CONTENTS

LIST OF TABLES .. 1
I. INTRODUCTION ... 1
II. REVIEW OF LITERATURE ... 3
III. MATERIALS AND METHODS 22
IV. RESULTS AND DISCUSSION 34
IV. I. EXPERIMENT, 1:
 IV. I. I. Vegetative growth measurements 23
 IV. I. II. Mineral composition/nutritional status 49
IV. II. EXPERIMENT, 2:
 IV. II. I. Vegetative growth measurements 63
 IV. II. II. Mineral composition/nutritional status 82
IV. III. EXPERIMENT, 3:
 IV. III. 1. Retained Zn-65 in treated leaves 98
 IV. III. 2. Translocation of Zn-65 in mango seedlings 98
 IV. III. 3. Total absorption of Zn-65 by mango leaves 103
 IV. III. 4. Distribution pattern of translocated Zn-65 within
 mango plants ... 106
 IV. III. 5. Percentage use of Zn-65 by mango plants 107
V. SUMMARY AND CONCLUSIONS 112
VI. LITERATURE CITED ... 125
VII. ARABIC SUMMARY.
List of Tables

No. of Table	Page
Table (12): Nitrogen content (%) in various plant organs of mango seedlings in relation to rates of both (phosphorus soil & zinc foliar applied) and their combinations during 1997 & 1998 seasons | 84
Table (13): Phosphorus content (%) in various plant organs of mango seedlings in relation to rates of both (phosphorus soil & zinc foliar applied) and their combinations during 1997 & 1998 seasons | 88
Table (14): Potassium content (%) in various plant organs of mango seedlings in relation to rates of both (phosphorus soil & zinc foliar applied) and their combinations during 1997 & 1998 seasons | 93
Table (15): Zinc content (ppm) in various plant organs of mango seedlings in relation to rates of both (phosphorus soil & zinc foliar applied) and their combinations during 1997 & 1998 seasons | 96
Table (16): Retained Zn-65 in the treated leaves of mango transplants as influenced by the level of both Zn foliar and P soil applications during 1999 year | 99
Table (17): Upward translocation of Zn-65 in mango plant, leaves (A) and stem (B) as affected by level of both Zn foliar and P soil applications during 1999 year | 101
Table (18): Downward translocation of Zn-65 in mango plants, leaves (A), stems (B) and roots (C) in response to level of both Zn foliar and P soil applications during 1999 year | 102
Table (19): Total absorption of Zn-65 by mango leaves as influenced by the level of both Zn foliar and P soil applications during 1999 year | 105
Table (20): Distribution of translocated Zn-65 in various mango plants organs, leaves (A), stems (B) and roots (C) in response to level of both Zn foliar and P soil applications during 1999 year | 108
Table (21): Percentage use of Zn-65 by mango transplants as influenced by the level of both Zn foliar and P soil applications during 1999 year | 109