
82 Embedded Systems 

General Purpose I/O



83

 How do we make a program light up LEDs in response to a switch?

 GPIO 

 Basic Concepts

 Port Circuitry

 Control Registers

 Accessing Hardware Registers in C

 Circuit Interfacing

 Inputs

 Outputs

 Additional Configuration

 GPIO as Interrupt

Overview



84

 GPIO = General-purpose input and output (digital)

 Input: program can determine if input signal is a 1 or a 0

 Output: program can set output to 1 or 0 

 Can use this to interface with external devices or on board peripherals

 Input: switch, button……

 Output: LEDs, speaker……

Basic Concepts



85

LPC1115FBD48 pinout

 Port 0(PIO0) through Port 3(PIO3)

 Not all port bits are available on the 

board

 Quantity depends on package pin 

count and MCU layout



86

GPIO Port Bit Circuitry in MCU
 Configuration

 Direction

 Interrupt

 Modes

 Mux

 Edge or level-sensitive(high-

active or low-active) interrupt 

request

 Data

 Output

 Input

 Analogue



87

Control Registers
 Each general-purpose I/O port has 

 32-bit configuration register GPIOnDIR (Direction register)

 four 32-bit interrupt configuration registers

◦ GPIOnIS (Interrupt sense register)

◦ GPIOnIBE (Interrupt both edges register)

◦ GPIOnIEV (Interrupt event register)

◦ GPIOnIE (Interrupt mask register)

 two 32-bit interrupt status registers

◦ GPIOnRIS (Raw Interrupt status register)

◦ GPIOnMIS (Masked interrupt status register)

 32-bit Interrupt clear register (GPIOnIC,write only)

 two 32-bit data registers GPIOnData(Data register and data address masking register)



88

GPIO Data Direction Register

 Each bit can be configured differently

 Reset clears port bit direction to 0 (input)

 Despite the fact that registers are 32-bit, most bits are reserved (31:12)

 0 = Pin PIOn_x is configured as input.

 1 = Pin PIOn_x is configured as output.

E.g. to set Port0 Pin0 as output, set the first bit of GPIO0DIR register.



89

GPIO Interrupt Registers

 GPIO can be configured as external interrupt

 ISENSE (Interrupt sense register)

 0 = Interrupt on pin PIOn_x is configured as edge sensitive.

 1 = Interrupt on pin PIOn_x is configured as level sensitive.

 IBE (Interrupt both edges register)

 0 = Interrupt on pin PIOn_x is controlled through register GPIOnIEV.

 1 = Both edges on pin PIOn_x trigger an interrupt.

 IEV (Interrupt event register)

 0 = falling edges or LOW level on trigger an interrupt.

 1 = rising edges or HIGH level on trigger an interrupt.

 MASK (Interrupt mask register)

 0 = Interrupt on pin PIOn_x is masked.

 1 = Interrupt on pin PIOn_x is not masked.



90

GPIO Interrupt Status\Clear Registers
 RAWST (Raw interrupt status)-Read only

 0 = No interrupt on pin PIOn_x.

 1 = Interrupt requirements met on PIOn_x.

 MASK (Masked interrupt status register)-Read only

 0 = No interrupt or interrupt masked on pin PIOn_x.

 1 = Interrupt on PIOn_x.

 CLR (Interrupt clear register)-Write only

 0 = No effect.

 1 = Clears edge detection logic for pin PIOn_x.MASK (Interrupt mask register)

 The synchronizer between the GPIO and the NVIC blocks causes a delay of 2 clocks. 

It is recommended to add two NOPs after the clear of the interrupt edgedetection 

logic before the exit of the interrupt service routine.



91

GPIO Data Registers

 Generally speaking, the GPIOnDATA register holds the current logic state of the pin (HIGH or 

LOW),independently of whether the pin is configured as an GPIO input or output. 

 If the pin is configured as GPIO output, the current value of the GPIOnDATA register is driven 

to the pin.

 A read returns the current value (or the output latch)

 A write has different effects:

 If a pin is configured as GPIO input, no effect.

 If a pin is configured as GPIO output, the value will be driven to the pin.

 The following rules apply when the pins are switched from input to output:

 Pin is configured as input with a HIGH level applied:Change pin to output: pin drives HIGH level.

 Pin is configured as input with a LOW level applied:Change pin to output: pin drives LOW level.

 Floating pins may drive an unpredictable level when switched from input to output.



92

Write/Read Data Operation
 Data address masking register can be used to mask certain bits so only GPIOnDATA bits masked by 1 are affected by 

read and write operations.

 Write Operation

 If address bit(i+2) is HIGH, then the value can be updated

 Otherwise, the corresponding GPIODATA register bit is left unchanged.

 Read Operation

 Reading yields the state of port pins 11:0 ANDed with address bits 13:2.



93

CMSIS - Accessing Hardware Registers in C

 Header file LPC11xx.h defines C data structure types to represent 

hardware registers in MCU with CMSIS-Core hardware abstraction layer



94

CMSIS C Support

 Header file lpc11xx.h also defines to LPC_GPIO_TypeDef structures

#define LPC_GPIO_BASE         (LPC_AHB_BASE  + 0x00000)

#define LPC_GPIO0_BASE        (LPC_AHB_BASE  + 0x00000)

#define LPC_GPIO1_BASE        (LPC_AHB_BASE  + 0x10000)

#define LPC_GPIO2_BASE        (LPC_AHB_BASE  + 0x20000)

#define LPC_GPIO3_BASE        (LPC_AHB_BASE  + 0x30000)

......

#define LPC_GPIO0 ((LPC_GPIO_TypeDef   *)LPC_GPIO0_BASE )

#define LPC_GPIO1 ((LPC_GPIO_TypeDef   *)LPC_GPIO1_BASE )

#define LPC_GPIO2 ((LPC_GPIO_TypeDef   *)LPC_GPIO2_BASE )

#define LPC_GPIO3 ((LPC_GPIO_TypeDef   *)LPC_GPIO3_BASE ) 



95

Clocking Logic

 Need to enable clock to GPIO module

 By default, GPIO modules are disabled to save power

 Writing to an unclocked module triggers a hardware fault!

 Writing to system AHB clock control register (SYSAHBCLKCTRL, address 0x4004 8080) 

clocks to GPIO ports

 Set the bit 6 of the SYSAHBCLKCTRL

LPC_SYSCON->SYSAHBCLKCTRL |= (1<<6);



96

Initializing GPIO
 Enable clock for GPIO

 Set the Pin Function , Mode , .. etc.

 Not all of these are necessary, default setting is ok (usually all bits cleared after reset)

 Simple example for initializing the orange led on the board

 PIO0_7



97

Writing/Reading Output/Input Port Data

 Write to GPIO

 Write to the data register

 GPIO3->DATA|=(1<<2);

 Output High to PIO3_2

 Read from GPIO

 Read from the data register

 data=GPIO3->DATA&(1<<12)



98 Embedded Systems 

Interfacing



99

Inputs: What’s a One? A Zero?

 Input signal’s value is determined by voltage 

 Input threshold voltages depend on supply 

voltage VDD

 Exceeding VDD or GND may damage chip



100

Outputs: What’s a One? A Zero?

 Nominal output voltages

 1: VDD-0.5 V to VDD

 0: 0 to 0.5 V

 Note: Output voltage depends on current drawn by load on pin

 Need to consider source-to-drain resistance in the transistor



101

Driving External LEDs

 Need to limit current to a value which is safe for both LED 

and MCU port driver

 Use current-limiting resistor

 R = (VDD –VLED)/ILED

 Set ILED = 4 mA

 VLED depends on type of LED (mainly color)

 Red: ~1.8V

 Blue: ~2.7 V

 Solve for R given VDD = ~3.0 V

 Red: 300 W

 Blue: 75 W 



102

Output Example: Driving a Speaker

 Create a square wave with a GPIO output

 Use capacitor to block DC value

 Use resistor to reduce volume if needed

void Speaker_Beep(uint32_t frequency){

Init_Speaker();

while(1){

GPIOD->BSRRL=(MASK(2));

Delay(frequency);

GPIOD->BSRRH=(MASK(2));

Delay(frequency);

}

}



103 Embedded Systems 

Analog Interfacing



104

Why Analog
 Embedded systems often need to measure values of physical parameters

 These parameters are usually continuous (analog) and not in a digital form which computers 
(which operate on discrete data values) can process

• Pressure
– Blood pressure monitor

– Altimeter

– Car engine controller

– Scuba dive computer 

– Tsunami detector

• Acceleration
– Air bag controller

– Vehicle stability

– Video game remote

• Mechanical strain

• Other
– Touch screen controller

– EKG, EEG

– Breathalyzer

• Temperature
– Thermometer (do you have a fever?)

– Thermostat for building, fridge, freezer

– Car engine controller

– Chemical reaction monitor

– Safety (e.g. microprocessor processor thermal 
management)

• Light (or infrared or ultraviolet) 
intensity

– Digital camera

– IR remote control receiver

– Tanning bed

– UV monitor

• Rotary position
– Wind gauge

– Knobs



105

ADC - The Big Picture 

Pressure
Sensor

Analog to 
Digital 

Converter

// Your software
ADC_Code = ADC0->R[0];
V_sensor = ADC_code*V_ref/1023;
Pressure_kPa = 250 * (V_sensor/V_supply+0.04);
Depth_ft = 33 * (Pressure_kPa – Atmos_Press_kPa)/101.3;

V_sensor ADC_Code

V_ref

V_sensor ADC_Code

Voltages

V_ref

Ground

ADC 
Output Codes

111..111

000..000
000..001

111..110
111..101
111..100

Air
Pressure



106

Getting From Analog to Digital

 A Comparator tells us “Is Vin > Vref?”

 Compares an analog input voltage with an analog 

reference voltage and determines which is larger, 

returning a 1-bit number

 E.g. Indicate if depth > 100 ft

 Set Vref to voltage pressure sensor returns with 100 ft

depth.

An Analog to Digital converter [AD or ADC] tells us 

how large Vin is as a fraction of Vref.

 Reads an analog input signal (usually a voltage) and produces 

a corresponding multi-bit number at the output.

 E.g. calculate the depth

0

Vin

Vref

Comparator

0

1

0

1

Vin

Vref

Clock

A/D Converter



107

ADC – Flash Conversion

 A multi-level voltage divider is used to set voltage 

levels over the complete range of conversion.

 A comparator is used at each level to determine 

whether the voltage is lower or higher than the 

level.

 The series of comparator outputs are encoded to 

a binary number in digital logic (a priority 

encoder)

 Components used
 2N resistors

 2N-1 comparators

 Note 
 This particular resistor divider generates voltages 

which are not offset by ½ bit, so maximum error 

is 1 bit

 We could change this offset voltage by using 

resistors of values R, 2R, 2R ...  2R, 3R (starting at 

bottom)

1/8 V

2/8 V

3/8 V

4/8 V

5/8 V

6/8 V

7/8 V +

-

Encoder

+

-

+

-

+

-

+

-

+

-

+

-

1V

Vin

ComparatorsR

R

R

R

R

R

R

R

3

1

1

1

0

0

0

0



108

ADC - Successive Approximation Conversion

 Successively approximate input voltage by using a 

binary search and a DAC

 SA Register holds current approximation of 

result

 Set all DAC input bits to 0

 Start with DAC’s most significant bit

 Repeat 

 Set next input bit for DAC to 1

 Wait for DAC and comparator to stabilize

 If the DAC output (test voltage) is smaller than 

the input then set the current bit to 1, else clear 

the current bit to 0

D/A Converter

Successive

Approximation

RegisterStart of Conversion
Status

Clock

Analog Input

Digital Output 12

+

-

Comparator output



109

ADC - Successive Approximation Conversion …
V

o
lt
a

g
e

TimeStart of 

Conversion

Test voltage

(DAC output)

T
1

T2 T
3

T
4

T
5

T
6

000000

100000

100100

Analog

Input
k
n

o
w

 1
x
x
x
x
x
, 

tr
y
 1
1

0
0

0
0

100110

k
n

o
w

 x
x
x
x
x
x
, 

tr
y
 1

0
0

0
0

0

k
n

o
w

 1
0

x
x
x
x
, 

tr
y
 1

0
1

0
0

0

k
n

o
w

 1
0

0
x
x
x
, 

tr
y
 1

0
0
1

0
0

k
n

o
w

 1
0

0
1

x
x
, 

tr
y
 1

0
0

1
1

0

k
n

o
w

 1
0

0
1
1

x
, 

tr
y
 1

0
0

1
1
1

k
n

o
w

 1
0

0
1
1

0
. 

D
o

n
e

.

D/A Converter

Successive

Approximation

RegisterStart of Conversion
Status

Clock

Analog Input

Digital Output 12

+

-

Comparator output



110

LPCxpresso 1115 Analog I/O

 Single 10-bit successive approximation ADC with 8 input 

channels

 AD0-AD5,AD6(PIO1_10),AD7(PIO1_11), multiplexed pins

 No on board DAC

 Measure range from 0 to 3.6V

 Power-down mode

 Individual result registers for each A/D channel to reduce 

interrupt overhead



111

Conversion Resolution and Time

 Conversion resolution is defined by both reference voltage and CLKS bits

 By default, CLKS is 0x0 and the reference voltage is 3.3 V

 Which means the result will be 10 bits

 3.3V/210=3.2mV

 Conversion time is defined by both CLKDIV bits and CLKS bits

 By default, CLKDIV is 0x0 and CLKS is 0x0 (11 clock cycles)

 Which means the clock for ADC is 4.5MHz/1 (CLKDIV+1)

 11×1/4.5MHz=2.44 μs (shortest time)



112

Using the ADC

 ADC initialization

 Enable clock

 Enable ADC(power)

 Configure I/O

 Select trigger source

 Select input channel

 Select other parameters

 Trigger conversion

 Read results

 Calibrate? Average?



113

On-off Control

 For power efficiency, the ADC module is usually turned off (even if it is clocked).

 Good practical to shut down ADC whenever you are not using it.

 Two related registers: SYSAHBCLKCTRL register and PDRUNCFG register

 The first step is to disable the power down bit to the ADC block in PDRUNCFG register:

 LPC_SYSCON->PDRUNCFG &= ~(0x1<<4);

 Then enable the clock, set the bit 13 in the System AHB clock control register since ADC 

clocked by APB clock (PCLK 4.5MHz) ,

 LPC_SYSCON->SYSAHBCLKCTRL |= (1<<13);



114

Configuration IOCON register for ADC

 As mentioned previously, I/O needs proper configuration for different function.

 AD0 for example:

 Choose function AD0(0x2)

◦ LPC_IOCON->R_PIO0_11 &= ~0x8F; // Clear corresponding IOCON 

◦ LPC_IOCON->R_PIO0_11 |= 0x0A;  // Analog input and pull-down mode



115

ADC Registers

 A/D Control Register (AD0CR),

 A/D Global Data Register (AD0GDR), most recent conversion result

 A/D Interrupt Enable Register (AD0INTEN), generate interrupt if needed

 A/D Channel x Data Register (AD0DRx, x could be 0-7)

 A/D Status Register (AD0STAT)



116

Interrupt Caused By ADC

 Data needed to be read by the end of conversion. Continuously fetch from 

the data register is a less effective way.

 Interrupt at completion of conversion

 A/D Interrupt Enable register

 7:0 ADINTEN, Set 1 to x bit to generate interrupt when x channel is 

converted.

 8 ADGINTEN, Set 1 to generate interrupt when any channel is converted. 

(Reset value 1, must be set to 0 in burst mode)

 Do whatever is needed in the handler


