ora 0
= Qutput: program can set output to | or 0
= Can use this to interface with external devices or on board peripherals
= Input: switch, button......
= Output: LEDs, speaker-......

ARM

LPCI115FBD48 pinout &: .

g _ 3

sE5E 53 EF &

Port 0(PIOO0) through Port 3(PIO3) S3gs g8 29 o
Q o N N © & 2o ©

°EGC5 58 B985

Not all port bits are available on the 2555 a35 452033
ooooa>oo >0 moa

board BEEEEERIEEEEIE

N
/

36] PIO3_0/DTR/CT16B0_MATO/TXD
35] RIPIO1_2/AD3/CT32B1_MAT1

PIO2_6/CT32B0_MAT1 [1 |
PIOZ_O/DTR/SSEL1 [2 |

O

. . RESET/PI00_0 [3 | 34] R/IPIO1_1/AD2/CT32B1_MATO
Quantlt)’ depends on PaCkage Pln PIO0_1/CLKOUT/CT32B0_MAT2 [4 | 33] RIPIO1_0/AD1/CT32B1_CAPO
Vss [5 32] RIPIO0_11/ADO/CT32B0_MAT3
count and MCU layout ss L5 LPC1113FBD48/303 2] RPIO0_ -
XTALIN [| LPC1114FBD48/303 31] PIO2_11/SCKO/CT32B0_CAP1
XTALOUT [7 | LPC1114FBD48/323 30] PIO1_10/ADG/CT16B1_MAT1/MISO1
Voo [8] LPC1114FBDA48/333 [29] SWCLK/PIOO_10/SCKO/CT16B0_MAT2
LPC1115FBD48/303
PIO1_8/CT16B1_CAPO [9 | 28] PIOD_9/MOSID/ICT16B0_MAT1
PIO0_2/SSELO/CT16B0_CAPO [10] [27] PIO0_8/MISO0/CT16B0_MATO
PI02_7/CT32B0_MAT2/RXD [11] [26] PI02_2/DCDIMISO1
PIO2_8/CT32B0_MAT3/TXD [12] [25] PI02_10
AN /
2][=l[e][e]l=][2]|2]1=] s8] [@][5] oozaagrss
T o035 ER2 28
gaggggﬁész‘gg
e & J S a = o o < o o
‘8 0SS0 E3ES3g0o 8
= o T g ' S8 0 F @
| o 2k - O =
od | @ o @ Q
g z2fgsf S
o — - o o
o Q
o %089 5
Lo I B «©
IO | O
5a d a
o o
P

ARM

= Data

GPIO Port Bit Circuitry in MCU

= Configuration

Direction
Interrupt
Modes
Mux

Edge or level-sensitive(high-
active or low-active) interrupt
request

Output
Input

= Analogue

open-drain enable

pin configured output enable
as digital output
driver data output

repeater mode
pin configured enable
as digital input

data input

pin configured

as analeg input analog input

pull-up enable

pull-down enable

Voo

=

Voo

ﬂDﬁDHnJ

-

select analog input

4

Open-drain mode available on series LPC1100L and LPC1100XL.

VoD
strong ESD
pull-up
PIN
strong
pull-down ESD
- Vss
weak
pull-up
weak
pull-down
[
B=<T
00Zaah159

86

ARM

87

Control Registers

= Each general-purpose |/O port has
= 32-bit configuration register GPIOnDIR (Direction register)

four 32-bit interrupt configuration registers
GPIONIS (Interrupt sense register)
GPIOnIBE (Interrupt both edges register)
GPIONIEV (Interrupt event register)
GPIOnIE (Interrupt mask register)

two 32-bit interrupt status registers
GPIOnNRIS (Raw Interrupt status register)
GPIONnMIS (Masked interrupt status register)

32-bit Interrupt clear register (GPIOnIC,write only)

two 32-bit data registers GPIOnData(Data register and data address masking register)

ARM

88

GPIO Data Direction Register

Each bit can be configured differently
Reset clears port bit direction to 0 (input)
Despite the fact that registers are 32-bit, most bits are reserved (31:12)

0 = Pin PIOn_x is configured as input.
| = Pin PIOn_x is configured as output.

E.g. to set Port0 Pin0 as output, set the first bit of GPIOODIR register.

ARM

GPIO Interrupt Registers

= GPIO can be configured as external interrupt
= [SENSE (Interrupt sense register)

= 0 = Interrupt on pin PIOn_x is configured as edge sensitive.
= | = Interrupt on pin PIOn_x is configured as level sensitive.
= |BE (Interrupt both edges register)
= 0 = Interrupt on pin PIOn_x is controlled through register GPIOnIEV.
= | = Both edges on pin PIOn_x trigger an interrupt.
= |EV (Interrupt event register)
= 0 = falling edges or LOW level on trigger an interrupt.
= | =rising edges or HIGH level on trigger an interrupt.
= MASK (Interrupt mask register)

= 0 = Interrupt on pin PIOn_x is masked.

= | = Interrupt on pin PIOn_x is not masked.

89

ARM

90

GPIO Interrupt Status\Clear Registers

= RAWST (Raw interrupt status)-Read only
= 0 = No interrupt on pin PIOn_x.
= | = Interrupt requirements met on PIOn_x.
= MASK (Masked interrupt status register)-Read only

= 0 = No interrupt or interrupt masked on pin PIOn_x.
= | = Interrupt on PIOn_x.

= CLR (Interrupt clear register)-VVrite only
= 0 = No effect.
= | = Clears edge detection logic for pin PIOn_x.MASK (Interrupt mask register)

= The synchronizer between the GPIO and the NVIC blocks causes a delay of 2 clocks.
It is recommended to add two NOPs after the clear of the interrupt edgedetection
logic before the exit of the interrupt service routine.

ARM

9l

GPIO Data Registers

Generally speaking, the GPIOnDATA register holds the current logic state of the pin (HIGH or
LOW),independently of whether the pin is configured as an GPIO input or output.

If the pin is configured as GPIO output, the current value of the GPIOnDATA register is driven
to the pin.

A read returns the current value (or the output latch)

A write has different effects:
= [f a pin is configured as GPIO input, no effect.
= If a pin is configured as GPIO output, the value will be driven to the pin.

The following rules apply when the pins are switched from input to output:
= Pin is configured as input with a HIGH level applied:Change pin to output: pin drives HIGH level.

= Pin is configured as input with a LOW level applied:Change pin to output: pin drives LOWV level.
Floating pins may drive an unpredictable level when switched from input to output.

ARM

92

Write/Read Data Operation

Data address masking register can be used to mask certain bits so only GPIOnDATA bits masked by | are affected by
read and write operations.

Write Operation
= [f address bit(i+2) is HIGH, then the value can be updated
= Otherwise, the corresponding GPIODATA register bit is left unchanged.

ADDRESS[13:2] 13 12 11 10 9 = 7 68 5 4 3 2

address 0x098 | 0 0] 0 o] 0 0 1 0 0 1 1 0 | o] o]

data OxFE4 | 1 1 1 1 1 1 1 0 0 1 0 0 |

GPIODATA register
at address + 0x098

u u u u u u 1 u u 1 o] u |

Read Operation
= Reading yields the state of port pins | 1:0 ANDed with address bits |3:2.

ADDRESS[13:2] 13 12 11 10 9 8 7 6 5 4 3 2

address 0x0C4 | 0 0] 0 0 o] 0 1 1 0 o] o] 1 | 0 0

port pin settings 1 1 1 1 1 1 1 o] o] 1 o] 0 |

hd r 4 hd hd v hd hd r 4 hd h

data read | 0 0 0 0 0 (o] 1 0 0 0 0

o

ARM

CMSIS - Accessing Hardware Registers in C

= Header file LPCI Ixx.h defines C data structure types to represent
hardware registers in MCU with CMSIS-Core hardware abstraction layer

i f—_———— General Purpose Input/COutpwut (GFIO) ———M—m———————————————— =i
F** @Baddtogroup LPCllxx GPIO LPCllxx General Purpose Input/Output
B{
*
cypedef =truct
i

union {
_ IO wint32 t MASKEED ACCESS[4096]: S#1«w Offset: OxO0000 (BS/W) Port data Register for pins PFICn 0O to PIOm 11 =
=truct {
uint32 t RESERVEDO[4035]:

__TO uint32 t DATA: fS=le Offzet: Ox3IFFC (E/W) Port data Register #*/

¥s
3

uint32 t ERESERVEDI [20%26];

__I2 uint3Z2_ t DIR: S#1« Offset: OxS000 (BSW) Data direction Register =/
__ IO uint32_t IS; S=1e Offzet: OXEBE004 (RSW) Interrupt =sense Hegister =/
__TI0 uint3Z_t IBE:; fS=1ew Offsetc: OXBO008 (RSW) Intcerrupt both sedges Register =/
__TI0 uint3IZ_t IEV: =1l Offsetc: OXBO0O0OC (RSW) Intcerrupt event HRHegister =/
__T0 uint3Z_t IE:; S=1« Offset: OXES010 (BSW) Interrupt mask Register =/
__ I mint3Z_t RIS; S#1w Offset: OxE8014 (RS) Faw interrupt sStatus Register #/
__ I mint3Z_t MIS; S#1« Offset: OxS018 (RS) Masked interrupt status Register =/

C wuint32 t©t IC: S*1« Offset: OxS01IC (W) Interrupt clear Register */

} LPC GPIC TypeDef;
F*@y*/ /* end of group LPCllxx GPIC =/

ARM

94

/ CMSIS C Support

= Header file Ipcl Ixx.h also defines to LPC_GPIO_TypeDef structures

#define LPC_GPIO_BASE (LPC_AHB_BASE + 0x00000)
#define LPC_GPIOO_BASE (LPC_AHB_BASE + 0x00000)
#define LPC_GPIO|_BASE (LPC_AHB_BASE + 0x10000)
#define LPC_GPIO2_BASE (LPC_AHB_BASE + 0x20000)
#define LPC_GPIO3_BASE (LPC_AHB_BASE + 0x30000)
#define LPC_GPIOO ((LPC_GPIO_TypeDef *)LPC_GPIO0 BASE)
#define LPC_GPIO| ((LPC_GPIO_TypeDef *)LPC_GPIO|_BASE)
#define LPC_GPIO2 ((LPC_GPIO_TypeDef *)LPC_GPIO2_BASE)

\#define LPC_GPIO3 ((LPC_GPIO_TypeDef *)LPC_GPIO3_ BASE)

™

ARM

95

Clocking Logic

Need to enable clock to GPIO module
By default, GPIO modules are disabled to save power

Writing to an unclocked module triggers a hardware fault!

Writing to system AHB clock control register (SYSAHBCLKCTRL, address 0x4004 8080)
clocks to GPIO ports

= Set the bit 6 of the SYSAHBCLKCTRL
LPC_SYSCON->SYSAHBCLKCTRL |= (1<<6);

ARM

96

Initializing GPIO
Enable clock for GPIO
Set the Pin Function , Mode, .. etc.

Not all of these are necessary, default setting is ok (usually all bits cleared after reset)
Simple example for initializing the orange led on the board

= PIOO 7

vold Init LED(void){

//Enable BAHB clock to the GPIO domain
LPC SYSCON->S3YSAHBCLECIRL |= (l<<g);
/82t the direction for GPIO

LPC GPIOO->DIR |= MASK(7);

ARM

97

/ Writing/Reading Output/Input Port Data \

= Write to GPIO
= Write to the data register
= GPIO3->DATA|=(1<<2);
= Qutput High to PIO3_2

= Read from GPIO

= Read from the data register
= data=GPIO3->DATA&(1<<12)

_

ARM

98

Interfacing

Embedded Systems

ARM

99

Inputs:What's a One! A Zero!

= |nput signal’s value is determined by voltage

= |nput threshold voltages depend on supply
voltage V5

Valid - Logic 1

= ExceedingVy or GND may damage chip

V|, Input Voltage (V)

Valid - Logic 0

1.7 19 21 23 25 27 29 31 33 35
Vpp Supply Voltage (V)

Outputs:What's a One? A Zero!?

= Nominal output voltages
= 0:0to 0.5V

= Note: Output voltage depends on current drawn by load on pin

= Need to consider source-to-drain resistance in the transistor

ARM

101

Driving External LEDs

Need to limit current to a value which is safe for both LED
and MCU port driver

Use current-limiting resistor CEDZ0ut >
* R= (Voo —Vien)/lieo CEDTOut >

Set | ;p =4 mA
Vi ep depends on type of LED (mainly color)
= Red:~1.8V
= Blue:~2.7V
Solve for R given VDD = ~3.0V
= Red: 300 QO
= Blue:75 Q

%

Red

N/

LED]

R2
300

Y

Blue

LEDZ

R3
‘O

\Y%

ARM

102

Output Example: Driving a Speaker

R1 Copt> C%I

= Create a square wave with a GPIO output [Audio >——VWV i
1uF

338
= Use capacitor to block DC value

= Use resistor to reduce volume if needed

void Speaker_Beep(uint32_t frequency){ so STOF e
Init_Speaker();
while(1){
GPIOD->BSRRL=(MASK(2));
Delay(frequency);
GPIOD->BSRRH=(MASK(2));
Delay(frequency);
}

SP1

Analog Interfacing

103 Embedded Systems ARI I

104

Why Analog

= Embedded systems often need to measure values of physical parameters

= These parameters are usually continuous (analog) and not in a digital form which computers

(which operate on discrete data values) can process

* Temperature
— Thermometer (do you have a fever?)
— Thermostat for building, fridge, freezer
— Car engine controller
— Chemical reaction monitor
— Safety (e.g. microprocessor processor thermal
management)
* Light (or infrared or ultraviolet)
intensity
— Digital camera
— IR remote control receiver
— Tanning bed
— UV monitor

* Rotary position
— Wind gauge
— Knobs

Pressure

— Blood pressure monitor

— Altimeter

— Car engine controller

— Scuba dive computer

— Tsunami detector
Acceleration

— Air bag controller

— Vehicle stability

— Video game remote

Mechanical strain
Other

— Touch screen controller
— EKG, EEG
— Breathalyzer

ARM

ADC - The Big Picture

V_ref
N // Your software
Pressure Analog to ADC_Code = ADCO->R[0];
= | Sensor — Digital V_sensor = ADC_code*V_ref/1023;
Converter, Pressure_kPa = 250 * (V_sensor/V_supply+0.04);
A':' Depth_ft = 33 * (Pressure_kPa — Atmos_Press_kPa)/101.3;
ir
Pressure | Voltages ADC
i § Output Codes
V_sensor ADC_Code V_ref 1111
o
A5 .
ig f‘#ran|sfe|r FLan'lion': | | | | | |\|’1A>1< %
4.0 —ﬁgfsz_f@df'm X O oR = Frrer == AN V_sensor > ADC_Code
3.5 |"TEMP =0to 85°C // <
= | 20 = TYP | > 000..001
=2 |55 = Ground 000..000
g |20 ==
§ TN
. /?/ MIN
0.5
vV O

OO O o o O o o o o o
T ON O = WD WO 0O Oy OO v~
P Pressure (ref: to sealed vacuum) i

o
< »

5
=
0
o

Fig_;ure 4. OQutput vs. Absolute Pressure

ARM

106

Getting From Analog to Digital

= A Comparator tells us“IsV,, >V _"

Compares an analog input voltage with an analog
reference voltage and determines which is larger,
returning a |-bit number

E.g. Indicate if depth > 100 ft

SetV, to voltage pressure sensor returns with 100 ft
depth. V

An Analog to Digital converter [AD or ADC] tells us

how largeV, is as a fraction of V.. V,

In

Clock
Reads an analog input signal (usually a voltage) and produces

a corresponding multi-bit number at the output.

= E.g. calculate the depth

Comparator

A/D Converter

R © |k O

ARM

107

ADC — Flash Conversion
ey R

6/8 V

A multi-level voltage divider is used to set voltage
levels over the complete range of conversion.

A comparator is used at each level to determine
whether the voltage is lower or higher than the
level.

The series of comparator outputs are encoded to
a binary number in digital logic (a priority
encoder)

Components used
= 2N resistors
= 2N-| comparators
Note
= This particular resistor divider generates voltages
which are not offset by /2 bit, so maximum error
is | bit
= We could change this offset voltage by using
resistors of values R, 2R, 2R ... 2R, 3R (starting at
bottom)

5/8 V
4/8 V
3/8V
2/8 V

1/8 V

Comparators

R =

R =

R =

R <

R

Vin '

1
Encoder

0
0

v

YIVIVIY

ARM

/ ADC - Successive Approximation Conversion

= Successively approximate input voltage by using a
binary search and a DAC

= SA Register holds current approximation of
result

= Set all DAC input bits to 0
= Start with DAC’s most significant bit

Y
+

Analog Input

Comparator output

D/A Converter

A4
= Repeat Digital Output < 12 Successive -
. . Start of Conversion - Ap;;{rox!n:atlon
= Set next input bit for DAC to | Statae egister
= Wiait for DAC and comparator to stabilize

= If the DAC output (test voltage) is smaller than
the input then set the current bit to |, else clear
the current bit to 0

ARM

Test voltage
(DAC output)
Analog
Input
o 00110
©)) 100100
S
O 100000
o (@) o
- 8 - o N Analog Input * Comparator output
S8 | © o o o
s | © | o S | S | S @ '
~— ~ —
o
> > D/A Converter
I I < I R
§ § § § § A ~— Digital Output < 12 Successive -
X X X X x~— DI DIy . Approximation -
> X > o o (@) (@) Start of Conversion - Register
§ P () (@) (@) ‘9 e Status =
~ ~ — ~—
Clock
2 | =z | =z z | 3 = 2 ETw
o @)) (@) @) @) @)
< | &1 & g | £ < <
000000
T, T, T, T, T, Tq
Start of Time
onversion

ARM

/ LPCxpresso | 115 Analog I/O

= Single 10-bit successive approximation ADC with 8 input
channels

= ADO-ADS5,AD6(PIOI _10),AD7(PIOI 1 1), multiplexed pins
= No on board DAC

= Measure range from 0 to 3.6V

= Power-down mode

= Individual result registers for each A/D channel to reduce
interrupt overhead

_

110

Conversion Resolution and Time

= Conversion resolution is defined by both reference voltage and CLKS bits
= By default, CLKS is 0x0 and the reference voltage is 3.3V
= Which means the result will be 10 bits
= 3.3V/2'9=3.2mV

= Conversion time is defined by both CLKDIV bits and CLKS bits
= By default, CLKDIV is 0x0 and CLKS is 0x0 (I | clock cycles)
= Which means the clock for ADC is 4.5MHz/| (CLKDIV+1)
= | 1x1/4.5MHz=2.44 us (shortest time)

ARM

112

/

= ADC initialization

Enable clock

Enable ADC(power)
Configure I/O

Select trigger source
Select input channel
Select other parameters

= Trigger conversion
= Read results
= Calibrate! Average!?

_

Using the ADC

™~

ARM

On-off Control

= For power efficiency, the ADC module is usually turned off (even if it is clocked).

= Good practical to shut down ADC whenever you are not using it.
= Two related registers: SYSAHBCLKCTRL register and PDRUNCFG register

= The first step is to disable the power down bit to the ADC block in PDRUNCEFG register:
= LPC_SYSCON->PDRUNCFG &= ~(0x|<<4);

= Then enable the clock, set the bit |3 in the System AHB clock control register since ADC
clocked by APB clock (PCLK 4.5MHz) ,

= LPC_SYSCON->SYSAHBCLKCTRL |= (I<<I3);

ARM

I3

/ Configuration IOCON register for ADC

= As mentioned previously, I/O needs proper configuration for different function.

= ADO for example:
IOCON_R_PIOO_11

Table 85. I0OCON_R_PIOO0_11 register (IOCON_R_PIOO0_11, address 0x4004 4074) bit
description

Bit Symbol Value Description Reset
value
2:0 FUNC Selects pin function. All other values are reserved. 000
0x0 Selects function R. This function is reserved. Select one of

the alternate functions below.
0x1 Selects function PIO0_11.
Ox2 Selects function ADO.
0x3 Selects function CT32B0_MATS3.

= Choose function AD0(0x2)
LPC_IOCON->R_PIOO0_ 1| &= ~0x8F;// Clear corresponding IOCON
LPC_IOCON->R_PIOO0_I| |= 0x0A; // Analog input and pull-down mode

ARM

/ ADC Registers \

= A/D Control Register (ADOCR),

A/D Global Data Register (ADOGDR), most recent conversion result

= A/D Interrupt Enable Register (ADOINTEN), generate interrupt if needed
A/D Channel x Data Register (ADODRX, x could be 0-7)

A/D Status Register (ADOSTAT)

_ /

ARM

/ Interrupt Caused By ADC \

= Data needed to be read by the end of conversion. Continuously fetch from
the data register is a less effective way.

= Interrupt at completion of conversion

= A/D Interrupt Enable register

= 7.0 ADINTEN, Set | to x bit to generate interrupt when x channel is
converted.

= 8 ADGINTEN, Set | to generate interrupt when any channel is converted.
(Reset value |, must be set to 0 in burst mode)

= Do whatever is needed in the handler

_ /

ARM

