Mechanization and handling of deciduous fruits by Shake-Catch method. Fruit and vegetable harvest mechanization - Technological implications. Rural Manpower Center, Michigan State University, East Lansing, Michigan, PP. 717-30.

Physiological studies of some peach varieties for determination of maturity.
Influence of harvesting method on the quality of canned peaches.
Rivista della Ortoflorofrutticoltura Italiana. 197 hrz, 59,3. 204-209.

Effect of uneven maturity on the mechanical harvesting of peaches.
Sch. of Engng. Univ. of Guelph.

Massey, L.M.; Mattus, Jr., G.E.; Stiles, W.C. and
A standardized Method For Collecting Apple. Pressure Test Data.
New Yorks Food and Life Sciences Bulletin, No.74,

Response of Monilinia fructicola conidia to individual and combined treatments of Anoxia and heat.
Phytopathology, 61: 61-64.

Post-harvest decay of peaches: brown rot (Monilinia fructicola), Rhizopus rot (Rhizopus stolonifer). In Results of 1960 fungicide-nematocide tests.
Am. Phytopath. Soc.
Control of postharvest decays of peaches.

Some effects of brushing and sulfur dusting of peaches
on decay and shrivelling.

Packing house trials to reduce peach rot.
Bull. 30: 460-467.

Preharvest fungicides for peach brown rot control.

---------- (1974).
Control of peach diseases with systemic fungicides.
Plant Dis. Repr., 58: 208-211.

Antifungal activity of substituted nitroanilines and
related compounds.
Physiological factors affecting the onset of susceptibility of apple fruits to rotting by fungus pathogens.

Mechanical harvesting of cling peaches.
Research Progress Report, University of California, Davis.

Horticultural aspects in mechanization of cling peach harvesting.

Cultural practices with deciduous tree fruits as they relate to harvest mechanization. Fruit and vegetable harvest mechanization - Technological implications.
Rural Manpower Center, Michigan State University, East Lansing, Michigan, PP. 737-750.

Daines, R.H. (1965).
2,6-dichloro-4-nitroaniline used in orchard sprays, the dump tank, the wet brusher and hydrocooler for control of Rhizopus rot of harvested peaches.
Effect of fungicides dip treatment and temperature on post-harvest decay of peaches.

Application of fungicides for improving the storage of Red Delicious apples.

Post-harvest treatment with 2,6-dichloro-4-nitroaniline for fruit rot control on fresh market peaches.

Control of diseases of fruits and vegetables by post-harvest treatment.
Annual review of phytopath., 5: 391-432.

Physiological studies on picking, packing and storage treatments of Bircker apple fruits.
Organic vs. inorganic fungicides for the control of the brown-rot fungus on peaches.
Phytopathology, 42: 7-8.

Evaluating the feasibility of mechanizing crop harvest.

Mechanical harvesting of cling peaches.
research Progress report, University of California, Davis.

Mechanical harvesting of cling peaches.
California Agric. Exp. Station, Bulletin 851.

Growing shipping peaches and nectarines in California.
Division of Agric. Sci., Univ. of California, Leaflet 2851.

Control of brown rot of stone fruits with thiophanate-methyl and a piperazine derivative fungicide.

Control of brown rot of plum with a new piperazine derivative fungicide.

Orchard control of diseases and mites in apple with a new piperazine derivative fungicide.

Model problem in frozen foods.
In. Proc. Low temperature.
Microbiology symp., 299-312 (Campbell Soup Co., Camden, New Jersey, PP. 322).

Evaluating fungicides for the control of Rhizopus boll rot of cotton.

Harding, P.R., Jr. and Savage, D.C. (1964).

Investigation of possible correlation of hot water washing with excessive storage decay in coastal California lemon.
Mechanical harvesting of peaches in the Goulburn Valley.
Tatura Hort. Res. Station, Victoria, Ausstsalia.
Victorian Hort. Digest, No. 67: 4-5.

Post-harvested chemical dip treatment of peaches for control of brown-rot disease in the package.
Phytopathology, 39:9.

Houck, L.G. (1965).
Penicillium development in lemons treated with 2,6-dichloro-4-nitroaniline.

Post-harvested fungicide and heat treatments for brown rot control on stone fruits.

Physiological studies on picking, handling, packing, storage, and artificial ripening of Pearl Harbour tomatoes.
Effectiveness of preharvest sprays with 2, 6-dichloro-4-nitroaniline against peach Rhizopus rot and influence of spray adjuvants, under Colorado conditions.

Two trial methods for

Sensitivity of Rhizopus stolonifer to chilling.
phytopathology, 57: 881–884.

Brown and Rhizopus rots of peaches as affected by hydrocooling, fungicide, and temperature.

Internal breakdown of nectarine, peach and plum.
Final Report to California tree Fruit Agreement.
Pomology dept., unire. of california at davis.

----------; -------. and beede, R.H. (1977a).
Studies of various factors affecting postharvest performance of shipping stone fruits. Summery Report to California tree fruit agreement, nectarine administrative committee, peach commodity committee and plum commodity committee. Univ. of california at Davis.
Mitchell, F.G.; Mayer, G. and Beede, R.H. (1977b).
Postharvest performance of shipping stone fruits. Special Project Report to the Nectarine Administrative Committee Research Commodity Committee and Plum Commodity Committee of the California Tree Fruit agreement. Univ. of California, Davis, U.S.A.

Control of post-harvest fruit decays in relation to residues of 2,6-dichloro-4-nitroaniline and Difolatan. Hilgardia, 35: 365-373.

Effects of 2,6-dichloro-4-nitroaniline on Rhizopus species and its comparison with other fungicides on control of Rhizopus rot of peaches. Phytopathology, 53: 950-955.

Effects of 2,6-dichloro-4-nitroaniline on Rhizopus species and its comparison with other fungicides on control of Rhizopus rot of peaches. Phytopathology, 53: 950-955.

---------- and Harris, C.M. (1979).
Postharvest brown rot of peaches and inoculum density of monilinia fructicola agr. Res. Results, No.9, 12pp.

Smith, W.L., Jr. (1962).

----------, (1971).
Control of brown rot and Rhizopus rot of inoculated peaches with hot water or hot chemical suspensions. Plant dis. Reptr., 55: 228-231.

----------. and Haller, M.H. (1953).

Postharvest treatments for the reduction of peach decays. Phytopathology 44: 390.

Reduction of postharvest decay of peaches and nectarines with heat treatments. U.S.D.A. Mktg. Res. Rept. 643. 22P

---------(1982).

----------. (1972).
Heated wax-emulsions with benomyl and 2,6-Dichloro-4 Nitroaniline for control of postharvest decay of peaches and nectarines. Phytopathology 62: 129-133.

----------. (1973).

Postharvest decay, weight loss and fungicide residues on peaches hydro or hydrocooled before or after. Plant Dis, Reprtr., 59: 931-935.

Combination heat and 2,6 dichloro 4-Nitroniline treatments for control of Rhizopus and brown rot of peaches, plums and nectarines.
Wells, J.N. and Bennett, A.H. (1967).
Hydrocooling and hydroaircooling with fungicides for reduction of postharvest decay of peaches.
Phytopathology, 66: 801-805.

-------- and Harvey, M.J. (1971).
Wax in combination with Botran, Benomyl and heat for reduction of postharvest rots of peaches and nectarins.
Blue anchor, 48: 17-20.

Pre-and postharvest Benomyl treatments for control of brown rot of nectarins in California.

Wilson, R.F. (1938).
Horticultural Colour Chart.
MATERIALS AND METHODS

This investigation was carried out on Meet-Ghamr peach cultivar during the two successive seasons 1984, 1985. 30 trees, eight years old, budded on local Baladi peach root stocks, were selected. Trees were spaced at 5 meters distance. They were all about the same in their vegetative growth and were subjected to the normal treatments of the orchard which is situated in Meet Abou El-Ezz, Meet-Ghamr, Dakahlia governorate, and belongs to Mr. M. Abdallah Hussein.

Three ways of picking fruits were used:

1- Shaking the trees and leaving the fruits to fall on the ground.

2- Shaking the trees and receiving the falling fruits on a mat under the tree.

3- Picking by hand, by turning the fruit in a full round tower to assure a round separation of the fruit from its pedical, without causing any injury to the fruit skin round the pedical. Three full buckets (replicates) representing every method of picking were randomly picked and transported immediately to the laboratory. Every plastic bucket contained about 140 peach fruits.

In addition, the effect of the different transporting
containers on the percentage of mechanical injury in fruits was calculated. All the fruits were picked by hand (the third method), using the following transporting containers:

1- Palm crate without liner (about 15 kg. capacity).
2- Palm crate with perforated cardboard liner (about 14 kg. capacity).
3- Plastic box (60 × 40 × 18 cm. dimensions and 18-22 kg. capacity).
4- Plastic bucket (about 7 kg. capacity).

Three replicates were randomly taken from every kind of containers in order to determine the percentage of mechanical injury occurring to the fruits, immediately after transportation via trip of about 100 km. to the laboratory.

After determining the percentage of decayed fruits, they were discarded, and sound fruits were used in studying the following:

1. The effect of the picking stage on the keeping quality of fruits:

It was studied by picking mature fruits (according to Barakat et al., 1970) and semi-ripe fruits and storing them at 32 °F, in order to study the effect of picking stage on the keeping quality of fruits. Three replicates of 100 fruits for each replicate were used for every picking stage. The following physical and chemical properties were studied every week to determine the right picking stage for
successful cold storage: loss in weight, decay percentage, firmness, colour, acidity and T.S.S./acid ratio. The study was carried out during the two successive seasons 1984, 1985.

2-determining the suitable cold storage temperature:

Two cold storage temperatures, namely 0°C and 5°C, were tried to study the suitable cold storage temperature for Meet-Ghamr fruits. The replicates of 100 fruits for each replicate were stored under every temperature. Some physical and chemical properties were studied every week to determine the suitable cold storage temperature for Meet-Ghamr fruits (color, loss in weight, decay percent, firmness, acidity, T.S.S. and T.S.S./acid ratio). The study was carried out during the two successive seasons 1984, 1985.

3-studying the effect of the hot water and some disinfectants on the keeping quality of Meet-Ghamr fruits:

The fruits were divided into 8 prestorage treatments as following:

1- Control: washing fruits with normal water only, and drying in open air.

2- Dipping in hot water (50°C) for 5 minutes and drying in open air.
3- Dipping in Botran (1000 ppm) for 5 minutes and drying in open air.
4- Dipping in Botran (2000 ppm) for 5 minutes and drying in open air.
5- Dipping in Bravo (1000 ppm) for 5 minutes and drying in open air.
6- Dipping in Bravo (2000 ppm) for 5 minutes and drying in open air.
7- Dipping in Rovral (1000 ppm) for 5 minutes and drying in open air.
8- Dipping in Rovral (2000 ppm) for 5 minutes and drying in open air.

All treated and untreated fruits were then inoculated with Rhizopus stolonifer. Three replicates of 200 fruits for each replicate were used in every treatment, and every replicate was stored in a plastic box at 5°C and 85% R.H. (Relative Humidity). Each box of the above treatments and replicates was divided into two parts:
Part (1) representing fruits needed for the periodical determination of the physical and chemical properties (loss in weight, decay percent, firmness, rind colour, acidity, T.S.S., T.S.S./acid ratio, and total sugars).
Part (2): representing fruits needed for determining the percentage of loss in weight.
The study was carried out during the two successive seasons 1984, 1985.

Methods of physical and chemical determinations:

Loss in weight:

This character was determined for every treatment by weighting 100 fruits periodically during the storage period and the weight loss was calculated as following (Kabeel et al. 1959).

\[
\text{Average loss in fruit weight} \times 100 = \frac{\text{average fruit weight at the beginning of storage} - \text{average fruit weight at any date}}{\text{average fruit weight at the beginning of storage}}
\]

Where:

Average loss in fruit weight = Average fruit weight at the beginning of storage - average fruit weight at any date.

Decay percentage:

At every storing date, decayed fruits were recorded and discarded. Decay was expressed as percentage of discarded fruits from the original sample (Kabeel, 1959).
Rind colour:

The rind of Meet-Ghamr fruits always shows more than one colour when they reach the mature and ripe stages. Therefore, it was found more efficient to determine the rind colour according to the colour which showed the larger area on the fruit rind (the dominant colour).

The basic colour and the development in basic colour during the different storage periods was determined by the Horticultural Colour Chart. This chart was issued by the British Colour Council, Royal Horticultural Society in London (1938).

Fruit firmness:

Fruit firmness was carried out by using the University of California Firmness Tester (U.C. Firmness tester LIC. MFGR, western Ind. Supply S.F. California, Pound ! ?0). (Blanpied et. al. 1978).

Titratable Acidity:

25 gm. of the fresh fruits were homogenated with 250 CC distilled water in a blender, filtered and 2 CM of the filtration were titrated with 0.1 N-sodium hydroxide, after adding 2 drops of phenolphthaleine as indicator. Acidity was calculated as malic acid in 100 gm. fresh weight.
Total soluble solids:

Zeiss laboratory refractometer was used to determine the total soluble solids of the juice.

T.S.S./acid ratio:

T.S.S./acid ratio was calculated as follows:

\[
\frac{\text{T.S.S.}}{\text{Acidity}}
\]

Total sugar:

Total sugars were determined colourimetrically using phenol sulphuric method as described by Smith et al. (1956).

The statistical analysis of the present data was carried out according to Snedecor & Cochran (1972). Means are compared using the New L.S.D values at 5% level.