Introduction

Camels are seasonal breeders, induced ovulator animals [1], displaying their maximum reproductive efficiency during the period from December to April in Egypt [2]. The reproductive efficiency of camels under natural conditions is generally low, due to the relatively short breeding season, longer pre-pubertal period, long gestation period, long calving interval, and the lack of use of assisted reproductive techniques such as embryo transfer and artificial insemination [3]. In Egypt, there are few attempts to establish in vitro fertilization (IVF) techniques in dromedary camel [4-6].

For in vitro oocyte maturation, it has been reported that the rate and the quality of oocyte yield from slaughtered animals’ ovaries were affected by several factors including the ovarian morphology [7], methods of oocyte retrieval [8], season [9] and ovarian status [10].

Former studies reported many inconsistencies about the influence of corpus luteum (CL) on the oocytes developmental competence. In camel, it was noticed that the presence of CL during early pregnancy did not inhibit the growth and development of ovarian follicles [11]. In bovines, it has been reported that the oocytes recovered from ovaries having CL showed high maturation...
rate, and the absence of this structures was associated with poor in vitro oocytes development [12]. On the other hand, Shabankareh et al.[13] clearly proved that CL exerts negative effects on the developmental competence of bovine oocytes in vitro. So, the present study was designed to verify the impact of corpus luteum on the oocytes retrieval, quality and in vitro developmental competence in camels.

Material and Methods

All Chemicals were purchased from Sigma-Aldrich Co., except tissue culture medium (TCM-199) and fetal calf serum (FCS) were purchased from Gibico BRL (Grand Island, New York, USA), and ringleractate solution (ADWIA Pharmaceuticals Co.) was bought from the pharmacy.

Ovaries collection, grouping and oocyte harvesting

Ovaries were collected from apparent healthy slaughtered she-camel of unknown reproductive history at El-Warrak slaughterhouse, Cairo, within 2 hours (h) of slaughter according to Lee and Fukui [14]. Ovaries, free from pathological lesions or any abnormalities, were transported to the laboratory in 0.9% NaCl supplemented with gentamicin (10 µg/mL) and maintained at 30-38°C in thermos-container. Collected ovaries were washed three times by warm saline and were categorized according to the presence (group I) or absence (Group II) of corpus luteum.

Oocytes were aspirated from 2-5 mm antral follicles on the surface of ovaries with syringe fitted with 18G needle according to Ali and Abdel-Razek [15]. The harvested oocytes were washed 2-3 times in maturation medium, examined morphologically with stereo-microscope and graded depending upon the cumulus investment and cytoplasmic distribution into excellent (A), good (B), fair (C) and poor (D) according to Kharche et al. [16].

In vitro maturation and nuclear maturation evaluation

Oocytes maturation was carried out according to Mahmoud et al. [4]. Briefly, oocytes (n=10-15/100 µl of maturation medium) were cultured in 4-well plastic Petri-dishes (pre-incubated for a minimum of 2 h before culturing of oocytes), covered with mineral oil layer (to prevent evaporation and contamination with microorganisms) and incubated for 30 h. At the end of the culture period, slides were prepared for the evaluation of nuclear maturation according to the procedure described by Tarkowski[17]. Briefly, cumulus cells were mechanically removed by gentle pipetting, oocytes were transferred to 1% hypotonic sodium citrate solution for 10 min., placed on a microscope slide with a minimal amount of hypotonic solution and fixed with methanol/glacial acetic acid (3:1) before being stained with 1% orcein stain. The state of nuclear maturation, Telephase-I (TI) and/or MII stages, was determined as described earlier by Mahmoud [18]. TI was defined as completion of separation of two chromosome sets and MII was haploid set of chromosomes after emission of first polar body.

In vitro fertilization and embryo culture

Freshly harvested epididymal spermatozoa for IVF were prepared as described by Moawad et al. [19]. Camel epididymis, collected from a local abattoir (Toukh abattoir, Qalyoubia), was washed with sterile saline, isolated, incised longitudinally, rinsed 3-4 times with 2 ml of bovine serum albumin (BSA) free BOmedium [20] containing 10 mg/ml heparin and 2.5 mM caffeine, and centrifuged at 800 ×g for 10 min. Sperm pellets were re-diluted with BO medium containing 20 mg/ml BSA to adjust spermatozoa concentration to 2.5 × 10⁶ sperm/ml.

Matured oocytes were washed three times in BO medium containing 10 mg/ml BSA and were co-cultured (n= 5-10 oocytes/droplet) with 100 µl droplets of sperm suspension under mineral oil for 5 h. After that the oocytes were washed in TCM-199 to remove attached spermatozoa and cumulus cells by vortex. Presumptive fertilized oocytes were transferred to TCM-199 culture droplets and incubated for 7-8 days with renewal of the culture media every other day. The cleavage was assessed after 72 h of culture (Day 0=day of insemination). The number of embryos developed to morula and blastocyst stages was assessed on the 5th and 7th day, respectively. The morphological appearance of embryos was evaluated under an inverted microscope. The cleavage and blastocyst rates were calculated from the total number of inseminated oocytes.

Statistical analysis

Data were presented as mean (±S.E.) and
analyzed for significance by Student t-test and Chi-square test using SPSS (ver.16) statistical software. Differences were considered to be significant at P<0.05.

Results and Discussion

Effect of reproductive status on oocyte retrieval

The mean number of retrieved oocytes per ovary per conducted trial (n=13) significantly (p<0.01) differed between CL and non-CL groups (2.98±0.31 vs. 5.84±0.59, respectively). Also, the overall oocyte retrieval rate per ovary markedly (p<0.0001) varied between evaluated groups (244/84 ovaries (2.91) and 648/114 (2.91), respectively) (Table 1).

The number of all retrieved oocytes classes was higher in the absence of CL (group II). The excellent and poor quality oocytes retrieval rate was higher (p<0.05) in the second group (CL absent), while the good quality oocytes were retrieved in higher rate (p<0.001) in the first group (CL present) (Fig. 1). Oocytes were classified into excellent, good, fair and poor quality depending upon the cumulus investment and cytoplasmic distribution. The rate of retrieved oocyte in each class was analyzed by Chi-square test.

TABLE 1. Effect of corpus luteum presence on oocyte retrieval rate from camel ovaries during the breeding season.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group I (CL present)</th>
<th>Group II (CL absent)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of ovaries</td>
<td>84</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Total number of retrieved oocytes</td>
<td>244</td>
<td>648</td>
<td></td>
</tr>
<tr>
<td>Number of retrieved oocytes per ovary (Mean± SEM)</td>
<td>2.98 ± 0.31</td>
<td>5.84 ± 0.59**</td>
<td>> 0.01</td>
</tr>
<tr>
<td>Overall retrieval rate (%)</td>
<td>2.91</td>
<td>5.68****</td>
<td>> 0.0001</td>
</tr>
</tbody>
</table>

Differences in retrieval rate among groups were analyzed with Chi-Square analysis. Means of groups were analyzed with Student t-test.

A clear relation has been found between the follicular growth and CL development [21]. It has been reported that the number of oocytes per ovary in camel is affected by ovarian status, animal ages, site of the ovary, breeding season and/or their interactions [22]. Corpora lutea affect ovarian follicular dynamics in both ovaries by a systemic effect with an evidence for a local ipsilateral effect [23]. The present findings came in agreement with those reported by Abdoon [24], but disagree with studies by Torner et al. [25], Khalil [26] and Farag et al. [11], who declared that the presence of CL during early pregnancy did not inhibit the growth and development of camel ovarian follicles and

that the average number of oocytes per ovary were nearly similar in pregnant and non-pregnant camels.

Animal reproductive status has been found to influence the frequency distributions of oocytes at different stages of maturation [26]. In this respect, the data obtained in the current study is coordinated with Abdoon [24] and Amer et al. [27] who mentioned that the presence of CL significantly reduces the number of ovarian follicles as well as the quality of the oocytes. Khalil [26] established that a lower rate of type A and higher rate of type B and C is associated with increasing level of follicular atresia, which is tremendously high during gestation period. The reasons for the superiority of the ovaries without CL over those CL-bearing ovaries is not clear. There were many former trials to explain the mechanism of CL interference with oocyte population and quality. Some authors denoted that the CL may alter follicles growth rate resulting in atresia [28], while others related this to conceptuseffects, as a local suppressor on follicular development in the ipsilateral ovary, to prevent luteolysis as mechanism of maternal recognition of pregnancy [29].

Effect of reproductive status on the nuclear maturation of retrieved oocyte

The effect of CL on rate of nuclear maturation in camel oocytes in vitro is presented in Table 2. A significant difference (p<0.05) has been found between matured oocytes from ovaries with CL and without CL in terms of GV and MII stages. The highest rate of GV stage has been recorded in those retrieved from ovaries containing CL. While, the highest value of MII stage has been observed in the matured oocytes retrieved from ovaries without CL.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group I (CL present)</th>
<th>Group II (CL absent)</th>
<th>Chi-square</th>
<th>Student t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>N %</td>
<td>Mean ± SE</td>
<td>N %</td>
<td>Mean ± SE</td>
<td></td>
</tr>
<tr>
<td>GV 26 36.62</td>
<td>36.35±1.53*</td>
<td>29 30.53</td>
<td>29.89±0.85</td>
<td>0.41 >0.05</td>
</tr>
<tr>
<td>GVBD 10 14.08</td>
<td>13.83±0.67</td>
<td>13 13.68</td>
<td>14.02±0.55</td>
<td>0.95 0.83</td>
</tr>
<tr>
<td>MI 6 8.45</td>
<td>8.19±0.99</td>
<td>7 7.37</td>
<td>6.70±1.62</td>
<td>0.79 0.48</td>
</tr>
<tr>
<td>AI 2 2.82</td>
<td>2.57±1.39</td>
<td>3 3.16</td>
<td>2.47±1.23</td>
<td>0.89 0.95</td>
</tr>
<tr>
<td>TI 8 11.27</td>
<td>11.25±0.90</td>
<td>8 8.42</td>
<td>8.55±1.28</td>
<td>0.54 0.16</td>
</tr>
<tr>
<td>MII 19 26.76</td>
<td>23.61±2.84</td>
<td>35 36.84</td>
<td>37.83±2.76*</td>
<td>0.17 >0.05</td>
</tr>
<tr>
<td>Maturation (TI+MII)</td>
<td>27 38.03</td>
<td>42 44.21</td>
<td>45.06±2.69</td>
<td>0.42 0.18</td>
</tr>
</tbody>
</table>

Data were presented as mean ±SE (n=6 replicates) and were analyzed with Student t-test. Nuclear maturation rates were analyzed with Chi-square test. GV, GVBD, MI, AI, TI and MII referred to Germinal vesicle, Germinal vesicle breakdown, Anaphase-I, Telophase-I and Metaphase II stages, respectively.

To undergo a successful fertilization and embryonic development, a complete cytoplasmic and nuclear maturation is necessary [30]. The degree of cumulus cell expansion, meiotic division and evenly granulated dark ooplasmare significant in evaluating in vitro maturation [31]. In vivo and in vitro nuclear maturation behave the same pattern [32]. Oocyte meiotic maturation is a complex process at which germinal vesicle breakdown (GVBD) takes place, chromosomes condense, metaphase plate forms, meiosis I fulfilled, the first polar body formed and is arrest at Metaphase-II [23]. The data currently presented verified a clear impact of CL presence on camel oocyte maturation in vitro. Khalil [26] has been reported that the CL presence tended to lower the number of oocytes at GV and increased the rate of oocytes at GVBD and M II stages. The difference in camel oocytes attained nuclear maturation might be interrelated with the variation in time needed for the maturation in vitro [25]. As the oocytes of pregnant camels require 36 h of maturation to reach levels of >50% metaphase II stage, whereas 32 h is sufficient for the oocytes from non-pregnant animals [25].Mahmoud et al. [4]

that the oocyte maturation time in vitro was 30h in camels, regardless the presence or absence of CL. Khatir et al. [34] found high rate (63%) of the oocytes reached to metaphase II-stage after 36 h of culture in vitro. Noteworthy, all retrieved camel oocytes (CL-bearing and non-CL bearing) were examined for maturational changes after 36-40 hours of culture.

Effect of reproductive status on the embryonal developmental competence

The data presented in Fig. 2 revealed that the CL was non-significantly influenced on the rate of cleavage, morula and blastocyst formation. The developed camel embryos from oocytes matured in vitro (n=66) retrieved from CL bearing ovaries were 36 (54.55%), 18 (27.27%) and 4 (6.06%) reached to cleavage, morula and blastocyst stages, respectively. In the interim, oocytes retrieved from non-CL bearing ovaries (n=72) and in vitro fertilized were 38 (55.56%), 18 (25.00%) and 5 (6.94%) reached to cleavage, morula and blastocyst stages, respectively. These results concomitant with those reported formerly by Scholkamy et al. [6] in camel.

Conclusions

It could be concluded that the presence of CL, associated with pregnancy, negatively impacts on follicular growth and oocyte maturation. Nevertheless, these oocytes sustain its appropriateness for fertilization and embryo development likewise those retrieved from ovaries has no CL.

References

ASSESSMENT OF THE IMPACT OF CORPUS LUTEUM ON ...

(Received 30/5/2017; accepted 6/8/2017)

T定量 تأثير الجسم الأصفر على النضج المعملى وكفاءة نمو بويضات الجمل

穆هسن عجاج**، أحمد حشاد*، احمد الخواجه*، محمد قنديل*** و كريمة محمود*

*قسم الولادة - كلية الطب البيطرى - جامعة بنها **إدارة قليوب البيطرية - مديرية الطب البيطرى - القليوبية

**قسم التكاثر الحيواني - المركز القومي للبحوث - القاهرة - مصر.

للتأكد من تأثير الجسم الأصفر على معدل تجميع و جودة و نمو البويضات، تم تجميع المبايض من الجمال المذبوحة أثناء فصل التناسل و تقسيمها إلى مبايض تحتوي على الجسم الأصفر و أخرى لا تحتوي. تم تجميع البويضات من الحريمات 3-2 يومًا قبل فحصها على حسب جودتها. ثم زراعة البويضات الجيدة معمليا و فحصها للنضج النووي بعد 30 ساعة من التحضير. ثم تحصيص البويضات بحيث تكون متناوبة من بيرج الجمال و تقييم نتائجها. و تقييم البويضات التي تصل إلى مرحلة الموريولا و البلاستوسست. و أظهرت النتائج أن الجسم الأصفر تأثير معنوى على كمية و جودة النضج النووي لبويضات الجمال و كانت نسبة البويضات الجيدة و معدل نضج البويضات أعلى في غياب الجسم الأصفر. كما لم يسجل تأثير للجسم الأصفر على نسبة الانقسام و الموريولا و البلاستوسست.

و الخلاصة: على الرغم من تأثير الجسم الأصفر على عدد و جودة البويضات إلا أنه لم يذكر هذا التأثير عائق أمام نمو الأجنحة معمليا.