Introduction

The patients which are usually present with bladder masses are highly suspected to have bladder neoplasm (Oliva et al., 2002).

Recently, three-dimensional computer-rendering techniques with rapid image acquisition have led to the development of virtual-reality imaging allows interactive intraluminal navigation through any hollow viscous, simulating conventional endoscopy, which can be applied to many hollow organs, including the colon, bronchus, stomach, and bladder (Yazgan et al., 2004).

After the first report of virtual cystoscopy, in the study by (Vining, 1996) they found that, the urinary bladder is a good candidate for virtual cystoscopy because of its simple luminal morphology, its relatively small volume, and the absence of involuntary peristalsis, therefore, it takes a short time to navigate through, and does not require an expert operator (Yazgan et al., 2004).

CT virtual cystoscopy is a promising technique for use in detection of bladder tumors larger than 5 mm (with good differentiation between neoplastic and other lesions) (Arslan et al., 2006).