REFERENCES
8. References

Anaerobic and aerobic aspects of bacterial contamination. In Frozen

Anaerobes in meat & fish products and their ability to toxin Production.

Acha, P. N. and Szyfres, B. (1981):
Zoonoses and communicable disease common to man and animals. 2nd

Adams D. M. (1973):
“Inactivation of C. perfringens types A spores at ultrahigh

Quality investigation in to room kept traditional meat

Isolation of C. Perfringens and Bacillus cereus from meat. Cited after

Alan, H. Varnam and Jane, P. Sutherland (1995):
Cured meat and food poisoning of cooked cured meat.
Meat and meat product. Page 211, 282 - 283, 289, 293.

“A novel toxin homologous to large clostridial cytotoxins
found in culture supernatant of C. perfringens type C”.

Comparison of five anaerobic incubation methods for
Enumeration of C. perfringens from foods.
Microbiological quality of Shawarma in Saudi Arabia.
J. Food Protect. 48 (9): 811- 814.

Bailey, C. (1972):

Barnes, E. M. (1985):
Isolation methods for anaerobes in foods.
Int. j. Food Microbiol. 2 (1/2):81.

The behavior of a food poisoning strain of *C. Welchii*

Clostridium counting comming with food products with low atmospheric oxygen – characterization of *C. perfringens* in the microbiological safety of food. P. 307 - 316

Studies on 114 cases of food poisoning.

Studies on 114 cases of food poisoning.

Bremner, A. S. (1977):
1566 outbreaks of *C. perfringens* food poisoning

What the sanitation should know about *C. perfringens* food borne illness. J. Milk Food Technol. 32: 381 - 389.

Food borne diseases in the United States associated with meat and poultry. J. Food Protect. 43 (2): 140 – 150.

C. perfringens and food borne infections.

Bugi, G. (1977):

Bullen, J. J. (1952):
‘*C. perfringens* in the alimentary tract of normal Sheep.”

Canada, C. and Strong, H. (1964):

Boace Jov., Publishers, New York, Boston, Tokyo, Toronto.

“Large scale purification of C. perfringens toxins.”

Bacteriological quality of ingredients used in ground beef Manufacture.
J. Univ. of Toronto press,
Toronto and Buffalo, Canada.

The bacterial quality of red meat and offal in Casablanca (Morocco).

Craven, S. E. (1980):
Growth and sporulation of C. perfringens in foods.

Incidence of C. perfringens, in broiler chickens and their environment during production and processing.

“Medical Microbiology, 12th Ed., Living stone,

Bacteriological studies on the locally manufactured canned meat.

Deng- ZhiAi, Li-XiaoQuan, Li- Chuanhua, Zhag- Jian, Zhang- Jian, and Duncan, C.L. (2006):

Depourcq, G. and Poucke, L.Van (1991):
Evaluation of the microbiological quality of minced meat.

Dewberry, E. B. (1959):

Dework, F. M. (1972):

Sporulation of C. perfringens in vacuum sealed meats.

Dische, F. E. and Elek, S. D. (1957):
Experimental food poisoning by C. Welchii.

Duncan, C. L. (1974):
Recent developments of C. perfringens food poisoning.
“16 th Food Hyg. Symp. Teachers”,

Duncan, C. L. and Strong, D.H. (1968):
“Improved medium for sporulation of C. perfringens.”
Appl. Microbiol. 16: 82- 89.

Determination of clostridia from meat and meat products by Bacterial Culture- present status and future.
Wiener- Tierarztliche – Monatsschrift. 80: (5): 148- 152.

Bacteriological studies on C. Perfringens in meat.
Cairo Univ.

El-Dally, K. M. (1994):

EL-GED, A. M. S. and Saad, S. M. (1985):
Clostridial organisms in slaughtered camels in Egypt.
Alex. J. Vet. Sci. 1: 100-105.

Bacteriological studies on meat and meat products.

Poultry meat products in Egypt. Proximal chemical composition And microbial quality.
Flechwirtschaft 68 (60): 756-757.
The Bacteriological studies of some Egyptian meat products.

Microbiological status of Egyptian salted meat (basterma) and Fresh Sausage.
J. of Food Safety. 17 (3): 141 - 150.

Risk assessment ready prepared meat products.

Enterotoxigincity and typing of *C. perfringens* isolated from some poultry products in Egypt. J. Appl. Sci, Res. 3(12): 1804-1808.

C. perfringens in a pipeline, and its implication in spoilage of sausages.

Bacteriological investigations on pyogenic affections
in camels. Alex. J. Vet. Sci. 5: 252 - 257.

Egyptian Standard Specifications (E O S) (2005):

No.1563 for cattle meat.
No. 1090 for Poultry meat.
No. 1114 for Luncheon.
No. 1696 for chicken Luncheon.
No. 1694 for minced meat.
No. 1688 for Beef burger.
No. 1972 for Sausage.
No. 2911 for chicken Sausage.

FAO/WHO, (1983):

FAO / WHO (1993):

Foodborne infection and intoxication in France 1991
Newsletter no., 38. WHO program for Control of Food Infection and Intoxication in France.

Fellows P. (2002):

Food processing technol. Introduction, page 2 – 3.

“Both epsilon – toxin and beta-toxin are important for
The lethal properties of *C. perfringens* type B isolates in
the mouse intravenous injection model.”
Infec. Immune., 75 (3) : 1443-1452.

Fernandez- Miyakawa, M. E. Marcellino, r. and Uzal, F. A. (2007b):

Foster, J. F. Flower, J. L. and Ladies, W. C. (1977):

A bacteriological survey of raw ground beef.
Freitas leitao, M. F. (1978):

Fruin, J. T. and Babal, F. J. (1977):
Changes in the population of *C. perfringens* type A in frozen meat. J. Food Protect. 40: 622.

Fruin, JT (1978):
Types of *C. perfringens* isolated from selected foods. J. Food Protect. 41 (10): 768 -769.

Raw beef, pork and chicken in Japan. contaminated with *Salmonella sp.*, *Campylobacter sp.*, *yersinia enterocolitica*, and *C. perfringens* comparative study.

Microbial population associated to different types of sausages. Alimentaria. 294: 35 – 38.

“Sporulation and enterotoxin production by *C. perfringens* Type A at 37°C and 43°C. Appl. and Envir. Microbiol. 58(4): 1411-1414.

Genigeorgis, C. (1986):
Problems associated with perishable processed meats.
Food Technol. 34: 80.

Suckling mouse moble for detection of heat stable *Escherichia coli* Enterotoxin characteristics of the model.

Gilber R. J. (1968):

Microbial contamination of the abdominal cavity in commercial Carcasses subject to delays before evisceration. New Zealand Vet. J. 30 (10): 163.

Gotze, U. (1976):
The presence of \textit{C. perfringens} in avian broilers and possible contamination during slaughtering. Fleischwirtschaft, 56 (2): 231- 235.

Granum, P. E. (1990):

Granum, P. E. (1996):

Guzman, AMS, de. Micalizzi, B. Pagano, CET. and Gimenez, DF. (1990):
Incidence of \textit{C. perfringens} in fresh sausages in Argentina.
Hall, H. E. and Angelotti, R. (1965):

C. perfringens in meat and meat products.

Hanninen, M.L. (1980):

Improved media for sporulation and enterotoxin production by *C. perfringens*”. J. Food Protect. 49(9): 706-711.

Improved medium for enumeration of *C. Perfringens*.

Hashim, E. S. (2003):

Hassan, M.A. (1999):

Hayes, P. R. (1992):

Hefnawy, Y. and Youssef, H. (1985):

Microbiological evaluation of some selected spices.

Herrer-Silvestre-M. (1995):

Quality of fresh beef, lamb, pork and similar meat products. Alimentaria 265: 83 - 85.

Hersom, A. C. and Holland, E.D. (1980):

Canned foods thermal processing and microbiol.

Hobbs, B. C. (1965):

C. Welchii as a food poisoning micro organism.

Food poisoning and Food hygiene. 5th Ed Edward Arnold A division of Hodder and Stoughton, London, Melbonme, Auckland.

Huang, I. Hsiu (2007):

C. perfringens sporulation and gliding motility.
Ph. D. Thesis, Oregon State Univ., USA.

Hussein, A. Z. (1977):

The physical conditions of cattle before slaughtering and its relationship to probable isolation of *C. perfringens* from carcasses. Ph. D. Thesis, Varonish Agriculture Institute, USSR.

Hussein, A. Z. and Farrag, I. (1981):
Incidence of *C. perfringens* in beef.

Huynh, CH. and Frouin, A. (1979):

ICMSF International Commission on Microbiological Specification for Food (1978):
Microorganism in foods. Univ. their significance and methods of enumeration. 2nd Ed., Univ. of Toronto Press, Toronto, Canada.

IC.M.S.F. International Commission on Microbiological Specification for Food (1998):

Iskander, Kh. D. (1998):

Joeckel, J. and Stengel, G. (1984):
Doner Kebab, evolution of a Turkish specialty.
Fleischwirtschaft 64 (5): 527, 530 - 532, 534, 536 - 538, 540, 596.

John, M. Connor and William A. Schiek (1997):
Product & promotion strategies – Food Processing 344 - 347.

Optimizing sporulation of *C. Perfringens*.
J. Food Protect. 65 (9):1457 - 1462.

Growth and sporulation potential of *C. perfringens* in aerobic and Vacuum packaged cooked beef.
J. Food. Protect. 57 (5): 393 - 398.

Growth of *C. perfringens* from spores’ inoculation in Sous -vid turkey products.
Int. J. Food Microbiol. 32 (1): 115- 123.

Growth and sporulation of *C. perfringens* in aerobic and vacuumed-packaged cooked beef. J. Food Protect. 57: 393-398.

Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of *C. perfringens* in cooked meat and Poultry products. J. Food Protect. 66 (7): 1227- 1232.

Incidence of C. perfringens in food of animal origin.

Kendereski, (1970):
Multiplication and viability of C. perfringens in meat and milk.
Schlacht and viehh of zeitung, 70 (10) 391-395.

Khater, D. F. (2004):
Studies on microbial toxins in some vacuum packed meat products.

“Color atlas and text book of diagnostic microbiol.”

Contamination and bacterial retention capacity of beef carcasses at the abattoir.

Relationship between sporulation and enterotoxin production in C. Perfringens type A.

Leite-de-Souza, T. and de-Olivera, J. C. (1986):

Libby, T.A. (1975):

Incidence and viability of *C. Perfringens* in ground beef.
J. Milk Food Technol. 37 (12): 622-623.

Biochemical tests for identification of medical bacteria.
Williams and Willioing Co. USA.

“Biochemical tests for identification of medical bacteria”
3rd Ed. Lippin Cott Williams and Willions Washington, Philadelphia, USA.

“Vero cell assay for rapid detection of C. Perfringens enterotoxin.”
Appl. and Envir. Microbiol. 55 (9): 2141- 2143.

Study of the critical points in processing plants and in the production of minced meat.

Hazands and critical control points of food vending operations in a city in Zambia. J. of food prot. 60 (3), 288 – 299.

Microbiological quality of comminuted meats from various animals.

Mataragas, M. Skandamis, PN. and Drosinos, EH. (2008):
Risk profiles of pork and poultry meat and risk ratings of various pathogen / product combination.

Mattila, T. Tawast, J. and Ahvenainen, R. (1990):
New possibilities for quality control of aseptic packages; microbiol. spoilage and seal defect detection using head space indicators.
Lebensittcl Wissenschaft and Technol. 23(3): 246 - 251.

McDonel, J, L. (1980):
C. Perfringens toxine (types A, B, D, and E).”
Pharmacol. Ther. 10: 617- 635.

Mckillop, E. J. (1959):
Bacterial contamination of hospital food with special reference to C. Welchii food poisoning.
J. Food Hyg. 57: 31-46.

Principles involved in the detection and enumeration of clostridia in foods.
Int. J. of Food Microbiol. 17, 135-143.

Microbiological hazards from red meat and their control.
British Food J. 96 (8): 33-36.

Bacteriological quality of carcasses of animal affected with Fascioliasis.

Mohammed, M. M. S. (1997):
Quality studies on market frozen meat products.

Mohammed, M. M. S. (2002):

Specific distribution and resistance of mesophilic bacterial spores isolated from frozen raw meat used in canned meat manufacture.

The enumeration of anaerobic bacteria, and of Clostridium species in particular Foods.

Incidence of clostridia in emergency slaughtered cattle.

Nassar, A. M. (1999):
“Rapid detection of \textit{C. perfringens}: Comparison of lactose sulfite broth with tryptose sulfite cycloserine agar.

Niilo, L. (1980):

Niilo, L. (1993):
“Pathogenesis of bacterial infections in animals.”
2nd Ed. In Gyles, C. L. andnthoen, C. O. (Ed.),
Lowa State Univ.Press, Ames. 114 – 123.

Nouman, T. M. (1972):

Oakley and Warrack (1953):

Spore forming bacteria in poultry cuts and their processed products. Ph. D., thesis. (Meat Hygiene),

Osman, E. Z. (2005):

Panebianco, A. Minniti, A. Conte, F. and Iannuzzi, L. (1992):
Examination of chickens cooked on the spit for, \textit{C. perfringens}.
J. Archivio Veterinario Italiano 43 (3): 113- 121.

Clostridia and food born disease.

Peter, H. A.; Nicholas; Elisabeth, s. and John, G. (1986):
Vol. 2, Williams and Wilkins.”

Pevovoraf, V. P. (1964):

“Veterinary Microbiol. And Microbiol disease.”

Raevuori, M. (1976):
The occurrence of food poisoning outbreaks in Finland.

Prevalence of the enterotoxin gene and colonality of C. perfringens strains associated with food poisoning outbreaks.
J. Food Protect. 18: 453.
Robach, MC. Ivey, F.J. and Hickey, CS. (1978):
System for evaluating clostridial inhibition in cured meat products.

Roberts, T.A. (1968):
Heat and radiation resistance and activation of spores of C. welchii.

Studies on C. oedematiens.
J. Comp. Path. 80: 9 – 18.

Practical food microbiology. Puteler and Tanar, London.

Number and distribution of bacteria on some beef carcasses at selected abattoirs in some member states of the European communities.
Meatsci. 11 (3): 191 -205.

Robin, L. Roach and Dean, G. Sienko, (1992):

liquid medium enumeration of C. perfringens in foods.
Annales - des Falsifications et de 1 expertise chimique

Use of the impedance splitting method for the quantitative evaluation of *C. perfringens* in minced meat. Fleischwirtschaft. 75 (8): 1018 - 1021.

Anaerobic bacteria in vacuum packed meat products.

Sharma, NK. Saini, SS. Gill, JPS. and Kwatra, MS. (1993):

“Enumeration and incidence of lecithinase positive

The occurrence of *C. perfringens* in bologna and frankfurters.
In microbial associations and interactions in food.) Pp. 87 – 91.

Studies on occurrence and characterization of *C. perfringens* from select meats. J. Food safety 25(2): 146 -156.

Skjelkvale, R. L. H. and Toabery, T. B. (1974):

Incidence of *C. perfringens* in meat products.

Skjelkvale, R. (1979):

“Studies on *C. perfringens* enterotoxin production, Characterization and mode of action.”
Oslo, Norway, Vet. College, 103.

Skjelkvale, R. and Duncan, C. L. (1975):

Smart, J. L. and Roberts, T. A. (1979):

Smith, L. D. S. (1975):

The pathogenic anaerobic bacteria. Charles Thomas publisher, USA . 35 - 188.

Smith, L. D. S. and Holdeman (1968):

“The pathogenic anaerobic bacteria.”
1st Ed. 20 1- 255. Charles Thomas Publisher, USA.

Smith, L. D. S. and Williams, B. L. (1984):

The pathogenic anaerobic bacteria.
Charles Thomas Publisher. USA.

Songer, J. G. (1996):

“Clostridial enteric diseases in domestic animals”

Sterne, M. and Batty, I. (1975):

“Pathogenic Clostridia.”
Butter Worth, London, Boston.

Stiles, ME. and Paradis, DC. (1979):

Incidence of *C. perfringens* in American foods.
Appl. Microbiol. 11: 42-44

Summer, J. Bejy, J. and Perry, I. (1979):

Takecs, J. (1967):
Methods for detection and isolation of clostridia in the complementary bacteriological meat and food examination. The anaerobic bacteria, proceeding of an international workshop, published by the institute of Microbiology and Hygiene of Montreal University, Canada.

Taman, L. R. (2003):

Incidence of potential pathogens on raw beef and chicken in Sweden with special reference to Erysipelothrix - rhusiopathiae.
J. Food Port. 50 (2): 141-146.

Effect of factory hygiene and raw material on the microbiological status of minced meat. Fleischwirtsch. 62: 1404.

Tjaberg, TB. (1972):

Microbiological standards for foods.

Tompkin, Rb. Christiansen, Ln. shaparis, AB. and Bolin, H. (1974):

Effect of potassium sorbets on *S. aureus, C. Perfringens* and *C. Botulinum* in cooked uncured sausage.

Torky, A. A. Sh. A. (2004):

Torros, Anjel Mj. Darland, G. DowellVR, and Riemann, H. P. (1975).

The use of suckling mice in assaying *C. perfringens* type A enterotoxin.

Tortora, J. C. O. and Zebral, A. A (1988):

Tota-Maharaj, B. (1986):

Bacteriological study on poultry drip and chill water from poultry processing plant in Trinidad. 2nd World Congress Food Borne Infections and Intoxication, 298 - 303.

Effect of *B. cereus* and *C. Perfringens* on organoleptic characteristics of meat products.

Vaikosen, E.S. and Muller, W. (2001):
“Evaluating biochemical tests for isolation / Identification of
C. perfringens in faecal samples of small ruminants I Nigeria.” Bulletin
of Animal Health and Production in Africa,
49 (4): 244- 248.

Catering on the move – investigating a typical outbreak of gastro
enteritis. Communicable- Diseases- Intelligence.

Anaerobic microbiology of fresh beef packaged under modified
atmosphere or vacuum. J. Food Sci. 55(5): 935

Micro-organisms as indicators of quality.

“Predictive model for growth of *C. perfringens* in cooked Cured pork.”

The incidence of *C. perfringens*, *S. aureus*, *Salmonella* and *Listeria
monocytogenes* in retail meat and meat products in Beijing.
Fieischwirtschaft 74 (3): 326- 328.

Selective enumeration of spores of clostridium species in dried foods. J.

Detection of enterotoxigenic *C. perfringens* types A isolates in

Some properties of heat resistant and heat sensitive strain of *C. Perfringens.*, Heat resistance and toxigenicity.

Wijewanta, E.A. (1972):
Isolation of heat resistant *C. Perfringens* from healthy cattle.

Willis, A. T. (1977):

Survival of *C. Perfringens* and aerobic bacteria in ground beef patties during microwave and conventional cookery.
J. Food Protect. 49 (3): 203 – 206.

Winterer, H. (1971):
Quantitative determination of Clostridia. I. comments on methodology.

Youssef, H. (1982):
Effect of thermal processing on *C. Perfringens* in a sausage emulsion.

Youssef, H. (1984):

Zhao, L. Cuo, H. Ren, J. and Wu, Y. (2005):
“Study of the conditions of *C. perfringens* type A to produce toxin. “