Hydrothermal synthesis of cobalt carbonates using different counter ions: An efficient precursor to nano-sized cobalt oxide (Co$_3$O$_4$)

M.Y. Nassar, I.S. Ahmed

Chemistry Department, Faculty of Science, Benha University, Benha City, Egypt

ABSTRACT

Synthesis of submicrometer crystalline particles of cobalt carbonate was achieved hydrothermally using different cobalt salts and urea with a molar ratio from 1:3 to 1:20 (cobalt salt:urea) in aqueous solutions at 160 °C for 24–36 h, in the presence of cetyltrimethylammonium bromide (CTAB) as a surfactant. Nanoparticles of Co$_3$O$_4$, with an average size from 30 to 39 nm, were obtained by thermal decomposition of CoCO$_3$ samples at 500 °C for 3 h in an electrical furnace. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–Vis spectra and thermal analysis. Studying the optical properties of the as-prepared cobalt oxide nanoparticles showed the presence of two band gaps, the values of which confirmed the semiconducting properties of the prepared Co$_3$O$_4$.

1. Introduction

Over the past several years, considerable attention has been paid to nanomaterials, including their synthesis, characterization, chemical and physical properties. This considerable interest is due to their unique electrical, magnetic, optical and catalytic properties compared with those of the bulk materials [1–7]. Moreover, control of the morphologies has drawn a keen interest of researchers because materials with the same compositions but different morphologies and microstructures exhibit substantial differences in their properties [8–11]. As such, many synthetic methods have been developed to prepare nano-sized materials with different morphologies and architectures, such as nanotubes [12], nanobelts [13], nanorods [14], nanoparticles [15] and other nanoarchitectures [16].

Metal carbonates have been intensively investigated in recent years because they are an important class of inorganic materials, and they are extensively used as a standard model systems in industry because of their abundance in nature and their wide applications (such as in the paper, plastic, paint and rubber industries) [17]. Carbonates comprise a class of minerals in which a metal ion is coordinated by the CO$_3^{2-}$ carbonate molecule. Carbonate mineral structures are either hexagonal rhombohedral, orthorhombic or monoclinic, depending on whether the metal ion is small (rhombohedral) or large (orthorhombic), or whether the carbonate is hydrous (monoclinic) [18]. Generally, sodium carbonate or carbon dioxide is used for the preparation of carbonate salts such as CaCO$_3$, PbCO$_3$, BaCO$_3$ and MnCO$_3$ [19–22]. Moreover, cadmium carbonate with different morphologies was prepared via wet chemical methods [23,24]. Additionally, other metal carbonates such as CaCo$_3$, and BaCO$_3$ were synthesized by the reverse micelle method [25]. Recently, the hydrothermal method has attracted the attention of some researchers due to its effectiveness in the synthesis of different inorganic materials with different morphologies. As such, MnCO$_3$ hollow microspheres and nanocubes have been successfully synthesized via an ionic liquid-assisted hydrothermal synthetic method [26]. Moreover, the structural and optical properties of CuO layered hexagonal discs synthesized by a low-temperature hydrothermal process have been investigated [27]. Also, the structural, optical and photocatalytic properties of alpha-Fe_2O_3 nanoparticles have been studied [28].

CoCO$_3$ nanowires and nanoparticles were reported to be synthesized using the hydrothermal method [29,30]. However, to the best of our knowledge, the hydrothermal synthesis of cobalt carbonate and using it to generate Co$_3$O$_4$ is rare [29,30]. Cobalt(II,III) oxide (Co$_9$O$_{14}$) has a normal spinel structure in which Co$^{2+}$ and Co$^{3+}$ ions are at the centers of tetrahedral and octahedral sites, respectively [31]. Co$_3$O$_4$ nanomaterials are widely used in lithium-ion batteries and chemical sensors [32], heterogeneous catalysts [33], and magnetic and optical materials [34,35], where their properties are strongly dependent on their size and morphology. As such, many novel synthetic methods have been developed recently to make nanostructured Co$_3$O$_4$ with different morphologies such as nanorods [36], nanowires [37], nanocubes [33], nanotubes [38], nanofibers [34], nanowalls [39] and nanoplatelets [40]. Additionally, flower-like nanomaterials [41–43], microspheres [29,44] and hollow spheres [45] have also been made. Among them, a two-step
process is often adopted to fabricate Co$_3$O$_4$ crystals with different shapes; namely, (i) solid cobalt precursors are first synthesized, and (ii) the precursors are then calcinated to produce Co$_3$O$_4$ [29]. Cobalt hydroxyoxide, cobalt hydroxide, cobalt-nitrate-hydroxide and cobalt-nitrate-carbonate-hydroxide have been synthesized and proved to be effective solid cobalt precursors to make Co$_3$O$_4$ [46–49,44,50], but as mentioned above, reports on the synthesis of CoCO$_3$ as a solid cobalt precursor and then using it to fabricate Co$_3$O$_4$ are rare [29,30]. To the best of our knowledge, reports on the synthesis of uniform CoCO$_3$ with particle sizes in the submicrometer range are also rare [30].

Herein we report a facile hydrothermal procedure to synthesize submicro cobalt carbonate crystals by a hydrothermal method using different cobalt salts (such as cobalt chloride, cobalt acetate and cobalt nitrate, separately), cetyltrimethylammonium bromide (CTAB) as a surfactant and urea, a low cost and environmentally benign chemical employed as a carbonate source. The as-prepared cobalt carbonate was then thermally converted to phase-pure

![Fig. 1. (a–c) SEM images of the prepared cobalt carbonate samples.](image)

![Fig. 2. (a–c) XRD patterns of the prepared cobalt carbonate samples.](image)
Co₃O₄. The intermediate products were investigated by means of XRD, FT-IR, TGA and SEM. The cobalt oxide product was characterized by using XRD, FT-IR, UV–Vis spectra and TEM.

2. Experimental

2.1. Materials and reagents

All reagents were of analytical grade and were purchased and used as received without further purification: cobalt acetate (Co(CH₃COO)₂·4H₂O; Fluka), cobalt chloride (CoCl₂·6H₂O; Sigma–Aldrich), cobalt nitrate (Co(NO₃)₂·4H₂O; Sigma–Aldrich), cetyltrimethylammonium bromide (CH₃(CH₂)₁₅N(CH₃)₃Br; CTAB; MW = 364.45 g/mol; Sigma–Aldrich), urea (0.15–3 g; CO(NH₂)₂; Fluka).

2.2. Preparation of cobalt carbonate

In a typical hydrothermal synthesis, 2.5 mmol cobalt salt: 0.62 g of cobalt acetate (Co(CH₃COO)₂·4H₂O), 0.6 g of cobalt chloride (CoCl₂·6H₂O) or 0.64 g cobalt nitrate (Co(NO₃)₂·4H₂O), independently, 0.1 mmol (36.5 mg) of cetyltrimethylammonium bromide (CH₃(CH₂)₁₅N(CH₃)₃Br; CTAB; MW = 364.45 g/mol) and a varying amount of urea (0.15–3 g; CO(NH₂)₂) were dissolved in 60 mL distilled water in an Erlenmeyer flask, and vigorously stirred for about 10 min for complete mixing. The reaction mixture was then transferred to a Teflon-lined stainless steel autoclave (capacity 100 mL). Finally, the autoclave was closed and kept inside an electric oven at 160 °C for a certain reaction period, typically from 3 to 24 h, when cobalt chloride or cobalt acetate was used as a cobalt ion source; and from 3 to 72 h, when cobalt nitrate was used. After the reactions, pink solid products of cobalt carbonates (CoCO₃); or mauve solid products, depending on the reaction conditions, were washed with deionized water and ethanol several times via centrifugation–redispersion cycles, and then dried in an oven at 60 °C for 24 h.

2.3. Preparation of nano-structure of tricobalt tetroxide (Co₃O₄)

The thermal decomposition of the as-prepared CoCO₃ (A, B and C) to tricobalt tetroxide (Co₃O₄) was performed at 500 °C for 3 h in an electric furnace.

2.4. Characterization

The as-prepared samples were characterized by X-ray powder diffraction (XRD) using a 18 kW diffractometer (Bruker; model D8 Advance) with monochromated Cu Kα radiation (λ) 1.54178 Å. The SEM images were taken on a scanning electron microscope (JEOL; model JSM-5410). The TEM images were taken on a transmission electron microscope (JEOL; model MB1575S) from 4000 to 400 cm⁻¹ at room temperature. The thermal analysis (TGA and DTA) measurements were carried out on a thermal analyzer instrument (Shimadzu; model TA-60WS) with a heating rate of 15 °C/min in nitrogen gas. Note, the CoCO₃ and Co₃O₄ samples obtained from cobalt acetate, cobalt chloride and cobalt nitrate will be referred to as A, B and C, respectively.

Fig. 3. (a–c) FT-IR spectra of the prepared cobalt carbonate samples.

Fig. 4. (a–c) TGA and DTA curves of the prepared cobalt carbonate samples.
3. Results and discussion

3.1. Morphology and XRD study

The morphologies of the as-prepared CoCO₃ submicrometer crystals were investigated with SEM. Fig. 1a–c show some typical images of the SEM of the as-prepared CoCO₃ products. When different counter ions, such as acetate, chloride and nitrate, were used during the preparation of cobalt carbonate, CoCO₃ submicrometer crystals with different morphologies were obtained. The obtained cobalt carbonate crystals from cobalt acetate or cobalt nitrate were almost uniform, but the ones obtained from cobalt chloride were not. From the micrograph, it was observed that the cobalt carbonate particles were quasi cubes with an average diameter of 2.8 µm (Fig. 1a), tetragonal with an average length of 7 µm and an average width of 1.3 µm (Fig. 1b), and flakes congregated and stacked more compactly into irregular cubes with an average diameter of 25 µm (Fig. 1c), for A-CoCO₃, B-CoCO₃ and C-CoCO₃, respectively.

The crystal phases of the as-prepared cobalt carbonate samples prepared by using the previously mentioned counter ions were examined by XRD patterns as shown in Fig. 2. The intensities of the sharp diffraction peaks indicated that the obtained product has good crystallinity. All of the diffraction peaks in the XRD patterns can be indexed as a pure hexagonal phase of CoCO₃ with cell constants: \(a = 4.661 \text{ Å} \) and \(c = 14.96 \text{ Å} \) (space group R3c, JCPDS card 78-0209); these data are in agreement with the ones published by Cong et al. [31]. No other peaks for impurities were detected. The average size of the nanocrystallites was also estimated using the Debye–Scherrer formula [51]:

\[
D = \frac{0.9 \lambda}{\beta \cos \theta_B}
\]

where \(\lambda \), \(\beta \), \(\theta_B \) are the X-ray wavelength, the full width at half maximum (FWHM) of the diffraction peak and the Bragg diffraction angle respectively. The estimated crystallite size from XRD data is found to vary from 127 nm (for A-CoCO₃) to 207 nm (for C-CoCO₃). From both SEM and XRD data it seems that the CoCO₃ submicrometer crystals were formed by aggregation of smaller crystallites during the synthesis process. The three CoCO₃ samples with a single phase could be prepared in an autoclave with a reaction time of 24 h when acetate or chloride counter ions were used, and in 36 h when the nitrate counter ion was used. It is worthy to mention that when the reaction time was reduced to less than the indicated ones, the urea–cobalt salt reactions sometimes gave basic cobalt carbonates and in other cases it gave a mixture of cobalt oxide and cobalt carbonate. The growth and nucleation mechanism of the CoCO₃ submicrometer crystals can be explained by a
precipitation–dissolution–renucleation–growth–aggregation mechanism [30]. At the beginning, when the reaction mixture solution reaches its supersaturation, primary precipitates are instantaneously formed. After that, this process is followed by dissolution of unstable precipitates which then give renucleation and growth of crystallites [20,29,44,52]. The produced crystallites aggregate and coagulate into final crystals, as described in mineralization processes [53]. The formation mechanism of cobalt carbonate can be proposed based on the reactions (2)–(6) [54]. Urea in these reactions serves mainly as a carbonate source because urea decomposes into carbon dioxide and ammonia in aqueous solutions at temperatures higher than 80 °C [55]. Carbon dioxide then reacts with hydroxide ions to generate carbonate ions [56], which finally react with cobalt ions to form cobalt carbonate products.

\[
\begin{align*}
\text{NH}_2\text{CONH}_2 + \text{H}_2\text{O} & \rightarrow 2\text{NH}_3 + \text{CO}_2 \\
\text{NH}_3 + \text{H}_2\text{O} & \rightarrow \text{NH}_4^+ + \text{OH}^- \\
\text{CO}_2 + 2\text{OH}^- & \rightarrow \text{CO}_3^{2-} + \text{H}_2\text{O} \\
\text{Co}^{2+} + \text{CO}_3^{2-} & \rightarrow \text{CoCO}_3
\end{align*}
\]

(2)

(3)

(4)

(5)

(6)

3.2. FT-IR-spectra

The bonding and chemical composition of the cobalt carbonate were investigated using FT-IR. Fig. 3 shows the IR spectra of the as-prepared A-CoCO₃, B-CoCO₃ and C-CoCO₃ samples. The IR spectra show bands around 3423, 3487 and 3423 cm⁻¹ for the A-CoCO₃, B-CoCO₃ and C-CoCO₃ samples, respectively, which can be attributed to the stretching vibration of the O–H group of surface molecular water and O–H hydrogen-bonds O–H [30]. A band appearing at 3367 cm⁻¹ for B-CoCO₃ is attributed to the O–H group interacting with carbonate anions of CoCO₃ [29,57]. The evidence for the presence of CO₃²⁻ in the CoCO₃ samples can be confirmed by its fingerprint peaks of D₃h symmetry at 1409, 858 and 740 cm⁻¹ for A-CoCO₃, at 1406, 833 and 690 cm⁻¹ for B-CoCO₃, and at 1406,
858 and 734 cm\(^{-1}\) for C-Co\(_{3}\)O\(_4\), which are assigned for each prepared carbonate sample to the vibrational modes \(v_3(E^\prime)\), \(v_3(E^\prime\prime)\) and \(v_4(E^\prime)\), respectively, according to normal modes of vibration of planar XO\(_3\) molecules/ions (X = carbon in the present case) [58–60]. The shoulder appearing at 1596 cm\(^{-1}\) for A-Co\(_{3}\)O\(_4\) and at 1598 cm\(^{-1}\) for C-Co\(_{3}\)O\(_4\), and the peak appearing at 1539 cm\(^{-1}\) for B-Co\(_{3}\)O\(_4\) may be assigned to the bending vibration of adsorbed water molecules [61]. The peak appearing at 3367 cm\(^{-1}\) for B-Co\(_{3}\)O\(_4\) is attributed to the O–H groups interacting with the carbonate anions of CoCO\(_3\) [30]. There are two peaks at 960 and 1338 cm\(^{-1}\) for B-Co\(_{3}\)O\(_4\) which may be assigned to the presence of the CTAB surfactant as an impurity in a very small quantity.

3.3. TG-DTA analysis

The thermal behavior of the as-prepared CoCO\(_3\) samples has been investigated by TGA and DTA techniques as shown in Fig. 4a–c. The TGA curves show that there is one weight loss step in the temperature range 320–390 °C, two merged steps in the range 290–460 °C and one step in the range 320–450 °C for A-Co\(_{3}\)O\(_4\), B-Co\(_{3}\)O\(_4\) and C-Co\(_{3}\)O\(_4\), respectively. The actual weight loss of CoCO\(_3\) to Co\(_3\)O\(_4\) in this thermal process was about 32%, 31.53%, and 32.5% for A-CoCO\(_3\), B-CoCO\(_3\) and C-CoCO\(_3\), respectively, and these values are close those calculated from Eq. (8) [64,65]:

\[
(\alpha hv) = K(hv - E_g)^n
\]

where \(\alpha\) is the absorption coefficient, \(K\) is a constant, \(E_g\) is the band gap and \(n\) equals either 1/2 for a direct allowed transition or 2 for an indirect allowed transition. In this case, \((\alpha hv)^2\) is plotted versus \(hv\), as shown in Fig. 8(ii)a–c. The value of \(hv\) extrapolated to \(\alpha = 0\) gives the absorption band gap energy. The curves in Fig. 8(ii)a–c can be linearly fitted into two lines with intercepts at: 2.15 and 1.5 eV, 1.9 and 1.48 eV, and 1.94 and 1.49 eV, respectively. The band gap of 2.15, 1.9 and 1.94 eV for A-Co\(_{3}\)O\(_4\), B-Co\(_{3}\)O\(_4\) and C-Co\(_{3}\)O\(_4\), respectively, can be assigned to a Co\(^{2+}\), O\(^{2-}\) charge transfer process (basic optical band gap energy or valence to conduction band excitation), while the band gap of 1.5, 1.48 and 1.49 eV for A-Co\(_{3}\)O\(_4\), B-Co\(_{3}\)O\(_4\) and C-Co\(_{3}\)O\(_4\), respectively, can be assigned to a Co\(^{3+}\) charge transfer (the Co\(^{3+}\) level located below the conduction band). The best fit of Eq. (2) gives \(n = 1/2\), suggesting samples, as presented in Fig. 8(i) a–c. The band gap \(E_g\) can be calculated from Eq. (8) [64,65]:

\[
3CoCO_3 \xrightarrow{200–500 \degree C} Co_3O_4 + 2CO_2 + CO
\]
that the obtained Co₃O₄ nanoparticles in all cases are semiconducting with a direct transition. Additionally, the presence of two band gaps with the specific determined values proves the purity of the prepared Co₃O₄, and these data are in agreement with those previously reported [34,65–68].

4. Conclusion

Submicrometer crystalline particles of cobalt carbonate with different morphologies can be prepared by a hydrothermal process using cobalt acetate, cobalt chloride or cobalt nitrate and urea, in presence of cetyltrimethylammonium bromide (CTAB) as a surfactant. Squared-shape nanoparticles of Co₃O₄ with an average size from 30 to 39 nm can be produced by calcination of the CoCO₃ samples at 500 °C for 3 h. The as-prepared cobalt oxide nanoparticles show some optical properties such as the presence of two band gaps with values in range 1.94–1.49 eV, which confirm the semiconducting properties of the prepared Co₃O₄ nanoparticles.

Acknowledgement

The authors would like also to cordially dedicate this work to the soul of Prof. Dr. R.M. Issa, Tanta Univ., Egypt. Also, the authors would like to express our sincere gratitude and appreciation to Prof. Dr. M.R.H. Mahran, National Research Centre, Egypt.

References