CONTENTS

1. INTRODUCTION .. 1

2. REVIEW OF LITERATURE .. 3

3. MATERIALS AND METHODS .. 47

4. RESULTS AND DISCUSSION ... 60

 4.1 Morphological characterization of the studied area 60
 4.1.1 Coastal barrier plains and beaches 60
 4.1.2 Fluvio-marine deposits 72
 4.1.3 Recent Nile alluvial deposits 87

 4.2 Soil physical properties .. 96
 4.2.1 Particle size distribution 96
 4.2.2 Calcium carbonate 103
 4.2.3 organic matter 103
 4.2.4 Gypsum content 104
 4.2.5 Bulk density 104
 4.2.6 Total soil porosity 111
 4.2.7 Soil hydraulic conductivity 112
 4.2.8 Soil moisture characteristics ... 112

 4.3 Soil chemical properties 114
 4.3.1 Distribution of soluble salts 114
 4.3.2 Cation exchange capacity (CEC) and exchangeable cations 121

 4.4 Status of macro nutrients 126
 4.4.1 Nitrogen 126
 4.4.1.1 Total nitrogen 126
 4.4.1.2 Available nitrogen 131
 4.4.2 Phosphorus 132
 4.4.2.1 Total phosphorus 132
 4.4.2.2 Available phosphorus 133
 4.4.3 Potassium 134
 4.4.3.1 Total potassium 134
 4.4.3.2 Available potassium 134

 4.5 Status of micro nutrients 135
 4.5.1 Total iron 135
 4.5.2 Available iron 145
 4.5.3 Total manganese 147
 4.5.4 Available manganese 151
 4.5.5 Total zinc 154
 4.5.6 Available zinc 158
 4.5.7 Total copper 159
 4.5.8 Available copper 163
 4.5.9 Total boron 165
 4.5.10 Available boron 169

LIST OF TABLES

Table (1)	Some climatological data of Damietta, Baltim, Rosetta and Sakha meteorological stations (1978-1987)	5
Table (2)	The calculated aridity degrees	8
Table (3)	Structure of land suitability classification	32
Table (4)	Limitation levels and their rating	38
Table (5)	Examples of limitations (type and degree) in land capability classification of the USDA	55
Table (6)	Summary for the structure of land suitability classification (FAO, 1976)	57
Table (7)	Criteria used for assigning values to factors A, B, C, X, and Y in determining land productivity indices	59
Table (8)	Particle size distribution, texture class, CaCO3, O.M, and gypsum contents of the soil profiles representing the studied geomorphic units	97
Table (9)	Minimum, maximum and average values of particle size distribution, CaCO3, organic matter and gypsum of the studied geomorphic units	101
Table (10)	Some soil physical properties of the soil profiles representing the studied geomorphic units	106
Table (11)	Minimum, maximum and average values of bulk density, total porosity, hydraulic conductivity, soil moisture contents at field capacity and wilting point, and available water % in the three geomorphic units	109
Table (12)	Correlation coefficients between some soil physical properties and some soil constituents of the studied soil profiles	110
Table (13)	Chemical analysis of the soil saturation extract of the profiles representing the studied geomorphic units	115
Table (14) Cation exchange capacity (CEC) and exchangeable cations of the soil profiles representing the studied geomorphic units 122

Table (15) Total and available nitrogen, phosphorus and potassium contents in the soil profiles representing the studied geomorphic units . 127

Table (16) Total and available iron, manganese, zinc, copper and boron in the soil profiles representing the studied geomorphic units . 136

Table (17) Weighted mean, trend and specific range of iron in the soil profiles representing the studied geomorphic units 141

Table (18) Correlation coefficients between some soil constituents and total and available micro-nutrients in the studied geomorphic units . 143

Table (19) Weighted mean, trend and specific range of manganese in the soil profiles representing the studied geomorphic units 148

Table (20) Weighted mean, trend and specific range of zinc in the soil profiles representing the studied geomorphic units 156

Table (21) Weighted mean, trend and specific range of copper in the soil profiles representing the studied geomorphic units 161

Table (22) Weighted mean, trend and specific range of boron in the soil profiles representing the studied geomorphic units 166

Table (23) Land evaluation of the studied area following qualitative systems 173

Table (24) Percentage rating of individual formula factors, land productivity indices and master productivity rating (MPR) of the studied soils 181

Table (25) Master productivity ratings for land productivity indices of the studied area 182
Table (26) Intensity of limitations and suitability classes of the studied soils (calculated according to Sys & Verheye, 1978) 187

Table (27) Land evaluation of the studied area following qualitative and quantitative systems .. 191
LIST OF FIGURES

Fig. (1) The average percentages distribution of coarse sand, fine sand, silt and clay in the studied geomorphic units .. 102

Fig. (2) Intensity with which each land capability class can be used with safety. (Brady, 1974) .. 172

Fig. (3) The area of each class following the USDA system of land capability classification 176

Fig. (4) The area of each class following the FAO system of land suitability evaluation 179

Fig. (5) Relative area of each productivity rating according to modified Storie index 185

Fig. (6) The area of each class according to Sys and Verhey’s system .. 189
LIST OF MAPS

Map (1)	Location of the studied area	4
Map (2)	Locations of the studied soil profiles	48
Map (3)	Physiographic map of the Northern Delta (After High Dam soil survey, FAO, 1963 with some modifications by El-Nahal et al., 1977)	61
Map (4)	Land use sketch map of the studied area following the USDA system of land capability classification	177
Map (5)	Land use sketch map of the studied area following the FAO system of land suitability evaluation	180
Map (6)	Land use sketch map of the studied area according to modified Storie index	186
Map (7)	Land use sketch map of the studied area according to Sys and Verheye's system	190