QUALITY EVALUATION OF SOME LOCALLY MANUFACTURED CHICKEN MEAT PRODUCTS

Hemmat M. Ibrahim, Amany M. Salem, Mahmoud S. Shanab
Department of Food Hygiene, Faculty of Veterinary Medicine, Benha University.

ABSTRACT

One hundred random samples of some chicken meat products randomly collected from supermarkets in El Menofya governorate, Egypt, represented by chicken pane, chicken nuggets, grilled chicken steaks, chicken shawarma and grilled chicken breast (20 of each). Samples were examined for sensory, chemical and microbiological evaluation to assure their quality. The obtained results indicated that; the overall organoleptic scores of the examined samples of chicken pane, chicken nuggets, grilled chicken steaks, chicken shawarma and grilled chicken breast were 7.90, 7.20, 7.10, 7.05 and 6.40, respectively. The chemical examination revealed that the mean values of pH, TVN and TBA were 8.18, 33.85 and 0.44 for chicken pane, 8.33, 35.61 and 0.29 for chicken nuggets, 8.20, 35.35 and 0.26 for grilled chicken steaks, 8.16, 37.14 and 0.31 for chicken shawarma and 8.31, 33.85 and 0.07 for grilled chicken breast respectively. The obtained results of microbiological examination of the examined products showed the highest (cfu/g) ranged from 3.04×10⁵ to 5.99×10⁶ for the examined samples of chicken pane while the total Enterobacteriaceae count ranged from 6.51×10² to 2.03×10³ with the highest load was recorded for chicken nuggets and the total fungal count for these products ranged from 0 to 9.93×10⁵ with the highest value of fungal count was in the examined samples of chicken nuggets. The correlation between APC and other organoleptic and chemical parameters of such products was recorded.

Keywords: chicken meat products, chemical evaluation, microbiological evaluation.

1. INTRODUCTION

Chicken and Chicken meat products are good sources of animal protein of high biological value, which contains all the essential amino acids required for human nutrition, besides that they contain higher proportion of unsaturated fatty acids and less cholesterol especially when skin is removed (Shedeed, 1999). The acceptance of further processed chicken meat products depends upon overall acceptance, color, odor, taste and consistency. So, consumers had given much greater choice over the foods which are more selective, of high quality and cheap about the value of money. Finally, the product quality became more significant factor in meat products marketing (Potter, 2001, Agamy and Hegaz, 2011). Total bacterial, Enterobacteriaceae and fungal counts are considered as indices of quality, which give an idea about the hygienic measures during further processing and help in assessing the keeping quality of further processed chicken meat products (Aberle et al., 2001). Chemical analysis of further processed chicken meat products is greatly varied, so, testing of the final products is a common practice in cooked and uncooked chicken meat products.
Quality evaluation of some locally manufactured chicken meat products

and applied to ensure the compliance of such products with the legal and composition of standards written on the label (Beckers, 1998). Poultry meat products may be contaminated during processing and can harbor multiple types of pathogenic bacteria capable of causing public health hazard as *E.coli* and *B.cereus* which were of main concern (Waldroup, 1996). Therefore, the present study was planned to throw out a light on the quality of some further processed chicken meat products randomly collected from El-Menofya governorate supermarkets.

1. MATERIALS AND METHODS

1.1. Samples:

A total of 100 random samples of frozen half cooked chicken meat products, represented by chicken nuggets; chicken pane, grilled chicken breast, chicken schawrma and grilled chicken steak (20 of each) were collected from different supermarkets in Menofya governorate. Each sample was aseptically transferred, without delay, in an insulated ice box to the laboratory and then subjected to the following examination.

1.2. Organoleptic examination

It was carried out by 10 panelists (staff members of Food Science & Technology Department, Faculty of Home Economics Al Azhar University which were frequently used. The panelists were asked to evaluate color, taste, flavor, texture and overall acceptability as described by Smith et al., (1973). A score 1 is being disliked extremely and 10 being like extremely. The overall acceptability was calculated. All panelists' scores were statistically analyzed.

1.3. Sample preparation (APHA,1992)

Twenty-five grams of the examined samples were stomached using stomacher (seward stomacher80, Biomaster, serial no. 46464, England) with 225 ml of sterile buffered peptone water (0.1%) to give a dilution of (10-1), from which further serial dilutions were prepared.

1.4. Microbiological examination:

Determination of APC (ICMSF, 1978).
Determination of Enterobacteriaceae count (ICMSF, 1978).
Determination of total mould and yeast count (Cruickshanks et al., 1975).

1.5. chemical analysis

Plasma Determination of pH value (AOAC, 2000).
Determination of total volatile nitrogen (TVN) (mg %) FAO (1980).
Determination of Thiobarbituric acid number (TBA) (mg/ kg %) (Kirk and Sawyers, 1991).

1.6. Statistical Analysis

The obtained results were statistically analyzed by application of Analysis of Variance (ANOVA) test according to Feldman et al. (2003).

3. RESULTS

The results achieved in table (1) revealed that the mean scores of colour, flavour, texture, taste were 7.60, 8.00, 8.10, 7.80 for chicken pane, 6.75, 7.00, 8.10 , 7.25 for chicken nuggets , 6.40, 7.40, 7.60, 7.45 for grilled chicken steaks , 6.30, 7.35, 7.55, 7.45 for chicken schawrma and 5.35, 6.60, 7.10, 5.60 for grilled chicken breast, respectively.

The results achieved in table (2) revealed that the mean values of pH ,TVN(mg%) and TBA(mg/kg) were 8.18, 33.85, 0.44 for chicken pane , 8.33, 35.61, 0.29 for chicken nuggets , 8.20, 35.35, 0.26 for grilled chicken steaks , 8.16, 37.14, 0.31 for chicken schawrma and 8.31, 33.85, 0.07 for grilled chicken breast.
Table (1): Mean values of organoleptic scores in the examined locally manufactured chicken meat product samples (n=20)

<table>
<thead>
<tr>
<th>Chicken meat products</th>
<th>color</th>
<th>flavor</th>
<th>texture</th>
<th>taste</th>
<th>overall acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken pane</td>
<td>7.60</td>
<td>8.00</td>
<td>8.10</td>
<td>7.80</td>
<td>7.90</td>
</tr>
<tr>
<td>Chicken nuggets</td>
<td>6.75</td>
<td>7.00</td>
<td>8.10</td>
<td>7.25</td>
<td>7.20</td>
</tr>
<tr>
<td>Grilled chicken steaks</td>
<td>6.40</td>
<td>7.40</td>
<td>7.60</td>
<td>7.45</td>
<td>7.10</td>
</tr>
<tr>
<td>Chicken shawarma</td>
<td>6.30</td>
<td>7.35</td>
<td>7.55</td>
<td>7.45</td>
<td>7.05</td>
</tr>
<tr>
<td>Grilled chicken breast</td>
<td>5.35</td>
<td>6.60</td>
<td>7.10</td>
<td>5.35</td>
<td>6.40</td>
</tr>
</tbody>
</table>

Table (2) Mean values of pH, TVN (mg%) and TBA (mg/kg) in the examined locally manufactured chicken meat product samples (n=20).

<table>
<thead>
<tr>
<th>Chicken meat products</th>
<th>pH</th>
<th>TVN(mg%)</th>
<th>TBA(mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken pane</td>
<td>8.18</td>
<td>33.85</td>
<td>0.44</td>
</tr>
<tr>
<td>Chicken nuggets</td>
<td>8.33</td>
<td>35.61</td>
<td>0.29</td>
</tr>
<tr>
<td>Grilled chicken steaks</td>
<td>8.20</td>
<td>35.35</td>
<td>0.26</td>
</tr>
<tr>
<td>Chicken shawarma</td>
<td>8.16</td>
<td>37.14</td>
<td>0.31</td>
</tr>
<tr>
<td>Grilled chicken breast</td>
<td>8.31</td>
<td>33.85</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Table (3): Mean values of aerobic plate count (APC), Enterobacteriaceae count and fungal count (CFu/g) in the examined locally manufactured chicken meat product samples (n=20).

<table>
<thead>
<tr>
<th>Chicken meat products</th>
<th>APC</th>
<th>Enterobacteriaceae counts</th>
<th>Fungal counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken pane</td>
<td>5.99×10⁶ ± 0.63×10⁶</td>
<td>1.14×10⁶ ± 0.19×10⁶</td>
<td>1.35×10⁴ ± 0.22×10⁴</td>
</tr>
<tr>
<td>Chicken nuggets</td>
<td>4.78×10⁵ ± 0.51×10⁵</td>
<td>2.03×10⁵ ± 0.35×10⁵</td>
<td>9.93×10³ ± 2.17×10⁵</td>
</tr>
<tr>
<td>Grilled chicken steaks</td>
<td>1.42×10⁶ ± 0.27×10⁶</td>
<td>6.51×10² ± 1.12×10²</td>
<td>2.08×10⁴ ± 0.35×10³</td>
</tr>
<tr>
<td>Chicken shawarma</td>
<td>3.89×10⁵ ± 0.46×10⁵</td>
<td>9.79×10² ± 2.28×10²</td>
<td>1.70×10³ ± 0.14×10²</td>
</tr>
<tr>
<td>Grilled chicken breast</td>
<td>3.04×10⁵ ± 0.39×10⁵</td>
<td>6.94×10² ± 1.43×10²</td>
<td>-</td>
</tr>
</tbody>
</table>

Table (4): Correlation coefficient (r) between APC, organoleptic and chemical scores in the examined samples of locally manufactured chicken meat products.

<table>
<thead>
<tr>
<th></th>
<th>Chicken pane</th>
<th>Chicken nuggets</th>
<th>Grilled chicken steaks</th>
<th>Chicken shawarma</th>
<th>Grilled chicken breast</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>-0.68**</td>
<td>-0.45*</td>
<td>-0.31</td>
<td>-0.50*</td>
<td>-0.39*</td>
</tr>
<tr>
<td>1. Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Flavor</td>
<td>-0.53*</td>
<td>-0.42*</td>
<td>-0.63**</td>
<td>-0.48*</td>
<td>-0.71**</td>
</tr>
<tr>
<td>3. Texture</td>
<td>-0.40*</td>
<td>-0.29</td>
<td>-0.19</td>
<td>-0.22</td>
<td>-0.36*</td>
</tr>
<tr>
<td>4. Taste</td>
<td>-0.61**</td>
<td>-0.37*</td>
<td>-0.35*</td>
<td>-0.43*</td>
<td>-0.47*</td>
</tr>
<tr>
<td>5. pH</td>
<td>+0.28</td>
<td>+0.52*</td>
<td>+0.38*</td>
<td>+0.30</td>
<td>+0.25</td>
</tr>
<tr>
<td>6. TVN</td>
<td>+0.57**</td>
<td>+0.74**</td>
<td>+0.41*</td>
<td>+0.26</td>
<td>+0.62**</td>
</tr>
<tr>
<td>7. TBA</td>
<td>+0.21</td>
<td>+0.35*</td>
<td>+0.58**</td>
<td>+0.46*</td>
<td>+0.74**</td>
</tr>
</tbody>
</table>

* = Significant correlation ** = High significant correlation.
The results achieved in table (3) revealed that the mean scores of APC/g, \textit{Enterobacteriaceae} counts, fungal counts were $5.99 \times 10^6 \pm 0.63 \times 10^6$, $1.14 \times 10^3 \pm 0.19 \times 10^3$, $1.35 \times 10^4 \pm 0.22 \times 10^4$ for chicken pane, $4.78 \times 10^5 \pm 0.51 \times 10^5$, $2.03 \times 10^3 \pm 0.35 \times 10^3$, $9.93 \times 10^5 \pm 2.17 \times 10^5$ for chicken nuggets, $1.42 \times 10^6 \pm 0.27 \times 10^6$, $6.51 \times 10^2 \pm 1.12 \times 10^2$, $2.08 \times 10^3 \pm 0.35 \times 10^3$ for grilled chicken steaks, $3.89 \times 10^5 \pm 0.46 \times 10^5$, $9.79 \times 10^2 \pm 2.28 \times 10^2$, $1.70 \times 10^3 \pm 0.14 \times 10^2$ for chicken shawrma, $3.04 \times 10^5 \pm 0.39 \times 10^5$, $6.94 \times 10^2 \pm 1.43 \times 10^2$, - for grilled chicken breast, respectively.

4. DISCUSSION

During the last decade, the demand of ready to eat Chicken meat products has increased in Egyptian food markets and receive a real consumer preferability because they considered as quick easily prepared meat meals and solve the problem of shortage in fresh meat of high price which is not within the reach of large numbers of families with limited income.

Treatment Conversion of raw Chicken carcasses into further processed chicken meat products, as cold cuts, reconstructed products or breaded products are improve the juiciness, flavor, shelf life and water holding capacity of such product (Sahoo et al., 1996).

Appearance, taste, aroma, and texture of meat can generally produce a consumer’s decision to purchase meat. Flavor comprises mainly taste and aroma and involves in consumers’ meat purchasing behavior and preferences even before the meat is eaten (Shahidi, 1989, Sitz et al., 2005).

The results achieved in table (1) revealed that the mean scores of color, flavor, texture and taste were 7.60, 8.00, 8.10 and 7.80 for chicken pane, 6.75, 7.00, 8.10 and 7.25 for chicken nuggets, 6.40, 7.40, 7.60 and 7.45 for grilled chicken steaks, 6.30, 7.35, 7.55 and 7.45 for chicken shawarma and 5.35, 6.60, 7.10, 5.60 for grilled chicken breast.

The obtained results of microbiological examination agreed with those obtained by Al-Dughaym and Altabari (2010) for APC/g, Hefnawy and Moustafa (1990) for total enterobacteriaceae count and Helmy and Mahmoud (2005) for total fungal count. The contamination of half cooked chicken meat product samples may be due to inadequate sanitary conditions during processing, bad handling, dirty equipment, polluted water, contaminated cold stores and temperature fluctuation during storage (Saad et al., 1989, Refaie et al., 1991, Farghaly, 1998).

Considerable variation in the color of broiler breast meat fillet obtained from commercial processing plants, a significant correlation between muscle pH and changes in color were recorded (Fletcher 1995).

The obtained results of chemical examination were nearly similar to those obtained by Hassanin and Hassan (2003) for pH, Fathy (2012) for TVN and Koreleski and Swiatkiewicz (2006) for TBA values. PH value is an indicator of keeping quality of meat and assesses the shelf-life of the products (Jay, 1972). TVN measurement is considered as a reliable indicator of various chicken meat product specially during storage where protein break down (ammonia) may occur due to microbial growth and its proteolytic enzymes (Yassien, 2003, Alina and Ovidiu, 2007). Furthermore, the variations of TBA values may be attributed to fat contents of the examined chicken meat products and usually considered as an index of lipid oxidation which related to the sensory characteristics as rancidity (Salem, 1992, Raharjo and Sofos, 1993).

The results recorded in table (4) indicated that pH values of the examined chicken meat product samples were negatively affected with color, flavor and taste of such products.
at varying degrees. In contrast, there was significant positive correlation between pH from one side and TVN & TBA of the examined samples from the other side.

5. REFERENCES

Koreleski, I., Siatkiewicz, S. 2006. Effect of stabilized fish oil supplementation and storage on changes in the fatty acid profil, TBARs content and sensory

تقييم جودة بعض منتجات لحوم الدواجن محلية الصنع

محمود سعيد شلبي، أماني محمد سالم، محمد سعدي شلبي
قسم مراقبة الأغذية - كلية الطب البيئية - جامعة بنها

الملخص العربي

أجريت هذه الدراسة لتقييم جودة بعض منتجات لحوم الدواجن محلية الصنع حيث تم تجميع 100 عينة من بانيه الدجاج، ناجتس الدجاج، شيرط طاووق الدجاج الشمالي، شارما الدجاج، صدور الدجاج، معلومات المختلطة من مراكز المنتجات المختلطة. تم اختبار العينات من النواحي الحيوية، الكيميائية، الميكروبية لتقسيم مدي جودتها. وقد كانت نتائج الفحص الحسي لبانيه الدجاج، ناجتس الدجاج، شيرط طاووق الدجاج الشمالي، شارما الدجاج، صدور الدجاج المسمية هي 7.90، 7.20، 7.05، 6.40 على التوالي. بينما كانت نتائج الفحص الكيميائي لقيم درجة الحمضية، مجموع المركبات البيئيجينية المتطايرة، حمض السيبيركين في: 8.18، 33.85، 0.44 لبانيه الدجاج، 8.33، 35.61، 0.29 لناجتس الدجاج، 8.20، 35.35، 0.26 لشيرط طاووق الدجاج الشمالي، 8.16، 37.14، 0.31 لشارما الدجاج، 8.31، 35.35، 0.26 لشارما الدجاج و 8.31، 35.35، 0.26 لشارما الدجاج. ونلاحظ أن النتائج تؤخذ بين الأعداد الكبيرة لمكانية البكتيريا الهوائية وعدد الكلاسيكي الفولاذيني بين 3.04×10^5، 5.99×10^6. بينما تراوح العدد الكلي البكتيريا الفولاذيني بين 6.15 x 10^2 ونلاحظ الدجاج ألعيل قيمة للعد الكلي البكتيريا القولونية. بينما تراوح العدد الكلي النظريات من 0 إلى 10^5 x 9.93 وسعت النتيجة لدجاج الدجاج. تم تعيين العلاقة بين العدد الكلي البكتيريا الهوائية والقيم الحيوية والكيميائية للمستحاثات محلية الصنع.

(مجلة بنها للعلوم الطبية البيئية: عدد 26(2):143-149, يونيو 2014)