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SUMMARY

In this paper we define and study a new three-parameter lifetime model called
the Burr X Fréchet distribution. The new model has the advantage of being
capable of modeling various shapes of aging and failure criteria. Various of its
properties including ordinary and incomplete moments, quantile and generating
functions, Rényi and n-entropies and order statistics are derived. The maximum likeli-
hood method is used to estimate the model parameters. Simulation results to assess the
performance of the maximum likelihood estimation are discussed. We prove empirically
the importance and flexibility of the new model comparing it with other extensions of
the Fréchet distribution in the existing literature.
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1 Introduction

Recently, the statisticians have proposed hundreds of continuous univariate distributions
which have several applications from economics, biomedical sciences, finance and engineer-
ing, among others. These applications have shown that data sets following the classical
distributions are more often the exception rather than the reality. So, a significant progress
has been made towards the generalization of some well-known models and their successful
applications in several applied areas. The generalization of the classical distributions is
made by adding one or more shape parameter(s) to the existing probability distribution to
improve the flexibility and goodness of fits of the distribution against the intuition of model
parsimony.

The Fréchet (Fr) distribution (type IT extreme value distribution) is one of the important
distributions in extreme value theory and it has wide applicability in extreme value theory.
The Fr distribution was proposed by Maurice Fréchet (1878-1973), who investigated it as
one possible limit distribution for a sequence of maxima. The Fr distribution is widely
used in applications involving stochastic phenomena such as rainfall, floods, air pollution as
shown by Kotz and Nadarajah (2000). Harlow (2002) applied it in material properties in
engineering applications. Zaharim et al. (2009) used the Fr model in analyzing wind speed
data. Resnick (2013) applied the Fr distribution on point processes and regularly varying
functions. For more details about the Fr distribution and its applications see, e.g. Kotz and
Nadarajah (2000).

In this paper, we introduce and study a new lifetime model called the Burr X Fréchet
(BrXFr) distribution. Using the Burr-X generator (BrX-G) introduced by Yousof et al.
(2016), we construct the three-parameter BrXFr model and derive some of its mathematical
properties.

In fact, the BrXFr distribution can provide better fits than at least thirteen other models,
each one having the same or more number of parameters. Furthermore, the BrXFr distri-
bution due to its flexibility in accommodating all forms of the hazard rate function (hrf)
seems to be an important distribution that can be used to serve as an alternative model
to other lifetime distributions available in the literature for modeling positive real data in
many areas. We prove that the BrXFr distribution is capable of modelling various shapes
of data.

Let g(x; &) and G(z; ) denote the probability density function (pdf) and the cumulative
distribution function (cdf) of the baseline model with parameter vector &, respectively.

Hence, the cdf of the BrX-G is defined by
973 ¢
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The corresponding pdf of the BrX-G is given by
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where 6 is a positive shape parameter and G(z;&) = 1 — G(x;€).
The hrf and cumulative hazard rate function (chrf) of the BrX-G are given, respectively,
by
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In general a random variable X with pdf (1.2) is denoted by X ~BrX-G(#,¢).

2 Existing literature

In this section, we shall survey all the extensions of the Fr distribution and considered
competitive models to the proposed distribution. The statistical literature contains many
modified forms for the Fr distributions which are mentioned below in chronological order.
We prove empirically that the BrXFr model can give better fits over all other extensions of
the Fr distribution. We have the following models:

The exponentiated Fr (EFr) (Nadarajah and Kotz, 2003). The pdf of EFr is defined as

F(2)=08a° 2% exp [— (Z‘ﬂ {1 —exp [— (‘;ﬂ }9_1 :

where «, 3,60 > 0.
The Beta Fr (BFr) (Nadarajah and Gupta, 2004). The pdf of BFr is defined as

- Baﬂ g1 an B an B b—1
f(m)_B(a,b)x exp —a(x) 1 —exp _(x) )
where «, 3,a,b > 0.
The transmuted Fr (TFr) (Mahmoud and Mandouh, 2013). The pdf of TFr is defined as

F(2)=Ba’z~ L exp {— (z)ﬁ] {9 +1—20exp [— (z)ﬂ } ,

where a, > 0 and |6] < 1.
The Marshall-Olkin Fr (MOFr) (Krishna et al., 2013). The pdf of MOFr is defined as

050l =P Lexp [— (%)’8}
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where «, 3,60 > 0.
The gamma extended Fr (GEFr) (Silva el al., 2013). The pdf of GEFr is defined as

o = e[ QYoo [ )
ay b—1
fref- O
where «, 8,a,b > 0.

The transmuted exponentiated Fr (TEFr) (Elbatal et al., 2014). The pdf of TEFr is

defined as
o1 = asata o[ (2)] {i-en[-(2) ]}

(oo @),

where a, 5,4 > 0 and [b] < 1.
The Kumaraswamy Fr (KFr) (Mead and Abd-Eltawab, 2014). The pdf of KFr is defined

i F(2)=abBa® 2P exp {—a (i)ﬂ] {1 — exp {—a (Z‘ﬂ }b_l :

where «, 5,a,b > 0.
The transmuted Marshall-Olkin Fr (TMOFr) (Afify et al., 2015). The pdf of TMOFr is
defined as

Br—B—loxp |— (2)”
P I P
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where «, 8,a > 0 and [b]| < 1.
The transmuted exponentiated generalized Fr (TEGFr) (Yousof et al., 2015). The pdf
of TEGEFT is defined as

o = S e [ (- fom [
xexp [_ (Zﬂ {1+5_25{1— {1—exp {_ (i)BH } }

where a, 8,a,b > 0 and |6] < 1.
The Kumaraswamy Marshall-Olkin Fr (KMOFr) (Afify et al. 2016a). The pdf of KMOFr

2bexp [— (%)ﬂ}
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)

26



is defined as

s = aseta e [ () {0 -new [ (2}

o[ @ foramen @}

where «, 3,a,b,0 > 0.

The Kumaraswamy transmuted Marshall-Olkin Fr (KTMOFr) (Yousof et al., 2016). The
pdf of KTMOFr is defined as

s e= Y

(6 + K ()]
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where K(x) = (1 —d)exp {— (%)ﬁ} ,a,8,a,b,6 >0and A < 1.
The Weibull Fr (WFr) (Afify et al., 2016b). The pdf of WFr is defined as

i = et 1) fr-en ()]}
e (efen ()]} ),
where a, 4, a,b > 0.

The exponentiated exponential Fr (EExFr) (Mansoor et al., 2016). The pdf of EExFr is
defined as

s = asete b - (3] (1o [-(2) ]}

o 5 b a—1
x(l—{l—exp{—(a) ]}) )
where «, 3,a,b > 0.
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The beta exponential Fr (BExFr) (Mead et al., 2017). The pdf of BExFr is defined as

LR e RGN RN

where «, 5,a,b,6 > 0.
The modified Fr (MFr) (Tablada and Cordeiro, 2017). The pdf of MFr is defined as

f(m):% (B +0x) (%)ﬁ exp |:—9£U - (%)ﬂ exp (—Qx)} ,

where «, 3,60 > 0.

All the above models will be used in the empirical comparisons in the application section
except the KTMOFr distribution.

The rest of the paper is organized as follows. In Section 3, we define the BrXFr distri-
bution and provide some plots for its pdf and hrf. In Section 4, we provide a useful mixture
representation for its pdf. In Section 5, we derive some mathematical properties of the
BrXFr distribution including ordinary and incomplete moments, quantile and generating
functions, Galtons skewness and Moors” kurtosis, moments of the residual and reversed
residual life, Rényi and n-entropies and order statistics. The maximum likelihood estima-
tion of the unknown model parameters is addressed in Section 6. In Section 7, simulation
results to assess the performance of the proposed maximum likelihood estimation procedure
are discussed. In Section 8, we provide an application to a real data set to illustrate the
importance and flexibility of the new model. Finally, in Section 9, we give some concluding
remarks.

3 The BrXFr distribution

The cdf and pdf of the Fr distribution are given, respectively, by G(z;a, 8) = exp[— (%)ﬂ]
and g(z;,8) = BaPz=P texp[— (%)6], where a > 0 is a scale parameter and 8 > 0 is a
shape parameter. Based on Equation (1.1), the cdf of the BrXFr distribution is defined (for

x> 0) by

o[- (2]

1—exp [~ (2)"]
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Using Equation (1.2), we have the pdf of the BrXFr distribution

2030 x=F~Lexp [*2 (%)ﬂ exp [* (%)ﬁ}
flz) = exp | — 1 — exp {_ (%)5}

3
{t-ew - (2]}

2 0—1

e [ (5)']

Xx1l—exp |— 3 . (3.2)

1 —exp [— (%) ]

Henceforth, let X ~BrXFr(«, 3,6) be a random variable having the pdf (3.2). The hrf and

chrf of X are given, respectively, by

20807z lexp [ -2 (2)”] exp [_ (M)Q]
{1 — exp [f (%)ﬁ} }3 - {1 . [ <
wd1—exp|— exp {— (%)5] ’ } |

h(z) =

and
2

a\B

exp - (2)7]
1—exp [— (%)B}
Figure 1 displays some plots of the BrXFr density for selected values of a, § and #. These
plots illustrate the versatility and modality of this distribution. The plots in Figure 2 reveal

that the hrf of BrXFr distribution can have bathtub, unimodal, increasing, decreasing and
modified bathtub shapes.

H(zx)=—log|1-q¢1—exp |—

4 Linear representation
An expansion for equation (3.1) can be derived using the power series

(1-2) = i(q)ﬂ' (b) 2, (4.1)

§=0
where |z| < 1 and b > 0.
Then, the BrXFr cdf can be expressed as

Fla)= i(_Uj <9> exp | —j P [_ <%)B} ’

i=0 J
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Figure 1: The BrXFr density for some selected parameter values.
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Figure 2: The BrXFr hrf for some selected parameter values.
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Applying the exponential series, we have
S AP oy’ oy
F(z)= Z e\ exp |—2k (;) 1—exp|— (E) . (4.2)
7,k=0
For |z| < 1, the power series holds

(1-2)"= i(q)j (q) . (4.3)

=0 J

—2k
Applying the power series (4.3) to {1 — exp {— (%)ﬁ} } gives

a2 } Sy (e [1(2)]

=0

Substituting the last expression in (4.2), the BrXFr cdf be expressed as

Fla)= f: (—1)];'”{7’“(% <_l2k>exp [— 2k + 1) (jﬂ

J,k,1=0 J

Or, equivalently, we can write

F(z) =Y ¢kt Garpl®), (4.4)
k=0

where

> (_1)j+k+ljk 0\ /—2k
=2 = () (1)
and Gogyi(x) is the cdf of the Fr distribution with shape parameter 8 and scale parameter
a(2k+0)Y7,

By differentiating equation (4.4), the BrXFr density function can be expressed as a linear
combination of Fr densities -

f(z) = Z Pkt Gak+1(T), (4.5)
k,1=0

where gor1(x) is the Fr density with shape parameter § and scale parameter « (2k + l)l/ s,
Hence, several mathematical properties of the BrXFr distribution can be derived from (4.5).
Let the random variable Z be a Fr density with pdf and cdf defined in the beginning of
Section 2. For n < f3, the nth ordinary and incomplete moments of Z are given by

B
e (3) a2 152

respectively, where I'(s) = fooo y*~le ¥dy is the complete gamma function and ~(s,2) =
fOZ y* 1 e ¥dy is the lower incomplete gamma function.
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5 Mathematical properties

In this section, we investigate some mathematical properties of the BrXFr distribution
including ordinary and incomplete moments, quantile and generating functions, Galtons
skewness and Moors” kurtosis, moments of the residual and reversed residual life, Rényi
and n-entropies and order statistics.

5.1 Ordinary and incomplete moments

The rth ordinary moment of X is given by

o0 o)
wo=E(X") =Y on / " gari(x)da.
k,1=0 0

For r < 3, we obtain

;:a’“r<1—r> 2k 4+ 1)7/° . 5.1
I 3 k;_:owk,z( ) (5.1)

The mean of X follows directly from (5.1) with r = 1.
The nth central moment of X, say u,, follows as

n

= B0 = S0 () e

k=0

Table 1 provides numerical values for the mean, median and standard deviation (SD) of
X for selected parameter values. For fixed values of a and 3, the mean and the median of
BrXFr increase as 6 increases, while its SD decreases as 6 increases. For fixed values of g
and 6, the mean, the median and the SD of BrXFr increase as « increases. For fixed values
of o and 0, the SD of BrXFr decreases as 3 increases, while the mean and the median of
BrXFr first increase and then decrease as 8 increases.

The skewness and kurtosis measures can be evaluated from the ordinary moments using
well-known relationships, and since « in (5.1) just depends on r, then the skewness and
kurtosis measures are not depend on a. Table 2 provides numerical values for the skewness
and kurtosis of X for selected parameter values to illustrate their effects on these measures.
For fixed value of 3, the skewness of BrXFr first decrease and then increase as # increases.
For fixed value of 0, the skewness of BrXFr first decrease and then increase as # increases.

The rth incomplete moment, say w,(t), of the BrXFr distribution is given by w,(t) =
fot x" f(x)dx.

We can write from equation (4.5)

o0 t
U}T(t) = Z SDk,l / .’ET ggk+l($)d$.
k,l=0 0
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Then, we have (for r < ),

i(pkl (2k +1)"/" (1_5(2k+1)<t>6>'

The first incomplete moment, wy (¢), has an important application related to the Bonfer-
roni and Lorenz curves defined by L(p) = w1 (xp)/p) and B(p) = w1 (zp)/(p}), respectively,
where x,, is the quantile function (qf) of X and pf = E(X) is the mean of X. These curves
are very useful in economics, demography, insurance, engineering and medicine.

Further, the amount of scatter in a population is evidently measured to some extent by
the totality of deviations from the mean and median. The mean deviations about the mean
and about the median of X (say say 0, and das respectively) can be expressed as 6, =
Jo T 1X = ] fz)de = 20 F(ph) — 2wy (1) and 6ar =[5 |X = M| f(z)da = py —2wi (M),
respectively, where F'(u}) is evaluated from (3.1) and wy (11}) is the first incomplete moment
of X at pf.

Table 1: Mean, median and SD for selected parameter values

Parameters a=0.7 a=1.0 a=3.0
0 B Mean  Median SD Mean  Median SD Mean  Median SD

0.1 0.54941  0.54498 0.10220 | 0.77813 0.77854 0.14522 | 2.35474 2.33561 0.43854
1.0 0.73057 0.73398 0.05732 | 1.04367 1.04855 0.08188 | 3.13102 3.14564 0.24565
25 | 5.0 | 0.77167 0.77284 0.04075 | 1.10238 1.10405 0.05822 | 3.30715 3.31216 0.17465
4.0 0.78785 0.78819 0.03480 | 1.12550 1.12599 0.04972 | 3.37649 3.37798 0.14915
6.0 0.79985 0.79968 0.03075 | 1.14265 1.14240 0.04393 | 3.42794 3.42721 0.13179
10.0 0.81296 0.81234 0.02673 | 1.16138 1.16049 0.03819 | 3.48413 3.48148 0.11457
0.1 0.56837 0.56819 0.08790 | 0.80160 0.81171 0.12603 | 2.43163 2.43512 0.37799
1.0 0.72507 0.72821 0.04755 | 1.03581 1.04030 0.06792 | 3.10744 3.12089 0.20377
25 | 6.0 | 0.75908 0.76019 0.03345 | 1.08441 1.08599 0.04778 | 3.25322 3.25797 0.14335
4.0 0.77237 0.77276 0.02845 | 1.10339 1.10394 0.04064 | 3.31016 3.31183 0.12192
6.0 0.78219 0.78213 0.02506 | 1.11742 1.11733 0.03581 | 3.35225 3.35200 0.10742
10.0 0.79288 0.79244 0.02172 | 1.13269 1.13206 0.03103 | 3.39807 3.39617 0.09310
0.1 0.52302 0.59861 0.08701 | 0.76244 0.85516 0.12039 | 2.32547 2.56549 0.33615
1.0 0.71843 0.72105 0.03547 | 1.02632 1.03007 0.05067 | 3.07897 3.09022 0.15201
25 | 80 | 0.74373 0.74468 0.02462 | 1.06247 1.06382 0.03517 | 3.18740 3.19147 0.10550
4.0 0.75351 0.75389 0.02083 | 1.07644 1.07698 0.02976 | 3.22933 3.23095 0.08927
6.0 0.76071 0.76074 0.01829 | 1.08672 1.08677 0.02612 | 3.26017 3.26031 0.07837
10.0 0.76851 0.76824 0.01579 | 1.09788 1.09749 0.02256 | 3.29363 3.29248 0.06767
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Table 2: Skewness and Kurtosis for selected parameter values

0 B Sk Ku B Sk Ku B Sk Ku
0.5 -0.22673 | 2.59646 -0.26947 | 2.63078 1.27616 | 1.65362
1.0 -0.29013 | 2.89619 -0.32673 | 2.93625 -0.37302 | 2.99329
2.5 | 5.0 | -0.16545 | 3.00926 | 6.0 | -0.19198 | 3.02882 | 8.0 | -0.22535 | 3.05736
4.0 -0.06410 | 3.00607 -0.08635 | 3.01430 -0.11425 | 3.02709
6.0 0.02356 | 3.01080 0.00422 | 3.01133 -0.02000 | 3.01393
10.0 0.12612 | 3.03789 0.10955 | 3.03145 0.08885 | 3.02504

5.2 Quantile and generating functions

The quantile function (qf) of the BrXFr, Q(.), is giving by

=

s3]’

T , O0<u< 1. (5.2)
1+ [—log (1 —ué)} ’

Qu)=a|—log

Simulating the BrXFr random variable is straightforward. If U is a uniform variate on
the unit interval (0,1), then the random variable X = Q(U) has pdf (3.2). Furthermore,
The median of the random variable X ~BrXFr(a,3,6) is a special case from (5.2) when
u = 0.5, i.e, M = Q(0.5).

To derive the the moment generating function (mgf) of the random variable X ~
BrXFr(a,B,0), at first, we provide the mgf of Fr distribution as given in Afify et al.(2016b).
Let the random variable Z ~Fr(a, 3), and let y = 27!, then the mgf of the Fr model,
M (t; v, B), comes out as

e t
M(t; e, B) = 60/3/ exp (y) y" ! exp [— (ay)ﬂ dy.
0
Applying the exponential series for exp (t/y) and after some algebra, we obtain
oo o0 tn
M(t;e, ) = pa’ /0 7; P exp [* (ay)ﬁ} dy

a™t" 8—n
> (%)

n=0
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Consider the Wright generalized hypergeometric function given by

p
H (aj + Ajn)

0, (al,Al)...,(a >
(B1,B1)s- (Bg, B ) Z::

n!

q
H (8; + Bjn)
Then, Afify et al. (2016b) derived the mgf of the Fr distribution as

Mt ) =0y | BP0t (5.3)

Using equations (4.5) and (5.3), the mgf of X ~BrXFr(«, 3,60), denoted by M(t), is given
by

0 -1
= Z Pri1¥o (1’_6 ) sat (2k+l)1/5
k=0 —

5.3 Skewness and kurtosis based on quantiles

The gf in (5.2) can be used to study the relationships between the parameters 3, 6
and the skewness and kurtosis, the Galton$ skewness (Galton, 1883) and Moors” kurtosis
(Moors, 1988) are depend on the qf Q(.) in (5.2). The Galtons skewness and Moors” kurtosis,
respectively, are given by

o @B/ —2Q(1/2) + Q(1/4)
Q(3/4) — Q(1/4)

= QU7/8) — Q(5/8) + Q(3/8) — Q(1/8)
Q(6/8) — Q(2/8)
The parameter « can be canceled out from the S and K in (5.4), so the Galtons skewness
and the Moors” kurtosis for the BrXFr does not depend on «a.
Figure 3 shows the Galtons skewness and the Moors” kurtosis for the BrXFr using the
parameters 5 and 6.

and

(5.4)

5.4 Residual and reversed residual life

Let X be a random variable representing the life length for a certain unit at age ¢ (where
this unit can have multiple interpretations). Then, the random variable X; = X —¢ | X > ¢
denotes the remaining lifetime beyond that age.

The nth moment of the residual life of X is defined (for ¢ > 0 and n =1,2,...) by

mn(t) = E[(X —t)" | X > 1] = ﬁ /:C(x )" f()da.
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Figure 3: Galton$ skewness and Moors” kurtosis for the BrXFr distribution.
For the BrXFr distribution, we can write (for r < )
ma(t) = —— Zn: S a1 (Vo 2k 07T (12T 2k 4 ) (ﬁ)ﬁ
" S() = 42 o r B’ t) )

where I'(s, z) = fzoo y5~1 e ¥dy is the the upper incomplete gamma function.

The mean residual life (MRL) function corresponding to m., (t) represents the expected
additional life length for a unit that is alive at age x and it has applications in survival analy-
sis, biomedical sciences, life insurance, maintenance and product quality control, economics,
social studies and demography.

Furthermore, Navarro et al. (1998) proved that the nth moment of the reversed
residual life uniquely determines F'(x) and it is given (for t > 0 and n =1,2,...) by

M(t) = B[(t— X)" | X <f] = %t) / (t — )" f ().

Then, the nth moment of the reversed residual life for the BrXFr distribution reduces (for
r < ) to

0 = S g (e (1 ks (7)),
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The mean reversed residual life (MRRL) function corresponding to Mi(t) represents the
waiting time elapsed for the failure of an item under the condition that this failure had
occurred in (0,t). It is also known as mean inactivity time (MIT). The MIT of X can be
obtained by setting n = 1 in the last equation.

5.5 Rényi and n-entropies

The Rényi entropy of a random variable X represents a measure of variation of the
uncertainty. It is defined by

Iy (X) = 12 108 ((7,(X). 1> 0 and y # 1.

X) = /O; F1(z)dz

where

Using (3.2), we can write

exp [~ (5)”]

1—exp{—(

(ggﬁaﬂ)"m—n(ﬁﬂ) an B
fM(x) = 57 €X —2n (= exp | —
1-e[-(2)]) )]
exp [~ (2)"]
1-exp [~ (2)7]

After some simplifications, we have

812
—
sy
P

27\ n(0-1)

xX<¢1l—exp|—

116 = Y s {0 ()]

§,k=0
where
o~ (ZD)TITE (0= 1) (=30 —2j
(2 )" ( : .
(2050°) Zz:j'n—m J( i )( k >
Now, J,,(X) becomes
+ i 1-n(B+1)
Jy(X)=T ( n(8 )ijk (m+j)+k 7, (5.5)
7,k=0
where . o
Y (AN v = GO TR
" a) S+ i k
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Hence, the Rényi entropy of X ~BrXFr(«, 5, 6) is

I,(X) = 1inlog Z djx / x_n(ﬁ+1)exp{—[2(n+j)—|—k] (z)ﬁ}dx

7,k=0

The n-entropy, say H,(X), is defined by

1
Hy(X) = n_llog[l—Jn(X)L n>0andn# 1,
and then it follows from (5.5).

5.6 Order statistics

Let X1, ..., X, be arandom sample of size n from the BrXFr distribution and X1y, ..., X(,)
be the corresponding order statistics. Then, the pdf of the ith order statistic Xj.,, say

fin(z), is given by

fim(x) = B(Z — + Z ’ (" R Z> F(x)y*i-1, (5.6)
j=
Using (3.1) and (3.2), we can write
B Y Y 2
f(m)F(x)H‘j—l _ 20BaPx—F Lexp [—2 (;) } exp |- exp {— (;) }

1—exp [f (%)5}

2 9(’i+j)71

{t-ew[- ]}

exp |- (2)"]
t-ew |- (2)]
Using (4.1), the exponential series and (4.3), and after some algebra, we have

f@)F(z)™=1 = 20Balz="7! i 1)t (r+1) (—213—3>

« (9 (i *7;7') T’f>le())(p [ 2(k+1)+1] (‘;)B] . (5.7)

By inserting (5.7) in (5.6), we can write

X<¢1l—exp|—

fim(z Z Mt a(k41)+1(2), (5.8)

k,1=0
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where

iz k!B nT:Zl)Q[Z((k 11))k ] (n]— Z) (_zkl_ 3) (9 ‘ +7“j) _ 1>'

and ga(x+1)+1(7) denotes the Fr density function with shape parameter 3 and scale parameter
a2(k+1) + 1]/8. Thus, the density function of the BrXFr order statistics is a linear
combination of Fr densities. Based on equation (5.8), we can derive some properties of Xj.,,
from those Fr properties.

The gth moment of X;.,, (for ¢ < «) is given by

B(X2 )—aqF(1—> > meg 2(k+1)+ 197,
k,l1=0

6 Maximum likelihood estimation

The maximum likelihood is the most commonly employed method, in the literature, for
parameter estimation because the maximum likelihood estimators (MLEs) enjoy desirable
properties and can be used when constructing confidence intervals and regions and also
in test statistics. Further, the normal approximation for these estimators in large sample
distribution theory is easily handled either analytically or numerically. The MLEs of the
parameters of the BrXFr model is now discussed. Let x1,...,z, be a random sample of this
distribution with unknown parameter vector ¢ = (a, f3, 6)

The log-likelihood function for ¢, say ¢ = £(p), is given by

l = nlog(?)Jrnlog(ﬂ)Jrnlog(G)Jrnﬂlog(oz)f(ﬂJrl)Zloga:i
S () sy oS [ K )
_2;<$i> —3;log[l—K(xl)] Z[l—K(xi)}

i=1

+(0—1)Zlog{1—exp [— (%) ]}, (6.1)

where K (z;) = exp [—(a/z;)?] .

Equation (6.1) can be maximized either directly by using the R (optim function), SAS
(PROC NLMIXED), Ox program (sub-routine MaxBFGS) or by solving the nonlinear likelihood
equations obtained by differentiating (6.1).

ﬂ_(ﬂﬂ ot

T
The score vector elements, U (p) = by = \da> 957 %) , are, respectively, given by
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2 \P

() (@) L () TR
o (2) e [ () s (2)

SAO-D ) 1 - Kz {1 ~exp {_ (1K%>)2] }

and

o n - K(:) ?
89_9—4—;_;10g<1—exp [— <1—K(xi)> ]) (6.2)

We can obtain the estimates of the unknown parameters by setting the score vector to
zero, U(@) = 0. By solving these equations simultaneously gives the MLEs & and B They
can not be solved analytically and statistical software can be used to solve them numerically
by means of iterative techniques such as the Newton-Raphson algorithm.

~

For more simplicity, from (6.2) and for fixed o and 8, we can obtain 6(«, §8) as

~ n

O(c, B) = — K@iaB) 2|\
Z?Zl log (1 — exp [_ (%) ])

The MLE of o and 3 denoted by & and E, respectively, these estimates can be obtained by
numerically solving the following non-linear equations

(6.3)
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Y
B0 SEC) S
(z)ﬁ[(?(mi)expl: (m)g} )
i=1 [1—K(xi)]3{1—exp [_ (%)1} =

and

B+nlog Zlog zi) —32%1”1 (;> lo)g( )

ey st

K ()]’

A . (g) K2(z;) exp [— (f,‘ﬁfi)ﬂ log ()
—2(0(ex, B) — 1) ; - Kz {1 — exp [ (f&;{_))? }

After the numerically iterative techniques are used to ) compute a and ﬁ from (6.4), the
MLE of a (5( ,0)) can be computed from (6.3) as 9(a B) For the BrXFr distribution all
the second order derivatives exist.

For interval estimation of the model parameters, we require the 3 x 3 observed infor-
mation matrix J(¢) = {J,s} for r;s = a,8,0. Under standard regularity conditions, the
multivariate normal N3(0,.J(®)~!) distribution can be used to construct approximate con-
fidence intervals for the model parameters. Here, J({) is the total observed information
matrix evaluated at @. Therefore, approximate 100(1 — ¢)% confidence intervals for a,
and 0 can be determined as:

a=+ zZg \/i, E:t z%@ and 04+ g \/?997 where Zg is the upper ¢th percentile of
the standard normal distribution.

=0. (6.4)
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7 Simulation study

We now present the results for some simulations that investigate the behavior of the
MLEs in terms of the sample size n. All of these simulations were performed using R 3.3.3
programming language R (R Core Team (2017)). We generated 2,000 random samples
from the distribution BrXFr by using the relation (5.2) with three different sample sizes
n = 50, n = 150 and n = 400. We set the true values of the parameters as follows:
a = (0.5,1,2),8 = (0.1,1,3) and 6 = (0.4, 1,5). For each sample size and each parameter
combination, the average MLEs and mean square errors (MSEs) are computed. Tables 3,
4 and 5 show these results, it can be seen that the estimates are stable and quite close the
true parameter values for these sample sizes. Furthermore, as the sample size increases the
MSEs decreases in all cases.

8 Data analysis

This section is devoted to illustrate the empirical importance of the BrXFr distribution
using an application to real data. The data set refers to the survival times, in weeks, of 33
patients suffering from acute Myelogeneous Leukaemia (Feigl and Zelen, 1965). The data
are: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22,
3,4,2,3,8,4, 3, 30, 4, 43.

For this data set, we shall compare the fit of the BrXFr distribution with the MFr,
WEFr, KMOFr, KFr, EExFr, EFr, TEFr, GEFr, BFr, MOFr, TEGFr, BExFr, TFr and Fr
distributions.

In order to compare the fitted distributions, we consider the following criteria: the —20
(Maximized Log-Likelihood), AIC (Akaike Information Criterion), CAIC (Consistent Akaike
Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan-Quinn
Information Criterion). We also shall consider the Cramér-von Mises (WW*) and Anderson-
Darling (A*) statistics. The model with minimum values for these statistics could be chosen
as the best model to fit the data.

Table 6 provides the values of the MLEs and their corresponding standard errors (in
parentheses) of the model parameters, whereas the values of these statistics for the fitted
models to both data sets are listed in Table 7.

The plots of the fitted BrXFr, MFr, WFr, KMOFr, KFr and EExFr pdfs are displayed
in Figure 4. The estimated cdfs for first six competitive models are shown in Figure 5.
Figure 6 shows the QQ plots for these fitted models.

In order to assess if the model is appropriate, the plots of the fitted BrXFr density,

estimated cdf and sf and the QQ plot for the BrXFr distribution are displayed in Figure 7.
We conclude that the BrXFr distribution provides good fits to these data.
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Table 3: Average values of MLEs and the corresponding MSEs (n = 50)

Parameters

MLE

MSE

B

0

~

(0}

]

0

~

[0

g

0

0.50000

0.10000

0.40000
1.00000
5.00000

0.56496
0.51141
0.58350

0.14271
0.10252
0.10189

0.23729
1.01843
5.09682

0.03294
0.00216
0.07572

0.00435
0.00010
0.00008

0.07150
0.02564
0.54922

1.00000

0.40000
1.00000
5.00000

0.52458
0.50351
0.50470

1.04773
1.02435
1.02443

0.38918
1.01390
5.11664

0.02103
0.00226
0.00055

0.02863
0.00850
0.00968

0.01057
0.02467
0.59883

3.00000

0.40000
1.00000
5.00000

0.92249
0.70530
0.50164

3.09378
3.08053
3.07991

0.23293
0.83151
5.11081

0.42310
0.20462
0.00006

0.04337
0.05605
0.08727

0.07065
0.22435
0.55255

1.00000

0.10000

0.40000
1.00000
5.00000

1.14806
1.02135
1.17407

0.14196
0.10209
0.10193

0.23854
1.01788
5.10225

0.16398
0.00868
0.36255

0.00427
0.00009
0.00009

0.07035
0.02321
0.54760

1.00000

0.40000
1.00000
5.00000

1.01389
1.00180
1.00904

1.06128
1.02150
1.02323

0.39004
1.01798
5.11721

0.01612
0.00008
0.00218

0.03961
0.00689
0.00940

0.01145
0.02186
0.56880

3.00000

0.40000
1.00000
5.00000

1.40192
1.11342
1.00255

3.08099
3.07421
3.06615

0.23833
0.92060
5.11568

0.40325
0.11234
0.00023

0.05051
0.05984
0.08380

0.06846
0.13425
0.58578

2.00000

0.10000

0.40000
1.00000
5.00000

2.24647
2.03383
2.41460

0.14419
0.10243
0.10247

0.23418
1.01511
5.10662

0.55362
0.03554
1.52793

0.00448
0.00011
0.00010

0.07356
0.02645
0.57877

1.00000

0.40000
1.00000
5.00000

1.95415
2.00327
2.01914

1.18011
1.02190
1.02481

0.33845
1.01809
5.09743

0.03560
0.00032
0.00911

0.15802
0.00688
0.01003

0.03290
0.02319
0.58749

3.00000

0.40000
1.00000
5.00000

2.06174
2.00123
2.00538

3.07204
3.06149
3.06889

0.38088
1.01902
5.10399

0.06440
0.00004
0.00094

0.05215
0.06283
0.08337

0.01472
0.02146
0.59510
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Table 4: Average values of MLEs and the corresponding MSEs (n = 150)

Parameters MLE MSE

o B 0 a B 0 a B 0

0.40000 | 0.54684 0.15191 0.18915 | 0.00980 0.00533 0.08551
0.10000 | 1.00000 | 0.50382 0.10112 0.99871 | 0.00055 0.00007 0.01254
5.00000 | 0.53336 0.10086 5.03348 | 0.02101 0.00003 0.17990

0.50000 0.40000 | 0.54634 1.03832 0.37636 | 0.04103 0.02594 0.01155
1.00000 | 1.00000 | 0.50259 1.00847 1.00215 | 0.00181 0.00323 0.00987
5.00000 | 0.50123 1.00653 5.03030 | 0.00017 0.00280 0.17776

0.40000 | 0.97562 3.03156 0.20775 | 0.47317 0.01876 0.07797
3.00000 | 1.00000 | 0.73382 3.02822 0.78327 | 0.23280 0.01782 0.24030
5.00000 | 0.50045 3.02255 5.03531 | 0.00002 0.02471 0.16450

0.40000 | 1.09918 0.15134 0.19132 | 0.04178 0.00527 0.08471
0.10000 | 1.00000 | 1.00849 0.10124 0.99893 | 0.00212 0.00008 0.01287
5.00000 | 1.07105 0.10093 5.02596 | 0.08519 0.00003 0.16702

1.00000 0.40000 | 1.01478 1.06303 0.37707 | 0.01829 0.05233 0.01205
1.00000 | 1.00000 | 1.00084 1.00585 1.00292 | 0.00030 0.00233 0.00726
5.00000 | 1.00306 1.00757 5.03991 | 0.00069 0.00278 0.17118

0.40000 | 1.43977 3.01523 0.22064 | 0.43589 0.02627 0.07308
3.00000 | 1.00000 | 1.18153 3.01855 0.83548 | 0.18003 0.01991 0.18851
5.00000 | 1.00070 3.01948 5.04793 | 0.00008 0.02634 0.16796

0.40000 | 2.17564 0.15315 0.18453 | 0.14138 0.00545 0.08731
0.10000 | 1.00000 | 2.01612 0.10093 0.99936 | 0.00859 0.00007 0.01155
5.00000 | 2.12501 0.10078 5.03305 | 0.32844 0.00003 0.18197

2.00000 0.40000 | 1.90074 1.34178 0.24959 | 0.06775 0.31953 0.06232
1.00000 | 1.00000 | 2.00084 1.00637 1.00542 | 0.00009 0.00213 0.00738
5.00000 | 2.00488 1.00641 5.02619 | 0.00258 0.00258 0.16889

0.40000 | 2.18326 3.01485 0.32559 | 0.17952 0.02950 0.03227
3.00000 | 1.00000 | 2.00034 3.02715 1.00484 | 0.00001 0.02071 0.00690
5.00000 | 2.00244 3.02809 5.02601 | 0.00032 0.02623 0.17637
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Table 5: Average values of MLEs and the corresponding MSEs (n = 400)

Parameters MLE MSE

a B 0 a B ) a B 0

0.40000 | 0.52728 0.15183 0.18903 | 0.00369 0.00526 0.08476
0.10000 | 1.00000 | 0.50165 0.10181 0.98695 | 0.00066 0.00018 0.01851
5.00000 | 0.51200 0.10032 5.01750 | 0.00662 0.00001 0.06462

0.50000 0.40000 | 0.53170 1.03427 0.37864 | 0.02864 0.02717 0.00928
1.00000 | 1.00000 | 0.50532 1.00781 0.99588 | 0.00389 0.00489 0.01070
5.00000 | 0.50074 1.00339 5.00699 | 0.00006 0.00095 0.06212

0.40000 | 0.95042 3.00668 0.21776 | 0.44781 0.01186 0.07327
3.00000 | 1.00000 | 0.74325 3.00711 0.76762 | 0.24224 0.00774 0.24668
5.00000 | 0.50027 3.01191 5.01016 | 0.00001 0.00877 0.06458

0.40000 | 1.05645 0.14920 0.19992 | 0.01229 0.00500 0.08037
0.10000 | 1.00000 | 1.00293 0.10197 0.98729 | 0.00071 0.00019 0.02055
5.00000 | 1.02970 0.10042 5.01293 | 0.02761 0.00001 0.06352

1.00000 0.40000 | 1.01156 1.06977 0.36810 | 0.02264 0.06053 0.01356
1.00000 | 1.00000 | 1.00088 1.00454 1.00173 | 0.00027 0.00253 0.00464
5.00000 | 1.00070 1.00196 5.00606 | 0.00026 0.00102 0.06063

0.40000 | 1.43997 2.98710 0.21931 | 0.43366 0.02354 0.07286
3.00000 | 1.00000 | 1.20589 3.00096 0.80487 | 0.20411 0.00945 0.21010
5.00000 | 1.00023 3.00618 5.01093 | 0.00003 0.00908 0.06381

0.40000 | 2.10608 0.15188 0.18977 | 0.04473 0.00526 0.08452
0.10000 | 1.00000 | 2.00487 0.10163 0.98827 | 0.00284 0.00015 0.01702
5.00000 | 2.04042 0.10023 5.01389 | 0.11010 0.00001 0.05986

2.00000 0.40000 | 1.86057 1.42197 0.21021 | 0.08298 0.39228 0.07638
1.00000 | 1.00000 | 2.00030 1.00460 1.00112 | 0.00017 0.00263 0.00471
5.00000 | 2.00307 1.00374 5.01160 | 0.00100 0.00100 0.06254

0.40000 | 2.30803 2.97575 0.27203 | 0.30147 0.02657 0.05221
3.00000 | 1.00000 | 2.00010 3.00758 1.00431 | 0.00000 0.00686 0.00269
5.00000 | 2.00081 3.00966 5.01990 | 0.00011 0.00913 0.06634
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Table 6: MLEs and their standard errors (in parentheses) for Leukaemia data

Model Estimates
a 8
Fr 7.8652 0.6944
(2.0913) (0.0915)
a B )
BrXFr 62.2609 0.5805 0.1715
(3.2345) (0.0853) (0.0512)
MFr 14.2312 0.4634 0.0123
(7.4633) (0.1139) (0.0051)
EFr 1426.6289 0.24909 13.7467
(3607.173)  (0.0708)  (13.5121)
MOFr 1.9073 0.9875 8.0679
(1.8016)  (0.1859)  (11.1477)
TFr 5.5489 0.7401 -0.4291
(2.9837) (0.0995)  (0.5549)
a B 0 b
WEr 2.62229 1.8389 0.1704 0.3807
(1.8352) (1.4657)  (0.1459)  (0.2714)
KFr 9378.570 0.0842 5.5132 7160.57
(804.3827)  (0.0247)  (2.2439)  (17494.23)
EExFr 401.2899 0.5184 0.1882 6.0288
(2.0789) (0.1424) (0.1587) (2.6705)
TEFr 1250.6801 0.2499 13.4874 -0.1175
(3390.324) (0.0761) (13.8716) (0.4874)
BFr 24.2231 0.0884 33.5337 60.5680
(305.1054)  (0.119015) (111.4965) (161.2934)
GEFr 62.7173 0.0555 189.5528 79.3368
(1756.0625)  (0.1070)  (738.3019) (388.7273)
a B 5 0 b
KMOFr 31946.73 0.6074 4.8067 1.0146 13724.51
(579.3846) (0.1067) (6.1015) (0.1390)  (10687.72)
TEGFr 309.5304 0.1925 6 -0.1872 10.3543 3.7951
(518.1863) (0.1109) (0.5069) (5.1201) (8.0303)
BExFr 0.1162 4.3641 0.0437 9.3849 6.4056
(0.0265) (0.0253) (0.0489) (2.7092) (9.6967)




Table 7: Goodness-of-fit statistics for Leukaemia data

Model —20 AIC CAIC BIC HQIC w* A

BrXFr | 302.157 | 308.157 | 308.985 | 312.647 | 309.668 | 0.06539 | 0.42675
MFr 303.124 | 309.124 | 309.951 | 313.613 | 310.634 | 0.07108 | 0.47049
WEr 302.577 | 310.577 | 312.006 | 316.564 | 312.592 | 0.06134 | 0.42550
KMOFr | 304.804 | 314.804 | 317.026 | 322.286 | 317.321 | 0.08367 | 0.54694
KFr 304.832 | 314.832 | 316.261 | 320.818 | 316.846 | 0.09461 | 0.63420
EExFr | 306.680 | 314.680 | 316.109 | 320.666 | 316.694 | 0.10293 | 0.64751
EFr 307.788 | 313.788 | 314.616 | 318.277 | 315.299 | 0.11151 | 0.70509

TEFr 307.760 | 315.760 | 317.189 | 321.746 317.774 | 0.11041 | 0.70069
GEFr 307.861 | 315.861 | 317.289 | 321.847 | 317.875 | 0.11385 | 0.71476
BFr 307.991 | 315.991 | 317.420 | 321.978 | 318.006 | 0.11569 | 0.72387
MOFr 309.378 | 315.378 | 316.206 | 319.868 | 316.889 | 0.12888 | 0.79777
TEGEFr 308.893 | 318.893 | 321.115 | 326.376 | 321.411 | 0.12552 | 0.77657
BExFr 309.905 | 319.905 | 322.127 | 327.387 | 322422 | 0.13931 | 0.85497
TFr 311.449 | 317.449 | 318.276 | 321.938 | 318.959 | 0.15502 | 0.94183
Fr 311.997 | 315.997 | 316.397 | 318.990 | 317.004 | 0.16011 | 0.97592

In Table 7, we compare the BrXFr model with the MFr, WFkr, KMOFr, KFr, EExFr,
EFr, TEFr, GEFr, BFr, MOFr, TEGFr, BExFr, TFr and Fr distributions. Its noted that
the proposed model has the lowest values for the AIC, CAIC, HQIC, BIC, W* and A*
statistics among all fitted models (except W* and A* for the WFr model). So, the BeXFr
model can be chosen as the best model among all fitted models.

9 Conclusions

In this paper, we propose a three-parameter model, called the Burr X Fréchet (BrXFr)
distribution, which extends the Fréchet (Fr) distribution pioneered by Maurice Fréchet
(1878-1973). An obvious reason for generalizing a standard distribution is the fact that
the generated model can provide more flexibility to analyze real life data. We provide some
of its mathematical and statistical properties. The BrXFr density function can be expressed
as a mixture of Fr densities. We derive explicit expressions for the ordinary and incomplete
moments, quantile and generating functions and moments of the residual life and reversed
residual life model, Rényi and n-entropies and order statistics. We discuss the estimation
of the model parameters by maximum likelihood. The proposed distribution is applied to a
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Figure 4: The fitted pdfs of the BrXFr, MFr, WFr, KMOFr, KFr and EExFr models for
Leukaemia data.
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Figure 5: Fitted cdfs of the BrXFr, MFr, WFr, KMOFr, KFr and EExFr models for
Leukaemia data.
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real data set. It provides a better fit than several other competitive nested and non-nested
models. We hope that the proposed model will attract wider application in areas such as
survival and lifetime data, engineering, hydrology, economics.
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