Abiotically-formed, primary dolomite in the mid-Eocene lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: An approach to the role of smectitic clays

H.A. Wanas a,⁎, E. Sallam b

a Department of Geology, Faculty of Science, Menoufiya University, Shebin El-Kom, Egypt
b Department of Geology, Faculty of Science, Benha University, Benha, Egypt

ARTICLE INFO

Article history:
Received 4 July 2016
Accepted 9 August 2016
Available online 18 August 2016

Editor: Dr. J. Knight

Keywords:
Abiotic
Primary dolomite
Smectitic clays
Lacustrine
Mid-Eocene
Egypt

ABSTRACT

This study discusses the role of smectitic clays in the formation of an abiotic (physico-chemical) primary dolomite within an evaporative alkaline-saline marginal lake system, in the absence of carbonate precursor and microbes. The present work has been achieved in terms of textural, mineralogical, and geochemical characteristics of dolostones in the Mid-Eocene (Bartonian) lacustrine succession cropping out at Gebel El-Goza El-Hamra (Shabrawet area, NE Egypt). This lacustrine succession is 15–16 m thick, and made up of alternating horizontal beds of dolostone, marlstone and mudrock that show some pedogenic and subaerial exposure features. The dolostones are composed mainly of dolomite (60–90%), smectite (20–30%) and quartz grains (5–10%). The dolomite comprises fine-crystalline rhombs to micro-spherical crystals with no obvious relics of microbial activity and/or carbonate precursor. It is ordered, nearly stoichiometric (with 46–50% mole of MgCO3) and has δ18O and δ13C values ranging from +0.44 to +2.96 VPDB, and 0.93 to −8.95 VPDB, respectively. The smectite occurs as thin mats that are commonly intergrown and associated with dolomite. Mineralogical, textural and stable isotopic results of the dolomite indicated that the dolomite was formed as an abiotic primary precipitate in alkaline saline lacustrine systems. In this respect, the gel-like highly viscous smectitic medium plus progressive CO2 degassing, elevated evaporation, low sedimentation rate, low sulphates level and alkaline soil solution lowered the kinetic barriers of dolomite precipitation from solution and promoted the incorporation of Mg2+ in the structure of dolomite. Consequently, the presence of smectitic clays in evaporative saline lakes is significant for dolomite formation because they can generate a gel-like highly viscous medium and provide Mg2+ that can facilitate the physico-chemical precipitation of primary dolomite from solution at ambient temperatures. However, more work is needed to better characterize the role of clays during dolomite formation in alkaline lacustrine environments at ambient temperatures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In lacustrine/palustrine environments, dolomite can form by microbial activities (e.g., Last, 1990; Vasconcelos et al., 1995; Vasconcelos and McKenzie, 1997; Wright, 1999; García del Cura et al., 2001; Calvo et al., 2003; Wright and Wacey, 2005; Wacey et al., 2007; Sánchez-Román et al., 2008; Bréhéret et al., 2008; Deng et al., 2010; Casado et al., 2014) and/or by the dolomitization of carbonate muds precursor (e.g., Last, 1990; Arenas et al., 1999; Bustillo et al., 2002; Yuan et al., 2015). In contrast, the abiotic formation of lacustrine/palustrine dolomites from solution in ambient and inorganic (physio-chemical) conditions with no microbial mediation and carbonate mineral precursors is more rarely recognized and still requires more attention (De Deckker and Last, 1989; Botha and Hughes, 1992; Wanas, 2002; Bristow et al., 2012; Zhang et al., 2012; Roberts et al., 2013; Casado et al., 2014; Wright and Barnett, 2015). Additionally, a close relationship between abiotic dolomite formation and clays has been previously documented in caves (Polyak and Güven, 2000; Martín Pérez et al., 2015) and soils (Díaz-Hernández et al., 2012; Roberts et al., 2013; Casado et al., 2014; Koster and Gilg, 2015; Cuadros et al., 2016). On the other hand, no previous studies have been undertaken on the role of smectitic clays in the enhancement of abiotic primary dolomite formation in lacustrine/palustrine systems, except the work of Botha and Hughes (1992) who suggested that neoformed (non-replacive) abiotic dolomite can form in marginal lacustrine sediments by the action of alkaline soil solutions, including decomposition products released during breakdown of smectite and palygorskite. Therefore, the present study can give an insight on the mechanism of formation of lacustrine abiotic dolomite with the aid of smectitic clays in the absence of microbial activities and carbonate precursors. To achieve this, detailed mineralogical, textural and stable isotopic studies of the mid-Eocene (Bartonian) lacustrine dolomites at Gebel El-Goza El-Hamra (NE Eastern Desert, Egypt) have been carried out.
2. Geological setting and lithostratigraphy

Gebel El-Goza El-Hamra is located at the Shabrawet area, NE Eastern Desert, Egypt (Fig. 1). The Shabrawet area was subjected to orogenic movements (i.e., the Syrian Arc System), which started in the late Cretaceous and continued intermittently until the late Miocene (Al-Ahwani, 1982; Moustafa and Khalil, 1995; Haggag, 2010). The Shabrawet area includes two major NE–SW asymmetrical anticlines enclosing a shallow syncline (Al-Ahwani, 1982). The cores of the Shabrawet anticlines are mainly represented by Cretaceous rocks. On the southern flanks of these anticlines, the Cretaceous rocks are unconformably overlain by sub-horizontal Eocene rocks that are then covered by Oligocene sand and gravels. On their northern flanks, the Cretaceous rocks are mainly covered by horizontal to sub-horizontal Oligocene and Miocene strata (Al-Ahwani, 1982; Said, 1990; Haggag, 2010)(Fig. 1). Generally, the Eocene, Oligocene and Miocene rocks constitute several dissected scarps around the Shabrawet anticlines. Numerous faults trending ENE and NW–SE dissect the Shabrawet area. The older ENE faults affected the Cretaceous rocks in both anticlines, prior to the deposition of the Eocene sediments (Al-Ahwani, 1982). Along the NW–SE trending faults (Clysmic or Erythrean), many of the Eocene scarps have developed in the Shabrawet area.

Lithostratigraphically, the Shabrawet area is covered by a thick sedimentary succession that ranges in age from early Cretaceous to Neogene (Al-Ahwani, 1982; Said, 1990). The Eocene rocks occur as horizontal to sub-horizontal beds, and have an unconformable relationship with their underlying highly deformed Cretaceous strata (Al-Ahwani, 1982). They are disconformably overlain by Oligocene and/or Miocene rocks (Al-Ahwani, 1982). At Gebel El-Goza El-Hamra, the Eocene succession has been subdivided into three lithostratigraphic units (Sallam et al., 2015) that are, from base to top: the Minia Formation (late Ypresian), the Sannor Formation (Bartonian), and the Maadi Formation (Priabonian). These three formations are disconformable with each other (Sallam et al., 2015). On the basis of its lithological characteristics, the mid-Eocene (Bartonian) Sannor Formation at GebelEl-Goza El-Hamra has been subdivided by Sallam et al. (2015) into three informal rock units: lower (Sn-1), middle (Sn-2) and upper (Sn-3) units. In this study, we agree with and follow the mid-Eocene lithostratigraphic subdivision of Sallam et al. (2015). The studied succession constitutes the uppermost part of the Sn-2. It is also equivalent to the uppermost part of the mid-Eocene El-Goza El-Hamra Formation of Hassan and Omran (1991) and clastic wedge unit of Selim et al. (2016).

3. Materials and analytical methods

This study is based on data gathered during detailed fieldwork at Gebel El-Goza El-Hamra (Shabrawet area, NE Eastern Desert, Egypt) complemented by laboratory analyses. Forty-two samples of dolostones and mudrocks were collected from two outcrops for the uppermost part of the middle unit (Sn-2) of the Sannor Formation at Gebel El-Goza El-Hamra (see Fig. 1 for locations). For optical petrographic study, thirty-five standard thin sections of consolidated dolomite samples were prepared following the method of Keyes (1925) and then photographed using an Olympus BX51 polarizing light microscope equipped with an integrated Olympus LC20 digital built-in-camera. Dolomite textures are described following the classification of Sibley and Gregg (1987). The bulk-rock mineralogy of selected samples was analyzed using a Philips PW-1752 X-ray diffraction (XRD) system, operating at 40 kV and 30 mA, with Ni filter and Cu-Kα radiation (λ = 1.54060 Å). XRD analysis was performed following the method of Chung (1974) using EVA Bruker software. The percentage mole value of MgCO3 was determined following Goldsmith et al. (1961). The degree of ordering of dolomite was determined from diffraction peaks, with correlation between intensity of (015) and (110) peaks.
measured according to standard procedures (Hardy and Tucker, 1988). Identification and estimate of the clay mineralogy in the clay-rich samples was carried out on oriented aggregate samples (for fractions <2 μm) using air-dried, glycolated and thermal treated mounts (Brindley, 1980). The ethylene glycolated oriented mounts were kept in ethylene vapor heated at 60 °C for 24 h whereas the thermal treated mounts where heated for 550 °C for 3 h. Quantitative mineralogy was determined from XRD patterns of whole-rock powders spiked with 11.1 wt% zinc oxide using Rockjock-program that runs in Microsoft Excel (Eberl, 2003).

Back scattered images (BSE) and electron microprobe analysis (EMPA) for dolostone samples were carried out on carbon-coated polished thin sections using a JEOL Superprobe JXA 8900-M wavelength dispersive electron microprobe analyzer (WDS-EMPA) equipped with four crystal spectrometers and beam diameter between 2 and 5 μm to minimize damage from the electron beam. Scanning electron microscopic (SEM) observations were carried out on gold-coated samples, to obtain high-resolution textural and morphometric images. Fresh pieces were placed on sample holders supported by carbon conductive tape, followed by sputter coating of gold and then investigated using a JEOL JSM-820 microscope working at 20 kV, and equipped with an energy dispersive X-ray microanalyzer (EDX).

Carbon (δ13C) and oxygen (δ18O) isotopic analyses were determined for micro-drilled dolomite powder samples following the methods of McCrea (1950) and Spötl and Vennemann (2003). For these analyses, small amounts (0.5–1.0 mg) of powders were dried and placed in an oven at 70 °C for 10 h before being moved to the instrument. Carbon dioxide was released using 100% phosphoric acid at 70 °C and analyzed on-line in a DELTA plus XP + Gas Bench mass spectrometer. Carbon and oxygen isotopic compositions for dolomite were reported using standard δ notation in units of ‰ relative to V-PDB standard (the Vienna Pee Dee Belemnite standard) where two values of the measurements were reported.

4. Sedimentology of the mid-Eocene rocks

At Gebel-El-Goza El-Hamra, the mid-Eocene rocks belong to the Sannor Formation that was subdivided by Sallam et al. (2016) into three informal rock units: lower (Sn-1), middle (Sn-2) and upper (Sn-3) units. The Sn-1 is composed of about 20 m thick of brownish green claystones interbedded with foraminiferal limestones (rich in Dictyoconus aegyptiensis and Idalina cuvillieri) and highly dissected by gypsum streaks. The Sn-2 (in which the studied strata are developed) is 45 m thick and consists of claystone, siltstone and coarse-grained sandstone with conglomerate lenses that topped by about 15 m thick of thin-bedded dolostones, marlstones and mudrocks. The Sn-3 is 20 m thick and is composed of bryozoan/foraminiferal limestones rich in Somalina stefaninii. These different mid-Eocene rock units were considered as deposits of shallow marine environments (Al-Ahwani, 1982; Abu El-Ghar, 2007; Hassan and Omran, 1991). On the other hand, Sallam et al. (2015) and Wanas et al. (2015) declared that these mid-Eocene deposits were developed in different depositional environments. They suggested that the rocks of the Sn-1 and Sn-3 were deposited in a marginal marine (tidal flat to lagoonal) environment on an inner ramp platform, whereas the Sn-2 was considered as deposits of floodplain-dominated
alluvial-lacustrine systems, under arid and semiarid climatic conditions. Recently, Selim et al. (2016) showed that the mid-Eocene rocks were deposited in environments vary from a stream-dominated delta to lagoonal deposits through the delta fringes. However, they did not notice the occurrence of about 15–16 m thick shallow lacustrine deposits that directly occur below the lagoonal foraminiferal limestones of Sn-3, and unconformably overlie the alluvial–floodplain siliciclastic deposits of Sn-2. The present study is concerned with the lacustrine succession that forms the uppermost part of the mid-Eocene Sn-2 of Sallam et al. (2015).

5. Field and facies description of the studied succession

5.1. Outcrop features

The study outcrop occurs as gently sloped small hills separated by small incised water gullies. The studied succession constitutes the uppermost part of the Sn-2 (Fig. 2). It unconformably overlies the alluvial–floodplain siliciclastic deposits (25 m thick) of the Sn-2 (Fig. 3a, b), and underlies the marginal marine deposits of the Sn-3 (Fig. 2). It consists mainly of mixed siliciclastic-carbonate rocks (15–16 m thick) (Figs. 2), without marine fossils, except the rarely occurrence of small gastropod casts (Fig. 3c). This succession is made up of alternated beds of dolostone, marlstone and mudrock with a few thin layers of siltstone (Figs. 2, 3d).

5.2. Facies description

5.2.1. Dolostone facies

The dolostone beds are irregularly bedded and display concretionary-like structures (Fig. 3d). Their contacts are sharp with the underlying and overlying mudrock facies. Thickness of the dolostone beds ranges from 0.3 to 0.7 m, and they largely increase in thickness towards the top of the succession (Fig. 2). The dolostones are yellow to reddish yellow in color and hard. Such reddish coloration of dolostones is due to their contamination with iron minerals. In the uppermost part of the succession, the dolostones display some karst-features (cavernous-like). Some paleopedogenic and subaerial exposure features were observed in the dolostone beds. These features comprise root casts, color mottling, gypsum veins and nodular-brecciated structures (Fig. 3e, f).
Table 1
Mineralogical and stable isotopic results of the dolostone samples. Dol = Dolomite; Qz = Quartz; Cl = Clay.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>% Mineralogy (semi-quantitative)</th>
<th>Isotopes (% VPDB)</th>
<th>δ13C</th>
<th>δ18O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dol.</td>
<td>Qz.</td>
<td>Cl.</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>70</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>10A</td>
<td>90</td>
<td>10</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>13A</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>16A</td>
<td>85</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5B</td>
<td>25</td>
<td>40</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>8B</td>
<td>75</td>
<td>−</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>11B</td>
<td>60</td>
<td>5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>18B</td>
<td>55</td>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>28B</td>
<td>60</td>
<td>15</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

6. Discussion

In lacustrine/palustrine environments, several processes had been considered to interpret the primary/diagenetic dolomite. The first is the fact that the dolomite can precipitate by microbial activity where microbes modify the chemistry of the solution, and provide suitable surfaces for nucleation of a poorly-ordered, fine-crystalline, Ca-rich dolomite (e.g., Vasconcelos et al., 1995; Wright, 1999; García del Cura et al., 2001; Van Lith et al., 2003; Wacey et al., 2007; Bréhéret et al., 2008; Sánchez-Román et al., 2008; Deng et al., 2010; Last et al., 2012). The second is that the dolomite can form by dolomitization of carbonate muds precursors (e.g., Last, 1990; Arenas et al., 1999; Bustillo et al., 2002; Yuan et al., 2015). In the studied dolostones, there is any evidence for carbonate precursors and microbial activity. Therefore, the studied dolomite appears to be a primary precipitate due to its occurrence as homogeneous-sized dolomite (see Fig. 4a, b), and lack of any preserved other carbonate minerals precursor (De Deckker and Last, 1989; Last, 1990; Arenas et al., 1997; El-Sayed, 2001; García del Cura et al., 2001; Abdul Aziz et al., 2003; Bréhéret et al., 2008). Also, this dolomite seems to be abiogenically-formed, as indicated by the absence of any microbial relics (see Section 6.1) within the studied dolomites. The recorded positive δ18O signature (+0.44 and +2.96 VPDB‰) indicates that dolomite precipitation was probably mediated by evaporative alkaline-saline lake conditions (Bellanca et al., 1992; Calvo et al., 1995; Abdul Aziz et al., 2003; Arenas et al., 1997; Mauger and Compton, 2011; Yuan et al., 2015) and low temperatures, as all values of oxygen isotopes (Table 1) are larger than the limit value (−6.5‰) for high-temperature dolomite genesis (Allan and Wiggins, 2003; Yuan et al., 2015). The slightly negative δ13C values (−1.08‰ to −2.96‰) of the dolomites may be due to the overlapping of pedogenesis and meteoric diagenesis (Bustillo and Alonso-Zarza, 2007; Armenteros and Edwards, 2012; Li et al., 2013). On the other hand, the recorded negative δ13C values (−0.93 and −8.95 VPDB‰) indicate that precipitation of dolomites is more likely to have taken place through the degradation of organic matter (Calvo et al., 1995; Mauger and Compton, 2011; Armenteros and Edwards, 2012). It also indicates soil-derived CO2 from root respiration under semi-arid climatic conditions (Li et al., 2013) which may also promote negative δ13C values of the lake water (Armenteros and Edwards, 2012; Li et al., 2013). Additionally, the recorded negative δ13C values of the studied dolomites do not show the characteristic wide range of δ13C values often associated with ‘organogenic’ or bacterially-induced carbonates and dolomites (e.g., Warren, 2000; García del Cura et al., 2001; Levellie et al., 2007; Wacey et al., 2007; Solari et al., 2010).

Textural and mineralogical characters of the studied dolomite (see Section 6.1) reveal its occurrence in close association with a clayey material that is composed mainly of smectites. Such characteristics suggest a genetic relationship between dolomite and smectite rather than a simple juxtaposition of the two minerals. Therefore, dolomite formation needs now to connect with the presence of smectite minerals in the precipitation medium. As revealed from petrographic characters of dolomite with its associated smectite (Fig. 4a–h), the studied dolomite has been interpreted as...
Fig. 4. (a, b) Photomicrographs showing fine-crystalline dolomite rhombs with hypidiotopic fabric and equigranular texture (right-hand photo). Notice the occurrence of some anhedral, micro-spheroidal crystals (left-hand photo), samples no. 1 A and 10 A, respectively. (c) SEM image showing dolomite rhombs surrounded by irregular curved flakes-smectite, sample no. 25B. (d–f) SEM images showing intergrowth of curved flakes-smectite with dolomite rhombs, samples no. 2B and 8B, respectively. (g, h) SEM images showing honeycomb-like structure-smectite enclosed in the dolomite rhombs, samples no. 2B and 13A. Dol = Dolomite; Sm = Smectite. EDX elemental analyses on the Fig. 4c, g refer to smectitic clays (Sm).
a primary precipitate enclosing the previously-precipitated smectitic clay minerals. This can be discussed in the following:

From the textural, mineralogical and stable isotopic analyses, the studied dolomite appears to be a primary precipitate in origin (rather than replacement of precursor carbonate minerals), and was precipitated in evaporative alkaline-saline lake water with low sulphate concentration under semi-arid conditions and low temperatures. In such conditions, smectite could form by direct precipitation from solution in alkaline-saline lake, where the alkaline-saline waters containing silica, Fe and Al-rich detrital clays (kaolinite, which is unstable in alkaline lacustrine conditions and provides Al to solution; Chahi et al., 1993) promoted the precipitation of authigenic smectite (Jones, 1986; Darragi and Tardy, 1987; Calvo et al., 1999; Polyak and Güven, 2000; Deocampo, 2005, 2015; Furquim et al., 2008; Bristow and Milliken, 2011; Martín Pérez et al., 2015; Gürel and Özcan, 2016). In such high pH (over 9) environments, smectitic clays may be neoformed as a gel-like highly viscous medium (Pozo and Casas, 1999; Tosca and Masterson, 2014; Cuadros et al., 2016; Díaz-Hernández et al., 2013; Casado et al., 2014; Wright and Barnett, 2015). By increase evaporation (as indicated by positive oxygen isotope values), such a highly viscous smectitic alkaline medium with low sulphate concentrations (as is evidenced by the absence of any associated sulphate minerals) could clearly lower kinetic barriers for abiotic formation of primary dolomite enclosing the previously-precipitated smectitic clay minerals (Fernández-Díaz et al., 2006; Sánchez-Navas et al., 2009; Díaz-Hernández et al., 2013; Casado et al., 2014; Wright and Barnett, 2015; Cuadros et al., 2016). In such conditions and settings, the Ca, Mg and HCO₃ for dolomite formation were probably came to the studied mid-Eocene lake water from: 1) high evaporation in the saline lake water, where high evaporation rates can produce pore waters with sufficiently high Mg/Ca ratios and carbonate ion concentrations to precipitate dolomite (Last, 1990; Calvo et al., 1999), 2) the presence of smectite which can act as a catalyst for incorporation of Mg²⁺ in the carbonate phases, and/or as templates for direct precipitation of dolomite (Díaz-Hernández et al., 2013; Casado et al., 2014; Martín Pérez et al., 2015; Wright and Barnett, 2015; Mercedes-Martin et al., 2016), 3) a percolation of alkaline soil solutions during pedogenesis that favour the incorporation of Mg⁺² into the dolomite structure (Botha and Hughes, 1992; Whipkey et al., 2002; Whipkey and Hayob, 2008; Table 2

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Spot location</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>K₂O</th>
<th>CaO</th>
<th>MgO</th>
<th>SrO</th>
<th>MnO</th>
<th>BaO</th>
<th>P₂O₅</th>
<th>Na₂O</th>
<th>SiO₂</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Dolomite</td>
<td>0.151</td>
<td>0.816</td>
<td>0.005</td>
<td>31.508</td>
<td>19.594</td>
<td>0.063</td>
<td>0.116</td>
<td>0.018</td>
<td>0.105</td>
<td>0.063</td>
<td></td>
<td>52.439</td>
</tr>
<tr>
<td>Clay matrix</td>
<td>22.973</td>
<td>7.558</td>
<td>1.777</td>
<td>0.600</td>
<td>20.050</td>
<td>0.047</td>
<td></td>
<td></td>
<td>0.014</td>
<td>0.008</td>
<td>0.050</td>
<td>0.184</td>
<td>49.207</td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.480</td>
<td>1.202</td>
<td>0.043</td>
<td>30.104</td>
<td>19.355</td>
<td>0.077</td>
<td>0.320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.124</td>
<td></td>
</tr>
<tr>
<td>16A</td>
<td>Clay matrix</td>
<td>23.494</td>
<td>6.825</td>
<td>2.558</td>
<td>0.606</td>
<td>18.568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78.729</td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.063</td>
<td>0.292</td>
<td>0.007</td>
<td>32.702</td>
<td>18.580</td>
<td>0.181</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.132</td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.139</td>
<td>0.567</td>
<td>0.016</td>
<td>31.561</td>
<td>18.807</td>
<td>0.175</td>
<td>0.192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.542</td>
</tr>
<tr>
<td>Clay Matrix</td>
<td>20.579</td>
<td>16.602</td>
<td>1.600</td>
<td>0.536</td>
<td>2.468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78.520</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.017</td>
<td>0.088</td>
<td>0.017</td>
<td>34.900</td>
<td>18.447</td>
<td>0.162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.820</td>
<td></td>
</tr>
<tr>
<td>Clay matrix</td>
<td>18.440</td>
<td>8.056</td>
<td>1.448</td>
<td>0.438</td>
<td>2.414</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65.252</td>
<td></td>
</tr>
<tr>
<td>Clay matrix</td>
<td>13.498</td>
<td>36.040</td>
<td>0.508</td>
<td>1.155</td>
<td>2.421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73.661</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.238</td>
<td>0.731</td>
<td>0.015</td>
<td>32.353</td>
<td>19.298</td>
<td>0.045</td>
<td>0.080</td>
<td>0.161</td>
<td>0.098</td>
<td>0.118</td>
<td></td>
<td>53.262</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.695</td>
<td>0.407</td>
<td>0.014</td>
<td>32.594</td>
<td>19.512</td>
<td>0.170</td>
<td>0.099</td>
<td>0.020</td>
<td>0.028</td>
<td>0.059</td>
<td></td>
<td>53.598</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.127</td>
<td>1.820</td>
<td>0.037</td>
<td>31.121</td>
<td>18.715</td>
<td>0.085</td>
<td>0.383</td>
<td>0.032</td>
<td>0.029</td>
<td>0.093</td>
<td>0.090</td>
<td>52.532</td>
<td></td>
</tr>
<tr>
<td>Clay matrix</td>
<td>25.081</td>
<td>9.680</td>
<td>1.806</td>
<td>0.428</td>
<td>3.137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85.795</td>
<td></td>
</tr>
<tr>
<td>15B</td>
<td>Clay matrix</td>
<td>13.498</td>
<td>36.040</td>
<td>0.508</td>
<td>1.155</td>
<td>2.421</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73.661</td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.500</td>
<td>1.805</td>
<td>0.047</td>
<td>29.521</td>
<td>18.672</td>
<td>0.070</td>
<td>0.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.598</td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.361</td>
<td>1.898</td>
<td>0.068</td>
<td>30.157</td>
<td>18.970</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.313</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 5. X-ray powder diffraction pattern of the encountered minerals in the studied dolostone. Dol = Dolomite; Qz = Quartz; Kao = kaolinite and Musc = Muscovite.](image)

![Fig. 6. δ¹⁸O and δ¹³C cross plots for the dolomite samples.](image)
Casado et al., 2014; Alonso-Zarza et al., 2016), 4) the decomposition of soil organic matter (see negative δ13C values) that increases the alkalinity and Mg/ Ca ratio in the lake water (Talbot, 1990), 5) dissolution of dolostone and limestone clasts that were derived from the surrounding Cretaceous strata, and 6) aeolian dusts that reflect aridity to semi-aridity in the mid-Eocene at the studied area (Wanas et al., 2015).

8. Conclusions

In some saline and alkaline lake systems, smectitic clay minerals forming at or near the sediment water interface are a major sedimentary component. These clays influence the physical and geochemical budget of lake waters, and are therefore expected to influence the formation of contemporaneous carbonate precipitates. Also, dolomite may occur relatively commonly as the only carbonate mineral if the sedimentary, soil or diagenetic solutions are alkaline. The studied mid-Eocene lacustrine succession at Gebel El-Goza-El-Hamra (Shabrawet area, NE Egypt) gives us an opportunity to study a systematic feedback between smectitic clays and direct dolomite formation in alkaline lake systems under arid to semiarid climates at ambient temperatures. In the studied section, smectitic clays and fine-crystalline dolomites were formed in an evaporative alkaline lacustrine environment at ambient (low) temperatures in the absence of both microbial activities and carbonate precursors. In such conditions, smectitic clays were neoformed as a gel-like highly viscous materials. Elevated evaporation in such highly viscous smectitic alkaline medium that has low sulphate concentrations and alkaline soil solution supply clearly lower kinetic barriers for abiogenic dolomite formation as a primary precipitate. Consequently, neoformation of smectitic clays in evaporative saline alkaline lakes can be significant in the formation of abiogenic primary dolomite at ambient temperatures as they can generate a gel-like highly viscous medium and provide Mg2+ that can enhance the physio-chemical precipitation of primary dolomite from solution. However, more work is needed to better characterize the role of clays for dolomite formation in alkaline lacustrine environments at ambient temperatures.

Acknowledgements

We acknowledge the reviewers, Prof. Armenteros Ildofonso (Geology Department, University of Salamanca, Salamanca, Spain) and Prof. José L. Díaz-Hernández (IFAPA, Área de Recursos Naturales, Consejería de Agricultura, 18080 Granada, Spain) whose suggestions and comments have improved the quality of the manuscript. Dr. W. Haggag (Bena University, Egypt) and Prof. X. Li (School of Earth Sciences and Engineering, Nanjing University, Nanjing, China) are greatly acknowledged for their help during the fieldwork and geochemical analysis. Special thanks are extended to Prof. Jasper Knight (Editor in Chief, Sedimentary Geology) for help in the improvement of the manuscript and editorial support.

References


