CONTENTS

ACKNOWLEDGMENTS	11
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	X
NOMENCLATURE	xvi
CHAPTER 1: INTRODUCTION	1
1.1 Introduction	1
1.2 Objective of the study	3
CHAPTER 2: LITERATURE REVIEW	4
2.1 Introduction	4
2.2 survey of curved duct convective heat transfer	4
CHAPTER 3:EXPERIMENTAL SET UP	26
3.1 Introduction	26
3.2 The experimental set-up	26
3.2.1 Intake section	28
3.2.2 The transient section	28
3.2.3 Flange	28
3.2.4 Test section	28
3.2.5 Transformation section	32
3.2.6 The flow orifice	32
3.2.7 main heater	32
3.3 Experimental procedure and the method of calculation	34
3.3.1 Measurements	34
3.3.1.1Heat input measurements	34
3.3.1.2 Flow measurements	34
3.3.1.3Temperature measurements	34
3.3.2 Experimental procedure	34

3.3.3 Method of calculation	35
3.3.3.1 Air Velocity calculations through test section	35
3.3.3.2 Heat transfer calculations	36
3.3.3.3 Heat lost by conduction through the insulation	36
3.3.3.4 Net heat transfer by convection to air stream	37
3.3.3.5 local heat transfer coefficient	37
3.3.3.6 Reynolds number	38
3.3.3.7 Average heat transfer coefficient	38
3.3.3.8 Average Nusselt number	38
3.3.4 Sample of calculation	39
CHAPTER 4: BASIC THEORY AND NUMERICAL MODELING	40
4.1 Introduction	40
4.2 Computational fluid dynamics	40
4.3 Governing equations	41
4.3.1 Conservation form of the governing equations	41
4.4 General equation	43
4.5 Numerical methods	43
4.6 Finite Volume method	44
4.6.1 Numerical Scheme	46
4.6.2 Linearization a set of governing equations	46
4.6.3 Discretization Schemes	48
4.6.4 Pressure-Velocity Coupling	48
4.6.5 Convergence and stability	49
4.6.6 Multi grid scheme	50

4.7 Numerical grid	67
4.7.1 Grid Adaptation	52
4.7.2 Grid smoothing	52
4.8 Source of numerical errors	53
4.9 Fluent package details	53
4.9.1 Introduction	53
4.9.2 FLUENT CFD package description	54
4.9.3 Numerical Schemes in FLUENT	55
4.9.3.1. Segregated Solution Algorithm	55
4.9.4 The Turbulence Model in Fluent	56
4.9.5 Comparison of RANS turbulence models	58
4.9.5.1 The k - ε model	59
4.9.5.1.1. Mean flow kinetic energy K	59
4.9.5.1.2. Turbulent kinetic energy <i>k</i>	60
4.9.5.1.3. Model equation for k	60
4.9.5.1.4. Turbulent dissipation	61
4.9.5.1.5. Dissipation rate - analytical equation	61
4.9.5.1.6. Model equation for $\boldsymbol{\varepsilon}$	62
4.9.5.1.7. Calculating the Reynolds stresses	62
from k and $\boldsymbol{\varepsilon}$	
4.9.5.1.8. $\mathbf{k} - \mathbf{\epsilon}$ Model discussion	62
4.9.5.2. More two-equation models	63
4.9.6 Boundary Conditions	70

CHAPTER 5: EXPERIMENTAL RESULTS	72
5.1 Introduction	72
5.2 Experimental result	72
5.2.1. Temperature difference distributions for straight du	ict 72
5.2.2. Heat transfer coefficient results for straight duct	72
5.2.3. Effect of velocity on temperature difference distribu	itions 70
and h _{local} with axial position for straight duct	78
5.2.4. Temperatures difference (T _s -T _m) results for curve	ed 78
120° duct	78
5.2.5. Local heat transfer coefficient results for curved 120	0° 78
duct	70
5.2.6. Effect of velocity on temperature distribution and h	local 78
with axial position for curved duct	70
5.2.7. Nusselt number results for straight duct	85
5.2.8. Variation of Nusselt number results for curved 120°	duct 85
5.2.9. Experimental correlations between Re & Nu	85
CHAPTER 6: NUMERICAL RESULTS	94
6.1 Introduction	94
6.2 Temperature contour	94
6.3 Turbulence contour	94
6.4 Velocity contour	97
6.5. Variation of temperatures difference ΔT with axial position	n 97
6.6. Variation of local heat transfer coefficient with axial position	tion 97
X/L	
6. 7. CFD correlation between average Nu and Re	108

CHAPTER 7: COMPARISONS	120
7.1 Introduction	120
7.2 Comparisons between experimental and numerical results	120
7.3. Comparison between previous work and the present work	120
CHAPTER 8: CONCLUSION AND RECOMMENDATION S	123
8.1. Summery	123
8.2. Conclusion	123
8.3. Recommendation for future work	125
REFERENCES	126
APPENDIX (A):CALIBRATIONS OF THERMOCOUPLES	131
APPENDIX (B):CALIBRATION OF ORIFICE-METER	133
APPENDIX (C): ERROR ANALYSIS	135