Contents

Acknowledgements		Ι
Table of Contents		II
List of Figures		V
List of Tables		IX
List of Abbreviations		XI
and Symbols		
Abstract		XII
Chapter 1	Introduction	1
Chapter 2	Literature Review	4
2.	General	4
2.1	Types of Stainless Steels	4
2.1.1	Ferritic Stainless Steels	4
2.1.2	Martensitic Stainless Steels	5
2.1.3	Precipitation Hardening Stainless Steels	5
2.1.4	Austenitic Stainless Steels	5
2.1.5	Duplex Stainless Steels	6
2.2	Austenitic Stainless Steels	9
2.2.1	Heating of Austenitic Stainless Steels	9
2.2.2	Phases in Austenitic Stainless Steels	9
2.2.3	Effect of Annealing of 316LStainless Steel on	11
	Properties	
2.3	Duplex Stainless Steel	13
2.3.1	Types of Duplex Stainless Steel and Chemical	13
	Composition	
2.3.2	Commercial Grades	13
2.3.3	Heating of Duplex Stainless Steels	14
2.3.4	Phases of Duplex Stainless Steel	15
2.3.4.1	Sigma Stability	15
2.3.4.1.1	Factors Affecting the Formation of Sigma	18
	Phase	
2.3.4.2	Precipitation of the χ Phase	18
2.3.4.3	Precipitation of Nitrides (Cr ₂ N, CrN)	19
2.3.4.4	Secondary Austenite (γ_2)	20
2.3.4.5	Precipitation of R-Phase	22
2.3.4.6	Precipitation of π-Phase	22
2.3.4.7	Precipitation of ε-Phase	22
2.3.4.8	Precipitation of G-Phase	23
2.3.4.9	Precipitation of Laves-Phase	23
2.4	Welding of Austenitic and Duplex Stainless	24
	Steels	_ •

2.4.1	Welding Technologies	24
2.5	Measuring of Ferrite Number	27
2.5.1	Ferrite Control in Duplex Stainless Steel Weld	30
	metal	
2.6	Effect of Alloying Element of Duplex Stainless	30
	Steels	
2.6.1	Effect of Si & Mn	30
2.6.2	Effect of N	31
2.6.3	Effect of W	32
2.6.4	Effect of Mo	33
2.7	Phase transformations induced p\by heating	34
	and welding	
2.7.1	Embrittlement of Duplex Stainless Steel in	34
	Range of 475-1000°C	
2.7.2	Austenite Reformation in the Heat-Affected	35
	Zone of Duplex Stainless Steel 2205	
2.7.3	Ferrite/Austenite Transformations in the Heat	36
	Affected Zone of 2205 Duplex Stainless Steel	
2.7.4	Microstructural Characterization of Simulated	38
	Heat Affected Zone in 2205 Duplex Stainless	
	Steel	
2.7.5	Microstructure Changes in Fe-24Cr-3Mo-	39
	0.14N Duplex Stainless Steel	
2.8	Corrosion Characteristics of DSS	40
2.8.1	Pitting Resistance Equivalent Number	40
2.8.2	Microstructure and Pitting Corrosion	43
	Resistance of Annealed Duplex Stainless Steel	
2.8.3	Pitting and Galvanic Corrosion Behavior of	44
	Laser Welded Stainless Steels	
2.8.4	Hydrogen Induced Cracking in 2205 Duplex	45
	Stainless Steel in wet H ₂ S Environments After	
	Isothermal Treatment	
2.8.5	Pitting Corrosion Behavior of Large Area	46
	Laser Surface Treated 304L Stainless Steel	
2.8.9	Corrosion Behavior of Sensitized DSS	47
2.9	Performance of Additives in PWRs	51
Chapter 3	Experimental Work	57
3.1	Introduction	57
3.2	Materials	58
3.3	Specimen Preparation and Testing	58
3.3.1	Specimens Welding Processes	58
3.3.1.1	X -Ray Radiography	59
3.3.2	Metallographic Examination	60

3.3.3	Heating	60
3.4	Measurement of Ferrite Content	61
3.5	Mechanical Testing	61
3.5.1	Impact Tests	61
3.5.2	Microhardness Tests	62
3.6	Corrosion Tests	62
Chapter 4	Results and Discussions	66
4.1	Study of Microstructure	66
4.1.1	304L	66
4.1.2	316L	66
4.1.3	Duplex Stainless steel	67
4.2	EDX Analysis	81
4.3	Analysis of Ferrite Content	83
4.3.1	304L	83
4.3.2	316L	84
4.3.3	Duplex Stainless Steel	85
4.4	Microhardness Study	91
4.4.1	304L	91
4.4.2	316L	91
4.4.3	Duplex Stainless Steel	92
4.5	Evaluation of Impact Toughness	98
4.5.1	304L	98
4.5.2	316L	98
4.5.3	Duplex Stainless Steel	100
4.6	Fracture Surface Morphology	104
4.6.1	304L	104
4.6.2	316L	104
4.6.3	Duplex Stainless Steel	105
4.7	Impact Toughness at Low Temperature	119
4.8	Corrosion Characteristics	128
Chapter 5	Conclusions	139
References		141

List of Figures

Fig. 2.1	The Fe-Cr Phase Diagram	10
Fig. 2.2	Schematic TTT diagram showing precipitation of sigma,	17
	alpha prime, and other phases in duplex stainless steel	
Fig. 2.3	Ferrite constitution diagram developed by (a)Schaeffler and	28
	(b)Delong diagram showing ferrite content and ferrite	
	number (FN), respectively, as a function of Cr-vs Ni-	
	equivalents	
Fig. 2.4	The Siewert, Mc Cowan, Olson constitution diagram (1988)	29
	for stainless steel	
Fig. 2.5	Ferrite constitution diagram developed by the WRC in	29
	(1992)	
Fig. 2.6	Schematic TTT diagram for duplex stainless steels with	34
	different alloying degrees	
Fig. 2.7	Vickers micro-hardness indentations on δ and γ phases in	42
	the samples aged at 475°C for (a) 4 h (b) 8 h (c) 64 h	
Fig. 2.8	Effect of aging treatments on Vickers microhardness of δ	43
J	ferrite and austenite for the aging temperatures 475 and	
	500°C	
Fig. 2.9	Potentiodynamic polarization curves of the as-received	45
J	stainless steels and their corresponding weldments:	
	(a)S30400 (b)S31603 (c) S31803 and (d) S32760 in 3.5%	
	NaCl solution	
Fig. 2.10	Microstructure of 2205 duplex stainless steel	47
Fig. 2.11	Microstructure of 316L austenitic stainless steel	48
Fig. 2.12	Polarization curves of 2205 stainless steel	49
Fig. 2.13	Polarization curves of 316L stainless steel	49
Fig. 2.14	Relationship between calculated corrosion rate sensitization	50
	temperature	
Fig. 2.15	Relationship between calculated corrosion rate sensitization	50
	temperature	
Fig. 2.16	Relationship between Vickers microhardness and	51
	sensitization temperatures	
Fig. 3.1	Dimensions of single V-grooved joints	64
Fig. 3.2	Welded plate with two specimens rejected from each side	64
Fig. 3.3	Impact test specimen	65
Fig. 3.4	Schematic load-time curve for an instrumented Charpy –test	65
Fig. 3.5	Simulated experimental polarization curve of correlated	66
	electrode showing E _{corr} and I _{corr}	
Fig. 4.1	Microstructure of (304L) base metal after different aging	69

	temperatures (a) as received condition (b) after aging at	
	650°C (c) after aging at 750°C (d) after aging at 850°C	
Fig. 4.2	Microstructure of 304L weld metal for the as welded	70
	condition: (a) 304L(SMAW) (b) 304L (TIG)	
Fig. 4.3	Microstructure of 304L weld metal (SMAW) after different	70
	aging temperatures (a) after aging at 650°C (b) after aging	
	at 750°C (c) after aging at 850°C	
Fig. 4.4	Microstructure of 304L weld metal (TIG) after different	71
C	aging temperatures (a) after aging at 650°C (b) after aging	
	at 750°C (c) after aging at 850°C	
Fig. 4.5	Microstructure of (316L) base metal after different aging	72
C	temperatures (a) as received condition (b) after aging at	
	650°C (c) after aging at 750°C (d) after aging at 850°C	
Fig. 4.6	Microstructure of 316L weld metals (SMAW), (TIG) for as	73
C	welded and after heating (TIG): (a) as welded (SMAW) ((b)	
	as welded (TIG) (c) after aging at 650°C (d) after aging at	
	750°C (e) after aging at 850°C	
Fig. 4.7	Microstructure of 316L weld metal (SMAW) after aging at	74
C	different temperatures (a) after aging at 650°C (b) after	
	aging at 750°C (c) after aging at 850°C	
Fig. 4.8	Microstructure of 316L weld metal after heating (TIG) and	75
C	(SMAW) at 850°C (σ white, γ yellow and α dark brown)	
Fig. 4.9	Microstructure of DSS base metal (a) as received condition	76
C	(b) after aging at 475°C (c) after aging at 650°C (d) after	
	aging at 750°C	
Fig. 4.10	Microstructure of DSS base metal after heating	77
C	(a) after aging at 750°C (b) after aging at 850°C	
	(Color etching $K_2 S_2 O_5$)	
Fig. 4.11	Microstructure of DSS of weld metal for the as welded and	78
C	after heating (SMAW) and (TIG) (a) as welded (SMAW)	
	(b) as welded (TIG) (c) after aging at 475°C (SMAW) (d)	
	after aging at 475°C (TIG) (e) after aging at 650°C	
	(SMAW) (f) after aging at 650°C (TIG)	
Fig. 4.12	Microstructure of DSS weld metals after heating (SMAW)	79
C	and (TIG) at 850°C	
Fig. 4.13	Microstructure of DSS weld metals after heating (TIG) and	80
C	(SMAW) after aging at 750 and 850°C	
	(σ white, γ yellow and α dark brown)	
Fig. 4.14	SEM of DSS base metal after aging at 750 and 850°C (a,b)	82
_	and WM microstructure for (TIG) after aging at 850°C (c)	
Fig. 4.15	Effect of aging temperature on the ferrite content of	88
_	austenitic stainless steel weldments (304L/E308L):	
	(a) TIG and (b) SMAW Welding	

Fig. 4.16	Effect of aging temperature on the ferrite content of austenitic stainless steel weldments (316L/E316L):	89
	(a) TIG and (b) SMAW welding	
Fig. 4.17	Effect of aging temperature on the ferrite content of duplex	90
	stainless steel weldments: (a) TIG and (b) SMAW welding	
Fig. 4.18	Effect of aging temperature on the microhardness of 304L stainless steel (SMAW) weldment	95
Fig. 4.19	Effect of aging temperature on the microhardness of 304L stainless steel (TIG) weldment	95
Fig. 4.20	Effect of aging temperature on the microhardness of 316L stainless steel (SMAW) weldment	96
Fig. 4.21	Effect of aging temperature on the microhardness of 316L stainless steel (TIG) weldment	96
Fig. 4.22	Effect of aging temperature on the microhardness of SMAW duplex stainless steel weldment	97
Fig. 4.23	Effect of aging temperature on the microhardness of TIG duplex stainless steel weldment	97
Fig. 4.24	Relationship between impact energy and aging temperature for the investigated material: (a) Base metals (b)weld metals (SMAW) (c) weld metals (TIG)	103
Fig. 4.25	SEM fractograph of impact specimen of type 304L (a) as received condition (BM) (b) after aging at 850°C (BM) (c) as welded (SMAW) (d) after aging at 850 °C (SMAW)	107
Fig. 4.26	SEM fractograph of impact specimen of type 304L (TIG) (a) as received condition (b) after aging at 850°C	108
Fig. 4.27	Load – time traces for 304L base and weld metals	109
Fig. 4.28	SEM fractograph of impact specimen of type 316L base and weld metal (SMAW) and TIG weld metals: (a) as received (b) after aging at 850°C (BM) (c) as welded (SMAW) (d) a few minutes 850°C (SMAW) (d) and 11111	111
	(SMAW) (d) after aging at 850°C (SMAW) (e) as welded (TIG) (f) after aging at 850°C WM (TIG)	
Fig. 4.29	Load – time traces for 316L base and weld metals	112
Fig. 4.30	SEM fractograph of Impact Specimen of Type DSS (BM): (a) as received condition (b) after aging at 475°C	113
Fig. 4.31	SEM fractograph of impact specimen of type DSS (BM): (a) after aging at 750°C (b) after aging at 850°C	114
Fig. 4.32	SEM fractograph of Impact Specimen of Type DSS (SMAW): (a) as welded condition (b) after aging at 475°C	115
Fig. 4.33	SEM fractograph of Impact Specimen of Type DSS (SMAW): (a) after aging at 650°C (b) after aging at 850°C	116
Fig. 4.34	SEM fractograph of Impact Specimen of Type DSS (TIG): (a) as welded condition (b) after aging at 475°C (c) after aging at 850°C	117

Fig. 4.35	Load – time traces for DSS base and weld metals	118
Fig. 4.36	Relationship between the impact energy and test	125
	temperature of investigated materials	
Fig. 4.37	Fracture surface of investigated materials tested at -196 °C	126
Fig. 4.38	Instrumented impact test load-time traces of investigated	127
	materials tested at -196 °C	
Fig.4.39	Corrosion characteristics of 304L base metal and after heat	132
	treatment in 2400 ppm boric acid and solution containing	
	4ppm LiOH (1a) base metal (1b) after aging at 650°C (1c)	
	after aging at 750°C (1d) after aging at 850°C	
Fig. 4.40	Corrosion characteristics of 316L base metal and after heat	133
	treatment in 2400 ppm boric acid and solution containing	
	4ppm LiOH (2a) base metal (2b) after aging at 650°C (2c)	
	after aging at 750°C (2d) after aging at 850°C	
Fig.4.41	Corrosion characteristics of DSS base metal and after heat	134
	treatment in 2400ppm boric acid and solution containing	
	4ppm LiOH (3a) base metal (3b) after aging at 650°C (3c)	
	after aging at 750°C (3d) after aging at 850°C	40-
Fig.4.42	Corrosion characteristics of welded by (SMAW) and (TIG)	135
E' 4 40	in 2400ppm boric acid and solution containing 4ppm LiOH	100
Fig. 4.43	Corrosion characteristics of welded by (SMAW) and (TIG)	136
E: ~ 1 11	in 1% NaCl	127
Fig.4.44	Corrosion surface morphology of weld metal of 304L in 1%	137
Ei ~ 1 15	NaCl Correction surface morphology of wold metal of DSS in 10/	120
Fig.4.45	Corrosion surface morphology of weld metal of DSS in 1%	138
	NaCl	

List of Tables

Table 2.1	Composition of AISI type 400 ferritic stainless steel	7
Table 2.2	Composition of AISI type 400 martensitic stainless steel	8
Table 2.3	Composition of A ISI type 300 austenitic stainless steel	8
Table 2.4	Chemical compositions (wt %) of most common wrought Duplex stainless steels	14
Table 2.5	Filler metal recommended for commonly used austenitic chromium-nickel steels	25
Table 2.6	Welding consumables of some types of duplex stainless steels	27
Table 3.1	Chemical analysis of (304L stainless steel)	58
Table 3.2	Chemical analysis of (316L stainless steel)	58
Table 3.3	Chemical analysis of (duplex stainless steel)	58
Table 3.4	Chemical analysis of AWS E3081-17	59
Table 3.5	Chemical analysis of AWS E316l-17	59
Table 3.6	Chemical analysis of AWS ER308LSi-17	60
Table 3.7	Chemical analysis of AWS ER316l-17	60
Table 3.8	Chemical analysis of E2209-17	60
Table 3.9	Chemical analysis of ER2209-17	60
Table 4.1	Analysis of precipitations of DSS base and weld metal at 850°C (Microstructure)	83
Table 4.2	Effect of aging temperature on the ferrite content of austenitic stainless steel weldments (3041/E308L) for TIG and SMAW welding processes	87
Table 4.3	Effect of aging temperature on the ferrite content of austenitic stainless steel weldments (316L/E316l) for TIG and SMAW welding processes	87
Table 4.4	Effect of aging temperature on the ferrite content of duplex stainless steel weldments for TIG and SMAW welding processes	87
Table 4.5	Effect of aging temperature on the microhardness (VHN) of 304l stainless steel (SMAW) weldment	93
Table 4.6	Effect of aging temperature on the microhardness (VHN) of 304l stainless steel (TIG) weldment	93
Table 4.7	Effect of aging temperature on the microhardness (VHN) of 316l stainless steel (SMAW) weldment	93
Table 4.8	Effect of aging temperature on the microhardness (VHN)of 316l stainless steel (TIG) weldment	93
Table 4.9	Effect of aging temperature on the microhardness (VHN)of SMAW duplex stainless steel weldment	94
Table 4.10	Effect of aging temperature on the microhardness (VHN) of	94

TIG duplex stainless steel weldment	
Effect of aging temperature on impact energy of investigation	102
materials	
Effect of test temperature on impact properties of	124
investigated materials	
Effect of heat treatment on corrosion rate of stainless steels	134
(BM)	
Effect of welding techniques on corrosion rate of stainless	137
steel weld joints in case of as weld conditions	
	Effect of aging temperature on impact energy of investigation materials Effect of test temperature on impact properties of investigated materials Effect of heat treatment on corrosion rate of stainless steels (BM) Effect of welding techniques on corrosion rate of stainless

List of Abbreviations and Symbols

DSS Duplex Stainless Steel

WM Weld metal

HAZ Heat Affected Zone

BM Base Metal

PREN Pitting Resistance Equivalent Number
TEM Transmission Electron Microscope
EDX Energy Dispersive X-Ray Analysis

 $\begin{array}{lll} \alpha & & \text{Ferrite Phase} \\ \gamma & & \text{Austenite Phase} \\ \sigma & & \text{Sigma Phase} \\ \delta & & \text{Delta Ferrite} \end{array}$

Cr₂N,CrN Chromium Nitrides

Chi- Phase (Cr-Mo-Fe rich phase)

 γ_2 Secondary Austenite $M_{23}C_6$ Chromium Carbides

R Precipitation of R-Phase (Si-Mo rich phase)

л Precipitation of л-Phase

ε Precipitation of ε-Phase (Epsilon phase)
 G Precipitation of G-Phase (Secondary phase)

ζ Precipitation of Laves-Phaseά Secondary Phase (Alpha Prime)

Fe Ferrite Content

SMAW Shielded Metal Arc Welding
TIG (GTAW) Gas Tungsten Arc Welding
MIG (GMAW) Gas Metal Arc Welding
FCW Flux-Cored Arc Welding
PAW Plasma Arc Welding

PWR Pressurized Water Reactor

ppm Part Per Million

SCE Saturated Calomel Electrode

LBW Leaser Beam Welding PAW Plasma Arc Welding

SCC Stress Corrosion Cracking

PWSCC Primary Water Stress Corrosion Cracking

VHN Vickers Hardness Number