Synthesis and Reactions of Some Heterocyclic compounds of Expected Biological Activity

A thesis
Submitted in partial fulfillment of the requirements of master degree in chemistry

Submitted by
Esraa Azmy Abd El-Wahab
(Bachelor of Science in Chemistry)

Submitted To
Chemistry Department - Faculty of Science - Benha University

Supervised by

Prof. Dr. Ashraf Abd El-Hamid Wasfy
Professor of Organic Chemistry
Chemistry Department
Faculty of Science
Benha University

Prof. Dr. Mohamed Abo El-Ela Radwan
Professor of Applied Chemistry
Faculty of Engineering
Shoubra
Benha University

Dr. Ali Abd El-Maboud Ali
Ass. Professor of Organic Chemistry
Chemistry Department
Faculty of Science
Benha University

Dr. Manal Mahmoud El-Hefnawy
Lecture of Organic Chemistry
Faculty of Engineering
Shoubra
Benha University

2011
وأَنْزَلَ اللَّهُ عَلَيْكَ الْكِتَابَ وَالْحِكْمَةَ وَعَلَّمَكَ مَا لَمْ تَكُنْ تَعْلَمَ وَكَانَ فَضُلُّ اللَّهِ عَلَيْكَ عَظِيمًا

صدق الله العظيم

سورة النساء آية (113)
DEDICATION

To

My Husband
Title: Synthesis and Reactions of Some Heterocyclic compounds of Expected Biological Activity

Student name: Esraa Azmy Abd El-Wahab

Supervisors:

<table>
<thead>
<tr>
<th>Thesis advisors</th>
<th>Thesis approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Ashraf Abdel-Hamid Wasfy</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Mohamed Abo El-Ela Radwan</td>
<td></td>
</tr>
<tr>
<td>Dr. Ali Abd El-Maboud Ali</td>
<td></td>
</tr>
<tr>
<td>Dr. Manal Mahmoud El-Hefnawy</td>
<td></td>
</tr>
</tbody>
</table>

Prof. Dr. Shafei Galal Donia

Head of Chemistry Department
PRE-MASTER COURSES

Beside the work carried out in this thesis the candidate has attended Post-graduate courses in organic chemistry
Covering the following topics:

1. Physical organic chemistry
2. Heterocyclic chemistry
3. Analytical organic chemistry
4. Organic spectroscopy
5. Applied organic chemistry
6. Selected courses
7. English language

Prof. Dr. Shafei Galal Donia

Head of Chemistry Department
Receiving Date: 15.5.2011
Accepting Date: 12.5.2011

Dear: Esraa A. Abdel-Wahab

Your article Studies on 4 H-3,1 benzoxazinones A convenient synthesis of novel heterocycles with antimicrobial activity

By
Wasfy A. A. F., A. A. Aly, Manal M. Talat and Esraa Abdel-Wahab

is accepted for publication and will appear in Egyptian Journal of Applied Sciences Vol. 26 No. 3

Sincerely yours

Prof. A.A. Salem
N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisooindolin-2-yl)acetamide 2 was synthesized by treatment of anthranilic acid with (Z)-2-((4-(4-chlorobenzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)methyl)isoindoline-1,3-dione 1 in boiling butanol. The reactions of 2 with nitrogen and carbon nucleophiles and with carbon electrophiles was investigated.
ACKNOWLEDGMENTS

First and foremost thanks to ALLAH, the most compassionate and the most merciful.

I would like also to thanks Prof. Dr. Ashraf Abd El-Hamid Wasfy, Professor of Organic Chemistry, Faculty of Science, Benha University for his supervision, useful guidance, encouragement and facilities he offered me throughout the progress of this work.

I would like also to express my sincere thanks and deepest gratitude appreciation to Dr. Ali Abd El-Maboud Ali, Ass.Professor of Organic Chemistry, Faculty of Science, Benha University for his guiding the work during experimental measurements, supervision and continuous help.

I am extremely grateful to Prof. Dr. Mohamed Abo El-Ela Radwan, Professor of Applied Chemistry, Faculty of Engineering, Benha University for his kind supervision.

Deep thanks to Dr. Manal Mahmoud El-Hefnawy, Lecture of Organic Chemistry, Faculty of Engineering, Benha University for her supervision and encouragement.

I would like to thank my parents, my brothers for their endless support, encouragement and love.

I am so indebted to my husband he has been, always, my pillar and my guiding light. Without the love and support of my husband, I would not have finished this work. Thank you, my husband, for everything.

Finally, my thanks also extend to all the staff members and my colleagues in faculty of Engineering and Faculty of Science, Benha University for their cooperation and encouragement during this work.
TABLE OF CONTENTS

1. SUMMARY .. i

2. AIM OF THE WORK .. iii

3. INTRODUCTION ... 1

1. Importance of 4H-3,1-benzoxazin-4-ones ... 1
 1.1 Pharmaceutical applications of 4H-3,1-benzoxazin-4-ones 1
 1.2 Industrial applications .. 3

2. Synthesis of 4H-3,1-benzoxazin-4-ones .. 3

2.1 From anthranilic acids .. 3
 2.1.1 Via the action of acid chlorides on anthranilic acid ... 3
 2.1.2 Via the action of acid anhydrides on anthranilic acid ... 8
 2.1.3 Via reaction of anthranilic acid with aromatic carboxylic acid 11
 2.1.4 Reaction of substituted anthranilic acid with Boc-protected amino acids 12
 2.1.5 Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 13
 2.1.6 Synthesis of Bis(411)-3,1-benzoxazin-4-one derivatives : 13
 2.1.7 From interaction of anthranilic acid with heterocyclic compounds 14
 2.1.7.1 From 4-arylidene-2-aryl-oxazolin-5-one .. 14
 2.1.7.2 From iminodithiazole .. 14
 2.1.7.3 From (4H)-3,2-benzoxazin-4-one ... 15
 2.1.7.4 From 3- methyl-2-(ethoxycarbonylmethoxy) quinoxaline 15
 2.1.7.5 From 2-ethoxycarbonyl-4(3H)-quinazolin-4-one ... 15
 2.1.7.6 From substituted coumarin ... 16
 2.1.7.7 From hetero-ring opening of furanone derivatives .. 17
 2.1.7.8 From hetero-ring opening of 1,3-dioxin-4-one derivatives 17

2.2 From N-acylanthranilic acid ... 17

 2.2.1 Acetic anhydride as cyclizing agent .. 17
 2.2.2 Thionyl chloride as cyclizing agent .. 18
 2.2.3 Vilsmeier reagents as cyclizing agent ... 18
 2.2.4 Cyanuric chloride as cyclizing agent .. 19
 2.2.5 Dicyclohexylcarbodiimide as cyclizing agent ... 19

2.3 From 2-methyl-4H-3,1-benzoxazin-4-one .. 20

2.4 From isatoic anhydrides ... 21
 2.4.1 Reaction of isatoic anhydride with acid anhydrides .. 21
2.4.2 Reaction of isatoic anhydride with acid chlorides.. 22
2.4.3 Reaction of isatoic anhydride with phosphoryl-stabilized anions ... 23
2.5 Oxidation of indoles .. 23
2.6 Miscellaneous .. 24
 2.6.1 From β-(Triphenylphosphoranylidene)amino esters .. 24
 2.6.2 From iminophosphorane ... 25
 2.6.3 From N-benzenesulphonylanthranilic acid .. 25
 2.6.4 From thioamide derivatives .. 25
 2.6.5 From electrochemical trichloroacetylanilides ... 25
 2.6.6 CO$_2$ Incorporation reaction using arynes .. 26
 2.6.7 From 2-(1H-1,2,3-benzotriazol-1-yl)phenylethanone .. 26
 2.6.8 From heating of acetylanthranilic acid by microwave .. 27
 2.6.9 Thermolysis of 2-(3-benzoylthioeido)-4,5-dimethoxy benzoic acid 28
 2.6.10 Thermally induced cyclization of ketenimines ... 28
 2.6.11 From o-iodoaniline .. 28
3. Reactions of 4H-3,1-benoxazin-4-ones ... 30
 3.1 Reactions with Hydrogen nucleophiles ... 30
 3.2 Reactions with Oxygen nucleophiles ... 30
 3.3 Reactions with nitrogen nucleophiles .. 31
 3.3.1 Amnonlysis ... 32
 3.3.2 Hydrazinolysis .. 33
 3.3.2.1 Reactions with hydrazine hydrate ... 33
 3.3.2.2 Reaction with hydrazine hydrate in presence of carbondisulphide 37
 3.3.2.3 Reaction with substitututed hydrazines ... 38
 3.3.2.4 Reactions with hydroxylamine hydrochloride .. 40
 3.3.2.5 Reactions with thiosemicarbazide and aminoguanidines .. 40
 3.3.3 Aminolysis .. 41
 3.3.3.1 Reactions with primary nonaromatic amines ... 41
 3.3.3.2 Reactions with secondary amines ... 43
 3.3.3.3 Reactions with alkylamines .. 44
 3.3.3.3.1 Reactions with benzylamine .. 44
 3.3.3.3.2 Reactions with phenylethylamine .. 45
 3.3.3.4 Reactions with anilines .. 48
 3.3.3.4.1 Reactions with p-bromoanilines .. 49
 3.3.3.4.2 Reactions with p-aminodiphenylamine ... 49
3.3.3.4.3 Reactions with o-toluidine .. 49
3.3.3.4.4 Reactions with 2-substituted and/or 2,6-disubstituted anilines ... 50
3.3.3.4.5 Reactions with anilines containing reactive function groups ... 51
3.3.3.4.5.1 Reaction with 2-cyanoanilines .. 51
3.3.3.4.5.2 Reactions with p-aminoacetophenone 52
3.3.3.4.5.3 Reactions with 4-hydroxyanilines .. 53
3.3.3.4.5.4 Reactions with sulphanilamide ... 53
3.3.3.5 Reactions with amino heterocyclic compounds 54
3.3.3.6 Reactions with diamines .. 56
3.3.3.6.1 Reactions with o-phenylenediamine ... 56
3.3.3.6.2 Reactions with ethylenediamine .. 58
3.3.3.6.3 Reactions with p-phenylenediamine ... 58
3.3.3.7 Reactions with aminoacids .. 59
3.3.3.8 Reactions with aminoalcohols .. 60
3.3.3.9 Reactions with Schiff’s bases .. 61
3.3.3.10 Reactions with azines .. 61
3.3.3.11 Reactions with sodium azide .. 62
3.3.4 Reactions with carbon nucleophiles .. 62
3.3.4.1 Reactions with Grignard reagents .. 62
3.3.4.2 Friedel-Crafts reactions ... 67
3.3.4.3 Reactions with active methylene containing compounds 68
4. DISCUSSION .. 72

1. Synthesis and reactions of N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide ... 72
1.1 The structure of compound (2) was established from the following: 72
1.2 Chemical proven of compound (2) .. 75
1.2.1 Reaction with amines ... 75
1.2.1 Hydrazinolysis .. 79
2. Base catalyzed of 3,1-(4H)-benzoxazinone (2) with active methylene compounds .. 80
3. Action of sodium azide .. 80
4. Friedel-Crafts reaction ... 81
5. Reaction with 2-amino methyl benzimidazole ... 83
6. Diels-Alder reaction ... 83
7. Synthesis of quinazolinyl urea ... 85
8. Synthesis of triazino quinazolinone derivative ... 85
9. Ammonolysis .. 88
 9.1 Chemical proven of compound (14) ... 89
 9.1.1 Acylation of (14) .. 89
 9.1.2 Acetylation of quinazol-4-one (14) ... 90
 9.1.3 Action of phosphorus pentachloride - phosphorus oxychloride on quinazol-4-one (14) 91
10. Mannish reaction .. 91
11. Synthesis of ethyl 2-{2-[2-(4-chlorophenyl)-1-{2-(1,3-dioxoisindolin-2-yl)acetamido]vinyl}quinazolin-4-yloxy}acetate .. 93
 11.1 Chemical proven of compound (19) ... 94
12. Action of phenyl isocyanate on quinazolinone (20) ... 94
13. Action of p-chlorobenzaldehyde on quinazolinone (20) 95
14. Base catalysed reaction with hydroxylamine hydrochloride 95
 14.1 Chemical proven of compound (23) ... 96
 14.1.1 Acetylation of 3-N-hydroxy-4-quinazolone 96
 14.1.2 Reaction with ethyl chloroacetate .. 97
 14.1.2.1 Chemical proven of compound (25) .. 97
15. Action of phenyl isocyanate on quinazolinone (26) .. 98
16. Action of p-chlorobenzaldehyde on quinazolinone (26) 98

5. BIOLICAL ACTIVITY .. 100

6. BIOLICAL ACTIVITY .. 105

7. EXPERIMENTAL ... 110

 1. Synthesis and reactions of N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide (2) .. 110
 2. Action of primary amines on (2): formation of (3a,b) 110
 3. Action of hydrazines on (2): Formation of (4a,b) .. 110
 4. Action of active methylene on benzoxazinone (2): Formation of 1,4-quinolinone (5) ... 110
 5. Action of sodium azide on benzoxazinone (2): Formation of tetratole (6) ... 111
 6. Action of aromatic substrates on benzoxazinone (2) in presence of anhydrous AlCl3: Formation of o-aroynalamides (7a,b) ... 111
 7. 2-Amino methyl benzimidazole (8) .. 111
 8. Action of (8) on benzoxazinone (2): Formation of 2-substituted- 3-methyl-[2'-benzimidazolyl]- (4H)- 3,1-quinazolin-4-one (9) ... 111
 9. Diels-Alder reaction on (2): ... 111
10. Synthesis of quinazolinylurea (11) ... 111
11. Cyclization of quinazolinylurea (12) ... 112
12. Action of thiosemicarbazide on benzoxazone (2) ... 112
13. Action of ammonium acetate or formamide on (2): Formation of quinazolone (14) 112
15. Action of acetic anhydride on (14): Formation of 3N-acetyl quinazolone (16) 112
16. Action of phosphorus pentachloride - phosphorus oxychloride on quinazol-4-one (14) 112
17. Mannish reaction on quinazolone (14): Formation of Mannish bases (18) 112
18. Action of ethyl chloroacetate on quinazolinone (14) ... 113
19. Action of hydrazine hydrate on quinazolinone (19) .. 113
20. Action of phenyl isocyanate on quinazolinone (20) ... 113
21. Action of aldehyde on quinazolinone (20) ... 113
22. Action of hydroxylamine hydrochloride on benzoxazone (2) Formation of 3-hydroxy-4- quinazolone (23) ... 113
23. Action of acetic anhydride 3-hydroxy quinazolone (23) Formation of (24) 113
24. Action of ethyl chloroacetate on 3-hydroxy-4-quinazolone (23) 113
25. Action of hydrazine hydrate on quinazolinone (25) ... 114
26. Action of phenyl isocyanate on quinazolinone (26) ... 114
27. Action of aldehyde on quinazolinone (26) ... 114

8. REFERENCES .. 123
This study presents the synthesis of the N-(2-(4-chlorophenyl)-1-(4-oxo-4H-
benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide (2). It
was synthesized by treatment of anthranilic acid with (Z)-2-((4-(4-
chlorobenzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)methyl)isoindoline-1,3-dione
(1). Amminolysis of (2) gave 2-(substituted)-carbamoyl phenyl acetanilides (3a-h).

The benzoxazinone (2) underwent ring fission of the heterocyclic ring when
heated with hydrazine hydrate and gave the amide derivative (4a). On the other
hand, reaction of (2) with phenyl hydrazine, yielded quinazolinone derivative
(4b).

While treatment of (2) with ethyl acetoacetate gave carbethoxy 3,4-dihydro-1,4-
quinolinone derivative (5).

Benzoxazinone (2) reacted with sodium azide and yielded tetrazole (6). While
treatment of (2) with anhydrous AlCl₃ in hydrocarbons under the Fridel-Crafts
condition reaction gave o-substituted phenyl aryl ketones (7a,b).

On the other hand, Mannich reaction of (2) gave Mannich base (9). While
treatment of (2) with dimethyl maleate in dry xylene gave the corresponding
Diels-Alder adducts (10).

Otherwise, benzoxazinone (2) was allowed to react with semicarbazide
hydrochloride in boiling pyridine which afforded quinazolinyl urea derivative
(11). On fusion of the above compound at its melting point it was cyclized to
produce triazole quinazoline derivative (12).

Moreover, benzoxazinone (2) was treated with thiosemicarbazide in boiling
pyridine and afforded (13).

While ammonolysis of (2) gave the corresponding 2-substituted-4(3H)-
quinazol-4-one derivative (14). The lactam-lactim tautomerism of (14) was
further demonstrated chemically by studies the effect of alkylating agent, acetic
anhydride, a mixture of phosphorus pentachloride and phosphorus oxychloride
and Mannichreaction to give 4-(substituted)-2-(substituted)-quinazolin-4-
one(s) (15), 3N-acetyl-2-(substituted)-quinazolin-4-one (16), 2-(substituted)viny1-
4-chloroquinazolin-4-one (17) and the Mannich base 3N-(substituted)-
quinazolin-4-one (18) respectively.

Quinazolinone (14) reacts with ethyl chloroacetate in dry acetone and in the
presence of dry potassium carbonate to give compound (19) which was further
demonstrated chemically by hydrazinolysis of the ester by hydrazine hydrate to yield the hydrazide derivative (20).

Furthermore, the hydrazide derivative (20) was reacted with phenyl isocyanate in dioxane and p-chlorobenzaldehyde in absolute ethanol and 1 ml pipridine to give (21) and (22) respectively.

Benzoxazinone (2) reacted with hydroxylamine hydrochloride in the presence of sodium acetate in boiling ethanol to give N-(2-(4-chlorophenyl)-1-(3-hydroxy-4-oxo-3,4-dihydroquinazolin-2-yl)vinyl)-2-(1,3-dioxoisoinolin-2-yl)acetamide (22).

On the other hand, 3-N-hydroxy-4-quinazolone derivative (23) used as a key starting material for synthesis of some interesting heterocyclic compounds and it was further demonstrated chemically by studies the effect of acetic anhydride and ethyl chloroacetateto give 2-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisoinolin-2-yl)acetamido)vinyl)-4-oxoquinazolin-3(4H)-yl acetate (24) and ethyl 2-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisoinolin-2-yl)acetamido)vinyl)-4-oxoquinazolin-3(4H)-yloxy)acetate (25) respectively.

The compound (25) was further demonstrated chemically by hydrazinolysis of the ester by hydrazine hydrate to yield the hydrazide derivative (26).

Moreover, the hydrazide derivative (26) was reacted with phenyl isocyanate in dioxane and p-chlorobenzaldehyde in absolute ethanol and 1 ml pipridine to give (27) and (28) respectively.

The structure of all synthesized derivatives compounds is established by: (i) elemental analysis, (ii) IR, (iii) H^1NMR, (iv) Mass spectra.

Biological activities of some synthesized compounds was investigated and the results are presented.
AIM OF THE WORK

Studying the behavior of 4H-3,1-benzoxazinone derivative towards nitrogen and carbon nucleophiles and with carbon electrophiles will give a good information about the extent of the reactivity for 4H-3,1-benzoxazinone derivative qualitatively. Moreover, one of the most important features of 4H-3,1-benzoxazinone derivative in chemistry is its applications as a key starting material for further transformations. They are useful intermediates for the synthesis of 4(3H)-quinazolinone derivatives, which can be employed in biological applications. On the other hand, the behavior of the synthesized organic compounds as antibacterial was investigated.
Studies on 4H-3,1-Benzoazin-4-ones
INTRODUCTION

4H-3,1-benzoxazinones as a class have been known for more than a century. The phenyl derivative 1a was first synthesized [128] and the methyl analog 1b seventeen years later [54]. Members of this family have been given the common name “acylanthranils” presumably from their early synthesis from 2,1-benzisoxazole (anthranil) and an acylating agent. Compounds possessing this ring system are found in nature. e.g. Phytoalexins avenalumin [202] and Dianthalexins 2 [52,147], and some hydroxylated derivatives of this last compound 3,4 [224].

The present review will covers this important field of fused heterocycles with nearly all the chemistry (synthesis and reactions) as well as its applications. For 4H-3,1-benzoxazin-4-one derivatives only those with carbon substituents at 2-position will he mentioned.

1. Importance of 4H-3,1-benzoxazin-4-ones

1.1 Pharmaceutical applications of 4H-3,1-benzoxazin-4-ones

The 4H-3,1-benzoxazin-4-one core is a key structural fragment in a range of biologically active compounds. Work by medicinal chemists had led to a number of drugs. Related uses being found for this class of heterocyclic systems.

4H-3,1-benzoxazin-4-ones have attracted considerable attention as inhibitors of Serine proteases. The interaction of 3,1-benzoxazin-4-ones with serine proteases involves enzyme acylation due to the nucleophilic attack of the active site of serine on the lactone carbon, ring cleavage, and subsequent deacylation of the acylenzyme formed [139,295]. Hays et al. have screened a series of 2-substituted 4H-3,1-benzoxazin-4-ones as inhibitors of Clr serine protease of the complement system.

Particularly, 2-aryl-4H-3,1-benzoxazin-4-ones act as Clr Serine protease inhibitors [133]. Also it was converted into the corresponding 4(3H)-quinazolin-4-ones interaction with 4-amino-1-phenyl-2,3-dimethyl pyrazolin-5-one (aminoantipyrine), which act as Non-Steroidal anti-inflammatory agents [118, 123].
In a modern fashion, 4H-3,1-benzoxazin-4-ones core linked to heterocycle or heteroaryl were disclosed as Serine hydrolase inhibitors. They were evaluated in a human sputum neutrophil elastase assay [274].

Chiral 2-alkylamino 4H-3,1-benzoxazin-4-one derivatives were reported as inhibitors or potent inactivators of Standard Serine Proteases of the Chemotrypsin superfamily [215,289,180].

A series of 2-amino substituted 4H-3,1-benzoxazin-4-one derivatives was reported as inhibitors for human protease, and some of them demonstrate Anti-Viral activity in cell culture, with selectivities related to chemotrypsin and Elastase and stability with respect to hydrolysis in human plasma [8,137,138,149]. Also a combination of 4H-3,1-benzoxazin-4-one with 2-aminothiadiazole gives substituted quinazolinone which act as potent Anticonvulsants and Enzyme inhibitors [275].

5-Methyl-4H-3,1-benzoxazin-4-one derivatives are accomplished as specific inhibitors of Human. Leukocyte Elastase (HLE), where they showed strong and highly specific inhibition of Human Sputum Elastase (HSE), which is equivalent to HLE [302].

Moreover, 2-substituted-4H-3,1-benzoxazin-4-one derivatives showed good Cytotoxic activity [236], Herbicidal properties and inhibition of Herpes simplex virus type 1 (HSV-1) protease [145,167]. A series of 4H-3,1-benzoxazin-4-ones with different aromatic substitution pattern were evaluated as HIV-1 Reverse transcriptase inhibitors [244].

2-Aryl-substituted 4H-3,1-benzoxazin-4-ones act as novel active substances for the cardiovascular system. They exhibit relaxing effect on smooth musculature in particular and markedly increase coronary flow through Langendorff hearts [304]. Moreover, they are used in treatment of Obesity and also found to be novel specific Puromycin sensitive aminopeptidase inhibitors [153,307]. Nevertheless, they exhibit biological activates towards anti-elastases. [69].

Clearly, some 2-substituted 4H-3,1-benzoxazin-4-ones have the ability to lower the levels of cholesterol and triglycerides in plasma, and to raise the proportion of total cholesterol carried by high-density lipoproteins [124].

The importance of these 4H-3,1-benzoxazin-4-one also resides in that, these compounds is useful precursors for the preparation of other pharmaceutically active heterocyclic compounds, mainly quinazoline derivatives [68].

For example, 2-styryl-4-(3R)-quinazolinone bearing 5-,6-, 7-, 8-Cl, 6-Br, 6-F, 6-NH₂, 6-OMe, 6-OH, 6-OEt act as new class of Anti-Miotic Anti-Cancer agents which inhibited Tubulin polymerization. Extensive structure activity relationship studies suggest that, the entire quinazolinon structure was required, but activity was further enhanced by halides or small hydrophobic substituents at position-6 [169].
While, substituted 2-(1-adamantyl)-4H-3,1-benzoazin-4-ones and 2-(1-adamantyl)-3-amino or alkyl-3,4-dihydroquinazolin-4-ones are found to exhibit a broad spectrum Anti-Tumor activity with full panel (MG-MID) median growth inhibition (GI\(_{50}\)), some of them showed moderate selectivity towards Leukemia Cell Lines, and some of them possess moderate Anti-HIV-I potency [112].

1.2 Industrial applications

4H-3,1-benzoazin-4-ones containing at 2-position Ph, m-, p- tolyl, p-chlorophenyl, m-nitrophenyl, or m-methoxyphenyl are additives comprising surfactants, carboxypolymers, polysaccharides and/or polyalicylene glycols. Amount of 5-7% of this compounds have good storage stability in detergent components containing a peroxygen bleach, such as Na perborate tetrahydrate, dissolve rapidly in water, and provide good bleaching of stained textiles during laundering a dispersion of 100g sodium-Dedecylbenzene-sulfoflate in 800g molten 2-phenyl-4H-3,1-benzoazin-4-one was prepared at 130 °C, cooled and milled to give particles with av. diameter 0.5-1mm [219,235].

2-Alkyl and 2-aryl-4H-3,1-benzoazin-4-ones are widely used in the synthesis of polymeric materials and optical bleaching agents [41,127]. Some 4H-3,1-benzoazin-4-ones bearing sulfonylamino groups are used as fluorescent dyes [181].

Recently, 4H-3,1-benzoazin-4-one derivatives with (2-aryl) vinyl substituent at 2-position were reported as useful UV absorber having absorption in the long-wavelength region for cosmetics [293].

(2,2’-Di-(4H-3,1-benzoazin-4-one))-m- or p-phenylene were used for improving the light-fastness of textile materials, where they are used for increasing the light-fastness of textiles and producing textiles which protect the wearer from the solar UV radiation [220].

2. Synthesis of 4H-3,1-benzoazin-4-ones

4H-3,1-benzoazinones comprise a relatively large group of substances which have come to be known were synthesized as follows:

2.1 From anthranilic acids

By far the most popular and versatile route to the 3,1-benzoazinone nucleus relies on anthranilic acid or its derivatives as a convenient starting material.

2.1.1 Via the action of acid chlorides on anthranilic acid

2-Alkyl, -aryl and -aryalkyl 4H-3,1-benzoazinenes 1 have been obtained by heating anthranilic acid or substituted anthranilic acid with acid chlorides. Here, a vast array of acid chlorides are either commercially available or easily prepared.
The compounds thus obtained are collected in the following table.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>H</td>
<td>-C₆H₅</td>
<td>[128, 36]</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>-CH₃</td>
<td>[315, 75]</td>
</tr>
<tr>
<td>c</td>
<td>Br</td>
<td>-CH₃</td>
<td>[266]</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>-C₃H₇(iso)</td>
<td>[121]</td>
</tr>
<tr>
<td>e</td>
<td>H</td>
<td>-CH₂COCH₃</td>
<td>[96]</td>
</tr>
<tr>
<td>f</td>
<td>H</td>
<td>-CH₂C₆H₅</td>
<td>[96]</td>
</tr>
<tr>
<td>g</td>
<td>H</td>
<td>-C₃H₇(n)</td>
<td>[119, 126]</td>
</tr>
<tr>
<td>h</td>
<td>H</td>
<td>-CH₂Cl</td>
<td>[256]</td>
</tr>
<tr>
<td>i</td>
<td>H</td>
<td>-C₁₀H₇(α)</td>
<td>[88]</td>
</tr>
<tr>
<td>j</td>
<td>Br</td>
<td>-CH₃</td>
<td>[161]</td>
</tr>
<tr>
<td>k</td>
<td>H</td>
<td>H</td>
<td>[110]</td>
</tr>
<tr>
<td>l</td>
<td>Br</td>
<td>-C₆H₅</td>
<td>[162]</td>
</tr>
<tr>
<td>m</td>
<td>I</td>
<td>-CH₃</td>
<td>[213]</td>
</tr>
<tr>
<td>n</td>
<td>NO₂</td>
<td>-C₃H₇(n)</td>
<td>[64]</td>
</tr>
<tr>
<td>o</td>
<td>CH₃</td>
<td>-C₆H₄C₄H₉(t)(4)</td>
<td>[141]</td>
</tr>
<tr>
<td>p</td>
<td>H</td>
<td>C₆H₅S</td>
<td>[107]</td>
</tr>
<tr>
<td>q</td>
<td>I</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>r</td>
<td>H</td>
<td>H</td>
<td>N₂</td>
</tr>
<tr>
<td>s</td>
<td>H/Br</td>
<td>H/Br</td>
<td>C₆H₄Cl₄(4)</td>
</tr>
<tr>
<td>t</td>
<td>H/Br</td>
<td>H/Br</td>
<td>C₆H₅⁻</td>
</tr>
<tr>
<td>u</td>
<td>H</td>
<td>H</td>
<td>C₆H₄I(α)</td>
</tr>
<tr>
<td>v</td>
<td>I</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>w</td>
<td>I</td>
<td>H</td>
<td>-CH₂Cl</td>
</tr>
<tr>
<td>x</td>
<td>H</td>
<td>H</td>
<td>-C₂H₅</td>
</tr>
<tr>
<td>y</td>
<td>NHSO₂R</td>
<td>H</td>
<td>-CH₃</td>
</tr>
<tr>
<td>z</td>
<td>H</td>
<td>H</td>
<td>-C₆H₄.NH₅SO₂R</td>
</tr>
<tr>
<td>(\text{Z}_1)</td>
<td>H</td>
<td>H</td>
<td>(\text{C}_6\text{H}_4\text{C}_4\text{H}_9\text{t}(4))</td>
</tr>
<tr>
<td>(\text{Z}_2)</td>
<td>(\text{CH}_3)</td>
<td>H</td>
<td>-CH=CH(_2)</td>
</tr>
<tr>
<td>(\text{Z}_3)</td>
<td>H</td>
<td>H</td>
<td>-C(_{10})H(_2)((\beta))</td>
</tr>
<tr>
<td>(\text{Z}_4)</td>
<td>H</td>
<td>H</td>
<td>(\text{C}_3\text{H}_3\text{S})</td>
</tr>
<tr>
<td>(\text{Z}_5)</td>
<td>(\text{Br})</td>
<td>(\text{Br})</td>
<td>-CH(_3)</td>
</tr>
<tr>
<td>(\text{Z}_6)</td>
<td>(\text{Br/H})</td>
<td>(\text{Br/H})</td>
<td>(\text{C}_6\text{H}_5)</td>
</tr>
<tr>
<td>(\text{Z}_8)</td>
<td>H</td>
<td>OCH(_3)</td>
<td>(\text{C}_6\text{H}_4\text{Br}(4), \text{C}_6\text{H}_4\text{Br}(2), \text{C}_6\text{H}_4\text{Cl}(3), \text{C}_6\text{H}_4\text{F}(2), \text{C}_6\text{H}_4\text{Cl}(4), \text{C}_6\text{H}_4\text{Cl}(2))</td>
</tr>
<tr>
<td>(\text{Z}_9)</td>
<td>H</td>
<td>OCH(_3)</td>
<td>(\text{C}_6\text{H}_4\text{Br}(2), \text{C}_6\text{H}_4\text{Cl}(2), \text{C}_6\text{H}_4\text{F}(2), \text{C}_6\text{H}_4\text{CH}_3(2), \text{C}_6\text{H}_4(\text{OCH}_3)(2))</td>
</tr>
<tr>
<td>(\text{Z}_{10})</td>
<td>H</td>
<td>Cl/CH(_3)</td>
<td>(\text{C}_6\text{H}_4\text{Br}(2), \text{C}_6\text{H}_4\text{Cl}(2), \text{C}_6\text{H}_4\text{F}(2), \text{C}_6\text{H}_4\text{CH}_3(2), \text{C}_6\text{H}_4(\text{OCH}_3)(2))</td>
</tr>
<tr>
<td>(\text{Z}_{11})</td>
<td>H</td>
<td>H</td>
<td>(\text{C}_4\text{H}_3\text{O})</td>
</tr>
<tr>
<td>(\text{Z}_{12})</td>
<td>2-aminobenzoic acid</td>
<td>Ph</td>
<td>(\text{CH}_3)</td>
</tr>
</tbody>
</table>
Although these methods provide benzoxazinones in a straightforward manner, the lack of a wide variety of readily available acid chlorides limits the generality of this method. As a modification of literature methods $[326,313]$, 2-aryl-4H-3, 1-benzoxazin-4-ones 5 were obtained via reaction of anthranilic acid with two equivalents of an acid chloride in pyridine solution.

The compounds thus obtained are collected in the following table

<table>
<thead>
<tr>
<th>X</th>
<th>R</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>H</td>
<td>[36,147, 141,173,133,239]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y= H, Cl, Br, Me, OMe, CF$_3$, NO$_2$, COOH(at o-, m-,p-)</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>[36,297,265,267]</td>
</tr>
<tr>
<td>c</td>
<td>H</td>
<td>[36]</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y= H, Me, OMe, NO$_2$</td>
</tr>
<tr>
<td>e</td>
<td>H</td>
<td>[277, 183]</td>
</tr>
<tr>
<td>f</td>
<td>H</td>
<td>[273]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y= H, 3-F, 2-F, 3-OMe, 4-OMe, 2-OMe, 3-OH, 4-OH, 2,5-Di-OH, 2-OH</td>
</tr>
<tr>
<td>g</td>
<td>NO$_2$</td>
<td>[175]</td>
</tr>
</tbody>
</table>

In contrast, the 3-chloro sulphonylbenzoyl chloride 6 reacts with 2 equivalents of anthranilic acid to give N-(3-chlorosulphonylbenzoyl)anthranilamide (7), which furnishes the 3-(4-oxo-4H-3,1-benzoxazin-2-yl)benzenesuphonyl chloride (8a) on treatment with thionyl chloride. 4H-3,1-benzoxazinones 8b,c are obtained on treatment of 8a with aniline and piperidine at 20 °C in acetonitrile [296].
On the other hand, 5-fluoroanthranilic acid reacts with acid chlorides 9 in the presence of triethylamine and methylene chloride at room temperature to afford 10, which on heating with acetic acid anhydride for 1 hour produces the 6-fluoro-2-substituted benzoxazinones 11 [327].

The reaction of acid chlorides with anthraolic acids can be performed as a one-pot reaction. Thus the reaction of substitute anthranilic acid with to 2-substituted benzoyl chlorides 12 in presence of Et$_3$N and CH$_2$C$_6$ followed by addition of acetic acid anhydride and affords disubstituted benzoxazinones 13[261].

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>R$_1$</th>
<th>R$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Br</td>
<td>H</td>
<td>CH$_3$</td>
<td>Br</td>
<td>H</td>
</tr>
<tr>
<td>b</td>
<td>Br</td>
<td>H</td>
<td>CH$_3$</td>
<td>C$_6$H$_4$.Cl(4)</td>
<td>H</td>
</tr>
<tr>
<td>c</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>Br</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>C$_6$H$_4$.Cl(4)</td>
</tr>
<tr>
<td>e</td>
<td>H</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCH₃</td>
<td>H</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>H</td>
</tr>
<tr>
<td>OCF₃</td>
<td>H</td>
<td>CH₃</td>
<td>OCF₃</td>
<td>H</td>
</tr>
</tbody>
</table>

If 4,6-dimethoxyanthranilic alkanoyl chlorides 14 in TEA and acid is reacted with CH₂Cl₂ at 40 °C, 4H-3,1-benzoxazin-4-one derivatives 15 is produced [136].

![Chemical structure](image1)

R= Me, Et, n-Pr, i-Pr, n-Bu, i-Bu

5-Bromoanthranilic acid is cyclized with 2- naphthoyl and/or phenethyloyl chloride by heating the mixture with DMPA and triethyl amine in DMF and furnishes 16 [322].

![Chemical structure](image2)

Moreover, reaction of anthranilic acids 17 with synthesized acid chlorides 18 was carried out in boiling benzene followed by refluxing in acetic acid anhydride to afford benzoxazinone derivatives 19.

![Chemical structure](image3)

The compounds thus obtained are collected in the following table

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>1. benzene 2.Ac₂O</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>H</td>
<td>14</td>
<td>[42]</td>
</tr>
<tr>
<td>b</td>
<td>Cl</td>
<td></td>
<td>[14]</td>
</tr>
</tbody>
</table>

2.1.2 Via the action of acid anhydrides on anthranilic acid

Simple 2-substituted derivatives 20 are best prepared by reacting an anthranilic acid derivative with an appropriate anhydride at elevated temperatures. Lower
molecular weight anhydrides are usually employed as the solvents [57, 249, 243, 178, 23, 35, 111].

\[
\begin{align*}
\text{X} &= \text{H, halogen, } \text{OMe, NO}_2 \\
\text{R} &= \text{Me, Et, n-Pr, Ph, CF}_3
\end{align*}
\]

2-Methyl-4H-3,1-benzoxazin-4-one (1b) are obtained by heating anthranilic acid with acetic anhydride [200].

Recently, 2-methyl-6-halo-4H-3,1-benzoxazin-4-ones (21) are obtained by heating 5-haloanthranilic acid with acetic acid anhydride for two hours.

2-methyl-5,7-dinitro-4H-3,1-benzoxazin-4-one (22) is prepared in the same way by generating 4,6-dinitroanthranilic acid (catalytic reduction of 2,4,6-trinitrobenzoic acid) followed by heating with acetic acid anhydride [177].

Similarly, 2-(β-carboxyethyl)-4H-3,1-benzoxazin-4-one (23) has been obtained by heating anthranilic acid with succinic acid anhydride in n-butanol [119].
Also co-solvents as chloroform, dioxane, toluene, and orthoesters are used successfully as cyclizing agents [26, 45, 306].

In addition, a series of o-carboxymaleanilic acids 24 are prepared by reacting anthranilic acid with maleic anhydride, methylemaleic anhydride, or phenylmaleic anhydride, which intermolecularly dehydrated to afford pyrrolobenzoxazinones 25. Which underwent solvolysis via refluxing with anhydrous methanol furnishes 26 [40].

\[
\begin{array}{cccc}
X & Y & Z & 24 \ a-i \\
a & H & H & H \\
b & Cl & H & H \\
c & Br & H & H \\
d & I & H & H \\
e & H & Me & H \\
f & H & H & Me \\
g & H & Ph & H \\
h & H & Me & Me \\
i & H & o-C_4H_4 & o-C_4H_4 \\
\end{array}
\]

Under identical conditions, o-carboxyfumaranilic acid afforded 2-carboxyvinylbenzoxazinone 27 which does not further cyclized due to its cis-geometry [40].

\[
\begin{array}{c}
\text{27} \\
\end{array}
\]
2.1.3 Via reaction of anthranilic acid with aromatic carboxylic acid

A closely related synthesis of 2-phenyl-4H-3,1-benzoxazin-4-one 28 uses the reaction of anthranilic acid with two equivalents of an ortho or para substituted benzoic acid (X= H, Cl, Me, OMe, NO₂) in the presence of tosyl chloride [255].

\[
\text{COOH} \quad \text{COOH} \quad \text{TsCl} \quad \text{pyr.} \quad \text{O} \quad \text{O} \\
\text{NH₂} \quad \text{\(X\)} \quad \text{28} \\
\]

\(X = \text{H, Cl, Me, OMe, NO₂ } \)

Starting from anthranilic acid on one hand and the aromatic carboxylic acids 29 on the other hand, where the preliminary chlorination to furnish the acid chloride is not necessary when the reaction proceed to yield benzoxazinone derivatives 30 a-o as a final product is performed in phosphoryl chloride under nitrogen atmosphere [260].

\[
\text{\(\text{O} \quad \text{O} \quad \text{POCl₃} \quad \text{30}_{a-o}\)} \\
\text{OH} \quad \text{\(\text{R}\)} \quad \text{29} \\
\]

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMe</td>
<td>H₃CS</td>
<td>-H₂C</td>
<td>OMe</td>
</tr>
<tr>
<td>OMe</td>
<td></td>
<td></td>
<td>MeO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>Cl</td>
<td>H₂C</td>
<td>H₂C</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>-F</td>
<td>-F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
<th>(k)</th>
<th>(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-OMe</td>
<td>-F</td>
<td>NO₂</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
<td>Cl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>Cl</td>
<td>F</td>
</tr>
</tbody>
</table>

11
Recently, heteroarylbenzoxazinones 33 a-c were prepared by heterocyclization of heterocarboxylic acids 32a,b with substituted anthranilic acids 31a,b. If the benzoxazinone 33a is combined with 3-(dimethylamino) pyrrolidine gives 4H-3,1-benzoxazin-4-one derivative 33e.

![Chemical structures](image)

The compounds thus obtained are collected in the following table:

<table>
<thead>
<tr>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>R</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Et</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>[274]</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>CN</td>
<td>H</td>
<td>Me</td>
<td>[190]</td>
</tr>
<tr>
<td>c</td>
<td>Et</td>
<td>H</td>
<td>OMe</td>
<td>H</td>
<td>[274]</td>
</tr>
</tbody>
</table>

Another variation of this method uses the coupling of the pyrazole acid 34 with anthranilic acids 35 in acetonitrile and triethyl amine in presence of methanesulphonyl chloride to obtain the 4H-3,1- benzoxazin-4-one derivatives 36.

![Chemical structures](image)

2.1.4 Reaction of substituted anthranilic acid with Boc-protected amino acids

The interesting aminobenzoxazirione derivative 37 was readily prepared from the reaction of equimolar quantities of 3-trifluoromethylanthranilic acid and Bocprotected amino acid with two equivalents of isobutylformate in the presence of N-methylmorpholine with complete retention of the chiral information [66, 67].
2.1.5 Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid

2-[(z)-1-hydrofluoro-1-alkenyl]-4H-3,1-benzoxazin-4-ones 38 are obtained via condensation of 2,2-dihydopolyfluoro alkanoic acid with anthranilic acid or its derivatives in the presence of N,N’-dicyclohexylcarbodimide (DCC) in CH₂C₂ [194].

\[
\begin{align*}
\text{R₁} & = \text{R₂} = \text{H} & \text{b, R₁} & = \text{H}, \ \text{R₂} = \text{R₃} = \text{OCH₃} \\
\text{c, R₁} & = \text{R} = \text{H} & \text{d, R₁} & = \text{R₃} = \text{Br}, \ \text{R₂} = \text{H} \\
\text{R₅CF₂CH₃COOH} & \quad \text{DCC} \quad \text{Ac₂O} \quad \text{Ac₂O} \quad \text{Ac₂O} \\
\text{NHCOCH₂CF₃R₅} & \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \\
\text{R₅, e=C₅F₁₁} & \quad \text{f = CF₆C₁} & \quad \text{g = C₅F₇} & \quad \text{h=CF₂C₁} & \quad \text{i = CF₂Br} & \quad \text{j = CF₃}
\end{align*}
\]

2.1.6 Synthesis of Bis(411)-3,1-benzoxazin-4-one derivatives :

Bis(4H)-3,1-benzoxazin-4-one derivatives 39 are prepared from interaction of terephthaloyl chloride with diethyloxalate or anthranilic acid [201].

\[
\begin{align*}
\text{R₁, R₂= C₁-C₁₀ hydrocarbyl, C₁-C₃ alkoxy, C₁-C₄ acyl, halogen, nitro, Ar C₆-C₁₂ aromatic hydrocarbon group } n= 0,1 & \text{ were prepared} \\
\text{and used as light stabilizer for polyester fibers’ [201].}
\end{align*}
\]

a, n= 0 in case of diethyloxalate
b,n=1 in case of terephthaloyl chloride which gave 2,2’-p-phenylene bis-(6-substituted)-3,1-benzoxazin-4-one.

General formula (39; R₁, R₂= C₁-C₁₀ hydrocarbyl, C₁-C₃ alkoxy, C₁-C₄ acyl, halogen, nitro, Ar C₆-C₁₂ aromatic hydrocarbon group n= 0,1) were prepared and used as light stabilizer for polyester fibers’ [201].

Similarly a sunscreen contains a cyclic imino ester (40) (R = divalent aromatic hydrocarbaryl) as a UV absorbent, has been obtained via interaction of 2,6-naphthalene dicarboxylic acid chloride with anthranilic acid in pyridine [324].
It is resistant to water, not readily soluble in organic solvents, fats, oils, and nonirritating to the skin. It prevents skin rash and acts as skin conditioner.

2.1.7 From interaction of anthranilic acid with heterocyclic compounds

2.1.7.1 From 4-arylidene-2-aryl-oxazol-5-one

2-substituted-4H-3,1-benzoxazin-4-ones 41 were obtained via interaction of 4-arylidene-2-aryl-oxazol-5-one with anthranilic acid in boiling butanol.

The compounds thus obtained are collected in the following table

<table>
<thead>
<tr>
<th>X</th>
<th>Ar</th>
<th>Ar</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>H</td>
<td>C₆H₄(OCH₃)(4)</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>C₆H₄.NO₂(3)</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>c</td>
<td>H</td>
<td>C₆H₄(OCH₃)(4)</td>
<td>C₆H₄(OCH₃)(4)</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>C₆H₄.C₁₀H₇(2)</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>e</td>
<td>H</td>
<td>C₆H₂(OCH₃)(3,4,5)</td>
<td>C₆H₄.Cl(2)</td>
</tr>
<tr>
<td>f</td>
<td>H</td>
<td>C₆H₂(OCH₃)(3,4,5)</td>
<td>C₆H₄.Cl(2)</td>
</tr>
<tr>
<td>g</td>
<td>H</td>
<td>C₆H₂(OCH₃)(3,4,5)</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>h</td>
<td>H</td>
<td>C₆H₄.Cl(4)</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>i</td>
<td>H</td>
<td>C₆H₄C₁₀H₇(l)</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>j</td>
<td>H</td>
<td>2-furyl</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>k</td>
<td>Br</td>
<td>C₆H₅</td>
<td>C₆H₅</td>
</tr>
</tbody>
</table>

2.1.7.2 From iminodithiazole

Iminodithiazole obtained from condensation of anilines with 4,5-dichloro-1,2,3-dithiazolium. Chloride were reacted with a solution of anthranilic acid (in
methylene chloride) in the presence of pyridine to produce 2-cyano-3,1-benzoxazin-4-one (42). A similar reaction of using triphenyl phosphine instead of pyridine yielded the analogous 3,1-benzothiazin-4-one 44. The delicate intermediate iminodithiazole 43 can be isolated if four equivalents of anthranilic acid are used without the addition of pyridine. Heating of 43 in toluene afforded 42, while treating 43 with two equivalents of triphenyl phosphine produces 44 [47, 48].

2.1.7.3 From (4H)-3,2-benzoxazin-4-one

2-substituted-4H-3,1-benzoxazin-4-ones 45 have been obtained when 1-substituted-4H-3,2-benzoxazin-4-one derivatives were allowed to react with anthranilic acid in boiling n-butanol.

2.1.7.4 From 3-methyl-2-(ethoxycarbonylmethoxy) quinoxaline

Substituted-4H-3,1-benzoxazin-4-one 46, which bearing a hetaryl moiety at 2-position, are synthesized via interaction of 2-(ethoxycarbonyl methoxy)-3-methylquinoxaline with anthranilic acid in boiling butanol at 120 °C [210].

2.1.7.5 From 2-ethoxycarbonyl-4(3H)-quinazolin-4-one
2-[4(3H)-oxoquinazol-2-yl]-(4H)-3,1-benzoaxazin-4-one (47) are synthesized via interaction of 2-ethoxycarbonyl-4(3H)-quinazolinone with anthranilic acid by fusion at 170 °C or by refluxing in n-butanol for 3 hr [19].

![Chemical structure of 47](image1)

2.1.7.6 From substituted coumarin

4H-3,1-benzoaxazin-4-one derivative 49 is resulted from the interaction of anthranilic acid with (2-oxo-2H-chromen-4-yloxy)acetyl chloride 48a or the ester 48b in boiling ethanol [27].

![Chemical structures of 48a, 48b, and 49](image2)

a; R= Cl
b; R= OEt

While, 4H-3,1-benzoaxazin-4-one 51 bearing coumarin-3-yl moiety at position-2 was obtained via interaction of 3-ethoxycarbonyl coumarin 50 with anthranilic acid by fusion at 150 °C or refluxing in n-butanol [102].

![Chemical structure of 50 and 51](image3)

Similarly, 2-cyanomethyl, acetylonyl and/or ethoxycarbonyl-4H-3,1-benzoaxazin-4-one 52 were obtained via interaction of ethylcyanoacetate, ethylacetoacetate and diethyloxalate with anthranilic acid in boiling butanol.

![Chemical structure of 52](image4)

<table>
<thead>
<tr>
<th>R</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CH₂CN</td>
<td>[212]</td>
</tr>
<tr>
<td>-CH₂COCH₃</td>
<td>[96]</td>
</tr>
<tr>
<td>-COOC₂H₅</td>
<td>[19]</td>
</tr>
</tbody>
</table>

2.1.7.7 From hetero-ring opening of furanone derivatives

Hetero-ring opening of the furanone derivatives 53 with anthranilic acid in boiling butanol affords the 4H-3,1-benzoxazin-4-one derivatives 54 [284].

\[
\text{COOH } + \text{ R } \quad 53 \quad \overset{n\text{-butanol}}{\underset{\Delta}{\longrightarrow}} \quad \text{R} \quad 54
\]

\(R = \text{Cl, Me; } \quad R^1 = \text{Cl, NO}_2, \text{OCH}_3, \text{H} \)

2.1.7.8 From hetero-ring opening of 1,3-dioxin-4-one derivatives

2-Substitutedphenylvinyl-4H-3,1-benzoxazin-4-one derivatives 56 were synthesized via refluxing anthranilic acid with 2,2-dimethyl-6-phenyl-[1,3]dioxin-4-one derivative 55 in m-xylene, followed by dehydration [309].

\[
\text{COOH } + \text{ R } \quad 55 \quad \overset{1. \text{m-xylene}}{\underset{2. \text{Ac}_2\text{O} / \text{benzene}}{\longrightarrow}} \quad \text{R} \quad 56
\]

\(X = \text{H, Me, OMe, OEt, Cl, Br} \)

2.2 From N-acylanthranilic acid

Starting from an N-acylanthranilic acid a variety of reagents can be used to affect cyclodehydration to the benzoxazin-4-one.

2.2.1 Acetic anhydride as cyclizing agent

Acetic anhydride is the most widely used reagent for this purpose, the cyclization can accommodate a wide variety of acyl groups (\(X = \) electron donating or withdrawing group, \(R = \) alkyl, substituted phenyl, \(\text{CH}_2\text{Cl} \), \(\text{CH}(\text{CH}_3)\text{Cl} \), styryl, trifluoromethyl, phthalimidomethyl, COOEt, 2-thienyl, pyridyl or thiadiazole) [71,163].

\[
\text{COOH } + \text{ R } \quad 57 \quad \underset{\text{Ac}_2\text{O}}{\longrightarrow} \quad \text{R} \quad 57
\]

Also, aromatic systems containing thionylamino functionality at position-2 was introduced to obtain derivative 58 [15].
More complex heterocyclic systems such as a coumarin can be introduced into the 2-position of the benzoxazinone affording 59 [269].

Anthranilic acid can also be acylated at nitrogen with either diketene [72, 73] or 2,2,6-trimethyl-4H-1,3-dioxin-4-one (diketene acetone adduct) [63] to give 60 which when exposed to acetic anhydride cyclizes to the 2-acetonyl derivative 61.

2.2.2 Thionyl chloride as cyclizing agent

Refluxing a solution of substituted N-acylanthranilic acid 62 with a small excess of thionyl chloride in 1,2-dichloroethane produces the benzoxazin-4-one derivative 63 [144].

2.2.3 Vilsmeier reagents as cyclizing agent

Vilsmeier reagents generated from e.g. N,N-dimethyl formamide and oxalyl chloride, were reacted with N-acetylanthranilic acid to produce the 2-(2’-dimethylamino)ethenyl-4H-3,1-benzoxazin-4-one (64a). Similarly, N-
phenylacetyl anthranilic acid gave 2-(2’-dimethylamino-1’-phenyl)ethenyl-4H-3,1-benzoaxazin-4-one (64b) [46].

\[
\begin{align*}
\text{COOH} & + \left[\text{H} - \text{N} - \text{CH}_3 + \text{COCl} \right] \\
\text{C}_{\text{Ph}}\text{NHCOCH}_2\text{R} & \rightarrow \text{64 a,b}
\end{align*}
\]

\(a, \text{R=H} \quad b, \text{R=Ph} \)

Reaction of N-acetylated anthranilic acids and oxalyl chloride alone give the fused oxazolidine-4,5-dione (65) [46].

2.2.4 Cyanuric chloride as cyclizing agent

2-(N-phthaloylmethyl)-4H-3,1-benzoaxazin-4-one 68 are prepared via reaction of the acyl chloride derivative N-phthaloylglycine with anthranilic acid in chloroform and N-phthaloylanthranilic acid 67 is generated. It reacted with cyanuric chloride to form the final product [272].

2.2.5 Dicyclohexylcarbodiimide as cyclizing agent

N,N’-dicyclohexylcarbodiimide (DCC) is used for dehydration of N-acylanthranilic acid 69 to obtain the 2-ethoxycarbonylmethyl-4H-3,1-benzoaxazin-4-one 70. Where, N-acylanthranilic acid 69 was obtained via reaction of anthranilic acid with diethylmalonate [303].
Dehydration of N-acylanthranilic acid 71 to benzoazinone 72 using DCC is achieved in higher yield and shorter reaction time as compared to the conversion with acetic acid anhydride as dehydrating agent [309].

\[
\text{Dehydration of N-acylanthranilic acid to benzoazinone using DCC.}
\]

\[71 \quad \text{DCC} \quad 72\]

R= H, Me, OMe, OEt, Cl, Br

2.3 From 2-methyl-4H-3,1-benzoazin-4-one

2-styryl or substituted styryl-4H-3,1-benzoazin-4-ones 73 have been obtained, via interaction of 2-methyl-4H-3,1-benzoazin-4-one with aromatic aldehydes and/or ketones in the presence of anhydrous zinc chloride at 170 °C.

\[
\text{Compounds obtained from 2-methyl-4H-3,1-benzoazin-4-one.}
\]

The compounds thus obtained are collected in the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Br</td>
<td>H</td>
<td>(\text{C}_6\text{H}_5), (\text{C}_6\text{H}_4\cdot\text{OCH}_3(4)), (\text{C}_6\text{H}_4\cdot\text{NO}_2(4)), (\text{C}_6\text{H}_3(\text{O}_2\text{CH}_2)(3,4)), (\text{C}_6\text{H}_4\cdot\text{N}(\text{CH}_3)_2(4)), -CH=CH-C(6\text{H}_5)</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>(\text{CH}_3\text{CO})</td>
<td>(\text{C}_6\text{H}_5), (\text{C}_6\text{H}_4\cdot\text{OH}(4)), (\text{C}_6\text{H}_4\cdot\text{NO}_2(3)), (\text{C}_6\text{H}_4\cdot\text{OCH}_3(4)), -CH=CH-C(6\text{H}_5), (\text{C}_6\text{H}_3(\text{O}_2\text{CH}_2)(3,4))</td>
</tr>
<tr>
<td>c</td>
<td>H</td>
<td>(\text{C}_6\text{H}_5)</td>
<td>(\text{C}_6\text{H}_4\cdot\text{OCH}_3(4)), (\text{C}_6\text{H}_4\cdot\text{OH}(2)), (\text{C}_6\text{H}_4\cdot\text{N}(\text{CH}_3)_2(4)), -CH=CH-C(6\text{H}_5)</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>H</td>
<td>(\text{OC}_6\text{H}_4\cdot\text{C}(4)), (\text{C}_6\text{H}_5), (\text{C}_6\text{H}_3(\text{O}_2\text{CH}_2)(3,4))</td>
</tr>
<tr>
<td>e</td>
<td>H</td>
<td>H</td>
<td>(\text{C}_3\text{H}_3\text{O}(2))</td>
</tr>
</tbody>
</table>
Similarly, 2-cyanomethyl-(4H)-3,1-benzoazin-4-one has been reacted with phthalic anhydride, succinic anhydride, phthalimide and succinimide to give the benzoazinone derivatives 74 [212].

![Image of benzoazinone structure]

A more recent concept uses the idea of reaction of aldehydes with chloromethyl benzimidazole, meanwhile the 2-[(2-aryl-1-chloro)vinyl]-4H-3,1-benzoazin-4-one 77 is obtained via interaction of 2-chloromethyl analog 75 with aldehyde 76 in presence of chlorotriethylsilane [262].

![Image of reaction scheme]

2.4 From isatoic anhydrides

Isatoic anhydrides are noted for their versatility in heterocyclic synthesis, so it is no surprise that 4H-3,1-benzoazin-4-one heterocycle can be obtained from the closely related 2H-3,1-benzoazin-2,4(1H)-dione (78) system.

2.4.1 Reaction of isatoic anhydride with acid anhydrides

When isatoic anhydride 78 is refluxed in acetic anhydride [297], acetic acid anhydride/pyridine [166, and 301] or stirred with trifluoro acetic acid anhydride/pyridine at room temperature [321] the corresponding benzoazinone 79 is isolated in high yield.

![Image of reaction scheme]

R = CH₃, Ph, CF₃, COCl, C₆H₄NH₂(2), CH₂CH(CH₃)COOEt
2.4.2 Reaction of isatoic anhydride with acid chlorides

Likewise, refluxing a mixture of isatoic anhydride 78 and either cinnamoyl chloride or oxalyl chloride in pyridine/toluene solvent produces the 2-styryl analog 80 or the bis-3,1-benzoaxazin-4-one 81 [166]. If the reaction with oxalyl chloride carried out in benzene using anhydrous aluminium chloride or 4-(dimethylamino)pyridine as an additive, the 2-chloroformyl derivative 82 is isolated [301].

Isatoic anhydride also reacts with acid chlorides at elevated temperature to give 3,1-benzoaxazin-4-one. Thus, heating compound 78 and benzoyl chloride results the 2-phenylbenzoaxazinone 1a [142, 143].

Coupling of trifluoromethyl-substituted isatoic anhydride 83 with pyrazole acid chlorides 84 affords benzoaxazinones 85 in modest yield.
Condensation of isatoic anhydride 86 with 3-substituted-acryloyl chloride 87 under basic condition yields the arylvinyl-4H-3,1-benzoxazin-4-ones 88 [293].

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>R’</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>CF₃</td>
<td>Me OCF₃, CF₃, Br, Cl, OCF₂H, OCH₂CF₃</td>
<td></td>
<td>[192]</td>
</tr>
<tr>
<td>B</td>
<td>H</td>
<td>H CF₃ C₆H₅</td>
<td>C₆H₅</td>
<td>[191]</td>
</tr>
</tbody>
</table>

2.4.3 Reaction of isatoic anhydride with phosphoryl-stabilized anions

Reaction of isatoic anhydride 78 with phosphoryl-stabilized anions bearing no α-hydrogen atoms led to the formation of 3,1-benzoxazin-4-one. Consequently, when compound 78 is allowed to react with the anion of ethyl2-diethylphosphonopropanoate (89) or α-diethyl phosphono–butyrolactone 91 in benzene, it produces 90 and 92 respectively [204, 205].

2.5 Oxidation of indoles

2-substituted indoles 93 were readily oxidized with m-chloroperoxybenzoic acid [55] or p-chloroperoxybenzoic acid [53] and the corresponding benzoxazinone 94 are produced.
A similar transformation is accomplished by the photooxygenation of 2-phenylindole 95 in methanol using Rose Bengal as a sensitizer [129].

In a closely related transformation, the oxidation of 2-phenylindolenin-3-one 96 with m-chlorobenzoic acid in chloroform affords 1a [259]. Whereas, oxidation of 4-dimethylamino analog 97 with hydrogen peroxide in N,N-dimethylformamide furnishes 98 [10].

<table>
<thead>
<tr>
<th>R</th>
<th>1a</th>
<th>H</th>
<th>96</th>
<th>H</th>
<th>97</th>
<th>NMe₂</th>
<th>98</th>
<th>NMe₂</th>
</tr>
</thead>
</table>

2.6 Miscellaneous

2.6.1 From β-(Triphenylphosphoranylidene)amino esters

β-(Triphenylphosphoranylidene)amino ester derivative 99 is treated with 1 equivalent of benzoyl chloride and triethylamine in acetonitrile and the oxazinone derivative 100 is generated [314].
2.6.2 From iminophosphorane

Similarly, treatment of iminophosphorane 101 with benzoyl chloride in acetonitrile in the presence of small excess of triethyl amine yielded 7-nitro-2-phenyl-4H-3,1-benzoxazin-4-one (102) [314].

\[
\begin{align*}
\text{O} & \quad \text{O Me} \\
\text{N=PPPh}_3 & \quad \text{PhCOCl} \\
\text{CH}_3\text{CN, Et}_3\text{N} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{Ph} & \quad \text{Ph}
\end{align*}
\]

This reaction is used for the production of heteroannulated 3,1-benzoxazin-4-ones, where the benzene ring is replaced with thiophene, thiazole, and pyridazine [314].

2.6.3 From N-benzenesulphonylanthranilic acid

The self condensation of 2-molecules of N-benzenesulphonylanthranilic acid 103 in polyphosphate ester (PPE) results in the formation of 2-substituted phenyl-4H-3,1-benzoxazin-4-one 104 [312].

\[
\begin{align*}
\text{COOH} & \quad \text{PPE} \\
\text{N-SO}_2\text{Ph} & \quad \text{-PhSO}_3 \\
\text{N}\text{H-SO}_2\text{Ph} & \quad \text{N}\text{H-SO}_2\text{Ph}
\end{align*}
\]

2.6.4 From thioamide derivatives

Heating thioamide derivative 105 in refluxing t-butylbenzene causes cyclization to occur with loss of hydrogen sulphide and produces 2-pyrrolyl-4H-3,1-benzoxazin-4-one 106 [195].

\[
\begin{align*}
\text{COOH} & \quad \text{heat} \\
\text{S-NH} & \quad \text{-H}_2\text{S} \\
\text{NH} & \quad \text{NH}
\end{align*}
\]

2.6.5 From electrochemical trichloroacetylanilides

The electrochemical reduction of several o-trichloroacetylanilides, 2-CCl\textsubscript{3}\textsubscript{3}CO.C\textsubscript{6}H\textsubscript{4}.NHOAr (Ar = Ph, 4-MeC\textsubscript{6}H\textsubscript{4}, 4-MeOC\textsubscript{6}H\textsubscript{4}), on mercury pool in acetonitrile, yields 4H-3,1-benzoxazin-4-ones 107 [216].
2.6.6 CO₂ Incorporation reaction using arynes

The CO₂ incorporation reaction based upon three component assembly by the use of arynes and imines produced benzoxazinones 109. The reaction carried out by in situ generated benzyne 108 which reacted with aryl imines under a CO₂ atmosphere (1 atm) [323].

<table>
<thead>
<tr>
<th>R</th>
<th>R’</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>4-CH₃</td>
<td>2,4,6-(CH₃)₃.C₆H₂</td>
</tr>
<tr>
<td>b</td>
<td>4-F</td>
<td>2,4,6-(CH₃)₃.C₆H₂</td>
</tr>
<tr>
<td>c</td>
<td>6-CH₃</td>
<td>2,4,6-(CH₃)₃.C₆H₂</td>
</tr>
<tr>
<td>d</td>
<td>3-OCH₃</td>
<td>2,4,6-(CH₃)₃.C₆H₂</td>
</tr>
<tr>
<td>e</td>
<td>4,5-(CH₃)₂</td>
<td>2,4,6-(CH₃)₃.C₆H₂</td>
</tr>
<tr>
<td>F</td>
<td>3,6-(CH₃)₂</td>
<td>2,4,6-(CH₃)₃.C₆H₂</td>
</tr>
<tr>
<td>g</td>
<td>H</td>
<td>2,4-(CH₃O)₂.C₆H₃</td>
</tr>
<tr>
<td>h</td>
<td>H</td>
<td>2,4-(CH₃)₂.C₆H₃</td>
</tr>
<tr>
<td>i</td>
<td>H</td>
<td>4-(CH₃O).C₆H₄</td>
</tr>
<tr>
<td>j</td>
<td>H</td>
<td>C₆H₅</td>
</tr>
<tr>
<td>k</td>
<td>H</td>
<td>1-naphthyl</td>
</tr>
<tr>
<td>l</td>
<td>H</td>
<td>2-thienyl</td>
</tr>
<tr>
<td>m</td>
<td>H</td>
<td>4-CF₃.C₆H₄</td>
</tr>
<tr>
<td>n</td>
<td>H</td>
<td>4-CH₃O.C₆H₄</td>
</tr>
<tr>
<td>o</td>
<td>H</td>
<td>n-Bu</td>
</tr>
<tr>
<td>P</td>
<td>H</td>
<td>i-Pr</td>
</tr>
</tbody>
</table>

2.6.7 From 2-(1H-1,2,3-benzotriazol-1-yl)phenylethanone

Homogenous flash vacuum pyrolysis reaction of 2-(1 H-1,2,3-benzotriazol-1-yl)phenyl ethanone is considered as one-pot synthesis of 2-phenyl-4H-3,1
benzoxazin-4-one (1a). Where the benzotriazole underwent acyl migration followed by elimination of diazomethane and rearrangement of the intermediate formed [218].

![Chemical structure](image)

2.6.8 From heating of acetylanthranilic acid by microwave

The benzoxazinone 1b was obtained via heating of acetylanthranilic acid under microwave heating conditions [300].

![Chemical structure](image)

On the other hand, the 4H-3,1-benzoxazin-4-one derivatives 110 can be obtained via applying optimized microwave reaction conditions to a variety of anthranilic acids and both acyl chlorides (R\(^1\)COCl) and carboxylic acids (R\(^2\)CO\(_2\)H) in the presence of the coupling reagent triphenyl phosphite [193].

![Chemical structure](image)

<table>
<thead>
<tr>
<th>R</th>
<th>R(^1)</th>
<th>R(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Ph</td>
<td>Ph</td>
</tr>
<tr>
<td>H</td>
<td>C(_4)H(_3)O(2)</td>
<td>Bn</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>(CH(_3))(_3)CH</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>C(_3)H(_5)</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>Et</td>
</tr>
<tr>
<td>4-Me</td>
<td></td>
<td>Me</td>
</tr>
<tr>
<td>4-Cl</td>
<td></td>
<td>(CH(_3))(_2)CHCH(_2)</td>
</tr>
<tr>
<td>2-amino nicotinic acid</td>
<td></td>
<td>Ph</td>
</tr>
</tbody>
</table>

A fast synthesis of 2-substituted-4H-3,1-benzoxazin-4-one 112 is achieved from the reaction of acetic acid anhydride with 2-acylaminobenzoic acid 111 under microwave and solvent-free conditions [251].
Introduction

2.6.9 Thermolysis of 2-(3-benzoylthiourea)-4,5-dimethoxy benzoic acid

2-benzoylamino-6,7-dimethoxy-4H-3,1-benzoxazin-4-one (113) is prepared by thermal treatment of benzoic acid derivative [138].

The inactivation of Chymotrypsin and human Leukocyte elastase by compound 113 is reported [138].

2.6.10 Thermally induced cyclization of ketenimines

4H-3,1-benzoxazin-4-one 118 is prepared based on the thermally induced cyclization of N-(2-benzyloxy carbonyl)phenyl ketenimines 117, generated from the interaction of 2-azidobenzoyl chlorides 114 with benzylic alcohols [13].

2.6.11 From o-iodoaniline

In all the syntheses of 4H-3,1-benzoxazin-4-ones presented so far the common scenario begins with materials which have the amine and carbonyl carbon
(which will ultimately become the 1- and 4-positions of the product) already positioned appropriately on the benzene ring. An alternate strategy takes advantage of carbonylation methodology which allows for the attachment of the carbonyl function onto a simpler aniline derivative. This is elegantly demonstrated by the reaction of an o-acylamidophenyl iodide 119 in the presence of potassium carbonate and palladium catalyst under an atmosphere of carbon monoxide which produces the benzoxazinone derivatives 120 [59].

\[
\begin{array}{c}
\text{119} \quad \text{R= Me, Et, Ph} \\
\text{120}
\end{array}
\]

A three-component reaction, using o-iodoaniline as the aromatic anchor, an aryl iodide or vinyl triflate (as precursors of the substituent at 2-position), and carbon monoxide to supply the 4-carbonyl, allows access to a variety of 2-aryl or 2-vinyl-4H-3,1-benzoxazin-4-ones [59]. A good example of this methodology at work is the reaction of o-iodoaniline with triflate 121 to give the steroidal benzoxazinone 122.

\[
\begin{array}{c}
\text{121} \\
\text{122}
\end{array}
\]

Similarly, employing o-iodoaniline as building-block, unsaturated halides are used as precursors of the substituent at 2-position of oxazinone nucleus, and carbon monoxide in the presence of potassium carbonate and catalytic amount of Pd(PPh₃)₄. Such a process can be easily fulfilled to afford 4H-3,1-benzoxazin-4-one derivatives 123 containing an unsaturated unit, linked to C-2 [22].

\[
\begin{array}{c}
\text{R = a, } \text{R} \quad \text{b, } \text{C} \quad \text{c, } \text{C} \quad \text{d, } \text{C} \quad \text{e, } \text{C}
\end{array}
\]
3. Reactions of 4H-3,1-benzoxazin-4-ones

4H-3,1-benzoxazin-4-one derivatives can be considered as semi-acid anhydrides formed by cyclodehydration of acylantranilic acids. They undergo many reactions of true acid anhydrides, but at slower rate [117].

Electrophilic reactions on the benzene ring of the benzoxazinone nucleus are rare and are probably unnecessary due to the plethora of diversely substituted anthranilic acids which are available. We will concern on the remaining reactive sites and feature the reactions at the C-4 and C-2 carbons of our heterocycle.

3.1 Reactions with Hydrogen nucleophiles

Benzoazinone nucleus is susceptible to attack by hydride reagents as sodium borohydride and tend to give varying mixture of 2-acylaminobenzyl alcohol 124 and N-alkylantranilic acid 125 [24].

\[\text{R} = \text{Me, t-Bu, CF}_3, \text{Ph, styryl, 2-thienyl} \]

In contrast, catalic hydrogenation of 2-methyl-4H-3,1-benzoxazin-4-one (1b) in acetic acid affords only N-acetyl toluidine 126 [56].

\[\text{1b} \quad \text{H}_2 \text{Pd/ BaSO}_4 \rightarrow \text{126} \]

Similarly, hydrogenation of benzoxazinone 5a under neutral conditions resulted in the initial reduction of C=N bond then cyclization with o-carboxylic acid group and furnished the tetracycle 127 [56].

\[\text{5a} \quad \text{H}_2 \text{Pd/ BaSO}_4 \rightarrow \text{127} \]

3.2 Reactions with Oxygen nucleophiles

The simplest and sometimes the most unwanted reaction of some 4H-3,1-benzoazin-4-ones is hydrolysis. Where, the 4H-3,1-benoxin-4-ones are exceedingly labile to hydrolysis and the initial cleavage to N-acylantranilic acids parallels that of benzoazoles to acylanaminophenol.
However, their sensitivities to hydrolysis vary greatly. 4H-3,1-Benzoxazinone (formanthranil) 128 and acetanthi-anil lb undergo cleavage by atmosphere moisture. The higher 2-alkylbenzoxazinones are increasingly stable and the 2-aryl/and 2-styrylbenzoxazines can be handled without special precautions [75].

![Reaction 128 to 129](image1)

Kinetic studies for hydrolysis of 4H-3,1 benzoxin-4-one in dilute buffers at 0.1 M ionic strength and D$_2$O was reported. The bases in the buffers were catalysts Sand the second order rate constants obeyed a Bronsted relation with isotope effect on the OH term. Hydrolysis under acidic and basic conditions in O-enriched H$_2$O indicated attack at C$_2$ and C$_4$, respectively. R-substituted 2-phenyl-4H-3, 1 -benzoxazin-4-one (R=H, p-Br, p-Me, p-MeO) showed Hammett p values under acidic and basic conditions (-0.38 and +0.71). Strong acid media inhibited hydrolysis of the phenyl and p-MeO derivatives in accordance with extensive protonation of N$_1$ and a lowering of the H$_2$O activity with the increased acidity [320].

Incorporation of a carboxylic acid at 8-position allows intramolecular protonation of N$_1$, which enhances susceptibility attack at C-2 and/or C-4 [80].

![Reaction 1 b to 130](image2)

3.3 Reactions with nitrogen nucleophiles

Reaction of 4H-3,1-benoxazin-4-ones with amines is the most interesting, because of the wide range of heterocycles that can be produced either directly or through further transformations of the initially formed products.
3.3.1 Ammonlysis

The interaction of 4H-3,1-benzoxazin-4-one derivative 1p with ammonia in ethanol produces compound 132 [76].

![Diagram showing the reaction of 4H-3,1-benzoxazin-4-one derivative 1p with ammonia to produce compound 132.]

Ammonia (The simplest of amines) or ammonium hydroxide, when allowed to react with benzoxazinone derivative 133 over a period of 1-3 hours, the anthranilamide 134 is produced in good yield [233,230,317]. This in turn, can be cyclized to 3-unsubstituted-4(3H)-quinazolone 135 under thermal conditions (240-280 °C) or with acetic anhydride. Quinazolone can also be produced after longer reaction times with ammonium hydroxide (6-24h.) [199,233,230] or by heating with formamide (170-175°C) [120,119] or ammonium acetate at 130-135°C [37,169].

![Diagram showing the cyclization of anthranilamide 134 to 3-unsubstituted-4(3H)-quinazolone 135.]

X= H,Cl,Br,Me
R = alkyl,PhY (Y=Br,NHMe),CH₂CN

Boiling 4,6-dinitro-2-methyl-4H-3,1-benzoxazin-4-one (22) with aqueous ammonia; suffered recyclization into the corresponding quinazolone derivative 136 [177].

![Diagram showing the reaction of 4,6-dinitro-2-methyl-4H-3,1-benzoxazin-4-one with aqueous ammonia to produce boîling 4,6-dinitro-2-methyl-4H-3,1-benzoxazin-4-one (22) with aqueous ammonia; suffered recyclization into the corresponding quinazolone derivative 136.]

2,6-Dimethyl-4(3H)-quinazolinone (137) is produced via interaction of 2,6-dimethyl benzoxazinone 1z₁₂ with 25% aqueous ammonia in ethanol at room temperature for 48 hours. The obtained quinazolone 137 is converted to an interesting 6-substituted quinazolone derivative 138, which is known as a Cytotoxic active compound [61].
In contrast, 4H-3,1-benzoxazin-4-one derivative 139 is formylated on treatment with excess of formamide and yielded the N-formyl-quinazolinone derivative 140 [108].

3.3.2 Hydrazinolysis
3.3.2.1 Reactions with hydrazine hydrate

Heating 4H-3,1-benzoxazin-4-ones in neat hydrazine hydrate or in pyridine or xylene solutions produces the 3-amino-4-quinazolones 141 [57,26, 306, 305, 185, 270, 271, 208, 78, 283].

\[
\text{X}=\text{H, halo, Me, NO}_2 \\
\text{R}=\text{Me, Et, i-Pr, CF}_3, \text{ Ph, 2-furyl}
\]

It was found that, cyclization on both nitrogens of the hydrazine to form a 1,3,4-benzotriazepin-5-one is not observed [305].

Similarly, heating benzoazaxinone derivatives 1a,b with hydrazine hydrate in n-butanol afford 3-aminoquinazolone derivatives 142 [211, 210, 158].

The quinazolone 142a is reacted with aromatic aldehydes and produces the corresponding benzylidene aminoquinazolinone derivatives 143, which in turn cyclized to thiazolone derivative 144 by its interaction with thioglycolic acid [158].
On the other hand, treatment of the benzoazinone derivative 1z5 with hydrazine hydrate in ethanol affords the (thienoylamino) dibromobenzamide 145 [162].

Compounds 1b and 1c undergo heteroring opening with hydrazine and give 2-methyl-3-amino-4(3H)-quinazolone. Compounds 146 condensed with aromatic and aldehydes and give 2-styryl-3-benzyiidene imino-4(3H)-quinazolone derivatives 147 (Ar=phenyl, substituted phenyl R=H, Br) [29].

Condensation of substituted 4H-3,1-benzoazin-4-ones 148 with hydrazine hydrate produce 3-amino-substituted quinazolinone 149. This compounds 149 treated with furan-2-aldehydes in the presence of acid catalyst forming substituted-furyl-quinazolin-4(3H)-ones 150 [254].

A series of novel hydrazones 152 are synthesized by condensation of 3-amino-6,8-dibromo-2-phenylquinazolin-4(3H)-ones 151 with different aromatic aldehydes via cyclized intermediate 6,8-dibromo-2-phenyl-4H-3,1-benzoazin-4-one(11). The obtained hydrazones 152 are screened for its Antimicrobial activity [242].
Ar = Ph, C\textsubscript{6}H\textsubscript{4}.OCH\textsubscript{3}(4), C\textsubscript{6}H\textsubscript{4}.OH(2), C\textsubscript{6}H\textsubscript{4}.N(CH\textsubscript{3})\textsubscript{2}(4), C\textsubscript{6}H\textsubscript{4}.NO\textsubscript{2}(3), C\textsubscript{6}H\textsubscript{4}.CH\textsubscript{3}(4), C\textsubscript{6}H\textsubscript{4}.OH(4), C\textsubscript{6}H\textsubscript{4}.Cl(4), C\textsubscript{6}H\textsubscript{4}.NO\textsubscript{2}(4), C\textsubscript{6}H\textsubscript{2}(OCH\textsubscript{3})\textsubscript{3}(3,4,5), C\textsubscript{6}H\textsubscript{3}.OH(4).OCH\textsubscript{3}(3), -CH=CHPh

Also compound 1m reacts with hydrazine hydrate in ethanol and yields aminoidomethyl quinazolone 153, which reacts with phthalic anhydride and gives phthalimidoquinazolinone 154. And with a second molecule of 6-iodo-2-methyl-4H-3,1-benzoxazin-4-one 1m yields 4-oxoquinazolinyquinazolinone 155 [213].

6,8-Dibromo-2-methyl-4H-3,1-benzoxazin-4-one (1j) reacts with hydrazine hydrate in ethanol and gives 3-amino-6,8-dibromo-2-methyl-4(3H)-quinazolinone (156) [270,271].

Compound 156 reacts with chloro acetyl chloride and gives N-chloroacetyl quinazolinone derivative 157a [270,271].
Compounds 157b-h are prepared by eventual reaction of 157a with the appropriate mercaptan or secondary amines, are tested for lethal toxicity in mice, antifungal activity in vitro (Currularia lunata and Dreschlera halodis), Analgesic activity in mice and Antiinflammatory activity in rats [270,271].

In similar way as mentioned above, 6-fluoro-2- substituted 4H-3,1-benzoxazine-4-ones 158 has reacted with hydrazine hydrate and compound 159 is generated [325, 327].

\[
\begin{align*}
R &= \text{PhCH}_2\text{CH}_2, \text{Bn, Ph}, \text{2-thiophenemethylene} \\
4H-3,1\text{-benzoxazin-4-ones with additional reactive functionalities at 2-position undergo further cyclization when exposed to hydrazine hydrate, and form a variety of interesting heterocycles 163-167.}
\end{align*}
\]
On the other hand, when the reaction of 4H-3,1-benzoazin-4-one 139 with hydrazine hydrate is conducted in n-butanol, a mixture of 3,5-bis-(4-methoxyphenyl)-1H-pyrazole-4-carbonitrile (168) and N,N-bis-(4-methoxybenzylidene)hydrazine (169) is obtained [108].

\[
\begin{align*}
\text{Ar} &= \text{C}_6\text{H}_4\text{OCH}_3(4) \\
3.3.2.2 \text{ Reaction with hydrazine hydrate in presence of carbon disulphide} & \\
\text{When the reaction of 4H-3,1-benzoazin-4-one 1a with hydrazine hydrate is conducted in the presence of carbon disulphide in alcoholic potassium hydroxide, the 1,3,4-oxadiazolin-5-thione 170 is produced directly [164].}
\end{align*}
\]
3.3.2.3 Reaction with substituted hydrazines

Substituted hydrazines react likewise in solvents such as benzene, pyridine, ethanol, or acetic acid to furnish 3-N-substituted quinazolone derivatives 171, where R can be phenyl [213], acyl [5], (C= XNHR (X= O or S) [158], and others [9,299].

\[
\begin{align*}
R= & \text{Me, Et, i-Pr, CF3, Ph, 2-furyl} \\
R' = & \text{Ph, CH}_3\text{CO, CONHR,CSNHR}
\end{align*}
\]

4H-3,1-benzoxazin-4-one 139 is reacted with phenyl hydrazine in the same manner like reaction with hydrazine hydrate, it gives a mixture of carbonitrile 172 and hydrazine derivative 173 [108].

\[
\begin{align*}
\text{Ar} = & \text{C}_6\text{H}_4.\text{OCH}_3(4)
\end{align*}
\]

Hydrazinolysis of benzoxazinone derivative 1m using phenyl hydrazine furnishes the quinazolinone derivative 174. It is used in synthesizing some triazino-quinazoline derivatives 177 by introducing aromatic nuclei via Mannich reaction with arylamines [279].
Interaction of 2-methyl-4H-3,1-benzoxazin-4-one derivatives 178 with nalidixic acid hydrazide 179 yield substituted 3,1-quinazol-4-one derivatives of nalidixic acid 180, which exhibited inhibitory activity against A. hydrophila [135].

\[
\begin{array}{c}
\text{R} \\
\includegraphics[width=1.5in]{image}
\end{array}
\]

When 2-ethoxycarbonyl-4H-3,1-benzoxazine-4-one (181) treated with substituted hydrazines 182, the hydrazones 183 are isolated [229].

\[
\begin{array}{c}
\text{R= Ph, COPh, COpy.}
\end{array}
\]

Combining 4H-3,1-benzoxazin-4-ones 184 acid substituted sulphonylhydrazides 185 devoid of solvents, followed by heating at 160 °C (oil bath) gave compounds 186 as the major products [327].

\[
\begin{array}{c}
\text{R = phenethyl, Bn, Ph, 2-thiophene-methylene}
\end{array}
\]

Reactions of acetonyl benzoxazinones 61 with methylhydrazine or various phenylhydrazines affording the pyrazolyl anthranilic acids 187. Cyclization of these intermediates with a mixture of phosphorus pentoxide and polyphosphoric acid providing the 4-hydroxypyrazolo[3,4-d]quinazoline 188 (Y= OH) [63,288], whereas cyclization with phosphorus oxychloride gives the 4-chloro analog 188 (Y= Cl) [73,72].
Symmetrically disubstituted hydrazines are reacted with cyano derivative 189 with loss of HCN to produce 1,3,4-benzotriazepin-2,5-diones 190 [292].

R= Me, Et, i-Pr

3.3.2.4 Reactions with hydroxylamine hydrochloride

Reaction of 4H-3,1-benzoxazine-4-one derivatives 191 with hydroxylamine hydrochloride in refluxing pyridine afford 3-hydroxy-4-quinazolinone derivatives 192 [50, 92,121, 161].

3.3.2.5 Reactions with thiosemicarbazide and aminoguanidines

If heating 2-methyl-4H-3,1-benzoxazin-4-one (1b) with thiosemicarbazide in acetic acid in the presence of fused sodium acetate, the conversion does not stop at the thiocarbamide intermediate 193 but continues to cyclodehydrate providing 194 [159].
In a similar fashion, refluxing 2-phenyl (or methyl)-4H-3,1-benzoxazin-4-ones (1a or 1b) with aminoguanidine in pyridine to afford the amino derivatives 195 [71].

\[
\begin{align*}
1b & \quad 1a \\
\text{R=Me,Ph} \\
\end{align*}
\]

3.3.3 Aminolysis

3.3.3.1 Reactions with primary nonaromatic amines

In many cases, acylanthranilamides are the products of the interaction of 4H-3,1-benzoxazin-4-ones with primary amines (due to the weak nucleophilicity of primary amines in comparison with aromatic amines and consequently depend on the mode of attacking the benzoxazinone moiety). Reaction of 4H-3,1-benzoxazinone 36 with isopropyl amine and/or methylamine in THF produced the corresponding pyridylpyrazole anthranilic diamides 196. Compounds 196 have insecticidal potency and a Calcium mobilization threshold (CMT).

\[
\begin{align*}
\text{36} & \quad \text{196 a,b} \\
\end{align*}
\]

| a; X= Cl, Me | Y=H,Cl | Z=CF₃ | R=i-Pr | [190,192] |
| b; X=CH₃ | Y=H,Cl,Br,I,CF₃ | Z=Br,Cl, CF₃, OCH₃, OCF₂H, OCH₂CF₃ | R = Me, i-Pr | [191] |

Reactions of 4H-3,1-benzoxazin-4-one 1b with isopropyl amine and/or t-butylamine produces N-acylanthranilamide 197 [114,118].
N-acylantranilamide 197 requires temperatures above 200 °C to affect cyclization into 3-substituted quinazolinone derivative 198 [115, 117].

Instead of using high temperature to effect cyclization, microwave-assisted cyclocondensation is used to obtain 2,3-disubstituted quinazolinone 199 [179].

Simple straight-chain alkylamines as methyl and n-butyl amines react with benzoxazinone 1b to afford 3-substituted-4-quinazolinones 200 [207].

2-Methylquinazolinone 200 can be easily homologated to styryl derivative 201 by refluxing it with an appropriate aldehyde [32].
4H-3,1-benoxazin-4-one 202 furnishing 3-substituted quinazolin-4(3H)-one 204 via insertion of Boc-protected aminomethylpiperidine or 3-aminomethylmorpholine, led to intermediate 203 which is deprotected and subsequently is alkylated using reductive amination or nucleophilic substitution conditions [261].

The compounds thus obtained are collected in the following table:

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>C₆H₄Cl(4)</td>
<td>H</td>
<td>CH₂</td>
<td>C₆H₄CH₃(2)</td>
<td>Et,i-Pr, (CH₂)₃CH-, (CH₂)₂OCH₃, (CH₂)₂F, EtCF₃,n-Pr-CF₃</td>
</tr>
<tr>
<td>b</td>
<td>C₆H₄Cl(4)</td>
<td>H</td>
<td>CH₂</td>
<td>C₆H₄OCH₃(2)</td>
<td>Et</td>
</tr>
<tr>
<td>c</td>
<td>F.C₆H₄(4)</td>
<td>H</td>
<td>CH₂</td>
<td>C₆H₄CH₃(2)</td>
<td>i-Pr</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>H</td>
<td>CH₂</td>
<td>C₆H₄CH₃(2)</td>
<td>i-Pr</td>
</tr>
<tr>
<td>e</td>
<td>OCH₃</td>
<td>H</td>
<td>CH₂</td>
<td>C₆H₄OCH₃(2)</td>
<td>Et</td>
</tr>
<tr>
<td>f</td>
<td>OCH₃</td>
<td>H</td>
<td>CH₂</td>
<td>C₆H₄CH₃(2)</td>
<td>Et</td>
</tr>
<tr>
<td>g</td>
<td>F.C₆H₄(4)</td>
<td>H</td>
<td>CH₂</td>
<td>C₆H₄CH₃(2)</td>
<td>H, i-Pr</td>
</tr>
<tr>
<td>h</td>
<td>Br</td>
<td>H</td>
<td>O</td>
<td>C₆H₄CH₃(2)</td>
<td>Bn, H, i-Pr</td>
</tr>
<tr>
<td>i</td>
<td>H</td>
<td>C₆H₄Cl(4)</td>
<td>CH₂</td>
<td>C₆H₄OCH₃(2)</td>
<td>Et</td>
</tr>
</tbody>
</table>

3.3.3.2 Reactions with secondary amines

In a similar fashion, as isopropyl and/or t-butylamines are reacted with 4H-3,1-benoxazin-4-ones 205 and produce N-acylanthranilamides 206. Also secondary amines such as dimethylamine, morpholine, piperidine, and pyrrolidine are reacting and produce N-acylanthranilamides 206 [71].
4H-3,1-benzoxazin-4-ones 207 with sulphonyl group introduced at 2-position are reacting with piperidine under different reaction conditions leading to 208-210. It gives an idea about the extent of the reactivity of the benzoxazinone fragment, where the chlorosulphonyl group is more reactive than the benzoxazinone fragment toward amines [294].

3.3.3.3 Reactions with alkylamines

3.3.3.3.1 Reactions with benzylamine

Treatment of benzoxazinone 1p with benzylamine in ethanol affords N-acylanthranilamides 211 [76].
On the other hand, treatment of 2-propyl-4H-3,1-benzoxazin-4-one (1g) with benzylamine yields 3-benzyl quinazolinone 212 [126].

Bromination of quinazolinone 212 followed by addition of N,N-dimethyl ethylene diamine produces 213. The latter quinazolinone 213 reacts with 4-fluorobenzoyl chloride to furnish 214. Compound 214 is a biologically active compound and useful in treatment of Cancer, Hyperplasia, Restenosis immune disorders and inflammation [126].

2-Substituted acrylonitril-4H-3,1-benzoxazin-4-one 139 reacts with benzylamine under different reaction conditions in order to give a mixture of N-benzyl quinazolinone derivative 215 and quinazolin-2,4-dione 216 [108].

3.3.3.3.2 Reactions with phenylethylamine
Search for novel drug-like Calcilytics identified a new quinazolinone derivative 217 formed via heating 4H-3,1- benoxazin-4-one 1p with phenethylamine [319].
Similarly, refluxing 2-phenyl (or substituted phenyl)-4H- 3,1-benzoxazin-4-ones 218 with a 10 fold excess of phenethylamine for 2-3 hours at 200 °C produce the corresponding 4(3H)-quinazolin-4-one derivatives 219 [273].

\[218 \xrightarrow{\text{PhCH}_{2}CH_{2}NH_{2}} 219 \]

\(X = \text{H, 3-F, 3-OMe, 4-OMe, 2-OH, 3-OH, 4-OH, 2,5-di-OH} \)

Similarly, fusion of 2-(2-fluorophenyl)-substituted benzoxazinone 5f and phenethylamine at 200 °C, resulted in the dominant nucleophilic displacement of fluorine substituent with the amino moiety. For preservation of the 2-(2-fluorophenyl) fragment, synthesis of the intermediate bisamide 220 was carried out in pyridine at 120 °C followed by thermal cyclization to 2-(2-fluorophenyl)-3-phenethyl-3H-quinazolin-4-one (221) [273, 313].

\[5f \xrightarrow{\text{PhCH}_{2}CH_{2}NH_{2}} 220 \xrightarrow{200 ^\circ \text{C}} 221 \]

Benzoxazinones 222 bearing fluorine at 5, 7, or 8-position are submitted to the latter reaction with phenethylamine lead to amino-substituted quinazolinones 223 (where undesired nucleophilic displacement of the fluorine by the amine
occurs), probably due to the reaction conditions (elevated temperature and absence of solvent) [273].

![Chemical Structure](image)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>X= 5-F</td>
<td>Y= 5-PhCH₂CH₂NH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>X= 7-F</td>
<td>Y= 7-PhCH₂CH₂NH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>X= 8-F</td>
<td>Y= 8-PhCH₂CH₂NH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applying microwave irradiation to the above benzoxazInone 222b results 7-fluoro-substituted quinazolinone 224, whereas 5- and 8-fluoro-substituted benzoxazinones 222a,c still produce products of nucleophilic displacement 223 a,c [273].

![Chemical Structure](image)

A series of 2-(2-hydroxyphenyl)-3-phenethylquinazolin-4(3H)-one 227 are prepared in the same fashion starting from 2-(2-hydroxyphenyl) substituted benzoxazinones 225 and phenethyl amines 226 [273].

![Chemical Structure](image)
3.3.3.4 Reactions with anilines

Several experimental conditions for the reactions of anilines with 4H-3,1-benzoxazin-4-ones are reported. The reactants can be combined neat at room temperature [249], at elevated temperature ranging from 150-220 °C [287, 282, 152, 157] or at 150-180°C in the presence of zinic chloride [87, 214, 7]. Alternatively, the reaction can be performed in solvents such as pyridine [296,280], dioxane [90,16,17], acetic acid [206], dimethylformamide or ethanol [90,154]. Substituted anilines 229 afforded quinazolinones 230 when reacted with substituted benzoxazinones 228.

![Chemical structure](image.png)

X=H, halo
R= Me, CH₂Cl, Ph, CH₂Ph, COOEt

<table>
<thead>
<tr>
<th>Y</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Halo</td>
<td>[90]</td>
</tr>
<tr>
<td>b Me</td>
<td>[154]</td>
</tr>
<tr>
<td>c OH</td>
<td>[183, 281, 182]</td>
</tr>
<tr>
<td>d OMe</td>
<td>[258]</td>
</tr>
<tr>
<td>e Phenoxy</td>
<td>[33]</td>
</tr>
<tr>
<td>f NO₂</td>
<td>[11,286]</td>
</tr>
<tr>
<td>g SO₂NH₂</td>
<td>[231,232,33]</td>
</tr>
<tr>
<td>h COOEt</td>
<td>[23,207]</td>
</tr>
</tbody>
</table>
3.3.3.4.1 Reactions with p-bromoanilines

p-Bromoaniline for example, reacts with benzoxazinone 1b in ethanol and affords 3-(bromophenyl)-2-methyl-3H-quinazolin-4-one (231) [122].

\[
\begin{align*}
\text{Ar} &= \text{Ph, 4-C1.Ph, 2-theinyl, 4-OMePh} \\
\end{align*}
\]

3.3.3.4.2 Reactions with p-aminodiphenylamine

In similar fashion, interaction of 2-phenyl-6-iodo-4H-3,1-benzoxazin-4-one (1q) with p-aminodiphenylamine yields 6-iodo-2-phenyl-3-(4'-phenylaminophenyl)-quinazolin-4-one (233) [131].

3.3.3.4.3 Reactions with o-toluidine

Refluxing a mixture of benzoxazinone 1b and o-toluidine in toluene under azeotropic conditions furnishes the CNS agent Methaqualone 234 [257].

The above reaction also can be conducted in acetic acid followed by condensation of the produced quinazolinone 234 with 2-pyridinecarboxaldehyde in the presence of zinc chloride and provided 2 [(pyridine-2-yl)vinyl]-3 -2-methylphenyl)-quinazolin-4(3H)-one (235), which is known as Pirqualone and it was tested as anticonvulsant agent [318].
Starting from substituted 2-methyl-4H-3, 1-benzoazin-4-ones, a series of 3-(2-methylphenyl)-2-[(2-pyridyl)vinyl] quinazolones 236 is obtained [318].

\[X = 6-\text{CR}_3, 6-\text{F}, 6-\text{Cl}, 7-\text{Cl}, 8-\text{Cl}, 6,8-\text{Cl}_2, 6-\text{Br}, 8-\text{OCR}_3, 6,7-\text{(OCH}_3)_2 \]

7- Carboxyquinazolone 237 is synthesized by mixing benzoxazinone 20 and o-toluidine at room temperature for 3-4 hours [249].

3.3.3.4 Reactions with 2-substituted and/or 2,6-disubstituted anilines

A variety of 2-substituted and/or 2,6-disubstituted anilines interact with substituted 4H-3, 1-benzoazin-4-ones to produce quinazolinone derivatives 238 [318].
In a similar fashion, a series of 3-(2-chlorophenyl)-2- substituted quinazolones 239 is prepared and their biological activity are tested. They are identified as antagonist template for AMPA receptors (play an important role in pharmacological studies of glutamate receptors) [65].

5,7-Dimethoxy-2-substituted benoxazinones 240 are reacted with p-methoxyaniline either via refluxing in xylene for 4 hours or in acetic acid at 60 °C for 24 hours and afforded 3-(4-methoxy phenyl)-4(3H)-quinazolinone 241 [136].

R = H, Me, Et, n-Pr, n-Bu, i –Bu

3.3.3.4.5 Reactions with anilines containing reactive function groups

3.3.3.4.5.1 Reaction with 2-cyanoanilines

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>g</td>
<td>F</td>
<td>Cl</td>
</tr>
<tr>
<td>b</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>h</td>
<td>F</td>
<td>Br</td>
</tr>
<tr>
<td>c</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>i</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>d</td>
<td>H</td>
<td>CF₃</td>
<td>H</td>
<td>j</td>
<td>H</td>
<td>CH₃</td>
</tr>
<tr>
<td>e</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>k</td>
<td>H</td>
<td>Cl</td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>F</td>
<td>H</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>CH₃OCH₂</td>
<td>piperidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CH₃CH₂OCH₂</td>
<td>(CH₃)₂CHNHCH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHO</td>
<td>CH₂F</td>
<td>(CH₃)₂NCH₂CH₂N(CH₃)CH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂NH₂</td>
<td>CN</td>
<td>(C₂H₅)₂NCH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOH</td>
<td>COOCH₃</td>
<td>(CH₃)₂NCH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂OH</td>
<td>C₂H₅NCH₂</td>
<td>CH₃NHCH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AcOCH₂</td>
<td>pyrrolidine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.3.4.5.2 Reactions with p-aminoacetophenone

Benzoxazinone 1m condenses with 4-amino acetophenone in n-butanol and gives 2-methyl-6-iodo-3-(4'-acetylphenyl)-quinazol-4-one (245a,b) [130].

The semicarbazone 245b was obtained from 245a by refluxing with an equimolar amount of semicarbazide hydrochloride in ethanol [130].

Cyanopyridin-2-(1H)-thione derivatives were obtained via the reaction of arylmethylene-cyanothioacetamide (ArCH=C(CN)CSNH₂) with the active methylene carbonyl quinazolone 245b. An assay for Antitumor activity showed that compound 246 (Ar= 4-OCH₃C₆H₄) has a significant activity against Ehrlich Acites Carcinoma tumor cells (in vitro) and displayed a significant percent of the nonviable tumor cells to about 40% and 80% at concentration of 10 and 100mg, respectively [130].
Introduction

Ar= Ph, 4-pyridyl, 2-thienyl

3.3.3.4.5.3 Reactions with 4-hydroxyanilines

Treatment of 4H-3,1-benzoxazin-4-ones 247 with 4- hydroxyanilines 248 yield the corresponding quinazolone 249 [245].

The latter quinazolones 249 react with 2-(4- diethylamino-2-hydroxybenzoyl)benzoic acid (250) in the presence of sulphoric acid to produce fluorans 251 [245].

3.3.3.4.5.4 Reactions with sulphanilamide

3-[(4-sulphamoylphenyl)-4(3H)-quinazolin-4-ones (255; R = alkyl; R1 = H, Me, halo; R2 = H, Cl, NO2 R3= H, halo) are synthesized by condensation of sulphanilamide with various 4H-3, 1-benzoxazin-4-ones 252. 2-amido-N-(4-sulphamoyl phenyl)benzamides are isolated as reaction intermediates. Some of quinazolone derivatives 255 showed significant anticonvulsant effects against pentetrazoll- induced avulsions [111].
Introduction

Similarly, 1- [4-(4’-oxo-2-methyl/phenyl-4-(3H)-quinazolin-yl)-3-aryl ureas (259; R = Me, Ph; R³ = H, Me; R² = H, Me; R¹, R² = H, Br) are prepared by reaction of corresponding quinazolinone-sulphanilamides 258 with aryl isocyanates in the presence of K₂CO₃ in acetone solution. The corresponding quinazolinones are obtained from interaction the corresponding 4H-3,1-benzoxazin-4-ones 256 [221].

Both the oral and i.p. LD⁽⁵₀⁾ values for 259 in mice were 1600 to >2000 and 600 to 800 mg/Kg. This compounds were evaluated for their hypoglyeamic activity against the streptozotocin induced diabetic rats. (259; R = Ph; R³ = H, Me; R¹ = R² = H) decreased the blood sugar level significantly both in normal and streptozotocin-induced diabetic rats. The other compounds showed significant hypoglyeamic activity [221].

3.3.3.5 Reactions with amino heterocyclic compounds

Amino heterocycles such as pyridine, pyrimidine [277,31] pyrazole [247], thiazole [277,113], or 1,3,4-thiadiazole [243, 298, 238] have been successfully useful to prepare 3-heterosubstituted quinazolone with high biological activity [11, 276, 187].
Fusion of 6-chloro-2-methyl-4H-3,1-benzoxazin-4-one 21b with heterocyclic amines 260 produces 3-heterocyclic-2- methylquinazolone derivatives 261 [252].

\[
\text{Cl} \quad \text{N} \quad \text{O} \quad \text{Cl} \\
\text{N} \quad \text{O} \quad \text{N} \\
\text{Cl} \quad \text{N} \quad \text{O} \\
\text{Cl} \quad \text{N} \quad \text{O}
\]

\[
\text{R} \quad \text{N} \quad \text{H} \\
\text{R} \quad \text{N} \quad \text{H} \\
\text{R} \quad \text{N} \quad \text{H} \\
\text{R} \quad \text{N} \quad \text{H}
\]

\[261 \text{a,b} + \text{RNH}_2 \rightarrow \text{melt} \rightarrow 261 \text{a,b}
\]

a; R=5-indazolyl
b; R= 1-ethyl-5-pyrazolyl

Refluxing equimolar amounts of 2-methyl quinazolone 261 and benzaldehyde in glacial acetic acid; the 3-heterocyclo-2-styrylquinazolinones 262 are generated [253].

\[
\text{Cl} \quad \text{N} \quad \text{O} \\
\text{Cl} \quad \text{N} \quad \text{O}
\]

\[
\text{PhCHO} \\
\text{PhCHO}
\]

\[261 \text{a,b} \rightarrow 262 \text{a,b}
\]

a; R = 5-indazolyl
b; R= 1-ethyl-5-pyrazolyl

Reaction of 4H 3,1-benzoxazin-4-ones 1a,c,m with 2- substituted-3- aminooindoles 263 in dry pyridine produce 2- methyl-3 -(2'-substitutedindol-3-yl)-4(3H)-quinazolinone 264 [184].

\[
X= \text{H, 6-I, 6-Br} \\
R= \text{H, Me}
\]

Also 4H-3,1-benzoxazin-4-one 1b is reacted with 2,6- pyridindiamine to furnish 3-substituted quinazolone 265 [290].
Synthesis of 3-(1',3',4'-thiadiazolyl)-2-styrylquinazolin-4(3H)-ones (268) is accomplished by a three-step procedure, the intermediate 3-(1,3,4-thiadiazololyl)-2-methyl quinazolinones 267 is obtained by refluxing 2-methyl-4H-3,1-benzoxazin-4-one 1b with thiadiazole-amino derivatives 266 [168].

3.3.3.6 Reactions with diamines
3.3.3.6.1 Reactions with o-phenylenediamine

If refluxing benoxazinone derivatives 269 with o-phenylenediamine in chloroform, 2-substituted benazidamazoles 270 are formed. Conversely, heating the above mixture in polyphosphoric acid at 200 °C provided 271 [250,163].

<table>
<thead>
<tr>
<th>R</th>
<th>Ar</th>
<th>R</th>
<th>Ar</th>
<th>R</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Ph</td>
<td>g</td>
<td>Ph</td>
<td>m</td>
<td>Ph</td>
</tr>
<tr>
<td>b</td>
<td>4-ClC₆H₄</td>
<td>h</td>
<td>4-ClC₆H₄</td>
<td>n</td>
<td>4-ClC₆H₄</td>
</tr>
<tr>
<td>c</td>
<td>4-CH₃C₆H₄</td>
<td>i</td>
<td>4-CH₃C₆H₄</td>
<td>o</td>
<td>4-CH₃C₆H₄</td>
</tr>
<tr>
<td>d</td>
<td>4-ClC₆H₄</td>
<td>j</td>
<td>4-ClC₆H₄</td>
<td>p</td>
<td>4-ClC₆H₄</td>
</tr>
<tr>
<td>e</td>
<td>3-ClC₆H₄</td>
<td>k</td>
<td>3-ClC₆H₄</td>
<td>q</td>
<td>3-ClC₆H₄</td>
</tr>
<tr>
<td>f</td>
<td>-CH=CHPh</td>
<td>l</td>
<td>-CH=CHPh</td>
<td>r</td>
<td>-CH=CHPh</td>
</tr>
</tbody>
</table>

3.3.3.6 Reactions with diamines
3.3.3.6.1 Reactions with o-phenylenediamine

If refluxing benzoxazinone derivatives 269 with o-phenylenediamine in chloroform, 2-substituted benazidamazoles 270 are formed. Conversely, heating the above mixture in polyphosphoric acid at 200 °C provided 271 [250,163].
If compound 271 is heated at 300 °C in a sublimation apparatus it cyclodehydrated and benzimidazo quinazoline 272 is produced [250].

Refluxing a mixture of 2-ethyl-6-iodo-4H-3,1-benzoxazin-4-one (20b) and o-phenylenediamine in acetic acid in the presence of fused sodium acetate resulted the formation of tetracyclic compound 273 [30].

Cyclocondensation of 2-aryl benzoxazinones 274 (R = Ph or substituted Ph) with o-phenylenediamine catalyzed by orthophosphoric acid yield analogs benzoimidazo quinazolinone 275 [237].
X= H, 2-OH, 4-NO₂
4H-3,1-benzoxazin-4-ones (276) reacts with o-phenylenediamine to afford 277 [250].

3.3.3.6.2 Reactions with ethylenediamine
2-Methyl-4H-3,1-benzoxazin-4-one 1b as well as 2-phenyl analog 1a are reacting with ethylenediamine and produce the corresponding 3-functionalized quinazolones 278 [239,114,118,74].

Analogs such as this have the added capability to react further and generated more complex heterocyclic systems [250]. For example, heating quinazolinone 279 in acetic acid in the presence of fused sodium acetate, cyclodehydration occurred and the imidazolo quinazoline 280 is generated [30].

3.3.3.6.3 Reactions with p-phenylenediamine
Interaction of 2-methyl-4H-3,1-benzoxazin-4-one (1b) with p-phenylenediamine affords quinazolinone 281 [146].

Treatment of quinazolinone 281 with alkyl isocyanates followed by cyclocondensation with phenacyl bromides or chloroacetic acid furnished
Introduction

quinazolinones 282 bearing heterocyclic moieties with high biological activities [146].

\[
\text{R} = \text{NHCSNHR}^1 \\
\text{R}^1 = \text{Me, Et, Bu, CH}_2\text{Ph}
\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = NHCSNHR(^1)</td>
<td>R = 3-alkyl-4-aryl-2,3-dihydrothiazol-2-ylideneamino</td>
<td>R = 3-alkyl-4-oxothiazolidin-2-ylideneamino</td>
</tr>
<tr>
<td>R(^1) = Me, Et, Bu, CH(_2)Ph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.3.7 Reactions with aminoacids

1,4-Disubstituted 3-[3’-(2’-phenyl-4-oxo-quinazoliny)]-2-azetidinones 284 [240], were prepared by cyclocondensation of Schiff’s bases RN=CHR\(_1\) (same R groups) with ketenes, the ketene was prepared by treating 1a (X =O) with H\(_2\)NCH\(_2\)COOH to give 283b (X = NCH\(_2\)COOH) which was converted to the acid chloride 283c (X = NCH\(_2\)COCl). Treatment of the acid chloride with Et\(_3\)N gave 283d (X = NCH=CO) in situ. Compounds 284 showed antiimplantation acitivity in rats [240].

\[
\begin{array}{ll}
\text{X} & \text{NR} \\
\text{Ph} & \text{Ph} \\
4-\text{OMeC}_6\text{H}_4 & 2-\text{CH}_3\text{C}_6\text{H}_4 \\
2-\text{NO}_2\text{C}_6\text{H}_4 & 3-\text{CH}_3\text{C}_6\text{H}_4 \\
2-\text{FC}_6\text{H}_4 & 4-\text{ClC}_6\text{H}_4 \\
\end{array}
\]

In the same manner, carboxyphenylquinazolones 286 has been obtained via cyclocondensation of 2-aryl or alkyl-8-bromo-4H-3,1-benzoxazin-4-one 285 with p-aminobenzoic acid [225].
2-(phenyl/chloromethyl)-3-[4-(N,N-disubstituted amino carbonyl)Phenyl]-8-substituted 4(3H)quinazolones 287 are synthesized by treating carboxyquinazolinone 286 with SOCl₂ in benzene and with the different secondary amines. All quinazolinones 287 are screened for toxicity, central nervous system, cardiovascular and anti-inflammatory activities. Most of these compounds are found to be non-toxic and stimulant in nature. Some of this compounds also exhibited cardiovascular and anti-inflammatory activities [225].

3.3.3.8 Reactions with aminoalcohols

2-Methyl-4H-3,1-benoxazin-4-one 1b reacts with ethanolamine to produce the corresponding 3-hydroxyethyl quinazolone 289 [71].

Heating of the resulting quinazolinone 289 with benzaldehyde yields the styryl derivative 290. Epoxidation of the double bond, then treatment of the product with sodium methoxide afforded 291 as a result of intramolecular attack of ethanol group on the epoxide [81].
Heterocondensed quinazolones 1,4-oxazino[3,4-b] quinazolin-6-one 292 has been obtained (chloromethyl)-4H-3,1-benzoazin-4-one 1h with ethanol amine followed by base-catalyzed cyclization [227].

3.3.3.9 Reactions with Schiff’s bases

Condensation of methylnaphthoxazinone 293 with ArCH=NAr’ (Ar, Ar’ substituted phenyl) in acetic acid yield benzoquinazolones 294 [186].

Similarly, compounds 297 are prepared by reaction of 4H-3,1-benzoazin-4-one derivatives 295 with Schiff’s base 296. Compounds 297 are tested for Anthelmintic, Virucidal and Bactericidal activity [278].

\[
\begin{align*}
R &= \text{Me, Ph} \\
R_1 &= 3\text{-NO}_2, 4\text{-OH, 4-NMe}_2, 2\text{-OH, 4-Cl} \\
R_2 &= \text{H, Br} \\
R_3 &= \text{H, Br}
\end{align*}
\]

3.3.3.10 Reactions with azines

6- Bromo-2-methyl-4H-3,1-benzoazin-4-one (1c) undergoes hetero-ring opening followed by recyclization and condensation when treated with azines 298 and yielded 3-arylideneamino-substituted quinazolin-4-(3H)one 299. The reaction involves a cleavage of the azine into its amine and arylidene moieties which are smoothly incorporated into 1c via nucleophilic attack of the amine at position-4 and condensation of the aldehyde with a reactive methyl group at position-2 respectively [77].
3.3.3.11 Reactions with sodium azide

Treatment of 4H-3, 1-benzoxazin-4-ones 300 with hydrazoic acid (generated with sodium azide in acetic acid) [163, 203, 28, 119, 109, 43, 86] or directly with sodium azide in dimethylformamide [132] resulted in the formation of the tetrazolyl benzoic acids 301.

Reaction of compound 1z5 with HN₃ gave the tetrazole 302 along with the benzimidazolone 303 [162].

3.3.4 Reactions with carbon nucleophiles

3.3.4.1 Reactions with Grignard reagents

The benzoxazinone 1b reacts with Grignard reagents in a fashion determined by the manner in which the reaction is carried out [315].
While this benzoxazinone 1b reacts with cyclohexyl magnesium bromide in THF to afford ketone 306 [62].

\[
\text{O} \quad \text{O} \quad \text{CH}_3 \\
\text{N} \quad \text{N} \\
1 \text{b} \quad \xrightarrow{\text{THF}} \\
\text{O} \quad \text{NHCOCO}_3 \\
306
\]

6,8-Dibromo analog 1j reacts with Grignard reagent and provide the unexpected products 307 [196].

\[
\text{Br} \quad \text{Br} \quad \text{O} \\
\text{N} \quad \text{N} \\
\text{Br} \quad \text{Br} \\
\text{CH}_3 \\
1 \text{j} \quad \xrightarrow{\text{ArMgBr}} \\
\text{O} \quad \text{OH} \\
\text{N} \quad \text{H} \\
\text{Br} \quad \text{HO}^- \\
307 \text{a,b} \\
a; \text{Ar} = \text{Ph} \quad b; \text{Ar} = \text{CH2Ph}
\]

On the other hand, 2-phenyl-4H-3,1-benzoxazin-4-one 1a on reaction with phenyl magnesium bromide by either the normal or inverse addition method providing only 2- benzamidophenyl diphenyl carbinol 308 and its dehydration product 2,4,4-triphenyl-3,1-benzoxazole 309 [12].

\[
\text{PhMgBr} \\
\text{O} \quad \text{O} \quad \text{Ph} \\
\text{N} \quad \text{N} \\
1 \text{a} \quad \xrightarrow{\text{PhMgBr}} \\
\text{Ph} \quad \text{OH} \\
\text{N} \quad \text{COPh} \\
308 \\
\text{Ph} \quad \text{Ph} \\
\text{O} \quad \text{Ph} \\
\text{N} \quad \text{Ph} \\
309
\]

Similarly, 2-methyl-7-methoxy-4H-3, 1-benzoxazin-4-one reacts with p-methoxyphenyl magnesium bromide to give 2-acetamido-4,4-dimethoxybenzophenone [150].

6,8-Dibromo-2-phenyl-4H-3,1-benzoxazin-4-one (1I) reacts with different Grignard reagents affording different products 310-312 depending on the nature of the reagent and not on the reaction conditions [163].
Benzoxazinones 313 reacting with pyrrolyl Grignard reagent followed by hydrolysis to afford 2-amino-5-chlorophenyl-2'-pyrrylketone 315 which is used as a key intermediate in the synthesis of HIV Tat-Antagonists [226].

6-Halo-2-methyl-4H-3, 1-benzoxazin-4-one 316 reacts with Grinard reagent 315 and produces ketone 318, which by hydrolysis gives the amines 319 and 320 [268].

\[X = \text{F, Cl, Br} \]
The benzoxazinone 321 is reacted with Grignard reagents and gave the carbinols 322 which are identified as o-(cinnamoylamidophenyl)diarylcarbinols [Error! reference source not found.].

As a point of interest, 2-p-tolyl and/or p-chlorophenyl-4H-3,1-benzoxazin-4-ones 323 are reacted with PhMgBr or CH$_3$I and gave the carbinols o-[HOC(R$_1$)$_2$] C$_6$H$_4$NHCOR [324;R$_1$= CH$_3$, C$_6$H$_5$; R =C$_6$H$_4$.CH$_3$.(4), C$_6$Cl(4)] which on heating with Ac$_2$O-AcONa are cyclized to 4,4-(diphenyl or dimethyl)-2-(p-tolyl or p-chlorophenyl)-3,1-benzoxazines 325 [329].

Reaction product 326 of benzoxazinone 1b and 4-chlorophenylmagnesium bromide are treated with sodium ethoxide and are cyclized to the 4-phenylcarbostyril 327 [151,197].

Bezoxazinone 1b reacts with 3,5-dimethylphenyl magnesium bromide and produces 328a. The acyl group of 328a is removed under acidic conditions and resulting 2-aminobenzophenone 328b. It condenses with methyl acetoacetate to afford the quinoline 329, which is then elaborated by using Wittig methodology to the 4-arylquinolin heterocycle 330. Compound 330 comprises the hydrophobic domain of reductase inhibitors [316].
Cardiotonic bemarinone, 5,6-Dimethoxy-4-methyl-2(1H)-quinazolinone 333 is readily prepared from 4H-3,1-benzoxazinone 331 [70].

Addition of 2-methyl benzoxazinone 1b to an excess of t-butyl magnesium chloride produces the secondary alcohol 334. The first equivalent of Grignard reagent adds normally to 1b to generate N-acetylbenzophene derivative, then the second equivalent of the reagent instead of adding to the newly formed ketone, it reduces the keto group presumably because of highly steric interactions between both ketone and organometallic [328].

BisGrignard reagents such as 335 add to 2-methyl benzoxazinone 1b to give tertiary alcohol 336 [60].
4H-3,1-Benzoxazin-4-ones 337 have bulky group at 2-position also react with Girgnard reagent PhMgBr and produce compound 338 [263].

3.3.4.2 Friedel-Crafts reactions

2-Phenyl-4H-3,1-benzoxazin-4-one 1a and cyclohexyl-(4H)-3,1-benzoxazin-4-one 339 are reacted with toluene in the presence of anhydrous AlCl₃ under Friedel-Crafts conditions to give 2-benzamido and 2-cyclohexylamido-p-methyl benzophenone 340 [265,267].

6,8-Dibromobenzoxazinone 1I is submitted to arylation by applying Friedel-Crafts reaction conditions, benzophenone derivatives 341 are afforded. Compound 341a is reacted with hydroxylamine hydrochloride to yield oxime 342 [163].
Ar = Ph, 4-CH₃C₆H₄, 3,4-di-MeC₆H₃, 2,4-di-MeC₆H₃, 2,6-di-MeC₆H₃

In contrast, 6,8-dibromo-2-methyl-4H-benzoxazin-4-one 1j arylated in different fashion; where it reacts with hydrocarbons namely, benzene, ethylbenzene, m- and p-xylene to afford either two benzophenone derivatives 343 and 344 in case of less bulky hydrocarbons (benzene, ethylbenzene) or only one product 345 in case of more bulky m- and p-xylene [196].

\[
\begin{align*}
 & \text{Ar} = \text{Ph, 4-CH₃C₆H₄, 3,4-di-MeC₆H₃, 2,4-di-MeC₆H₃, 2,6-di-MeC₆H₃} \\
 & \text{In contrast, 6,8-dibromo-2-methyl-4H-benzoxazin-4-one 1j arylated in different} \\
 & \text{fashion; where it reacts with hydrocarbons namely, benzene, ethylbenzene, m-} \\
 & \text{and p-xylene to afford either two benzophenone derivatives 343 and 344 in case} \\
 & \text{of less bulky hydrocarbons (benzene, ethylbenzene) or only one product 345 in} \\
 & \text{case of more bulky m- and p-xylene [196].}
\end{align*}
\]

\[
\begin{align*}
\text{R} &= \text{3-Me, 4-Me} \\
\text{X} &= \text{H, Et}
\end{align*}
\]

Also 4H-3,1-benzoxazin-4-ones 41 with bulky groups at 2-position arylated when submitted to react with hydrocarbons under Friedel-Crafts reaction conditions producing benzophenone derivatives 346.

\[
\begin{align*}
 & \text{R} = \text{3-Me, 4-Me} \\
 & \text{X} = \text{H, Et}
\end{align*}
\]

3.3.4.3 Reactions with active methylene containing compounds

Reaction of benzoxazinones with active methylene containing compounds provide a variety of interesting results. Heating the benzoxazinones 347 with diethyl malonate, ethyl cyanoacetate, or ethyl acetoacetate in dry benzene produce one and the same product 348 as the consequence of the loss of the R’ group [210, 265, 26792, 212].

<table>
<thead>
<tr>
<th>Ar</th>
<th>Ar’</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 4-OCH₃C₆H₄</td>
<td>3-NO₂C₆H₄</td>
<td>3-indolyl</td>
</tr>
<tr>
<td>b 1-naphthyl</td>
<td>2-furyl</td>
<td>2,4-di-MeC₆H₃</td>
</tr>
</tbody>
</table>
An analogous reaction of thienyl derivative 1p with ethyl cyanoacetate affording the cyclized product 349 [163].

Under the same conditions, benzoxazinone 1b with malononitrile and a mixture of 350 and 351 is furnished [209].

Using potassium t-butoxide to generate the anion of the active methylene and running the reaction at room temperature, allow the R’ group to be retained giving compound 352. That in turn, can be cyclized to the 4-hydroxy-2-quinoline 353 with either sodium alkoxide or 8% alcoholic hydrochloric acid [79].

Recently, [274] showed that the hit-to-lead optimization of the HNE inhibitor 5-methyl-2-(2-phenoxy-pyridin-3-yl)-benzo[d][1,3]oxazin-4-one is described. A structure–activity relationship study that focused on the 5 and 7 benzoxazinone positions yielded the optimized 5-ethyl-7-methoxy- benzo[d][1,3]oxazin-4-one core structure. 2-[2-(4-Methyl-piperazin-1-yl)-pyridin-3-yl] derivatives of this core were shown to yield HNE inhibitors of similar potency with significantly different stabilities in rat plasma.
More recently, Waisser et al. [311] showed that the new 3-benzyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-benzyl-2H-1,3-benzoxazine-2,4(3H)-dithiones were synthesized. The compounds were tested for in vitro antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium kansasii and Mycobacterium avium. The replacement of the carbonyl group by the thiocarbonyl group increased the antimycobacterial activity. The most active derivatives were more active than isonicotinhydrazide (INH). The cytotoxicity and the antiproliferative activity were studied as well.
Studies on 4H-3,1-Benzoxazin-4-ones
DISCUSSION

1. Synthesis and reactions of N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisooindolin-2-yl)acetamide

The present work deals with synthesis of N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisooindolin-2-yl)acetamide (2), as a key starting material for many benzoxazinone derivatives.

It is well known \[105\] that 2-substituted 4(H)-3,l-benzoxazin-4-ones undergo ring opening by moisture and many research groups have provided the correlation of stability of benzoxazinones with various stryl derivatives in position-2.

Thus compound (2) was prepared by treatment of anthranilic acid with (Z)-2-((4-(4-chlorobenzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)methyl)isoindoline-1,3-dione (1).

\[\text{Cl} \quad \text{H} \quad \text{C} \quad \text{N} \quad \text{O} \quad \text{G} \quad \text{O} \quad \text{N} \quad \text{CH}_2 \quad \text{N} \quad \text{CO} \quad \text{O} \quad \text{NH}_2 \quad \text{C} \quad \text{H} \quad \text{C} \quad \text{Cl} \]

1.1 The structure of compound (2) was established from the following:
1. Correct analytical data.
2. Infrared spectrum of (2) exhibited absorption bands at 1614 cm\(^{-1}\) (\(\nu\) CO of \(\alpha,\beta\)-unsaturated amide), at 1774-1720 cm\(^{-1}\) (\(\nu\) CO of benzoxazinone and \(\nu\) CO of cyclic imide) and at 3475, 3370 cm\(^{-1}\) (\(\nu\) NH).
3. The H\(^{1}\)-NMR spectrum of (2) (\(\delta\); DMSO-\(d_6\)) showed signals at 4.45(s, 2H, NCH\(_2\)CO), at 6.75 (s, 1H, olefinic proton), at 7.22-7.91 (m, 12H, Ar-H) and at 9.08 (s, 1H, NH).
4. The mass spectrum of (2) (cf. Figs.3 and chart 1) showed the molecular ion peak [M]\(^+\) m/z = 485 and the molecular ion peak [M+2]\(^+\) at m/z = 487.
Table 1 The mass spectrum fragmentation of compound (2)

<table>
<thead>
<tr>
<th>m/z</th>
<th>abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>485</td>
<td>0.17</td>
</tr>
<tr>
<td>353</td>
<td>0.15</td>
</tr>
<tr>
<td>355</td>
<td>0.09</td>
</tr>
<tr>
<td>325</td>
<td>0.15</td>
</tr>
<tr>
<td>327</td>
<td>0.11</td>
</tr>
<tr>
<td>282</td>
<td>0.23</td>
</tr>
<tr>
<td>284</td>
<td>0.10</td>
</tr>
<tr>
<td>171</td>
<td>0.26</td>
</tr>
<tr>
<td>160</td>
<td>100.00</td>
</tr>
<tr>
<td>146</td>
<td>0.90</td>
</tr>
<tr>
<td>132</td>
<td>19.52</td>
</tr>
<tr>
<td>102</td>
<td>2.84</td>
</tr>
</tbody>
</table>
Discussion

Chart 1
Discussion

1.2 Chemical proven of compound (2)

1.2.1 Reaction with amines

It has been reported that 2-substituted (4H)-3,1-benzoxazin-4-ones reacted with primary amines, amino acids or aminophenols in boiling ethanol to give 2-substituted)-carbamoyl phenyl acetanilides [291].

![Chemical structure](attachment:image.png)

The present investigation deals with the reaction of (2) with methylamine, ethylamine, butylamine, hexylamine, glycine, p-anisidine and o-phenylenediamine in boiling ethanol to give the corresponding 2-(substituted) carbamoyl phenyl acetanilides (3_{a-h}).

![Chemical structure](attachment:image.png)

The formation of (3_{a-h}) may be interpreted from the fact that amines or amino acids react via the mechanism outlined below, in which the nucleophilic attack by lone pair of electrons on the nitrogen of amino group upon carbon of carbonyl group in benzoxazinone nucleus took place leading to ring opening of the heterocyclic ring.
The structure of (3a) was proved from:

1. Correct analytical data.

2. Infrared spectrum showed bands for compound (3a) at 1647 cm\(^{-1}\)(\(\nu\)CO of acyclic amides), at 1774-1713 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3317, 3133 cm\(^{-1}\)(\(\nu\) NH).

3. The mass spectrum of (3a) (chart 2) showed the molecular ion peak \([M]^+\) m/z = 516.45 (0.02) and the molecular ion peak \([M+2]^+\) at m/z = 518.5 (0.02).

Table 2 mass spectrum fragmentation of compound (3a)

<table>
<thead>
<tr>
<th>m/z</th>
<th>abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>518.50</td>
<td>0.02</td>
</tr>
<tr>
<td>516.45</td>
<td>0.02</td>
</tr>
<tr>
<td>356</td>
<td>0.02</td>
</tr>
<tr>
<td>313</td>
<td>0.07</td>
</tr>
<tr>
<td>202</td>
<td>0.18</td>
</tr>
<tr>
<td>177</td>
<td>0.11</td>
</tr>
<tr>
<td>160</td>
<td>100.00</td>
</tr>
<tr>
<td>134</td>
<td>4.78</td>
</tr>
<tr>
<td>132</td>
<td>20.16</td>
</tr>
<tr>
<td>104</td>
<td>44.21</td>
</tr>
<tr>
<td>76</td>
<td>50.68</td>
</tr>
</tbody>
</table>
Discussion

Chart 2
The structure of \((3_h)\) was proved from:

1. Correct analytical data.
2. Infrared spectrum showed bands for compound \((3_h)\) at 1645 cm\(^{-1}\) (\(\nu\)CO of acyclic amides), at 1774-1715 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3473, 3220 cm\(^{-1}\)(\(\nu\) NH).
3. The \(\text{H}^1\)-NMR spectrum of \((3_h)\) (\(\delta\); DMSO-\(d_6\)) showed band at \(\delta\) 1.2(t, 3H, CH\(_3\)), at 4.1(q, 2H, CH\(_2\)), at 4.43(s, 2H, NCH\(_2\)CO), at 6.74(s, 1H, olefinic proton), at 7.2-7.92 (m, 12H, Ar-H) and 9.80-10.38(s, broad, 3H, 3\(\times\)NH) disappeared by addition of D\(_2\)O.

The structure of \((3_c)\) was proved from:

1. Correct analytical data.
2. Infrared spectrum showed bands for compound \((3_c)\) at 1645 cm\(^{-1}\) (\(\nu\)CO of acyclic amides), at 1774-1719 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3360 cm\(^{-1}\)(\(\nu\) NH).
3. The mass spectrum of \((3_c)\) showed the molecular ion peak \([\text{M}+1]^+\) at m/z = 560 (50%) and the molecular ion peak \([\text{M}+2]^+\) at m/z = 561 (20%).

The structure of \((3_d)\) was proved from:

1. Correct analytical data.
2. Infrared spectrum showed bands for compound \((3_d)\) at 1641 cm\(^{-1}\) (\(\nu\)CO of acyclic amides), at 1774-1719 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3475, 3240 cm\(^{-1}\)(\(\nu\) NH).

The structure of \((3_e)\) was proved from:

1. Correct analytical data.
2. Infrared spectrum showed bands for compound \((3_e)\) at 1650 cm\(^{-1}\) (\(\nu\)CO of acyclic amides), at 1774-1720 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3448, 3350cm\(^{-1}\)(\(\nu\) NH).

The structure of \((3_f)\) was proved from:

1. Correct analytical data.
2. Infrared spectrum showed bands for compound \((3_f)\) at 1640 cm\(^{-1}\) (\(\nu\)CO of acyclic amides), at 1774-1712 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3360 cm\(^{-1}\)(\(\nu\) NH) and at 3300-2400 cm\(^{-1}\)(\(\nu\) OH broad).

The structure of \((3_g)\) was proved from:

1. Correct analytical data.
2. Infrared spectrum showed bands for compound \((3_g)\) at 1644 cm\(^{-1}\) (\(\nu\)CO of acyclic amides), at 1774-1716 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3455, 3360cm\(^{-1}\)(\(\nu\) NH).
Discussion

The structure of \((3_h) \) was proved from:

1. Correct analytical data.
2. Infrared spectrum showed bands for compound \((3_h) \) at 1640 cm\(^{-1} \) (\(\nu \text{CO} \) of acyclic amides), at 1774-1711 cm\(^{-1} \) (\(\nu \text{CO} \) of cyclic imide) and at 3330, 3310 cm\(^{-1} \) (\(\nu \text{NH} \)).

1.2.1 Hydrazinolysis

Recently [2], it has been shown that the reaction of 3,1-(4H)-benzoxazinones with hydrazine hydrate affected the fission of the heterocyclic ring. This promoted us to study the proclivity of \(\text{N-}(2-(4\text{-chlorophenyl})-1-(4\text{-oxo-4H-benzo[d][1,3]}\text{oxazin-2-yl})\text{vinyl)}-2-(1,3\text{-dioxoisodolin-2-yl})\text{acetamide} \) towards hydrazines such as hydrazine hydrate and phenylhydrazine.

Hydrazinolysis of \((2) \) with an excess amount of hydrazine hydrate gave the hydrazide derivative \((4_a) \). On the other hand, reaction of \((2) \) with phenylhydrazine, yielded quinazolinone derivative \((4_b) \).

The infrared spectrum of \((4_a) \) exhibited bands at 1617 cm\(^{-1} \) (\(\nu \text{CO} \) of \(\alpha,\beta \)-unsaturated amide), at 1774-1720 cm\(^{-1} \) (\(\nu \text{CO} \) of cyclic imide) and at 3445 cm\(^{-1} \) (\(\nu \text{NH} \)).

The mass spectrum of \((4_a) \) showed the molecular ion peak \([M]^+\) m/z = 549 (16.7%).

The infrared spectrum of \((4_b) \) exhibited bands at 1646 cm\(^{-1} \) (\(\nu \text{CO} \) of cyclic and acyclic amides), at 1774-1714 cm\(^{-1} \) (\(\nu \text{CO} \) of cyclic imide) and at 3460-3380 cm\(^{-1} \) (\(\nu \text{NH} \)).

The mass spectrum of \((4_b) \) showed the molecular ion peak \([M-2]^+\) m/z = 574 (40%).
2. Base catalyzed of 3,1-(4H)-benzoxazinone (2) with active methylene compounds

Sammour et al [1] reported that 2-phenyl-3,1-benzoxazinone reacted with ethyl acetoacetate to give o-ethyl-o-benzamido benzoyl acetate.

\[
\begin{align*}
\text{O} & \quad \begin{array}{c}
\text{C}_6\text{H}_5 \\
\text{R} = \text{CH}_3\text{CO}
\end{array} \\
\text{O} & \quad \begin{array}{c}
\text{C}_6\text{H}_5 \\
\text{R} = \text{CH}_3\text{CO}
\end{array}
\end{align*}
\]

In the present investigation, the reaction of (2) with ethyl acetoacetate gave carbethoxy 3,4-dihydro-1,4-quinolinone derivative (5).

This result can be explained by the opening of the heterocyclic ring with the carbanion of active methylene group followed by ring closure with deacetylation.

The following support the structure assigned for the product (5)

1. Correct analytical data.
2. Infrared spectrum which showed bands at 1611 cm\(^{-1}\) of (\(\nu\) CO of \(\alpha,\beta\)-unsaturated amide), at 1725 cm\(^{-1}\) (\(\nu\) CO of ester), at 1774 (\(\nu\) CO of imide) and at 3479 cm\(^{-1}\) (\(\nu\) NH).
3. The H\(^1\)-NMR spectrum of (5) (\(\delta\); DMSO-d\(_6\)) showed band at \(\delta\) 1.2-2.49 (m, with interference, 5H, COOCH\(_2\)CH\(_3\)), at 4.42 (s, 2H, NCH\(_2\)), at 3.37(s, 2H,CH\(_2\)), at 6.74(s, 1H, olefinic proton), at 7.89-7.91 (m, 12H, Ar-H) and 9.5-10.2 (s, broad, 1H, NH) disappeared by addition of D\(_2\)O.

3. Action of sodium azide

Benzoxazinone (2) reacted with sodium azide in boiling acetic acid and yielded 2-(5-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisindolin-2-yl)acetamido)vinyl)-1H-tetrazol-1-yl)benzoic acid (6).
The formation of (6) possibly takes place according to the following mechanism:

The infrared spectrum of (6) was consistent with the proved structure which exhibited bands at 1111 cm⁻¹ attributable to tetrazole nucleus, at 1614 cm⁻¹ (ν CO of α,β- unsaturated amide), at 1718 (ν CO of carboxylic), at 1774-1760cm⁻¹ (due to coupling carbonyl bands of cyclic imide), at 3455, 2928 cm⁻¹ (ν OH and NH).

The H¹-NMR spectrum of (6) (δ; DMSO-d₆) showed signals at 4.55(s, 2H, NCH₂CO), at 6.85 (s, 1H, olefinic proton), at 7.25-8.20 (m, 12H, Ar-H) and at 9.98-10.69(s, broad, 1H, NH) and at 13.84 (s, 1H, OH).

4. Friedel-Crafts reaction

2-Substituted-4H-3,1-benoxazinones reacted with AlCl₃ in hydrocarbons under the Friedel-Crafts condition reaction to give 2-aryl (alkyl) imido (substituted) benzophenones [3].
Thus, N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide (2) reacted with benzene, toluene in the presence of anhydrous aluminium chloride under Friedel-Crafts conditions to give o-substituted phenyl aryl ketone (7\textsubscript{a,b}).

The reaction possibly takes place according to the following mechanism:

The structure of (7\textsubscript{a,b}) were confirmed from their infrared spectra which showed bands at 1675-1657 cm\(^{-1}\) (\(\nu\) CO of ketone and \(\alpha,\beta\)-unsaturated amide), at 1774-1725 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3401,3208 cm\(^{-1}\) (\(\nu\) NH).

The H\(^1\)-NMR spectrum of (7\textsubscript{a}) showed signals (\(\delta\); DMSO-d\(_6\)) at 4.43(s, 2H, NCH\(_2\)), 6.58(s, 1H, olefinic proton), 7.56-8.0(m, 17H, Ar-H) and 9.2-10.2(s, broad, 2H, 2\times NH) disappeared by addition of D\(_2\)O.
The mass spectrum of \(7_b\) showed the molecular ion peak \([M]^+\) \(m/z = 578\) (14.75).

5. Reaction with 2-amino methyl benzimidazole

It was reported [241] that o-phenylenediamine reacts with glycine in presence of concentrated hydrochloric acid to give 2-amino methyl benzimidazole (8). Benzoxazinone (2) react with (8) to give 3-N-substituted quinazolone derivative (9).

\[
\begin{align*}
\text{NH}_2 & \quad \text{CH}_2\text{COOH} & \quad \text{N} & \quad \text{CH}_2\text{NH}_2 \\
\text{NH}_2 & \quad \text{N} & \quad \text{C} & \quad \text{CH}_2\text{NH}_2 \\
\end{align*}
\]

The structure of and (9) was proved from:

1. Analytical data.
2. Infrared spectra showed bands at 1666 cm\(^{-1}\) (v CO of acyclic amide), at 1774-1719 cm\(^{-1}\) (v CO of cyclic imide), at 3431 cm\(^{-1}\) (v NH).
3. The \(^1\text{H}-\text{NMR}\) spectrum of (9) showed signals (δ; DMSO-d\(_6\)) at 4.43 (s, 2H, NCH\(_2\)), at 6.76 (s, 1H, olefinic proton), at 7.05-8.68 (m, 16H, Ar-H), at 9.08 (s, broad, 1H, NH), at 13.01 (s, broad, 1H, NH, exchangeable with D\(_2\)O).

6. Diels-Alder reaction

The Schiff base of 2-styryl pyridine was found to react smoothly as a diene with a number of dienophilic compounds [222]. Hydroquinazinone adducts was formed by addition of maleic anhydride to the diene-1-styryl-6,7-dimethoxy-3,4-dihydro-isoquinoline according to the following equation:
In the present work the reaction of dimethyl maleate with N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide (2) was investigated.

Thus (2) reacted with dimethyl maleate in dry xylene to give the corresponding Diels-Alder adducts (10).

The structure of (10) was established from:

1. Correct analytical data.
Discussion

2. Infrared spectra which showed bands at 1642 cm\(^{-1}\) of (\(\nu\) CO of amide), at 1774-1760 cm\(^{-1}\) of (\(\nu\) CO of imide), at 1731 cm\(^{-1}\) (\(\nu\) CO of ester), at 1720 cm\(^{-1}\) (\(\nu\) CO of sat. benzoazinone ring), and at 3446 cm\(^{-1}\) (\(\nu\) NH).

3. The H\(^1\)-NMR spectrum of (10) showed signals (\(\delta\); DMSO-d\(_6\)) at 2.5(s, 6H, COOH\(_3\)), at 4.1(m, 3H, cyclic protons), at 4.50(s, 2H, NCH\(_2\)), at 7.35-8.85(m, 12H, Ar-H), 9.2-10.2(s, broad, 2H, 2NH) disappeared by addition of D\(_2\)O.

7. Synthesis of quinazolinyl urea

When benzoazinone (2) was allowed to react with semicarbazide hydrochloride in boiling pyridine afforded quinazolinyl urea derivative (11).

\[
\text{Infrared spectrum of (11) showed bands at 1615 cm}^{-1}\text{ of (\(\nu\) CO of amides), at 1774-1722 cm}^{-1}\text{ of (\(\nu\) CO of cyclic imide) and at 3424cm}^{-1}\text{ (\(\nu\) NH).}
\]

The H\(^1\)-NMR spectrum of (11) showed signals (\(\delta\); DMSO-d\(_6\)) at 4.43 (s, 2H, NCH\(_2\)), at 5.8(s, broad, 2H, NH\(_2\)), at 6.8 (s, 1H, olefinic proton), at 7.5-8.0(m, 12H, Ar-H) and 9.8-10.9(s, broad, 2H, 2xNH) disappeared by addition of D\(_2\)O.

On fusion of the above compound at its melting point it was cyclized to produce triazole quinazoline derivative of (12) which shows the bands in IR-spectrum at 1658 cm\(^{-1}\) of (\(\nu\) CO of cyclic and acyclic amides), at 1774-1725 cm\(^{-1}\) of (\(\nu\) CO of cyclic imide) and at 3468 cm\(^{-1}\) (\(\nu\) NH).

The H\(^1\)-NMR spectrum of (12) showed signals (\(\delta\); DMSO-d\(_6\)) at 4.43 (s, 2H, NCH\(_2\)), at 6.74 (s, 1H, olefinic proton), at 7.87-8.0(m, 12H, Ar-H) and 9.6-10.4(s, broad, 2H, 2xNH) disappeared by addition of D\(_2\)O.

8. Synthesis of triazino quinazolinone derivative

When benzoazinone (2) was treated with thiosemicarbazide in boiling pyridine afforded N-(2-(4-chlorophenyl)-1-(2-thioxo-2,3-dihydro-[1,2,4]triazolo[1,5-c]quinazolin-5-yl)vinyl)-2-(1,3-dioxoisoadolin-2-yl)acetamide (13).
Infrared spectrum of (13) showed bands at 1309 cm⁻¹ of (ν CS of cyclic thio amide), at 1610 cm⁻¹ of (ν CO of α,β- unsaturated amide), at 1774-1719 cm⁻¹ of (ν CO of cyclic imide) and at 3462 cm⁻¹ (ν NH).

The mass spectrum of (13) showed the molecular ion peak [M-3]^+ at m/z = 537 (chart 3).

Table 3 The mass spectrum fragmentation of compound (13)

<table>
<thead>
<tr>
<th>m/z</th>
<th>abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>537.40</td>
<td>0.09</td>
</tr>
<tr>
<td>352</td>
<td>0.25</td>
</tr>
<tr>
<td>354</td>
<td>0.18</td>
</tr>
<tr>
<td>293</td>
<td>0.31</td>
</tr>
<tr>
<td>295</td>
<td>0.27</td>
</tr>
<tr>
<td>188</td>
<td>31.17</td>
</tr>
<tr>
<td>160</td>
<td>100.00</td>
</tr>
<tr>
<td>153</td>
<td>1.24</td>
</tr>
<tr>
<td>151</td>
<td>1.78</td>
</tr>
<tr>
<td>142</td>
<td>0.36</td>
</tr>
<tr>
<td>138</td>
<td>2.44</td>
</tr>
<tr>
<td>116</td>
<td>1.80</td>
</tr>
<tr>
<td>113</td>
<td>2.51</td>
</tr>
<tr>
<td>111</td>
<td>7.34</td>
</tr>
<tr>
<td>76</td>
<td>46.79</td>
</tr>
</tbody>
</table>
Discussion

Chart 3
9. Ammonolysis

It was reported[104] that 3,1-(4H)-benzoxazinone derivatives underwent ring fission with ammonia furnished from ammonium acetate or urea in alcohol to give N-(substituted) anthranilic acid amide, while by fusion in oil bath or in the presence of anhydrous zinc chloride the corresponding 2-(substituted)-4-quinazolones were obtained.

The present investigation deals with ammonolysis of (2) with ammonia furnished from ammonium acetate by fusion at 170°C to give the corresponding 2-substituted-4(3H)-quinazol-4-one derivative (14).

The reaction possibly takes place via ammonolysis followed by cyclization according to the following mechanism:
The structure of (14) was established from:

1. Correct analytical data.
2. Infrared spectrum of (14) showed bands at 1624 cm\(^{-1}\) (\(\nu\) CO of \(\alpha,\beta\)-unsaturated amide), at 1774-1718 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3470, 3362 cm\(^{-1}\) (\(\nu\) NH).
3. The H\(^1\)-NMR spectrum of (14) (\(\delta\); DMSO-\(d_6\)) showed signals at 4.42(s, 2H, NCH\(_2\)), at 6.51 (s, 1H, olefinic proton), at 7.86-8.0(m, 12H, Ar-H), 9.7-10.5(s, broad, 2H, 2NH) disappeared by addition of D\(_2\)O.

9.1 Chemical proven of compound (14)

The lactam-lactim tautomerism of (14) was further demonstrated chemically by the following:

9.1.1 Acylation of (14)

While treatment of (14) with phenylisocyanates in presence of anhydrous potassium carbonate and dry acetone gave 4-substituted-2-substituted quinazolin-4-ones (15).
The structure of (15) was proved from the following:

1. The infrared spectrum of (15) showed bands at 1670-1645 cm\(^{-1}\) (\(\nu\) CO of acyclic amide), at 1731 cm\(^{-1}\) (\(\nu\) CO of carbamate ester), 1774-1740 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3360-3170 cm\(^{-1}\) (\(\nu\)NH).

2. The \(\text{H}^1\)-NMR spectrum of (15) (\(\delta\); DMSO-\(d_6\)) showed signals at 4.44 (s, 2H, NCH\(_2\)), 6.94 (s, 1H, olefinic proton), 7.2-8.7 (m, 17H, Ar-H), 9.8-10.95 (s, broad, 2H, 2\(\times\)NH) disappeared by addition of D\(_2\)O.

9.1.2 Acetylation of quinazol-4-one (14)

Treatment of N-(2 -(4-chlorophenyl) -1-(4-oxo- 3, 4-dihydroquinazolin- 2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide (14) with acetic anhydride afforded N- (1- (3- acetyl- 4- oxo -3, 4- dihydroquinazolin -2- yl) -2- (4-chlorophenyl) vinyl)-2- (1,3- dioxoisindolin-2 -yl) acetamide (16).

The structure of (16) was established from the following:

1. The infrared spectrum of (16) showed bands at 1617 cm\(^{-1}\) (\(\nu\) CO of \(\alpha,\beta\)-unsaturated amide), at 1774-1718 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3474, 3370 cm\(^{-1}\) (\(\nu\)NH).

2. The \(\text{H}^1\)-NMR spectrum of (16) (\(\delta\); DMSO-\(d_6\)) showed signals at 2.49 (s, 3H, COCH\(_3\)), at 4.42 (s, 2H, NCH\(_2\)), at 6.76 (s, 1H, olefinic proton), at 7.87-8.0 (m, 12H, Ar-H) and 9.65-10.5 (s, broad, 1H, 1NH) disappeared by addition of D\(_2\)O.
9.1.3 Action of phosphorus pentachloride - phosphorus oxychloride on quinazol-4-one (14)

The reaction of (14) with a mixture of phosphorus pentachloride and phosphorus oxychloride gave N-(2-(4-chlorophenyl)-1-(4-chloroquinazolin-2-yl)vinyl)-2-(1,3-dioxoisooindolin-2-yl)acetamide (17).

![Reaction diagram]

The structure of (17) was established from the following:

1. Correct analytical data.
2. The infrared spectrum showed bands at 1618 cm\(^{-1}\) (\(\nu\) CO of \(\alpha,\beta\)-unsaturated amide), at 1774-1715 cm\(^{-1}\) (due to coupling carbonyl bands of cyclic imide) and at 3470 cm\(^{-1}\) (\(\nu\)NH).
3. The H\(^1\)-NMR spectrum of (17) (\(\delta\); DMSO-d\(_6\)) showed signals at 4.44 (s, 2H, NCH\(_2\)), at 6.74 (s, 1H, olefinic proton), at 7.2-8.0 (m, 12H, Ar-H) and at 9.9-10.7 (s, broad, 1H, NH) disappeared by addition of D\(_2\)O.

10. Mannish reaction

Alcoholic solution of 2-substituted quinazol-4-one (14) was condensed with formaldehyde in the presence imides namely, phthalimide to give the corresponding Mannish bases 3N-(substituted) quinazol-4-ones (18).

![Mannich reaction diagram]

The Mannich intermediate may be formed as follows, taking phthalimide as an example:
The reaction possibly takes place according to the following mechanism:
The structure of (18) was proved from:

1. Analytical data
2. The infrared spectrum showed bands at 1613 cm\(^{-1}\) (\(\nu\) CO of \(\alpha,\beta\)-unsaturated amide), at 1774-1721 cm\(^{-1}\) (\(\nu\) CO of cyclic imides) and at 3432 cm\(^{-1}\) (\(\nu\)NH) .
3. The \(\text{H}^1\)-NMR spectrum of (18) (\(\delta\); DMSO-d\(_6\)) showed signals at 4.09 (s, 2H, CH\(_2\)), at 4.42(s, 2H, NCH\(_2\)), at 5.82 (s, 1H, olefinic proton), at 7.91-7.93(m, 16H, Ar-H) and at 9.9-10.7(s, broad, 1H, NH) disappeared by addition of D\(_2\)O.

11. Synthesis of ethyl 2-(2-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisoiindolin-2-yl)acetamido)vinyl)quinazolin-4-yloxy)acetate

Quinazolinone (14) reacts with ethyl chloroacetate in dry acetone and in the presence of dry potassium carbonate to give compound (19).

The structure of (19) was established from:

1. Correct analytical data.
2. The infrared spectrum showed bands at 1660 cm\(^{-1}\) (\(\nu\) CO of acyclic amide), at 1774-1719 cm\(^{-1}\) (\(\nu\) CO of cyclic imide), 1731 cm\(^{-1}\) (\(\nu\) CO of ester) and at 3440, 3328 cm\(^{-1}\) (\(\nu\)NH).
3. The \(\text{H}^1\)-NMR spectrum of (19) (\(\delta\); DMSO-d\(_6\)) showed band at \(\delta\)1.1-2.5 (m, with interference, 5H, COOCH\(_2\)CH\(_3\)), at 4.43 (s, 2H, NCH\(_2\)), at 4.83(s, 2H, OCH\(_2\)COO), at 6.63(s, 1H, olefinic proton), at 7.86-7.95 (m,
12H, Ar-H) and 9.5-10.2 (s, broad, 1H, NH) disappeared by addition of D$_2$O.

11.1 Chemical prooven of compound (19)

From hydrazinolysis of the ester by hydrazine hydrate to yield the hydrazide derivative (20).

\[
\text{OCH}_2\text{COEt} \xrightarrow{\text{NH}_2\text{NH}_2\cdot\text{H}_2\text{O}} \text{OCH}_2\text{CONHNH}_2
\]

The structure of (20) was established from:

1. Correct analytical data.
2. The infrared spectrum showed bands at 1623 cm$^{-1}$ (v CO of α,β-unsaturated amide), at 1774-1719 cm$^{-1}$ (v CO of cyclic imide) and at 3426 cm$^{-1}$ (v NH).
3. The H1-NMR spectrum of (20) (δ; DMSO-d$_6$) showed signals at 4.76 (s, 2H, NCH$_2$), at 4.82 (s, 2H, OCH$_2$CO), at 6.72 (s, 1H, olefinic proton), 7.84-8.1 (m, 12H, Ar-H), 9.65-10.5 (s, broad, 2H, 2×NH) disappeared by addition of D$_2$O.

12. Action of phenyl isocyanate on quinazolinone (20)

Quinazolinone (20) reacts with phenyl isocyanate in dioxane to give 2-(2-(2-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisooindolin-2-yl)acetamido)vinyl)quinazolin-4-yloxy)acetyl)-N-phenylhydrazinecarboxamide (21).

\[
\text{OCH}_2\text{CONHNH}_2 \xrightarrow{\text{phenylisocyanates}} \text{OCH}_2\text{CONHNHCNPh}
\]

The structure of (21) was established from:

1. Correct analytical data.
2. The infrared spectrum showed bands at 1615 cm$^{-1}$ (v CO of α,β-unsaturated amide), at 1774-1719 cm$^{-1}$ (v CO of cyclic imide) and at 3366 cm$^{-1}$ (v NH).
3. The H1-NMR spectrum of (21) (δ; DMSO-d$_6$) showed signals at 4.43 (s, 2H, NCH$_2$), at 6.51 (s, 1H, olefinic proton), at 7.85-8.1 (m, 12H, Ar-H), 9.65-10.5 (s, broad, 4H, 4×NH) disappeared by addition of D$_2$O.
13. **Action of p-chlorobenzaldehyde on quinazolinone (20)**

Quinazolinone (20) reacts with p-chlorobenzaldehyde in absolute ethanol and 1ml pipridine to give (22).

![Reaction of p-chlorobenzaldehyde on quinazolinone](image)

The structure of (22) was established from:

1. Correct analytical data.
2. The infrared spectrum showed bands at 1615 cm\(^{-1}\) (\(\nu\) CO of \(\alpha,\beta\)-unsaturated amide), at 1774-1722 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3424 cm\(^{-1}\) (\(\nu\)NH).
3. The H\(^1\)-NMR spectrum of (22) (\(\delta\); DMSO-d\(_6\)) showed signals at 4.6(s, 2H, NCH\(_2\)), at 6.6 (s, 1H, olefinic proton), at 6.74 (s, 1H, N=CH), at 7.74-8.09(m, 16H, Ar-H) and at 9.6-10.2(s, broad, 2H, 2\(\times\)NH) disappeared by addition of D\(_2\)O.

14. **Base catalysed reaction with hydroxylamine hydrochloride**

Recently, [103] it was reported that 2-substitutedbenzoxazinones reacted with hydroxylamine hydrochloride in refluxing pyridine to give 2-substituted 3-hydroxy-4-quinazolone.

![Reaction with hydroxylamine hydrochloride](image)

In pursuit the above result, the author investigated the reaction of hydroxylamine hydrochloride with N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide (2) in the presence of sodium acetate in boiling ethanol to give N-(2-(4-chlorophenyl)-1-(3-hydroxy-4-oxo-3,4-dihydroquinazolin-2-yl)vinyl)-2-(1,3-dioxoisindolin-2-yl)acetamide.
The formation of (23) possibly takes place according to the following mechanism:

The structure of (23) was established from:
1. Correct analytical data.
2. Infrared spectrum for (23) showed bands at 1617 cm\(^{-1}\)(\(\nu\) CO of cyclic and a cyclic amide), at 1774-1720 cm\(^{-1}\) (\(\nu\) CO of cyclic imide), and at 3848, 3748, 3485 cm\(^{-1}\) (\(\nu\)OH and NH).
3. The H\(^1\)-NMR spectrum of (23) (\(\delta\); DMSO-d\(_6\)) showed signals at 4.43(s, 2H, NCH\(_2\)), at 6.75 (s, 1H, olefinic proton), 7.3-7.95(m, 12H, Ar-H), at 8.68 (s, broad, 1H, NH) and at 10.69(s, 1H, OH).

14.1 Chemical proven of compound (23)

14.1.1 Acetylation of 3-N-hydroxy-4-quinazolone

The acylation of the readily available (23) investigated thus, treatment of (23) with excess of acetic anhydride gave 2-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisindolin-2-yl)acetamido)vinyl)-4-oxoquinazolin-3(4H)-yl acetate (24).

The structure of (24) was established from:
1. Correct analytical data.
2. Infrared spectrum for (24) showed bands at 1660 cm\(^{-1}\)(\(\nu\) CO of cyclic and acyclic amide), at 1774-1720 cm\(^{-1}\) (\(\nu\) CO of cyclic imide), 1731 cm\(^{-1}\) (\(\nu\) CO of ester), and at 3462, 3328 cm\(^{-1}\) (\(\nu\)NH).
Discussion

3. The H1-NMR spectrum of (24) (δ; DMSO-d$_6$) showed signals at 2.49 (s, 3H, OCOCH$_3$), 4.42 (s, 2H, NCH$_2$), at 6.75 (s, 1H, olefinic proton), 7.87-7.95 (m, 12H, Ar-H) and at 9.6-10.2 (s, broad, 1H, NH) disappeared by addition of D$_2$O.

14.1.2 Reaction with ethyl chloroacetate

Another reaction which confirm the presence of hydroxyl group is the reaction with ethyl chloroacetate in dry acetone which leads to formation of ethyl 2-(2-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisindolin-2-yl)acetamido)vinyl)-4-oxoquinazolin-3(4H)-yloxy)acetate (25).

\[
\text{23} + \text{ClCH}_2\text{COOEt} \xrightarrow{\text{dry K}_2\text{CO}_3, \text{dry acetone}} \text{25}
\]

1. The structure of compound (25) were supported by their infrared spectrum which showed bands at 1660 cm$^{-1}$ (v CO of cyclic and acyclic amide), at 1774-1722 cm$^{-1}$ (v CO of cyclic imide), 1732 cm$^{-1}$ (v CO of ester) and at 3440, 3324 cm$^{-1}$ (vNH).

2. The H1-NMR spectrum of (25) (δ; DMSO-d$_6$) showed signals at δ1.2 (t, 3H, CH$_3$), at 4.1 (q, 2H, CH$_2$ of ester), at 4.42 (s, 2H, NCH$_2$), at 4.83 (s, 2H, OCH$_2$COO), at 6.63 (s, 1H, olefinic proton), at 7.4-7.9 (m, 12H, Ar-H) and 9.5-10.2 (s, broad, 1H, NH) disappeared by addition of D$_2$O.

14.1.2.1 Chemical proven of compound (25)

From hydrazinolysis of the ester by hydrazine hydrate to yield the hydrazide derivative (26).

\[
\text{25} \xrightarrow{\text{NH-NH}_2\text{H}_2\text{O, ethanol}} \text{26}
\]

The structure of (26) was established from:

1. Correct analytical data.

2. The infrared spectrum showed bands at 1680-1660 cm$^{-1}$ (v CO of amides and hydrazide), at 1774-1723 cm$^{-1}$ (v CO of cyclic imide) and at 3480-3220 cm$^{-1}$ (vNH and NH$_2$).

3. The H1-NMR spectrum of (26) (δ; DMSO-d$_6$) showed signals at 4.42 (s, 2H, NCH$_2$), at 4.82 (s, 2H, OCH$_2$COO), at 6.6 (s, 1H, olefinic proton), 7.09-8.06 (m, 12H, Ar-H), 9.65-10.5 (s, broad, 2H, 2xNH) disappeared by addition of D$_2$O.
15. Action of phenyl isocyanate on quinazolinone (26)

Quinazolinone (26) reacts with phenyl isocyanate in dioxane to give 2-(2-(2-(4-chlorophenyl)-1-(2-(1,3-dioxoisozindolin-2-yl)acetamido)vinyl)quinazolin-4-yloxy)acetyl)-N-phenylhydrazinecarboxamide (27).

\[
\begin{align*}
\text{(26)} & \xrightarrow{\text{phenylisocyanates \ in \ dioxane}} \text{(27)} \\
\end{align*}
\]

The structure of (27) was established from:

1. Correct analytical data.
2. The infrared spectrum showed bands at 1662 cm\(^{-1}\) (\(\nu\) CO of amides), at 1774-1718 cm\(^{-1}\) (\(\nu\) CO of cyclic imide), and at 3462, 3320 cm\(^{-1}\) (\(\nu\)NH).
3. The \(H^1\)-NMR spectrum of (27) (\(\delta\); DMSO-\(d_6\)) showed signals at 4.43 (s, 2H, NCH\(_2\)), at 5.82 (s, 1H, olefinic proton), at 7.85-8.08 (m, 12H, Ar-H), 9.65-10.5 (s, broad, 4H, 4×NH) disappeared by addition of D\(_2\)O.

16. Action of p-chlorobenzaldehyde on quinazolinone (26)

Quinazolinone (26) reacts with p-chlorobenzaldehyde in absolute ethanol and 1ml pipridine to give (28).

\[
\begin{align*}
\text{(26)} & \xrightarrow{\text{p-chlorobenzaldehyde, ethanol, pipridine}} \text{(28)} \\
\end{align*}
\]

The structure of (28) was established from:

1. Correct analytical data.
2. The infrared spectrum showed bands at 1666 cm\(^{-1}\) (\(\nu\) CO of amides), at 1774-1716 cm\(^{-1}\) (\(\nu\) CO of cyclic imide) and at 3445 cm\(^{-1}\) (\(\nu\)NH).
3. The \(H^1\)-NMR spectrum of (28) (\(\delta\); DMSO-\(d_6\)) showed signals at 4.43 (s, 2H, NCH\(_2\)), at 6.5 (s, 1H, olefinic proton), at 6.7 (s, 1H, N=CH), at 7.78-8.09 (m, 16H, Ar-H) and at 9.6-10.2 (s, broad, 2H, 2×NH) disappeared by addition of D\(_2\)O.
BILOGICAL ACTIVITY

Studies on 4H-3,1-Benzoxazin-4-ones
BILOGICAL ACTIVITY

The behavior of the synthesized organic compounds as antibacterial was investigated at the Micro analytical unit, Cairo University, Egypt.

The antimicrobial activity of synthesized derivatives was examined in vitro by hole plate and filter paper disc methods. Some compounds were tested for activity Gram-positive, Gram-negative bacteria and fungi using tetracycline and amphotericin B as a reference standard.

The results show the effectively of compounds 2, 4a, 5, 7a, 14 and 23 against bacteria, Escherichia Coli(G⁺) (cf. Fig.1,2,3), Staphylococcus Aureus (G⁺) (cf. Fig. 4,5,6) and Candida albicans (fungus) (cf. Fig.10,11,12) and the ineffectively against Aspergillus Flavus (fungus) (cf. Fig.7,8,9)

On the other hand, for compounds 3b, 3f and 15 the results show its effective against bacteria, Es (cf. Fig. 1, 3), and St (cf. Fig.4, 6), and its ineffective against fungi As (cf. Fig.7,9), and Ca (cf. Fig. 10, 12).

Moreover, the results show the effectively of compounds 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 25, 27 and 28 against bacteria, Escherichia Coli(G⁺), Staphylococcus Aureus (G⁺) and Candida albicans (fungus) and the ineffectively against Aspergillus Flavus (fungus).

For compounds 6, 16, 21, 24 and 26 the results show its effective against bacteria, Es and St and its ineffective against fungi As and Ca. The results are summarized in (Table 4).

Es: Escherichia Coli
St: Staphylococcus Aureus
As: Aspergillus Flavus
Ca: Candida albicans
Table 4 Relative activity of the some compounds against (G+),(G-) bacteria and fungi

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inhibition zone diameter (mm/mg sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escherichia Coli (G<sup>+</sup>)</td>
</tr>
<tr>
<td>Control : DMSO</td>
<td>0.0</td>
</tr>
<tr>
<td>Standard</td>
<td>Tetracycline Antibacterial agent</td>
</tr>
<tr>
<td></td>
<td>Amphotericin B Antifungal agent</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3<sub>b</sub></td>
<td>15</td>
</tr>
<tr>
<td>3<sub>f</sub></td>
<td>14</td>
</tr>
<tr>
<td>4<sub>a</sub></td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7<sub>a</sub></td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
Biological Activity

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inhibition zone diameter (mm/mg sample)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escherichia Coli (G⁻)</td>
<td>Staphylococcus Aureus(G⁺)</td>
</tr>
<tr>
<td>Control : DMSO</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Standard</td>
<td>Tetracycline Antibacterial agent</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Amphotericin B Antifungal agent</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Sample</td>
<td>Inhibition zone diameter (mm/mg sample)</td>
<td>Escherichia Coli (G^-)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Control: DMSO</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Standard Antibacterial agent</td>
<td>Tetracycline</td>
<td>34</td>
</tr>
<tr>
<td>Standard Antifungal agent</td>
<td>Amphotericin B</td>
<td>--</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
Studies on 4H-3,1-Benzoxazin-4-ones
BIOLOGICAL ACTIVITY

Escherichia coli (G−)

Figure 1

Figure 2

Figure 3
Staphylococcus aureus (G⁺)

Figure 4

Figure 5

Figure 6
Aspergillus flavus (fungus)

Figure 7

Figure 8

Figure 9
Candida albicans (fungus)

Figure 10

Figure 11

Figure 12
EXPERIMENTAL

Studies on 4H-3,1-Benzoxazin-4-ones
EXPERIMENTAL

Melting points were measured on electrothermalmelting point apparatusand are uncorrected. IR model 550 spectrophotometers. Mass spectra were recorded at 70 ev with a varian MAT 311. 1H-NMR spectra were determined on BruckerWpsy 200 MHz spectrometer with TMS as internal standard. The chemical shifts are in ppm. Solvent was DMSO. All analysis was carried out at MicroAnalyticalCenter, Faculty of Science, Cairo University, Egypt. The chemicals and reagents were purchased from EL- Gomhouria Company, Egypt. Physical data and analytical data for the synthesized compounds have been summarized in (Table 5, 6).

1. Synthesis and reactions of N-(2-(4-chlorophenyl)-1-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)vinyl)-2-(1,3-dioxoisooindolin-2-yl)acetamide (2)

A mixture of (Z)-2-((4-(4-chlorobenzylidene)-5-oxo-4,5-dihydrooxazol-2-yl)methyl)isoindoline-1,3-dione (1) (0.05 mol) and anthranilic acid (0.035 mol) in boiling n-butanol was heated under reflux for 10 hrs. The solid product obtained was crystallised from benzene to give compound (2).

2. Action of primary amines on (2): formation of (3a-h)

A solution of (2) (0.01 mol) and primary amines, namely methylamine, ethylamine, butyl amine, pentyamine, hexyl amine, glycine, p-anisidine and o-phenylenediamine (0.01 mol) in (50 ml) ethanol was refluxed for 4 hrs. The solid product was separated on cooling and crystallized from the proper solvent to give (3a-h).

3. Action of hydrazines on (2): Formation of (4a,b)

A solution of benoxazinone (2) (0.01mol) with hydrazine hydrate (0.02mol) in ethanol (30 ml) was refluxed for 4 hrs, the product that separated on cooling was crystallized from the pet.ether(40-60) to give the hydrazide derivative (4a). On the other hand, reaction of (2) (0.01 mol) with phenyl hydrazine (0.02 mol) in ethanol (30 ml) was refluxed for 4 hrs. The product that separated on cooling was crystallized from benzene to give quinazolinone derivative (4b).

4. Action of active methylene on benoxazinone (2): Formation of 1,4-quinolinone (5)

A solution of (2) (0.01 mol) and ethyl acetoacetate (0.03 mol) in pyridine (50 ml) was refluxed for 4 hrs. The reaction mixture was cooled and poured into ice / HCl. The separated product was filtered off and crystallized from ethanol to give (5).
5. Action of sodium azide on benzoxazinone (2): Formation of tetrazole (6)

A mixture of benzoxazinone (2) (0.01 mol) and sodium azide (0.05 mol) in boiling acetic acid (50 ml) was refluxed for 3 hrs. The separated product obtained after concentration was crystallized from ethanol to give tetrazole derivative (6).

6. Action of aromatic substrates on benzoxazinone (2) in presence of anhydrous AlCl₃: Formation of o-aroylanilides (7ₐ,ₐ)

Anhydrous AlCl₃ (0.03 mol) was added under stirring to (2) (0.01 mol) in dry aromatic substrate namely benzene and toluene at room temperature. The reaction mixture was stirred for 3 hrs, and the resultant complex formed decomposed with ice/dilHCl. The solvent was steam distilled and the residual solid filtered and crystallized from the proper solvent to give (7ₐ,ₐ).

7. 2-Amino methyl benzimidazole (8)

A mixture of the equimolar amounts of o-phenylenediamine and glycine was heated for 2.5 hrs under reflux in the presence of conc. HCl subsequently reaction mixture was concentrated and the desired product separated out on cooling crystallized, from ethanol to give (8).

8. Action of (8) on benzoxazinone (2): Formation of 2-substituted- 3-methyl-[2'-benzimidazolyl]-(4H)- 3,1-quinazolin-4-one (9)

A mixture of 2-Amino methyl benzimidazole (8) (0.01 mol) and benzoxazin-4-one (2) (0.01 mol) in (30 ml) dry pyridine was refluxed for 6 hrs. The reaction mixture was poured into ice/HCl. The solid product that separated out was washed repeated with water and crystallized from ethanol to give (9).

9. Diels-Alder reaction on (2):

A mixture of benzoxazinone (2) (0.01 mol) and dimethyl maleate (0.01 mol) in dry xylene (50 ml) was refluxed for 20 hrs. The reaction mixture was filtered upon hot, the filtration was concentrated and cooled. The separated product obtained was crystallized from benzene to give (10).

10. Synthesis of quinazolinylurea (11)

A solution of benzoxazinone (2) (0.01mol) in (40 ml) pyridine with semicarbazide hydrochloride (0.01mol) was refluxed for 6hrs, left to cool, poured into cold water with stirring, the solid that separated out was filtered off, washed with cold water, dried and crystallized from ethanol to give (11).
Experimental

11. **Cyclization of quinazolinylurea (12)**

On fusion of quinazolinylurea derivative for 2 hrs on sand bath above melting point. The solid product after cooling was crystallized from pet-ether(40-60) to give (12).

12. **Action of thiosemicarbazide on benzoxazone (2)**

A mixture of benzoxazinone (2) (0.01 mol) and thiosemicarbazide (0.01 mol) in dry pyridine (30 ml) was refluxed for 4 hrs, left to cool, poured into ice/HCl, filtered off and crystallized from methanol to give (13).

13. **Action of ammonium acetate or formamide on (2): Formation of quinazolone (14)**

(0.01 mol) of benzoxazinone (2) was fused with (0.02 mol) ammonium acetate on sand bath above the melting point for 3 hrs. The reaction mixture after cooling was poured into water, filtered off and crystallized from benzene to give (14).

A mixture of (14) (0.01 mol), anhydrous potassium carbonate (0.04 mol) and phenyl isocyanate (0.042 mol) was heated for 24 hrs under reflux in (50 ml) dry acetone. The reaction mixture after removing the excess solvent was poured into cold water, the solid that separated out was filtered off, dried and crystallized from ethanol solvent to give (15).

15. **Action of acetic anhydride on (14): Formation of 3N-acetyl quinazolone (16)**

Treatment of (14) with excess acetic anhydride (20 ml) was refluxed for 3 hrs. After cooling the product obtained was washed with water, filtered off, dried and crystallized from ethanol to give (16).

16. **Action of phosphorus pentachloride - phosphorus oxychloride on quinazol-4-one (14)**

(0.01 mol) quinazolinone (14) and a mixture of PCl₅ (0.01 mol), POCl₃ (2 ml) was heated in water bath for 5 hrs. After cooling the reaction mixture was poured into ice, filtered off and crystallized from benzene to give (17).

17. **Mannish reaction on quinazolone (14): Formation of Mannish bases (18)**

A mixture of (14) (0.01 mol), formaldehyde (5 ml) and phthalimide (0.01 mol) in boiling acetic acid and (30 ml) was refluxed for 4 hrs, after cooling the separated product was crystallized from ethanol to give Mannish base (18).
18. **Action of ethyl chloroacetate on quinazolinone (14)**

A mixture of (14) (0.01mol), anhydrous potassium carbonate (0.04mol) and ethyl chloroacetate (0.04mol) in (60 ml) dry acetone was refluxed for 24hrs. The product obtained after removing the excess solvent was poured into cold water, the solid that separated out was filtered off, dried and crystallized from methanol to give (19).

19. **Action of hydrazine hydrate on quinazolinone (19)**

A mixture of (19) (0.01mol) and hydrazine hydrate (0.01mol) in (40 ml) ethanol was refluxed for 3hrs, after cooling, the solid that separated out was filtered off, dried and crystallized from dioxane to give (20).

20. **Action of phenyl isocyanate on quinazolinone (20)**

An equimolecular quantity of amino carbamoyl derivative (20) (0.01mol) and phenyl isocyanate (0.01mol) in dioxane (40 ml) was refluxed for 6hrs. On cooling at room temperature, the fine crystals which was appeared, filtered off and dried and crystallized from ethanol to give (21).

21. **Action of aldehyde on quinazolinone (20)**

A mixture of (20) (0.01mol) and p-chlorobezaldehyde (0.012mol) in (50 ml) ethanol containing (1ml) pipridine was refluxed for 3hrs, after cooling, the solid that separated out was filtered off, dried and crystallized from ethanol to give (22).

22. **Action of hydroxylamine hydrochloride on benzoxazone (2)**

Formation of 3-hydroxy-4-quinazolone (23)

A mixture of (2) (0.01 mol), hydroxylamine hydrochloride (0.03 mol) and sodium acetate (0.03 mol) in ethyl alcohol (50 mol) was heated under reflux for 5 hrs. The reaction mixture after cooling was poured into water, filtered off and crystallized from benzene to give (23).

23. **Action of acetic anhydride 3-hydroxy quinazolone (23)**

Formation of (24)

Treatment of (23) (0.01 mol) with excess of acetic anhydride (25 ml) was refluxed for 2 hrs. After cooling the solid product obtained was washed with water, filtered off, dried and crystallized from benzene to give (24).

24. **Action of ethyl chloroacetate on 3-hydroxy-4-quinazolone (23)**

A mixture of (23) (0.01mol), anhydrous potassium carbonate (0.04mol) and ethyl chloroacetate (0.04mol) in (60 ml) dry acetone was refluxed for 24hrs. The product obtained after removing the excess solvent was poured into cold
Experimental

water, the solid that separated out was filtered off, dried and crystallized from ethanol to give (25).

25. Action of hydrazine hydrate on quinazolinone (25)

A mixture of (25) (0.01 mol) and hydrazine hydrate (0.01 mol) in (40 ml) ethanol was refluxed for 3 hrs. After cooling, the solid that separated out was filtered off, dried and crystallized from dioxane to give (26).

26. Action of phenyl isocyanate on quinazolinone (26)

An equimolecular quantity of amino carbamoyl derivative (26) (0.01 mol) and phenyl isocyanate (0.01 mol) in dioxane (40 ml) was refluxed for 6 hrs. On cooling at room temperature, the fine crystals which was appeared, filtered off, dried and crystallized from ethanol to give (27).

27. Action of aldehyde on quinazolinone (26)

A mixture of (26) (0.01 mol) and p-chlorobezaldehyde (0.012 mol) in (50 ml) ethanol containing (1 ml) pipridine was refluxed for 3 hrs, after cooling, the solid that separated out was filtered off, dried and crystallized from ethanol to give (28).

Table 5 Characteristics and Physical Data for the Synthesized Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Empirical formula</th>
<th>M.wt</th>
<th>Solvent</th>
<th>Yield %</th>
<th>Calculated/ Found, %</th>
<th>m.p, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>C₂₆H₁₆ClN₅O₅</td>
<td>485.88</td>
<td>benzene</td>
<td>72</td>
<td>64.27</td>
<td>3.32</td>
</tr>
<tr>
<td>3a</td>
<td>C₂₇H₂₁ClN₄O₅</td>
<td>516.93</td>
<td>benzene</td>
<td>76</td>
<td>62.73</td>
<td>4.09</td>
</tr>
<tr>
<td>3b</td>
<td>C₂₈H₂₃ClN₄O₅</td>
<td>530.96</td>
<td>ethanol</td>
<td>75</td>
<td>63.34</td>
<td>4.37</td>
</tr>
<tr>
<td>3c</td>
<td>C₃₀H₂₇ClN₄O₅</td>
<td>559</td>
<td>ethanol</td>
<td>65</td>
<td>64.46</td>
<td>4.87</td>
</tr>
<tr>
<td>3d</td>
<td>C₃₁H₂₉ClN₄O₅</td>
<td>573</td>
<td>ethanol</td>
<td>67</td>
<td>64.97</td>
<td>5.10</td>
</tr>
<tr>
<td>3e</td>
<td>C₃₂H₃₁ClN₄O₅</td>
<td>587</td>
<td>ethanol</td>
<td>62</td>
<td>65.47</td>
<td>5.32</td>
</tr>
<tr>
<td>3f</td>
<td>C₂₈H₂₁ClN₄O₇</td>
<td>560.94</td>
<td>ethanol</td>
<td>80</td>
<td>59.95</td>
<td>3.77</td>
</tr>
<tr>
<td>3g</td>
<td>C₃₃H₂₅ClN₅O₆</td>
<td>609.03</td>
<td>benzene</td>
<td>70</td>
<td>65.08</td>
<td>4.14</td>
</tr>
<tr>
<td>3h</td>
<td>C₃₂H₂₄ClN₃O₅</td>
<td>594.02</td>
<td>benzene</td>
<td>85</td>
<td>64.70</td>
<td>4.07</td>
</tr>
<tr>
<td>4a</td>
<td>C₂₆H₂₅ClN₅O₅</td>
<td>549.97</td>
<td>Pet-ether 40-60</td>
<td>70</td>
<td>56.78</td>
<td>4.40</td>
</tr>
<tr>
<td>Compound</td>
<td>Empirical formula</td>
<td>M.wt</td>
<td>Solvent</td>
<td>Yield %</td>
<td>Calculated/ Found, %</td>
<td>m.p, °C</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>4b</td>
<td>C_{32}H_{22}ClN_{3}O_{4}</td>
<td>576</td>
<td>benzene</td>
<td>75</td>
<td>66.73</td>
<td>4.18</td>
</tr>
<tr>
<td>5</td>
<td>C_{30}H_{22}ClN_{3}O_{6}</td>
<td>555.97</td>
<td>ethanol</td>
<td>60</td>
<td>64.81</td>
<td>3.56</td>
</tr>
<tr>
<td>6</td>
<td>C_{28}H_{17}ClN_{6}O_{5}</td>
<td>528.9</td>
<td>ethanol</td>
<td>65</td>
<td>59.04</td>
<td>2.96</td>
</tr>
<tr>
<td>7a</td>
<td>C_{32}H_{22}ClN_{3}O_{5}</td>
<td>563.99</td>
<td>benzene</td>
<td>75</td>
<td>68.15</td>
<td>3.61</td>
</tr>
<tr>
<td>7b</td>
<td>C_{33}H_{22}ClN_{3}O_{5}</td>
<td>578</td>
<td>benzene</td>
<td>78</td>
<td>68.57</td>
<td>3.76</td>
</tr>
<tr>
<td>8</td>
<td>C_{8}H_{9}N_{3}</td>
<td>147.18</td>
<td>ethanol</td>
<td>65</td>
<td>65.29</td>
<td>5.73</td>
</tr>
<tr>
<td>9</td>
<td>C_{34}H_{22}ClN_{6}O_{4}</td>
<td>615.04</td>
<td>ethanol</td>
<td>67</td>
<td>66.40</td>
<td>3.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C_{32}H_{24}ClN_{3}O_{9}</td>
<td>630</td>
<td>benzene</td>
<td>50</td>
<td>61.01</td>
<td>3.84</td>
</tr>
<tr>
<td>11</td>
<td>C_{27}H_{19}ClN_{6}O_{5}</td>
<td>542.93</td>
<td>ethanol</td>
<td>60</td>
<td>59.73</td>
<td>3.25</td>
</tr>
<tr>
<td>12</td>
<td>C_{27}H_{17}ClN_{6}O_{4}</td>
<td>524.91</td>
<td>Pet-ether 40-60</td>
<td>60</td>
<td>61.78</td>
<td>3.22</td>
</tr>
<tr>
<td>13</td>
<td>C_{27}H_{17}ClN_{6}O_{5}S</td>
<td>540.98</td>
<td>Methanol</td>
<td>75</td>
<td>59.94</td>
<td>3.27</td>
</tr>
<tr>
<td>14</td>
<td>C_{26}H_{17}ClN_{4}O_{4}</td>
<td>484.89</td>
<td>benzene</td>
<td>68</td>
<td>64.40</td>
<td>3.51</td>
</tr>
<tr>
<td>15</td>
<td>C_{33}H_{22}ClN_{3}O_{5}</td>
<td>603.13</td>
<td>ethanol</td>
<td>58</td>
<td>65.62</td>
<td>3.99</td>
</tr>
<tr>
<td>16</td>
<td>C_{28}H_{19}ClN_{4}O_{5}</td>
<td>526.10</td>
<td>ethanol</td>
<td>62</td>
<td>63.82</td>
<td>3.3</td>
</tr>
<tr>
<td>17</td>
<td>C_{26}H_{16}Cl_{2}N_{4}O_{3}</td>
<td>503.34</td>
<td>benzene</td>
<td>72</td>
<td>64.04</td>
<td>2.79</td>
</tr>
<tr>
<td>18</td>
<td>C_{35}H_{22}ClN_{6}O_{6}</td>
<td>643.13</td>
<td>ethanol</td>
<td>55</td>
<td>65.27</td>
<td>3.76</td>
</tr>
<tr>
<td>19</td>
<td>C_{30}H_{23}ClN_{4}O_{6}</td>
<td>570.98</td>
<td>Methanol</td>
<td>75</td>
<td>63.11</td>
<td>3.73</td>
</tr>
<tr>
<td>20</td>
<td>C_{28}H_{21}ClN_{6}O_{5}</td>
<td>556.13</td>
<td>Dioxane</td>
<td>60</td>
<td>60.38</td>
<td>4.12</td>
</tr>
<tr>
<td>21</td>
<td>C_{35}H_{26}ClN_{7}O_{6}</td>
<td>573</td>
<td>ethanol</td>
<td>67</td>
<td>62.18</td>
<td>3.56</td>
</tr>
<tr>
<td>22</td>
<td>C_{35}H_{26}Cl_{2}N_{6}O_{5}</td>
<td>587</td>
<td>ethanol</td>
<td>62</td>
<td>65.47</td>
<td>4.99</td>
</tr>
<tr>
<td>23</td>
<td>C_{28}H_{17}ClN_{4}O_{5}</td>
<td>500.89</td>
<td>benzene</td>
<td>62</td>
<td>62.34</td>
<td>3.71</td>
</tr>
<tr>
<td>24</td>
<td>C_{28}H_{19}ClN_{4}O_{6}</td>
<td>542.10</td>
<td>benzene</td>
<td>63</td>
<td>61.94</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Experimental

<table>
<thead>
<tr>
<th>Compound</th>
<th>Empirical formula</th>
<th>M.wt</th>
<th>Solvent</th>
<th>Yield %</th>
<th>Calculated/ Found, %</th>
<th>m.p, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>C\textsubscript{30}H\textsubscript{23}ClN\textsubscript{4}O\textsubscript{7}</td>
<td>586.13</td>
<td>ethanol</td>
<td>58</td>
<td></td>
<td>155-157</td>
</tr>
<tr>
<td>26</td>
<td>C\textsubscript{28}H\textsubscript{19}ClN\textsubscript{4}O\textsubscript{5}</td>
<td>572.96</td>
<td>Dioxane</td>
<td>62</td>
<td></td>
<td>180-182</td>
</tr>
<tr>
<td>27</td>
<td>C\textsubscript{35}H\textsubscript{26}ClN\textsubscript{7}O\textsubscript{7}</td>
<td>692.08</td>
<td>ethanol</td>
<td>55</td>
<td></td>
<td>230-232</td>
</tr>
<tr>
<td>28</td>
<td>C\textsubscript{26}H\textsubscript{17}ClN\textsubscript{4}O\textsubscript{5}</td>
<td>697.52</td>
<td>ethanol</td>
<td>62</td>
<td></td>
<td>260-262</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
<th>Cl</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>61.39</td>
<td>3.95</td>
<td>19.08</td>
<td>9.54</td>
<td>6.04</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>61.36</td>
<td>3.91</td>
<td>19.06</td>
<td>9.51</td>
<td>6.01</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>58.70</td>
<td>3.69</td>
<td>16.75</td>
<td>14.67</td>
<td>6.19</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>58.66</td>
<td>3.67</td>
<td>16.78</td>
<td>14.93</td>
<td>5.84</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>60.74</td>
<td>3.79</td>
<td>16.18</td>
<td>14.17</td>
<td>5.12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>61.06</td>
<td>4.22</td>
<td>16.44</td>
<td>14.14</td>
<td>4.8</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>60.27</td>
<td>3.76</td>
<td>13.76</td>
<td>12.05</td>
<td>10.17</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>59.98</td>
<td>3.43</td>
<td>14.05</td>
<td>12.08</td>
<td>9.91</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 6 H1-NMR, MS and IR data of prepared compounds

<table>
<thead>
<tr>
<th>Compd.No.</th>
<th>H(^1)-NMR (δ in ppm)</th>
<th>MS (m/z, %)</th>
<th>IR cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.45(s, 2H, NCH(_2)CO), at 6.75 (s, 1H, olefinic proton), at 7.22-7.91 (m, 12H, Ar-H) and at 9.08 (s, 1H, NH)</td>
<td>[M](^+) 485.55, [M+2](^+) 487</td>
<td>3475, 3370 1614 cm(^{-1}) (ν CO of α,β-unsaturated amide), at (\nu\nu\nu)-1720 cm(^{-1}) (ν CO of benzoxazinone and ν CO of cyclic imide)</td>
</tr>
<tr>
<td>3(_a)</td>
<td>–</td>
<td>[M](^+) 516.45, [M+2](^+) 518.5</td>
<td>3317, 3133 1647 (acyclic amides) 1774-1713 (cyclic imide)</td>
</tr>
<tr>
<td>3(_b)</td>
<td>1.2(t, 3H, CH(_3)), at 4.1(q, 2H, CH(_2)), at 4.43(s, 2H, NCH(_2)CO), at 6.74(s, 1H, olefinic proton), at 7.2-7.92 (m, 12H, Ar-H) and 9.80-10.38(s, broad, 3H, 3×NH) disappeared by addition of D(_2)O</td>
<td>–</td>
<td>3473, 3220 1645 (acyclic amides) 1774-1715(cyclic imide)</td>
</tr>
<tr>
<td>3(_c)</td>
<td>–</td>
<td>[M+1](^+) 560, [M+2](^+) 561</td>
<td>3465, 3322 1643 (acyclic amides) 1774-1717(cyclic imide)</td>
</tr>
<tr>
<td>3(_d)</td>
<td>–</td>
<td>–</td>
<td>3475, 3240 1641 (acyclic amides) 1774-1719(cyclic imide)</td>
</tr>
<tr>
<td>3(_e)</td>
<td>–</td>
<td>–</td>
<td>3448, 3350 1650 (acyclic amides) 1774-1720(cyclic imide)</td>
</tr>
<tr>
<td>3(_f)</td>
<td>–</td>
<td>–</td>
<td>3360 1640 (acyclic amides) 1774-1712(cyclic imide)</td>
</tr>
<tr>
<td>3(_g)</td>
<td>–</td>
<td>–</td>
<td>3455, 3360 1644 (acyclic amides) 1774-1716(cyclic imide)</td>
</tr>
<tr>
<td>3(_h)</td>
<td>–</td>
<td>–</td>
<td>3330, 3310 1640 (acyclic amides) 1774-1711(cyclic imide)</td>
</tr>
</tbody>
</table>
Experimental

<table>
<thead>
<tr>
<th>Compd.No.</th>
<th>H¹-NMR (δ in ppm)</th>
<th>MS (m/z,%</th>
<th>IR cm⁻¹</th>
<th>ν_N-H</th>
<th>ν_C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>–</td>
<td>[M]⁺ 549</td>
<td>3445</td>
<td></td>
<td>1617 (α,β-unsaturated amide) 1774-1720 (cyclic imide)</td>
</tr>
<tr>
<td>4b</td>
<td>–</td>
<td></td>
<td>3460, 3380</td>
<td></td>
<td>1646 (cyclic and acyclic amides) 1774-1714 (of cyclic imide)</td>
</tr>
<tr>
<td>5</td>
<td>1.2-2.49 (m, with interference, 5H, COOCH₂CH₃), at 4.42 (s, 2H, NCH₂), at 3.37(s, 2H,CH₂), at 6.74(s, 1H, olefinic proton), at 7.89-7.91 (m, 12H, Ar-H) and 9.5-10.2 (s, broad, 1H, NH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3479</td>
<td></td>
<td>1611 (α,β-unsaturated amide) 1725 (ester) 1774 (imide)</td>
</tr>
<tr>
<td>6</td>
<td>4.55(s, 2H, NCH₂CO), at 6.85 (s, 1H, olefinic proton), at 7.25-8.20 (m, 12H, Ar-H) and at 9.98-10.69(s, broad, 1H, NH) and at 13.84 (s, 1H, OH)</td>
<td>–</td>
<td>3455-2928 For OH and NH</td>
<td></td>
<td>1614 (α,β-unsaturated amide) 1718 (ν CO of carboxylic) 1774-1760 (due to coupling carbonyl bands of cyclic imide)</td>
</tr>
<tr>
<td>7a</td>
<td>4.43(s, 2H, NCH₂), 6.58(s, 1H, olefinic proton), 7.56-8.0(m, 17H, Ar-H) and 9.2-10.2(s, broad, 2H, 2xNH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3401,3208</td>
<td></td>
<td>1657cm⁻¹ (α,β-unsaturated amide) 1774-1725 (cyclic imide)</td>
</tr>
<tr>
<td>7b</td>
<td>–</td>
<td>[M]⁺ 578</td>
<td>3401,3208</td>
<td></td>
<td>1657cm⁻¹ (α,β-unsaturated amide) 1774-1725 (cyclic imide)</td>
</tr>
<tr>
<td>9</td>
<td>4.43(s, 2H, NCH₂), at 6.76(s, 1H, olefinic proton), at 7.05-8.68 (m, 16H, Ar-H), at 9.08 (s, broad, 1H, NH), at 13.01(s, broad, 1H, NH, exchangeable with D₂O)</td>
<td>–</td>
<td>3431</td>
<td></td>
<td>1666 (acyclic amide) 1774-1719 (cyclic imide)</td>
</tr>
<tr>
<td>Compd.No.</td>
<td>H¹-NMR (δ in ppm)</td>
<td>MS (m/z,%</td>
<td>IR cm⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.5(s, 6H, COOH₃), at 4.1(m, 3H, cyclic protons), at 4.50(s, 2H, NCH₂), at 7.35-8.85(m, 12H, Ar-H), 9.2-10.2(s, broad, 2H, 2NH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3446</td>
<td>1642 (amide) 1774-1740 (imide) 1731 (ester) 1720 (sat. benzoxazinone ring)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.43 (s, 2H, NCH₂), at 5.8(s, broad, 2H, NH₂), at 6.8 (s, 1H, olefinic proton), at 7.5-8.0(m, 12H, Ar-H) and 9.8-10.9(s, broad, 2H, 2xNH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3424</td>
<td>1615 (amides) 1774-1722 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.43 (s, 2H, NCH₂), at 6.74 (s, 1H, olefinic proton), at 7.87-8.0(m, 12H, Ar-H) and 9.6-10.4(s, broad, 2H, 2xNH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3468</td>
<td>1658 (cyclic and acyclic amides) 1774-1725 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>[M-3]⁺</td>
<td>537</td>
<td>3462</td>
<td>1610 (α,β-unsaturated amide) 1774-1719 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.42(s, 2H, NCH₂), at 6.51 (s, 1H, olefinic proton), at 7.86-8.0(m, 12H, Ar-H), 9.7-10.5(s, broad, 2H, 2NH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3470, 3362</td>
<td>1624 (α,β-unsaturated amide) 1774-1718 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.44 (s, 2H, NCH₂), 6.94 (s, 1H, olefinic proton), 7.2-8.7(m, 17H, Ar-H), 9.8-10.95(s, broad, 2H, 2xNH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3360, 3170</td>
<td>1645 (acyclic amide) 1731 (carbamate ester) 1774-1740 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.49(s, 3H, OCOCH₃), at 4.42(s, 2H, NCH₂), at 6.76 (s, 1H, olefinic proton), at 7.87-8.0(m, 12H, Ar-H) and 9.65-10.5(s, broad, 1H, 1NH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3474, 3370</td>
<td>1617 (α,β-unsaturated amide) 1774-1718 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.44(s, 2H, NCH₂), at 6.74 (s, 1H, olefinic proton), at 7.2-8.0(m, 12H, Ar-H) and at 9.9-10.7(s, broad, 1H, NH) disappeared by addition of D₂O</td>
<td>–</td>
<td>3470</td>
<td>1618 (α,β-unsaturated amide) 1774-1715 (due to coupling carbonyl bands of cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>Compd.No.</td>
<td>H¹-NMR (δ in ppm)</td>
<td>MS (m/z,%)</td>
<td>IR cm⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.09 (s, 2H, CH₂), at 4.42(s, 2H, NCH₂), at 5.82 (s, 1H, olefinic proton), at 7.91-7.93(m, 16H, Ar-H) and at 9.9-10.7(s, broad, 1H, NH) disappeared by addition of D₂O</td>
<td>-</td>
<td>3432</td>
<td>1613 (α,β-unsaturated amide) 1774-1721 (cyclic imides)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.1-2.5 (m, with interference, 5H, COOCH₂CH₃), at 4.43 (s, 2H, NCH₂), at 4.83(s, 2H,OCH₂COO), at 6.63(s, 1H, olefinic proton), at 7.86-7.95 (m, 12H, Ar-H) and 9.5-10.2 (s, broad, 1H, NH) disappeared by addition of D₂O</td>
<td>-</td>
<td>3440, 3328</td>
<td>1660 (acyclic amide) 1774-1719 (cyclic imide) 1731 (ester)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.76 (s, 2H, NCH₂), at 4.82(s, 2H, OCH₂CO), at 6.72 (s, 1H, olefinic proton), 7.84-8.1(m, 12H, Ar-H), 9.65-10.5(s, broad, 2H, 2xNH) disappeared by addition of D₂O</td>
<td>-</td>
<td>3426</td>
<td>1623 (α,β-unsaturated amide) 1774-1719 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.43(s, 2H, NCH₂), at 6.51 (s, 1H, olefinic proton), at 7.85-8.1(m, 12H, Ar-H), 9.65-10.5(s, broad, 4H, 4xNH) disappeared by addition of D₂O</td>
<td>-</td>
<td>3366</td>
<td>1615 (α,β-unsaturated amide) 1774-1719 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4.6(s, 2H, NCH₂), at 6.6 (s, 1H, olefinic proton), at 6.74 (s, 1H, N=CH), at 7.74-8.09(m, 16H, Ar-H) and at 9.6-10.2(s, broad, 2H, 2xNH) disappeared by addition of D₂O</td>
<td>-</td>
<td>3424</td>
<td>1615 (α,β-unsaturated amide) 1774-1722 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.43(s, 2H, NCH₂), at 6.75 (s, 1H, olefinic proton), 7.3-7.95(m, 12H, Ar-H), at 8.68 (s, broad, 1H, NH) and at 10.69(s, 1H, OH)</td>
<td>-</td>
<td>3848, 3743, 3485 (OH and NH)</td>
<td>1617 (cyclic and a cyclic amide) 1774-1720 (cyclic imide)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.49 (s, 3H, OOCOCH₃), 4.42(s, 2H, NCH₂), at 6.75 (s, 1H, olefinic proton), 7.87-7.95(m, 12H, Ar-H) and at 9.6-10.2(s, broad, 1H, NH) disappeared by addition of D₂O</td>
<td>-</td>
<td>3462, 3328</td>
<td>1660 (cyclic and acyclic amide) 1774-1720 (cyclic imide) 1731 (ester)</td>
<td></td>
</tr>
</tbody>
</table>
Experimental

<table>
<thead>
<tr>
<th>Compd.No.</th>
<th>H(^1)-NMR (δ in ppm)</th>
<th>MS (m/z, %)</th>
<th>IR cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V(_{N-H})</td>
<td>V(_{C=O})</td>
</tr>
<tr>
<td>25</td>
<td>1.2(t, 3H, CH(_3)), at 4.1(q, 2H, CH(_2) of ester), at 4.42 (s, 2H, NCH(_2)), at 4.83(s, 2H, OCH(_3)COO), at 6.63(s, 1H, olefinic proton), at 7.4-7.9 (m, 12H, Ar-H) and 9.5-10.2 (s, broad, 1H, NH) disappeared by addition of D(_2)O</td>
<td>_</td>
<td>3440, 3324 1660 (cyclic and acyclic amide) 1774-1722 (cyclic imide) 1732 (ester)</td>
</tr>
<tr>
<td>26</td>
<td>4.42(s, 2H, NCH(_2)), at 4.82(s, 2H, OCH(_3)CO), at 6.6(s, 1H, olefinic proton), 7.09-8.06(m, 12H, Ar-H), 9.65-10.5(s, broad, 2H, 2×NH) disappeared by addition of D(_2)O</td>
<td>_</td>
<td>3480-3220 (NH and NH(_2)). 1680, 1660 (amides and hydrazide) 1774-1723 (cyclic imide)</td>
</tr>
<tr>
<td>27</td>
<td>4.43(s, 2H, NCH(_2)), at 5.82 (s, 1H, olefinic proton), at 7.85-8.08 (m, 12H, Ar-H), 9.65-10.5(s, broad, 4H, 4×NH) disappeared by addition of D(_2)O</td>
<td>_</td>
<td>3462, 3320 1662 (amides) 1774-1718 (cyclic imide)</td>
</tr>
<tr>
<td>28</td>
<td>4.43 (s, 2H, NCH(_2)), at 6.5 (s, 1H, olefinic proton), at 6.7 (s, 1H, N=CH), at 7.78-8.09 (m, 16H, Ar-H) and at 9.6-10.2(s, broad, 2H, 2×NH) disappeared by addition of D(_2)O</td>
<td>_</td>
<td>3445 1666 (amides) 1774-1716 (cyclic imide)</td>
</tr>
</tbody>
</table>
Studies on 4H-3,1-Benzoxazin-4-ones
REFERENCES

References

References

127. FRG patent no. 4140303, 1993; Ref. 2h., Khim., 1993, no. 7N104P.
References

References

References

195. Looney-Dean, V.; Lindamood, B. S.; and Papadopoulos, E. P.; Synthesis; 1984, 68.

207. Misra, V. S.; Gupta, P. N.; Pandey, R. N.; Nath, C.; and Gupta, 0. P.; Pharmazie; 35, 1980, 400.

References

References

256. Rao, A. R. and Reddy, V. M.; Pharmazie; 47(10), 1992,

301. Tsubota, M. and Hamashima, M.; Heterocycles; 21, 1984, 706

303. Ukrainets, I. V.; Sidorenko, L. V.; Gorokhova, 0. V.; and Slobodzyan, S. V.; Chem. Heterocycles Compounds; 43(1), 2007, 63-66.

References

Studies on 4H-3,1-Benzoxazin-4-ones
وعلاوة على ذلك، يتفاعل البنزوكازانزينون (2) مع هيدروكلوريد هيدروكسيلامين في وجود خلائ الصوديوم الأمانيه ليعطي 3-هيدروكسي-كينازولين-4-اون (32) وقد أمكن دراسة الاتزان الدينياميكي للمركب (33) بتفاعله مع اثيدريد حمض الخليك، خلائت كلوريدي الإيثيل ليعطي المركبات (34) و (35) على الترتيب. من ناحية أخرى، قد أمكن دراسة الاتزان الدينياميكي للمركب (35) بتفاعله مع الهيدرازين هيدرات لتعطي المركب (36) وقد تم تفاعل المركب (36) مع فينيل ايزو سيانات، بارا- كلورو-بنزالدهيد ليعطي المركبات (37) و (38) على الترتيب. وقد تم اختبار النشاط البيولوجي للمركبات.
الملخص العربي

تشييد وتفاعلات بعض المركبات الحلقي غير متجانسة الحلقة

والمتوقع لها نشاطا بيولوجي

تقدم هذه الدراسة تحضير مشتق البنزووكزازين-4-اون (2) وذلك بتفاعل حمض الانثرانيلك مع مشتق الاستانيد (3a,9b) بالتحليل الأميني للمركب (7) وتم فتح حلقته البنزووكزازين (1) بتخصيصها مع الهيدرازين هيدرات لتعطي مشتق هيدرازيد حمض الانثرانيلك (4a) بينما تفاعل المركب (2) مع الفينيل هيدرازين وأعطى مشتق الكينازولينون (4b) معالجة البنزووكزازينون (2) بأسلوب خليات الإيثيل ينتج المركب (5) اعتمادا على عامل الوقت للتفاعل.

من ناحية أخرى، تفاعل البنزووكزازينون (2) مع أزيد الصسديوم ليعطي مشتق تترازول (6) وتفاعل المركب (2) تحت ظروف فريد كرافت مع كل من البنزين والطوارئ مطعما الكيتونات المقابلة (7).

خلاف ذلك، تفاعل البنزووكزازينون (2) تحت ظروف مانش ليعطي قاعدة مانش (9).

وذلك بتفاعل المركب (2) معاليبات ثنائي الميثيل ليعطي ناتج ديل ألدر (10). من ناحية أخرى، تفاعل البنزووكزازينون (2) مع هيدروكلوريد الكربيازيد ليعطي مشتق الترابيوزال كينازولين (11) ويصبح هذا المركب عند درجة حرارة أعلى من درجة انصهار يعطي المركب (12) وتفاعلاً البنزووكزازينون (2) مع ثيو الكربيازيد ليعطي المركب (13).

ومع علاوة على ذلك، أمكن الحصول على 2 -(مشتق)- 4 -(كينازولينون (14) بصحب المركب (2) مع خلات الأمونيوم وقد أمكن دراسة الأثران الديناميك الشامل للمركب (5) بتفاعله مع عامل الأكلة، انهيبريد حمض الخليك، مخلوط من خماس كلوريدي الفسفور واكس كليوريدي الفسفور، وتفاعلات ليشييتي 4 - (مشتق)- 2 -(مشتق)- 4 -(كينازولينون (9b))، 3 -(مشتق)- 2 -(مشتق)- كينازولينون (9a) و2 -(مشتق)- 4 -(كينازولينون (10b)) و 3 -(مشتق)- 4 -(كينازولينون (10a)) على الترتيب.

من ناحية أخرى، تفاعل المركب (14) مع خلات كليوريدي الإيثيل في الأمسيتون الجاف وفي وجود كربونات البوتاسيوم الباجاج ليعطي المركب (19) وقد أمكن دراسة الأثران الديناميك للمركب (19) بتفاعله مع الهيدرازين هيدرات لتتعطي المركب (20) وتم تفاعل المركب (20) مع فنييل أيزو سيانات، بارا- كلورو- بنزالدهيد ليعطي المركبات (21) و (22) على الترتيب.
قرار لجنة الحكم

اسم الباحث/ إسراء عزمي عبد الوهاب

عنوان الرسالة: تشيد وتفاعلات بعض المركبات الحلقات غير متجانسة الحلقة والمتوقع لها نشاطا بيولوجيا

لجنة الحكم والمناقشة

<table>
<thead>
<tr>
<th>الرقم</th>
<th>التوقيع</th>
<th>الوظيفة</th>
<th>الاسم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

تاريخ المناقشة:

تقرير الرسالة:
اسم الباحث: إسراء عزمي عبد الوهاب

عنوان الرسالة: تشبه وتفاعلات بعض المركبات الحلقية غير متجانسة الحلقة والمتوقع لها نشاطًا بيولوجيًا

هيئة الإشراف:

<table>
<thead>
<tr>
<th>التوقيع</th>
<th>الوظيفة</th>
<th>الاسم</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>أساتذة الكيمياء العضوية - قسم الكيمياء كلية العلوم جامعة بنها</td>
<td>أ.د/أشرف عبد الحميد وصفى</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>أساتذة الكيمياء التطبيقية - كلية الهندسة بشبرا جامعة بنها</td>
<td>أ.د/محمد أبو العلا رضوان</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>أستاذ مساعد الكيمياء العضوية - قسم الكيمياء كلية العلوم جامعة بنها</td>
<td>د/علي عبد المعبود علي</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>مدرس الكيمياء العضوية - كلية الهندسة بشبرا جامعة بنها</td>
<td>د/منال محمود طمعت الحفناوي</td>
<td>4</td>
</tr>
</tbody>
</table>

رئيس مجلس قسم الكيمياء

أ.د/ شافعي جلال دنيا
تشفيد وتفاعلات بعض المركبات الحلقيبة غير متجانسة الحلقة والمتوقع لها نشاطا بيوطولوجيا

رسالة مقدمة كجزء متمم للحصول على درجة الماجستير في العلوم (كيمياء عضوية)

مقدمة من
إسراء عزمي عبد الوهاب
(بكالوريوس علوم قسم الكيمياء)

مقدمه الى
قسم الكيمياء - كلية العلوم - جامعة بنها

تحت إشراف

أ.د/ أشرف عبد الحميد فاروق وصفى
أستاذ الكيمياء العضوية قسم الكيمياء كلية العلوم جامعة بنها

أ.د/ محمد أبو العلا رضوان
أستاذ الكيمياء التطبيقية كلية الهندسة بشبرا جامعة بنها

د/ علي عبد المعبود علي
أستاذ مساعد الكيمياء العضوية قسم الكيمياء كلية العلوم جامعة بنها

د/ منال محمود طلعت الحفناوي
مدرسة الكيمياء العضوية كلية الهندسة بشبرا جامعة بنها

2011