Teratological and histopathological effects of Dimethoate 40 EC pesticides in albino rats

Elham-Elshewey; Rabab .R .Elzoghby; Ahlam.F.Hamuoda ;Abdel-fatah.A. and Mona Farouq
Department of Forensic Medicine and Toxicology, pharmacology, clinical pathology and pathology, Faculty of Veterinary Medicine, Benha Univeristy

ABSTRACT

In the present study we investigated the teratogenic and histopathological effects of Dimethoate 40 EC pesticide, in female rats given by two doses 16mg/kg (1/10 LD50) and 4mg/kg (1/40 LD50) over a period of 6-15 days of pregnancy during organogenesis of feti. The dams were sacrificed at day –twenty of gestation and their feti were subjected to morphological, visceral and skeletal examinations. The organ phosphorous was significantly decreased the number of viable feti and significantly increased the number of resorbed feti. No dead feti and induced retardation in growth of viable feti, some visceral and skeletal defects in these feti were seen.

Histopathological changes in organs are dose related and include ballooning degeneration of liver, diffuse degenerative changes of the cortex of the kidney, haemosiderosis of spleen and the lung showed hyperplasia and desquamation of lining epithelium with sever congestion of the placenta.

Conclusively, Dimthoate caused some fetal defects and abnormalities particularly with increase the dose as well as some histopathological. Accordingly, it is advisable to avoid exposure of humane and animals to dimethoate especially during pregnancy.

It concluded that dimethoate have teratogenic and histopathological effect in fetus of pregnant rats which is dose dependant so extreme caution should be considered by pregnant women and animals to avoid its hazardous effects on their fetus.

Keywords: Dimethoate, Histopathological, teratological, organophosphorous

INTRODUCTION

Pesticides have contributed to dramatic increases in crop yields, and in the quantity and variety of diet they have helped to limit the spread of certain diseases, but can cause an jury to human health as well as, to the environment (Mansour, 2004).

Organophosphorus insecticides are generally short-lived and tend to accumulate in plant or animals tissue to many great extents. They are considered as anti cholinesterase insecticides in the target tissues (Jayaratnam and Moroni.,, 1994). Recent studies have shown that acute and subchronic exposure to dimethoate alters the antioxidant status and the histology of the liver, brain and testes of rats (Saafi et al., 2011) (Astiz et al., 2009) and human erythrocytes (Garouri et al., 2011). The liver is the primary organs involved in xenobiotic metabolism and is a target organs for chemicals and drugs. Hepatotoxicity is therefore an important endpoint in the evaluation of the effect of particular xenobiotics.

Also, pesticides have been implicated in various disorders and diseases including cancer, adverse reproductive outcomes, peripheral neuropathies, neuro behavior disorders, impaired immune function, allergic sensitization actions, particularly of the skin, cumulative inhibition of cholinesterase activity as a result of long/ term low doses of exposure to organophosphorus compounds (WHO / UNEP. Public Health Impact of Pesticides used in agriculture. Geneva 1990).

Dimethoate has a stomach action and a cholinesterase inhibitor. It is of low persistence in the soil, water and environment (half –lives of 4 to 16 days). Disappearance from open water is possibly due to microbial action or chemicals degradation as proteolysis and evaporation (Haward 1991). Dimethoate was dissolved and diluted to the required doses using sunflower oil.
The objective of this study was to examine the teratological and histopathological effect of dimethoate in dose of 16mg/kg (1/10 LD50) and 4mg/kg (1/40 LD50) on female albino rats during pregnancy.

MATERIALS AND METHODS:

2.1 chemicals:
Dimethoate 40 EC is an organophosphorus pesticide with a chemical formula \(\text{CH}_3\text{NHCOCH}_2\text{SP(OCH}_3\text{)}_2 \)
2. Agent type: 98% Tech, 40% EC
3. CAS NO: 60-51-5
4. Water: 0.5%
5. Characteristics:
Dimethoate is Cholinesterase inhibitor with contact and stomach action. Widely used to protect citrus, cotton, grape, olive potato, soybean, tobacco, vegetable to kill mites, aphids, etc. Flies in livestock shed can be Controlled by the application of Dimethoate.
7. Delivery Time: In 20 days after confirmed L/C
Company: Shenzhen King Quenson Industry Co., Ltd.

Experiments were designed to examine the teratological and histopathological effect on the liver, intestine, stomach and kidney and changes in some parameters of albino rats following administration of dimethoate.

A total of 30 adult female and 5 male albino rats were used in the experiments. Animals were divided into three groups of 10 albino rats each. 8-10 months, 210-250 gm body weight, obtained from animal house colony of Faculty of Veterinary Medicine, Benha University. Rats were kept under hygienic and good condition of ventilation, and at room temperature 25 to 30°C fed on standard balanced diet and water. Female rats were examined periodically using vaginal smear technique to ensure that they were in regular estrous cycle. Each female in estrous phase was paired with a male of proven fertility in a separate cage. In the morning, vaginal smear was taken to verify day of pregnancy. The female exhibiting a vaginal plug of coagulated ejaculate were considered pregnant and designed as zero day of pregnancy. Presence of spermatozoa in the obtained vaginal smear suspected pregnancy (Barcellona et al., 1977).

Pregnancy was confirmed by persistence of diestrous state for 5 days. After mating, physiological bleeding at 14th day of gestation and palpable fetal masses in the abdomen at 15th day after mating. They were maintained in the animal house on daily observation.

Weight of rat was registered before the beginning of treatment. LD50 value for dimethoate has been reported to be 160mg/Kg for rat (Howard., 1991) and was used in the present study.

2.2–Experimental design
Thirty pregnant dams were divided into three groups each of 10 rats. Rats within the 1st group were kept as a control, the dose of dimethoate were used from the result obtained from fish tissue which collected, the rats within groups 2 were given orally once daily with dimethoate at rate of 16mg/ Kg (1/10 LD50) and group 3 were given orally 4 mg/ Kg (1/40LD50). The drug was given from 6th to 15th days of gestation during period of fetal organogenesis (Cook and Fairweather, 1968). All females were killed on the 20th day of pregnancy and their uteri were dissected in order to record the position and number of viable, resorbed or dead feti. The surviving feti were weighed and the length from crown to ramp was measured and examined for any external gross malformations, while others were stained by alizarin red for skeletal examination (Hays et al., 1988).

RESULTS:

2-Teratological studied

Oral administration of dimethoate by dose of 4 and 16 mg/Kg.B.WT to pregnant female rats from 6th to 15th days of pregnancy induced changes in number of viable, dead, resorbed feti and fetal body
weight & crown – rump length (Table 1 and Fig 1-3). Visceral- abnormalities of feti were recorded as diverticulm dilatation of the brain, hypoplasia of the lung, hyperplasia of the heart, enlargement of the suprarenal gland and hypoplasia of the kidney (Table 2 and Figs. 4-11). While skeletal examination of alizarin red stained feti obtained from dams given oral administration of dimethoate in doses of 4 and 16 mg /Kg.b.wt. from 6th to15th days of gestation showed different abnormalities defect in ossification of the skull, absence of some bone of sternebre absence of digit bones(Table 3 and Figs 12 - 18).

The fetus showed :
1- decrease in body gain
2- Decrease food consumption
3- emaciation

The liver and kidney of fetus showed :

1- Enlarged liver
2- with double therapeutic dose presence area of necrosis
3- Dilatation of bile duct
4- enlarged and congested kidney
5- Presence area of hemorrhage

Fig (27) :The liver of the rat administered dimethoate by dose of 16mg /Kg.b.wt from 6th to 15th days of pregnancy showed sever congestion and enlargement and some area of necrosis
Table (1): Effect of dimthoate on feti obtained from pregnant female rats after oral administrations of dimethoate in maximum dose 16 mg (1/10 LD50) and minimum dose 4 mg (1/40 LD50 Kg.b.wt from 6th to 15th days of pregnancy once daily (n=5).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control group</th>
<th>Dimethoate group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mg/Kg. b.wt</td>
<td>16 mg/Kg.b.wt</td>
</tr>
<tr>
<td></td>
<td>(minimum</td>
<td>(maximum dose)</td>
</tr>
<tr>
<td></td>
<td>dose)</td>
<td></td>
</tr>
<tr>
<td>Number of female rats</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Number of viable feti</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>80.89%</td>
</tr>
<tr>
<td>Number of dead feti</td>
<td>-</td>
<td>52</td>
</tr>
<tr>
<td>Number of resorbed feti</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Fetal body weight (gm)</td>
<td>3.97±0.03988</td>
<td>3.51±0.0597</td>
</tr>
<tr>
<td>Fetal crown- rump length (cm)</td>
<td>4.16±0.04566</td>
<td>3.73±0.04409</td>
</tr>
</tbody>
</table>

Table (2): Visceral abnormalities in feti obtained from pregnant female rats after oral administrations of dimethoate in maximum dose 16 mg (1/10 LD50) and minimum dose 4 mg (1/40 LD50)/Kg.b.wt from 6th to 15th days of pregnancy once daily (n=10).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose</th>
<th>Abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of examined mother</td>
<td>Brain diverticulum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thymus hypoplasia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lung hypoplasia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heart enlargment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver enlargment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidney hypoplasia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supra renal gland enlargement</td>
</tr>
<tr>
<td></td>
<td>No%</td>
<td>No%</td>
</tr>
<tr>
<td>Group 1 Control</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Group 2 4 mg/Kg. b.wt (minimum dose)</td>
<td>10 2 10% 3 15% 4 20% 3 15% 4 20% 3 15% 3 15%</td>
<td></td>
</tr>
<tr>
<td>Group 3 16 mg/Kg. b.wt (maximum dose)</td>
<td>10 4 20% 5 25% 7 35% 5 25% 8 40% 6 30% 5 5%</td>
<td></td>
</tr>
</tbody>
</table>

% Percent of total abnormalities in relation to the number of examined feti.
Teratological and histopathological effects of Dimethoate 40 EC pesticides in albino rats

Table (3): Skeletal abnormalities in feti obtained from pregnant female rats after oral administrations of dimethoate in maximum dose 16mg (1/10 LD50) and minimum dose 4 mg (1/40 LD50)/Kg.b.wt from 6th to 15th days of pregnancy once daily (n=10).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose</th>
<th>Number of examined mother</th>
<th>Abnormalities</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Skull</td>
<td>No</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>Control</td>
<td>10</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td>4 mg/Kg. b.wt (minimum dose)</td>
<td>10</td>
<td>3</td>
<td>20%</td>
<td>4</td>
<td>15.78%</td>
<td>2</td>
<td>13.3%</td>
<td>4</td>
<td>26.7%</td>
<td>3</td>
<td>20%</td>
<td>3</td>
<td>20%</td>
<td>4</td>
<td>31.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3</td>
<td>16mg/Kg.b.wt (maximum dose)</td>
<td>10</td>
<td>6</td>
<td>40%</td>
<td>7</td>
<td>46.7%</td>
<td>4</td>
<td>26.7%</td>
<td>8</td>
<td>53.3%</td>
<td>6</td>
<td>40%</td>
<td>6</td>
<td>40%</td>
<td>7</td>
<td>46.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Percent of total abnormalities in relation to the number of examined feti.
<table>
<thead>
<tr>
<th>Elham-Elshewey et al.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Teratological and histopathological effects of Dimethoate 40 EC pesticides in albino rats

Fig. (1): Gravid rat uterus obtained from mother after repeated orally administrations of 16 mg dimethoate/Kg.b.wt from 6th to 15th days of pregnancy showing early uterine resorption.

Fig. (2): Gravid rat uterus obtained from mother after repeated orally administrations of 16 mg dimethoate/Kg.b.wt from 6th to 15th days of pregnancy showing late uterine resorption.

Fig. (3): Retardation of growth of a fetus obtained from mother after repeated orally administrations of 16 mg dimethoate/ Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (4): Diverticulum dilatation of a fetus obtained from mother after repeated orally administrations of 16 mg dimethoate / Kg.b.wt.

Fig. (5): Pulmonary hypoplasia with cardiac enlargement of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (6): Hypoplasia of left kidney with enlargement of right supra renal gland of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (7): Unilateral dilatation of renal pelvis of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (8): Absence of digits of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (9): Absence of 4th, 5th and 6th sternebra of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (10): Absence of caudal vertebrae of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (11): Impaired ossification of skull of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (12): Absence of 5th sternebra of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (13): Increase intercostal space of the ribs of a fetus obtained from mother after orally administrations of 16 mg dimethoate / Kg.b.wt from 6th to 15th days of pregnancy.

Fig. (14): The kidney of rat administered dimethoate orally by dose of 4mg/Kg.b.wt from 6th to 15th days of pregnancy showed degeneration of the lining epithelium cell of the tubules with dilatation of the blood vessels H&E × 80.

Fig. (15): Liver of rat administered dimethoate orally by dose of 4mg/Kg.b.wt from 6th to 15th days of pregnancy showed balloning degeneration in hepatocytes (d) and sever congestion in the portal vein (pv) H&E × 64.

Fig. (16): The lung of the rat administered dimethoate by dose of 4mg/Kg.b.wt from 6th to 15th days of pregnancy showed hyperplasia withcellular desquamation in the lining epithelial cells associated with peribronchial inflammatory cells aggregation, dilatation in the blood vessels and collapse as well as emphysema in the alveoli H&E stain ×40.

Fig. (17): The spleen of rats administered dimethoate by dose of 4mg/Kg.b.wt from 6th to 15th days of pregnancy showed hemosiderosis in the red pulps H&E × 80.

Fig. (18): The brain of rats administered dimethoate by dose of 4mg/Kg.b.wt from 6th to 15th days of pregnancy showed sever congestion of blood cappilaries of edema and degernaration. H&E stainX64.

Fig. (19): The small intestine of the rat administered dimethoate by dose of 4mg/Kg.b.wt from 6th to 15th days of pregnancy showed diffuse goblet cell formation allover the lining mucosal epithelium cells (g) H&E stain × 46.

Fig. (20): The placenta of the rat administered dimethoate by dose of 4mg/Kg.b.wt from 6th to 15th days of pregnancy showed sever congestion (C) H&E stain × 40.
Fig (21): Liver of rat administered dimethoate orally by dose of 16mg /Kg.b.wt from 6th to 15th days of pregnancy showed focal inflammatory cells aggregation in the portal area with diffuse ballog degeneration in hepatocytes H&E stain ×64.

Fig (22): The kidney of rat administered dimethoate orally by dose of 16 mg /Kg.b.wt from 6th to 15th days of pregnancy showed swelling and vacuolization in the lining endothelium of the glomerular tuft (g) with swelling in the lining epithelium of the tubules (S) H&E stain × 80.

Fig (23): The brain of rat administered dimethoate by dose of 16mg /Kg.b.wt from 6th to 15th days of pregnancy showed cellular oedema(arrow) in the cerebrum H&E 80

Fig (24): The spleen of rat administered dimethoate by dose of 16 mg /Kg.b.wt from 6th to 15th days of pregnancy showed congestion was noticed in the blood vessels and red pulps associated with focal hemosiderosis H&E stain ×40

Fig (25): The placenta of the rat administered dimethoate by dose of 16mg /Kg.b.wt from 6th to 15th days of pregnancy showed congestion of blood vessels in chorioallantioic membrane (C) H&E 40

Fig (26): The placenta of the rat administered dimethoate by dose of 16mg /Kg.b.wt from 6th to 15th days of pregnancy showed severe congestion of blood vessels between the trophospongium and labyrinth H&E 40.

Fig (27): The liver of the rat administered dimethoate by dose of 16mg /Kg.b.wt from 6th to 15th days of pregnancy showed severe congestion and enlargement and some area of necrosis

DISCUSSION

Teratological effect:

The exposure of organophosphorus to pregnancy is an important factor because it affects two organism, a mother and a fetus. Oral administration of dimethoate in minimum dose (4 mg / Kg. b. Wt) and maximum dose (16mg/Kg.b.wt) during the period of organogenesis induced significant decrease in the number of feti as well as viable feti per mother, decrease in body weight and increase in implantation loss . The result of the current study revealed significant decrease in body weight of rats treated with dimethoate especially with high dose treatment .These results are in good agreement with those found by many authors . In concern , Pant et al , (1995) observed a significant decrease in body weight of rats treated with 0.2-0.8 mg carbofuran /Kg.B.wt . Sharma et al . (2005) found that a significant decrease in body weight gain at high dose (90mg/Kg/day)of chloropyrifos. Abed twab and mostafa 2012 studied the adverse effects of exposure to formulated chlorpyrifos-ethyl (9.60 mg kg-1 b.wt.), chlorpyrifos-methyl (300 mg kg-1 b.wt.) and methomyl (1.70 mg kg-1 b.wt.). Changes in the body weight after insecticide dosing was used as a valuable index of insecticide-related organ damage (Lu, 1996; Mansour and Mossa, 2010a; Mossa et al., 2011). Other authors revealed that the tested insecticide caused significant decrease in body weights of treated rats and may be due to the overall increased degradation of lipids and proteins as a result of the direct effects of anti-cholinesterase compound (Goel et al., 2005; Mansour and Mossa, 2011; Mossa et al., 2011). Other investigations have reported the reduction in body weight and change in relative organs weights in rats (Woolliams et al., 1983; Mansour et al., 2001; Mossa et al., 2011) and mice (Ambali et al., 2007) after exposure to anti-cholinesterase insecticides..These results are in good agreement with those found by many authors.
as Farag et al., (2007) who found that administration of dimethoate in dose of 15 and 28 mg/kg.b.wt associated with a decreased number of implantations and live fetuses, and an increased number of dead and early resorptions at 28 mg/kg/day treated group.40LD50 causes detritus effect of fetus in form of reduction in fetal body weight and preimplantation loss. Mahadevaswami and kaliwal (2004) reported that administration of dimethoate by dose of 24 and 28 mg/Kg .b.wt induced significant decrease in number of implantation, and live fetus. Amina et al (2002) reported that dimethoate cause maternal toxicity that included reduction in body weight and feed consumption was observed only in the treated group of 28 mg/kg/day. Kimbrough & Gaines [1998] found the deaths and resorption was increased in pregnant rats when they were given a single high dose of parathion or diazinon on the 11th day of gestation. The decrease in number of feti per mother might be attributed to the lack of oval production or of the basic cell constituent as a result of drug administration (Tuchmann, 1975). Decrease in number of viable feti might be explained on the basis of histopathological changes of placenta as sever congestion was observed in between the giant trophoblasts in minimum dose Congestion was noticed in the blood vessels in the chorioallantoic membrane as well as in the deep layer between the trophospongium and labyrinth in maximum dose which affect in transmission of nutrition to fetous.

Repeated oral administrations of 4 and 16 mg/Kg.b.wt of dimethoate to pregnant female rats during the period of organogenesis induced many fetal visceral abnormalities as diverticulum dilatation which might be attributed to the lake of placental transfusion of amino acid arginine metabolism in fetus (Tuchmann 1975), lung hyperplasia, thymus hypoplasia or due to neurotoxic effect as dimethoate which cause inhibition of acetyl cholinesterase an enzyme which found in free state mainly in brain, nerve cells muscle, lung and erythrocytes this enzyme strongly inhibited in case of poisoning with organophosphorus compound. Mohammed al (2004). Organophosphates have shown the ability to penetrate the placental barrier and thus could potentially affect the developing fetus. Pesticides like Organophosphates have been detected in amniotic fluid, umbilicord blood, (Umbilical cord blood is blood that remains in the placenta and in the attached umbilical cord after childbirth. It is a reservoir of stem cells which can be used to treat hematopoiestic and genetic disorders), meconium and infant urine, indicating exposure of the human fetus to pesticides [Bradman et al 2003] and Abu-Qare et al (2000). Abou-Qare and Abou Donia [2001] reported that a single cutenous dose of methyl parathion significantly inhibited maternal and fetal brain acetylcholine and plasma butyrylcholinesterase in rats.

Dimethoate is an organophosphate insecticides known to produce oxidative stress in human and animal cells. As a lipophilic molecule, it can easily pass through the cell membrane into the cytoplasm. Once inside the cell, dimethoate can induce a high level of damage in several tissues and activate the formation of free radical Ahmed et al (2012), also this result was agree with that reported by Uzun et al (2010) and Cemek et al (2010), who found an induction of oxidative stress in lung tissue after oral ingestion of chlorpyrifos and fenthion. The generation of reactive oxygen species
may be result of organophosphates metabolism by cytochrome P450s, monooxygenase which catalyze oxidation by addition of molecular oxygen atom into a substrate (organophosphate) through electron transport pathway (Jakoby and Zigler 1990), Chamber et al 2001.

Repeated oral administrations of 4 and 16 mg/Kg.b.wt of dimethoate to pregnant female rats during the period of organogenesis induced many fetal skeletal malformations as impaired ossification of skull, absence of sternabre, absence of caudal vertebrae, absence of digit’s bone of fore and hind limbs and absence of some metatarsal and metacarpal bones. These results agreed with those reported by Dimethoate is possibly a human teratogen Hallenbeck and Cunningham-Burns. (1985) It was teratogenic in cats and rats (Hayes and Wayland 1982.). A dosage of 12 mg/kg/day given to pregnant cats increased the incidence of extra toes on kittens. The same dosage given to pregnant rats produced birth defects related to bone formation. They are considered as anti cholinesterase insecticides in the target tissues (Jayaratnam and Moroni., 1994) leads to accumulate endogenous acetylcholine in nerve tissue and other effector organs (Mayers et al 1990). Acetylcholine may also have a functional role in bone (Compston 1999) , Genevar, 1999, Greisaru 1999) Genever et al, 1999) identified that acetylcholine expression in the bone by osteoblasts, this fact suggested that acetylcholine might have noncholinergic capacity of the bone through its ability to mediate cell function as demonstrate in various tissue (Downes and Granto ,2004) (Silman and sissman, 2005). Organophosphorous is potent inhibitor of acetylcholine caused significant reduction in bone mass and density in individuals following low level exposure (Compston, 1999) also causes several skeletal deformity (Misawa, 1982). diazinon-induced inhibition in growth of some skeletal elements, such as femur, tibia, metatarsi and digits of the leg in chick embryos were demonstrated in the study by Misawa et al. (1982).

Histopathological finding:

Histopathological examination of female organs (liver, kidney, brain, spleen, lung, heart, intestine, skeletal muscle, and placenta) showed changes in female organs after administration of dose 4mg/Kg.b.Wt. As show in fig (14-26) The liver showed congestion with ballooning degeneration in the hepatocytes in diffuse manner and focal inflammatory cells aggregation in the portal area, this result are agree with that reported by dermal exposure to dichlorvos resulted in the appearance of mononuclear cell infiltrates in the lungs, liver. After administration of a higher dichlorvos dose, In these animals the total amounts of leukocytes and lymphocytes were significantly higher when compared to the control group [Nurulain and Shafiullah 1990] . Liver is a target organ, primary site of detoxification and is generally the major site of intense metabolism and is therefore prone to various disorders as a consequence of exposure to the toxins of extrinsic as well as intrinsic forms and plays important role in metabolism to maintain energy level and structural stability of body (Guyton and Hall, 2002). It is also site of biotransformation by which a toxic compound has been transformed in less harmful form to reduce toxicity (Hodgson, 2004). However, this will damage the liver cells and produce hepatotoxicity .Dimethoate caused dose-
related histopathological changes. The results are in agreement with that reported by many authors; Selmanoglu and Akay (2000) they reported similar histopathological changes including mononuclear cell infiltration, congestion, hydropic degeneration and hepatocellular damage in the liver of male rats treated with dimethoate, endosulfan and carbaryl. Also Sharma et al. (2005) who found that 30 day exposure of male rats to technical grade dimethoate at dose of 6 and 30 mg/Kg caused portal inflammation.

The kidney showed diffuse degenerative change was detected in the epithelial cells lining the tubules at the cortex associated with dilatation in the intertubular blood vessels, while female administered dose of 16 mg/Kg.b.Wt., the kidney showed swelling and vacuolization in the lining endothelium of the glomerular tuft as well as swelling in the lining epithelium of the tubules at the cortex, this result agree with that reported by Ullman et al., (1977) who reported that the histopathological changes of the kidney causing renal degeneration which may be related to the role played by the kidney in excretion of insecticides, also Evans et al., 1988 who reported that hydropic degeneration of the kidney with leucocytic infiltration indicator of nephrotoxic effect of organophosphorus pesticides of ivermectin and khattab 1994 recorded the same effect caused by dimethoate, also Khogali et al 2005 found histopathological changes of the kidney of mice treated by 60 mg/kg dimethoate pesticides showed blood congestion in between tubules.

The spleen showed hemosiderosis in the red pulps this result agree with that reported by (Hekmate et al 2005) she found hemosiderin granules found in the spleen under the effect of low concentration of fenthion after administration to Cyprinus carpio with proliferation of lymphocytes with high concentration this may be due to increase in the rate of destruction of erythrocytes after exposure to pesticides (Hibiya 1982). It was thought that these changes were due to an increase rate of breakdown of red cells and/or the toxic effect of pesticides on bone marrow. (Mossa, 2004). Shakoori et al. (1990).

The lung showed hyperplasia of bronchioles with cellular desquamation in the lining epithelial cells associated with peribronchiolar inflammatory cells aggregation, dilatation in the blood vessels and collapse as well as emphysema in the alveoli, the lung showed diffuse goblet cells formation all over the lining mucosal epithelium associated with administration of dimethoate by dose of 4 mg/Kg. b.wt, while administration of 16mg /Kg B.Wt the lung showed hyperplasia in the lining epithelium of the bronchioles associated with peribronchiolar lymphoid cells aggregation, haemorrhage, and emphysema of the air alveoli histopathological changes in lung tissue were noted as emphysema, hemorrhages and hemosiderin deposits as result of dimethoate-induced lung oxidative damage (Ibtesam ben amare et al., 2011) dimethoate is an organophosphate produce oxidative stress in human and animal cells as a lipophilic molecules, it can easily pass through the cell membrane into the cytoplasm. Once inside the cell, dimethoate can induce a high level of damage in several tissues including lung as exposure to dimethoate resulted in significant increase in lipid peroxidation and protein oxidation indicated by increase level of malondialdehyde suggesting that dimethoate activated formation of free radicals as discussed by uzun et al 2010 and semek et al 2010) this result are agree with that
reported by dermal exposure to dichlorvos resulted in the appearance of mononuclear cell infiltrates in the lungs, liver, kidneys and heart. After administration of a higher dichlorvos dose, changes in the lungs were manifested as widened interalveolar spaces infiltrated with macrophages and lymphatic cells, as well as by hyperemia. Similar histological changes in the lung of rats exposed to dermal absorption of a single dose of dichlorvos for 4 hours were observed earlier. In these animals the total amounts of leukocytes and lymphocytes were significantly higher when compared to the control group [Nurulain and Shafiullah 1990].

The brain of rat administered dimethoate by dose of 4mg /Kg.b.wt from 6th to 15th days of pregnancy showed Plague formation was noticed in the cerebral matrix of the brain, and sever congestion of blood capillaries, oedema and degeneration. While the brain of rat administered dimethoate by dose of 16mg /Kg.b.wt from 6th to 15th days of pregnancy showed cellular oedema. Eskanse et al (1999) showed that exposure to chemical during different stages of development like pre and peri-conception, fetal and preinatal that organophosphorous pesticides affect nervous system. Nigar et al (2011) showed that the treatment with dizziness induced significant increase in malondildehyde in rat brain as result of oxidative stress which contribute to dizziness induced brain toxicity. Mohamed et al (2004) studied the teratogenic effect of dimethoate on chicken embryo leads to decrease body weight and embryo mortality and malformations of featus ,defortion mainly in the brain and this suggests the defective cell proliferation, central nervous system and heart development were target of dimethoate even at low concentration. Inhibition of acetylcholinesterase suggests disruption of nerve function during the embryo development.

Diffuse goblet cells formation all over the lining mucosal epithelium of the intestine after administration of 16mg/ Kg.B.Wt another author revealed that low doses of diazinon insecticide caused different histopathological changes in the small intestine of male guinea pig. These changes were manifested in infiltration and hypertrophy of the lymphocytes, Rady (2009) haemorrhage in the submucosa, erosion in lining epithelium, pyknotic nuclei and necrotic cells. These lesions were more evident with the high doses. Similarly, desquamation, haemorrhage and necrosis of the epithelial cells of the stomach and intestine were noticed post α-cypermethrin insecticide oral administration in rats (Manna et al., 2004 a). In vitro study showed that the cultured intestinal and colonic cell proliferation was decreased by diazinon insecticide (Greenman et al., 1997).

The placenta showed Sever congestion in between the giant trophoblasts after administration of dimethoate by dose of 4 mg/Kg.B.Wt while after administration of 16 mg/Kg.B.Wt placenta showed congestion was noticed in the blood vessels in the chorioallantoic membrane as well as in the deep layer between the trophospongium and labyrinth. Organophosphates have shown the ability to penetrate the placental barrier and thus could potentially affect the developing fetus (Abu-Qare et al (2000). Pesticides like Organophosphates have been detected in amniotic fluid, umbilical cord blood, (Umbilical cord blood is blood that remains in the placenta and in the attached umbilical cord after childbirth. It is a reservoir of stem cells which can be used to treat hematopoietic and genetic disorders, meconium and infant urine, indicating exposure of the human fetus to pesticides [Bradman et al 2003].
REFERENCES

Mansour, s.A and A. H. Mossa, (2010). oxidative damage, biochemical , histopathological altraction in rate exposed to chloropyrifos and the role of zinic as antioxidant, pest ,Biochem

Mahadevaswami M.P. and Basappa B. Kaliwal (2005): Effect of different schedules and efficacy of progesterone on implantation in dimethoate treated albino mice.

Teratological and histopathological effects of Dimethoate 40 EC pesticides in albino rats

تأثير الديموثات على التطور الجنيني والأحشاء الداخلية في إناث الفئران

الهام الشيوى ، رباب راشد الزغبي ، احلام فاروق ، منى فاروق ، عبد الفتاح على
قسم الفارماكولوجيا –قسم الطب الشرعي والسوم- الباثولوجى-الباثولوجى الاكليتنيكى- كلية
الطبيب البيطرى – جامعة بنها. ج. م. ع

تم هذا العمل لمعرفة تأثير الديموثات وهو أحد المبيدات الحديثة من مجموعه
(الإورجانوfosفور) على التطور الجنيني والدعمود الداخلية في إناث الفئران وذلك على النحو التالي:

أولا- تأثير الديموثات على التطور الجنيني

تلت هذه الدراسة على عدد ثلاثون من إناث الفئران الحوامل التي قسمت إلى ثلاث مجموعات
متوازية (100 فيرم لكل مجموعة)؛ المجموعة الأولى تركت كمجموعة ضابطة أما المجموعة الثانية
والثالثة فتم تجريفها عن طريق الفم - على الترتيب بجرعة 4 ملجم/10 جرعة السامة ، 16
ملجم/10 جرعة الميتة). الديموثات احتويت على نوع من وزن الجسم مرة يومية ابتداءا من اليوم السادس
حتى اليوم الخامس عشر من الحمل (فترة تكون الأجنة). وقد لوحظ نقص في وزن
الفئران وفقد الشهيه و أخذت الأجنى من أرحام أمهاتهم في اليوم العشرين من الحمل وتم فحصها
ظاهرة كما فحصت الأحشاء الداخلية بثليثي عند الأجنة الخروجة من كل أم بعد حفظها في سائل اليوان
وحص البيض العظمى للثلاثة الأخر من الأجنة بعد صياغها بصبغة الأشرار الحمراء وقد دلت النتائج
على أن:

تجري الديموثات المتكرر بجرعة 4-16 ملجم/كم من وزن الإناث الحوامل مرة يومية
ابتداءا من اليوم السادس حتى اليوم الخامس عشر من الحمل بسبب نقص في عدد الأجنة الحية ول
سبب وفاة في الأجنة مع عدد الأجنة المجاورة وسبب انسداد تجويف السمح وضمور المدى.
التموسي وأضطر حجم الرئة وكبر حجم القلب وزيادة في حجم الكبد مع ضمور في الكلى.
وحص البيض العظمي تبين عظام غير تقاس في عظام الجسم، وكمساحه، وانكسار عظام المشط.
والأصبان في الأطراف الأمامية والخلفية، وانكسار نظام القلب والقرارات العجرية والخلفية.
ثانيا- تأثير الديموثات على الأعضاء الداخلية للإناث الحوامل

استخدمت هذه الدراسة عدد ثلاثون من إناث الفئران البالغة وقد قسمت إلى ثلاث مجموعات
متوازية (100 فيرم لكل مجموعة)؛ استخدمت المجموعة الأولى كمجموعة ضابطة أما المجموعة الثانية
والثالثة فقد تم عن طريق الفم بجرعة 4 ملجم/كم وجرعة السامة 16
ملجم/كم مرة يومية لمدة 10 أيام متتالية - بعدها نبت الفئران وأخذت عينات من الكبد والكليل المخ
والرئة واللحال وامعاء وتم وضعها في الورمان 10% وتم فحصها هستوباثولوجيا ومن الحصص
الكيميائية وحظيت الدراسة استفسا على ماء في المخ وترك في الخلايا المكونة للدمال. لوحظ
خثر في خلايا الكبد ويشمل على انتفاخ غربى وتكون في جزء مائي في الخلايا. تخرج وتجمع في
الخلايا البلعمية في جدار الأمعاء. وقد لوحظ مع زيادة الجرعة زيادة بعض التغيرات الباثولوجية
وتشمل على موت بعض البقع النسيجية في الكلية والكبد وكذلك سقوط بعض الخلايا المبطنة للرحم
والشراب.

وستنتج من هذه الدراسة أن استخدام الديموثات بجرعته العلاجية وضعع العلاجية كمبيد
حشرى للأجهزة الحوامل بسبب نشاطة جنينية مثل انتعبات مباكر وتشوهات واضحة في الأجنة
Teratological and histopathological effects of Dimethoate 40 EC pesticides in albino rats

كما يؤدي إلى بعض التشوهات على الأحشاء الداخلية والعظام للأمهات الحامل لذا ينصح بعدم استشادة أثناء فترة الحمل خاصة بجرعات عالية.