CONTENTS

1. INTRODUCTION.

2. REVIEW OF LITERATURE.
 2.1. Effect of carbamate insecticides and nematicides on soil microorganisms.
 2.2. Factors affecting the degradation of pesticides in soil.
 2.2.1. Influence of soil microorganisms on the persistence of pesticides in soil.
 2.2.2. Influence of soil pH on the persistence of pesticides in soil.
 2.2.3. Influence of soil type on the persistence of pesticides in soil.
 2.2.4. Influence of water content on the pesticides persistence in soil.
 2.2.5. Influence of soil pre-treatment on the pesticides persistence.
 2.3. Persistence and metabolism of carbofuran and temik in soil.
 2.4. Persistence and metabolism of carbofuran and temik in aquatic systems.

3. MATERIALS AND METHODS.
 3.1. The experimental insecticides.
 3.1.1. Carbofuran.
 3.1.2. Aldicarb.
 3.2. Carbofuran metabolites preparation.
 3.2.1. Furadan phenol.
3.2.2. 3- acetoxy – furadan
3.2.3. 3- hydroxy – furadan.
3.2.4. 3- keto – furadan.
3.2.5. 3- keto – furadan – phenol.

3.3. Soil type.

3.4. The experimental plant.

3.5. Isolation of carbofuran degrading microorganisms.

3.6. Carbofuran tolerance of isolated actinomycete.

3.7. Carbofuran tolerance of isolated bacterium.

3.10. Tolerance of carbofuran degrading actinomycete to temik insecticide.

3.11. Tolerance of carbofuran degrading bacterium to temik insecticide.

3.15. Efficiency of the isolated strains to degrade carbofuran and temik in autoclaved and non-autoclaved soils.

3.16. Efficiency of the isolated strains to degrade carbofuran in soil cultivated with tomato.
3.17. Microbial counts.
 3.17.1. Bacterial counts.
 3.17.2. Actinomycetes counts.

3.18. Assessment of dehydrogenase activity (DHA)

3.19. Extraction and clean up of carbofuran.
 3.19.1. From the soil.
 3.19.2. From the liquid culture.

 3.20.1. By gas liquid chromatography (GLC).
 3.20.2. By thin layer chromatography (TLC).
 3.20.3. By gas/mass spectrometer (GC/MS).

3.22. Extraction and clean up of temik.
 3.22.1. From the soil.
 3.22.2. From the liquid culture.

 3.23.1. By gas liquid chromatography (GLC).
 3.23.2. By thin liquid chromatography (TLC).
 3.23.3. By gas/mass-spectrometer (GC/MS).

3.25. Media used.
 3.25.1. Starch nitrate agar medium.
 3.25.3. Agar soil extract medium.
 3.25.4. Federov and Ill’ina medium.
3.25.5. Asparagine agar medium.
3.25.6. Tyrosin agar medium.
3.25.7. Nitrate broth medium.
3.25.9. R.C. medium.
3.25.10. Nutrient broth medium.

4. RESULTS AND DISCUSSION.

4.1. Isolation of carbofuran degrading microorganisms from the soil.
4.2. Tolerance assessment of the isolates to carbofuran.
 4.2.1. Tolerance of the actinomycete isolate.
 4.2.2. Tolerance of the bacterium isolate.
4.3. Analysis of technical carbofuran and its metabolites by Gas Liquid Chromatography (GLC) and Thin Layer Chromatography (TLC) and Gas /Mass spectrometer (GS/Ms).
4.4. Persistence rate and biodegradation of carbofuran in liquid cultures of isolated actinomycete and bacterium.
 4.4.1. Persistence rate of carbofuran in liquid culture of the actinomycete isolate.
 4.4.2. The actinomycete density in the liquid culture amended with carbofuran.
 4.4.3. PH values of liquid culture of actinomycete isolate and its relation to carbofuran persistence.
 4.4.4. Biodegradation of carbofuran by the actinomycete isolate in liquid culture.
 4.4.5. Persistence rate of carbofuran in liquid culture of bacterium isolate.
 4.4.6. Bacterial density in the liquid culture amended with carbofuran.
4.4.7. PH values of liquid culture of bacterium isolate and its relation to carbofuran persistence.

4.4.8. Biodegradation of carbofuran by bacterium isolate in liquid culture.

4.5. **Tolerance assessment of carbofuran degradable isolates to temik.**

4.5.1. Tolerance of the actinomycete isolate to temik.

4.5.2. Tolerance of the bacterium isolate to temik.

4.6. **Analysis of temik and its metabolites by Gas Liquid Chromatography (GLC); Thin Layer Chromatography (TLC) and Gas/Mass spectrometer (GC/MS).**

4.7. **Persistence and biodegradation of temik in liquid culture of isolated actinomycete and bacterium.**

4.7.1. Persistence rate of temik in liquid culture of the actinomycete isolate.

4.7.2. The actinomycete density in the liquid culture amended with temik.

4.7.3. pH values of the actinomycete liquid culture and its relation to temik persistence.

4.7.4. Biodegradation of temik in liquid culture of the actinomycete isolate.

4.7.5. Persistence rate of temik in liquid culture of the bacterium isolates.

4.7.6. Bacterial density in the liquid culture amended with temik.

4.7.7. pH values of the bacterium isolate liquid culture and its relation to temik persistence.

4.7.8. Biodegradation of temik in liquid culture of the bacterium isolate.
4.8. Identification of the isolated carbofuran degrading microorganisms

4.9. Decomposition of carbofuran and temik in autoclaved and non-autoclaved soil inoculated with *strep. violaceusniger* or/and *Azospirillum brasilense*.

4.9.1. Persistence rate of carbofuran in soil.
4.9.2. Compounds produced from biodegradation of carbofuran.
4.9.3. Persistence rate of temik in soil.
4.9.4. Compounds produced from biodegradation of temik.
4.9.5. Total microbial counts in soil under carbofuran application.
4.9.6. Actinomycetes counts in soil under carbofuran application.
4.9.7. Soil microbiological activity under carbofuran application (Dehydrogenase activity).
4.9.8. Soil pH values during carbofuran decomposition in soil.
4.9.9. Total microbial counts in soil under temik application.
4.9.10. Actinomycetes counts in soil under temik application.
4.9.11. Soil microbial activity under temik application (Dehydrogenase activity).

4.10. Persistence and decomposition of carbofuran in cultivated soil with tomato and inoculated with *Azospirillum brasilense* and *strep. violaceusniger*.

4.10.1. Persistence rate of carbofuran.
4.10.2. Compounds produced from biodegradation of carbofuran in cultivated soil.
4.10.3. Total microbial counts in cultivated soil with tomato.
4.10.4. Actinomycetes counts in cultivated soil with tomato.
4.10.5. Soil microbial activity in cultivated soil (Dehydrogenase activity).
4.10.6. pH values of cultivated soil and its relation to carbofyuran
decomposition.

5. SUMMARY.
6. REFERENCES.
7. ARABIC SUMMARY.