Bioavailability and pharmacokinetic profile of levofloxacin following intravenous, intramuscular and oral administration in turkeys

M. Aboubakra, K. Uneyb & M. Elmasb

a Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qalioubeya, Egypt

b Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey

Accepted author version posted online: 01 Nov 2013. Published online: 16 Apr 2014.

To cite this article: M. Aboubakr, K. Uney & M. Elmas (2014) Bioavailability and pharmacokinetic profile of levofloxacin following intravenous, intramuscular and oral administration in turkeys, British Poultry Science, 55:1, 115-119, DOI: 10.1080/00071668.2013.860214

To link to this article: http://dx.doi.org/10.1080/00071668.2013.860214

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Bioavailability and pharmacokinetic profile of levofloxacin following intravenous, intramuscular and oral administration in turkeys

M. ABOUBAKR, K. UNEY1 AND M. ELMAS1

Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qalioubeya, Egypt, and 1Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey

Abstract

1. The pharmacokinetics and bioavailability of levofloxacin in turkeys were investigated after a single intravenous (IV), intramuscular (IM) and oral (PO) administration of 10 mg/kg body weight.
2. The concentrations of levofloxacin in plasma samples were assayed using a microbiological assay method and pharmacokinetic parameters were calculated by non-compartmental analysis.
3. Following IV administration, the elimination half-life (t0.5(β)), volume of distribution at steady state (Vdss) and total body clearance (Cl) were 4.49 h, 1.31 l/kg and 0.23 l/h/kg, respectively.
4. After single IM and PO administrations at the same dose, levofloxacin was rapidly absorbed as indicated by an absorption half-life (t0.5(ab)) of 1.02 and 0.76 h, respectively; maximum plasma concentrations (Cmax) of 5.59 and 5.15 μg/ml were obtained at a maximum time (Tmax) of 2 h for both routes and levofloxacin bioavailability (F) was 96.5% and 79.9% respectively after IM and PO administration. In vitro plasma protein binding of levofloxacin was 24.3%.
5. Based on these pharmacokinetic parameters, a dose of 10 mg/kg body weight given intramuscularly or orally every 24 h in turkeys can maintain effective plasma concentrations with bacterial infections with (minimum inhibitory concentration) MIC90 > 0.1 μg/ml.

INTRODUCTION

Levofoxacin is a third-generation fluoroquinolone with excellent broad-spectrum activity against Gram-positive, Gram-negative and anaerobic bacteria as well as atypical pathogens such as Mycoplasma and Chlamydia (see Aboubakr, 2012).

The pharmacokinetics of levofloxacin has been investigated in many animal species including rabbits, rats, cats, calves, stallions, male camels, lactating goats, sheep and quails (Destache et al., 2001; Cheng et al., 2002; Albarellos et al., 2005; Dums and Srivastava, 2006, 2007; Goudah et al., 2008; Goudah, 2009a; Goudah and Abo-El-Sooud, 2009; Goudah and Hasabelnaby, 2010; Aboubakr, 2012). However, there is no available information on the kinetics of levofloxacin in turkeys. The present study was planned to determine the disposition kinetics and bioavailability (F) of levofloxacin in turkeys following a single intravenous (IV), intramuscular (IM) and oral (PO) administration of 10 mg/kg body weight. Based on its pharmacological profile, levofloxacin is a promising therapeutic tool for several bacterial infections in turkeys.

MATERIALS AND METHODS

Drugs and chemicals

Tavanic (100 ml solution of levofloxacin hemihydrate equivalent to 500 mg (5 mg/ml) levofloxacin) and Levofloxcin oral tablets (Tavanic...
500 mg) were purchased from Sanofi-Aventis, Pharmaceutical Ltd, Egypt, and Mueller–Hinton agar from Mast Group Ltd., Merseyside, UK.

Experimental birds

Fifteen clinically healthy broiler turkeys, 7–8 month old (8 males and 7 females), weighing between 6–8 kg, were provided from a commercial farm. The birds were housed in groups of 5 per cage; the house was maintained at room temperature (20°C) and 65% relative humidity. Acclimatisation lasted at least two weeks before starting the experiment to ensure the complete withdrawal of any residual drugs. Standard commercial feed (without antibiotics and coccidiostats) and water were supplied ad libitum. Their health status was checked by daily observations and no clinical signs of diseases were seen. The experiment was performed in accordance with the guidelines set by the Ethical Committee of Benha University, Egypt.

Experimental design

Turkeys were individually weighed before drug administration and doses were calculated precisely. This study was performed as a parallel design to avoid the physiological changes in young and rapidly growing birds which may alter the pharmacokinetics between the first and second period as in case of cross-over design. The turkeys were allocated to three equal groups of 5 each. Birds in group 1 were given a single IV dose of levofloxacin at 10 mg/kg body weight into the left brachial vein. Birds in other groups were given the same dose by IM injection into the leg muscle and PO directly into the crop using a thin plastic tube attached to a syringe. Food, but not water, was withhold for 12 h before oral dosing until 8 h after drug administration. All dosages were given 07.00 and 08.00. Blood samples (each of 1.5 ml) were collected immediately prior to medication (time = 0), and then at 0.08, 0.17, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, 18 and 24 h after treatment, from the right brachial vein, into tubes containing heparin. Plasma was separated after centrifugation at 500 g for 10 min. The plasma was decanted, labelled and frozen at −20°C until assayed.

Analytical method

The concentration of levofloxacin in plasma samples was estimated by a standard microbiological assay (Bennett *et al.*, 1966) using *Escherichia coli* ATCC 10536 as test micro-organism. The analytical method was the same as that reported for the pharmacokinetics of levofloxacin in quails (Aboubakr, 2012).

Pharmacokinetic analysis

Pharmacokinetic parameters were determined for each individual bird. Plasma concentrations of levofloxacin after IV, IM and PO administrations were subjected to a non-compartmental analysis based on the statistical moment theory (Gibaldi and Perrier, 1982) using a computerised program, WinNonlin 4.1 (Pharsight, Mountain View, CA, USA). The pharmacokinetic analysis was the same as that reported for pharmacokinetics of levofloxacin in quails (Aboubakr, 2012).

The data were analysed using SPSS software (SPSS Inc., Chicago, USA) pocket program and differences between the averages were examined by multiple-range test. Mean values within a row with different superscript letters are significantly different (*P* < 0.05).

RESULTS

Clinical examination of all birds before and after each trial did not reveal any abnormalities. No local or adverse reactions to levofloxacin occurred after IV, IM and PO administrations. The mean plasma concentration–time profiles of levofloxacin following a single IV, IM and PO administrations of 10 mg/kg body weight are presented graphically in the Figure. Mean ± SD values of pharmacokinetic parameters estimated from the curve fitting are shown in the Table.

After IV injection, the elimination half-life (*t*½) was 4.49 h, volume of distribution at steady state (Vdss) was 1.31 l/kg and clearance (Cl) was 0.23 l/h/kg.

Following IM and PO administration, levofloxacin was rapidly absorbed and (*t*½ab) was 1.02 and 0.76 h, respectively. Maximum plasma concentrations (Cmax) of 5.59 and 5.15 μg/ml, respectively, were obtained at 2 h, the time to peak serum concentration (Tmax) for both routes was 96.5 h and levofloxacin bioavailability (F) was 0.85 ± 0.02.

![Figure](https://example.com/figure.png)
Figure. Semi-logarithmic graph depicting the time–concentration of levofloxacin in plasma of turkeys after a single IV (●), IM (○) and PO (▲) administration of 10 mg levofloxacin/kg body weight.
shorter than dano-fluoro-acin (7.37 h) and enro-fluoxacin (7.37 h) in Muscovy ducks (Goudah and Hasabelnaby, 2011) and moxi-fluoxacin (1.41 l/kg) in Muscovy ducks (Goudah and Hasabelnaby, 2011) and shorter than dano-fluoxacin and enro-fluoxacin (6.59 and 3.57 l/kg) in turkeys with an absorption half-life (t0.5ab: 0.76 h). This value was higher than dano-fluoxacin (0.31, 0.27 h) in Muscovy ducks (Goudah, 2009), longer than marbo-fluoxacin (2.83 h) in Muscovy ducks (Yuan et al., 2011), but shorter than dano-fluoxacin (0.59 l/h/kg) in turkeys (Haritova et al., 2006a).

The elimination half-life (t0.5el) of levo-fluoxacin in turkeys following IV administration was 4.49 h, which agrees with the data reported for levo-fluoxacin (4.44 h) in chickens (Kalaiselvi et al., 2006), longer than marbo-fluoxacin (2.83 h) in Muscovy ducks (Goudah and Hasabelnaby, 2011) and shorter than dano-fluoxacin (8.62 h), marbo-fluoxacin (7.57 h) and enro-fluoxacin (6.92 h) in turkeys (Dimitrova et al., 2007; Haritova et al., 2006a, 2006b). Such differences are relatively common and frequently related to inter-species variation, assay methods used, the time between blood samplings, health status and age of the animals (Haddad et al., 1985).

The Vdss for levo-fluoxacin was 24.3% following IM and PO administrations. In vitro plasma protein binding of levo-fluoxacin in turkeys was 79.9%.

DISCUSSION

The elimination half-life (t0.5el) of levo-fluoxacin in turkeys following IV administration was 4.49 h, which agrees with the data reported for levo-fluoxacin (4.44 h) in chickens (Kalaiselvi et al., 2006), longer than marbo-fluoxacin (2.83 h) in Muscovy ducks (Goudah and Hasabelnaby, 2011) and shorter than dano-fluoxacin (8.62 h), marbo-fluoxacin (7.57 h) and enro-fluoxacin (6.92 h) in turkeys (Dimitrova et al., 2007; Haritova et al., 2006a, 2006b). Such differences are relatively common and frequently related to inter-species variation, assay methods used, the time between blood samplings, health status and age of the animals (Haddad et al., 1985).

The Vdss for levo-fluoxacin was 24.3% following IM and PO administrations. In vitro plasma protein binding of levo-fluoxacin in turkeys was 79.9% following IM and PO administrations. In vitro plasma protein binding of levo-fluoxacin in turkeys was 79.9% following IM and PO administrations.

Table. Plasma pharmacokinetic parameters of levo-fluoxacin in turkeys (n = 5) following intravenous (IV), intramuscular (IM) and oral (PO) administration of 10 mg/kg body weight (mean ± SD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>IV</th>
<th>IM</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>µg ml⁻¹</td>
<td>13.93 ± 0.44</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>k0.5Fl</td>
<td>h⁻¹</td>
<td>0.15 ± 0.004</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>kαFl</td>
<td>h⁻¹</td>
<td>0.15 ± 0.01</td>
<td>0.17 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>t0.5Fl</td>
<td>h</td>
<td>4.49 ± 0.12</td>
<td>1.02 ± 0.11</td>
<td>0.76 ± 0.13</td>
</tr>
<tr>
<td>Vdss</td>
<td>l/kg</td>
<td>225.43 ± 34.56</td>
<td>278.22 ± 33.04</td>
<td>217.06 ± 20.21</td>
</tr>
<tr>
<td>T1/2</td>
<td>h</td>
<td>5.20 ± 0.30</td>
<td>6.68 ± 0.17</td>
<td>6.30 ± 0.13</td>
</tr>
<tr>
<td>F%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t0.5ab</td>
<td>h</td>
<td>4.60 ± 0.22</td>
<td>4.07 ± 0.17</td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>µg ml⁻¹ h⁻¹</td>
<td>43.15 ± 4.18</td>
<td>41.58 ± 3.86</td>
<td>34.40 ± 2.51</td>
</tr>
<tr>
<td>AUMC</td>
<td>µg ml⁻¹ h⁻²</td>
<td>225.43 ± 34.56</td>
<td>278.22 ± 33.04</td>
<td>217.06 ± 20.21</td>
</tr>
<tr>
<td>MRT</td>
<td>h</td>
<td>5.59 ± 0.26</td>
<td>5.15 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>T1/2</td>
<td>h</td>
<td>2 ± 0.00</td>
<td>2 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t0.5ab</td>
<td>h</td>
<td>1.48 ± 0.16</td>
<td>1.10 ± 0.19</td>
<td></td>
</tr>
<tr>
<td>Vdss</td>
<td>l/kg</td>
<td>1.31 ± 0.04</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cl</td>
<td>l/kg h⁻¹</td>
<td>0.23 ± 0.03</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cmax</td>
<td>µg ml⁻¹</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T1/2</td>
<td>h</td>
<td>5.59 ± 0.26</td>
<td>5.15 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t0.5ab</td>
<td>h</td>
<td>2 ± 0.00</td>
<td>2 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>Vdss</td>
<td>l/kg</td>
<td>1.31 ± 0.04</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cl</td>
<td>l/kg h⁻¹</td>
<td>0.23 ± 0.03</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cmax</td>
<td>µg ml⁻¹</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>T1/2</td>
<td>h</td>
<td>5.59 ± 0.26</td>
<td>5.15 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t0.5ab</td>
<td>h</td>
<td>2 ± 0.00</td>
<td>2 ± 0.00</td>
<td></td>
</tr>
</tbody>
</table>

Notes: – Not available.

1) C0: concentration at zero time (immediately after single IV injection); β: hybrid rate constant representing the slope of elimination phase after IV injection; kα: elimination rate constant after PO administration; t0.5: elimination half-life after IV injection; t0.5ab: absorption half-life; t0.5el: elimination half-life after PO administration; AUC: area under plasma concentration–time curve; AUMC: area under moment curve; MRT: mean residence time; MAT: mean absorption time; Vdss: volume of distribution at steady state; Cl: total body clearance; Cmax: maximum plasma concentration; T1/2: time to peak serum concentration; F: fraction of drug absorbed systemically after PO injection; Cmax/MIC: maximum serum concentration/minimum inhibitory concentration ratio; AUC/MIC: area under the plasma concentration–time curve/MIC ratio.

a, b: Within a column, values not sharing a common superscript letter are significantly different (P ≤ 0.05).
marbofloxacin (0.36 h) in Muscovy ducks (Goudah and Hasabelnaby, 2011) but lower than difloxacin (1.74 h) in chickens (Anadon et al., 2011). This rapid oral absorption is also reflected by low MAT (1.10 h), similar to enrofloxacin (1.20 h) in chickens (Knoll et al., 1999) but lower than the 2.76 h reported for enrofloxacin in turkeys (Dimitrova et al., 2007).

The elimination half-life (t\(\text{to}_{\text{50}}\): 2.91 h) was similar to marbofloxacin (4.61 h) in Muscovy ducks (Yuan et al., 2011) but lower than for norfloxacin, danofloxacin, marbofloxacin and enrofloxacin (9.07, 9.74, 7.73, 6.92 h, respectively) in turkeys (Dimitrova et al., 2007; Haritova et al., 2006a, 2006b; Laczay et al., 1998).

Maximal plasma concentration (C\(\text{max}\)) was 5.15 μg/ml achieved at (T\(\text{max}\)) 2 h, higher than that for difloxacin (4.34 μg/ml at 1 h) in chickens (Ding et al., 2008). Following PO administration, the systemic bioavailability of levofloxacin in turkeys was 79.9%, almost the same as the oral bioavailability reported for enrofloxacin (77.8, 79.6%) in female and male turkeys (Dimitrova et al., 2006), danofloxacin and marbofloxacin (78.4, 84.4%) in turkeys (Haritova et al., 2006a, 2006b).

For concentration-dependent antibacterial agents such as fluoroquinolones, the AUC/MIC ratio is the most important factor in predicting efficacy, with the rate of clinical cure being greater than 80% when this ratio exceeds 100–125 (Forrest et al., 1993; Lode et al., 1998; Madaras-Kelly et al., 1996). A second predictor of efficacy for such antibiotics is the ratio C\(\text{max}\)/MIC: values above 8–10 lead to better clinical results, as well as avoid bacterial resistance emerging (Drusano et al., 1993; Dudley, 1991; Madaras-Kelly et al., 1996; Walker, 2000).

The values for AUC/MIC ratio and C\(\text{max}\)/MIC ratio after IM and PO administrations were calculated using documented MIC values against susceptible bacteria in turkeys. Further studies on tissue distribution in turkeys should be conducted.

ACKNOWLEDGEMENT
The authors wish to thank Prof. Dr Ashraf Elkomy (Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Egypt) for his comments on the manuscript.

REFERENCES

