Introduction

Recent advances in computed tomographic (CT) technology, three dimensional imaging software and cheaper data storage capacity have made faster, simpler and more accurate gastric imaging available. Two dimensional multiplaner reformation and CT gastrography including virtual gastroscopy and transparency rendering provide multiple cross-sectional imaging and gastroscopic viewing in the same data acquisition; they are also helpful in detection and evaluation of gastric malignancies and a variety of inflammatory conditions that affect the stomach. (Oto et al, 2002)

The term virtual endoscopy refers to using either spiral computed tomography or magnetic resonance scanning combined with computer technology to produce high resolution two and three dimensional imaging. (Brambs et al, 2003)

Virtual gastroscopy allows detection of subtle mucosal changes and differentiation of mucosal lesions from sub- mucosal lesions in the same way as conventional gastroscopy. (Horton et al, 2004)

Virtual gastroscopy has several advantages over conventional gastroscopy: it has a wider field of view than conventional gastroscopy and it has no blind points because retrospective reformation is available. (Ingram et al, 2004).
Introduction and Aim of work.

These techniques allow non invasive assessment of gastric wall and extra gastric extent of diseases and accurate staging of gastric cancer and provide extraluminal information such as presence of lymphadenopathy & distant metastasis. (Bhandri S et al, 2004)

Tow dimensional MPR (multiplaner reformation) and CT gastrography including virtual gastroscopy & Transparency rendering can provide the comprehensive information which otherwise would be obtained only by performing four different examinations including gastroscopy, upper gastrointestinal series, endoscopic ultrasound and CT. (Kim JH et al, 2006)