PD18-11
PENILE IMPLANT DOES NOT REDUCE PENILE LENGTH
MOHAMAD HABOUS*, JEDDA, Saudi Arabia; OSAMA ABDELAHWAB, Benha, Egypt; DAVID RALPH, LONDON, United Kingdom; SIMONE GIONA, London, United Kingdom; OSAMA LABAN, Tabouk, Saudi Arabia; SALEH BINSALEH, Riyadh, Saudi Arabia; GORDON MUIR, LONDON, United Kingdom; JOHN MULHALL, New York, NY

INTRODUCTION AND OBJECTIVES: A common cause of patient dissatisfaction after penile implant (PI) surgery is penile shortening. This prospective study aimed to investigate penile size measured preoperatively and postoperatively.

METHODS: Consecutive patients undergoing PI surgery were assessed over a 1-year period. Standardised measurements of stretched flaccid penile length (SFPL) were performed under anaesthesia preoperatively then re-measured at the end of the procedure with the penis in the erect position. Measurement was done by a single evaluator and was measured as follow: penile length from the suprapubic skin to distal glans (skin-to-tip), and girth was measured with tape around the base of penis. Size data was recorded to the nearest five millimetres. We recorded type of penile implant and size and data on body mass index (BMI), hypertension, HbA1c and Peyronie’s disease (PD). SPSS software was used for statistical analysis. Paired T-test to verify statistical difference in Length and Girth Pre-and Post-surgery. Cross-taps to assess correlation between Length/Girth and other variables.

RESULTS: 133 patients were included. 66% had malleable implant (MP), 34% inflatable implant (IP). Median age and BMI were 56 years and 30 respectively. 30% patients had hypertension and 28% had PD. 67% were diabetic. Mean pre-implant SFPL was 12.8 ± 1.8 cm. Postoperative mean erect length 13.1 ± 1.7 cm. Overall, there was a significant minor increase in length +0.36 ± 0.63 cm. Patients who had MP, had a more significant increase in length 0.62 ± 0.72 cm compared to MP 0.22 ± 0.53 (p < 0.05). We ran ANOVA Test and relative graph for differential Girth (pre-and postoperative) versus prosthesis diameter (Small:9.5 mm, Medium:11 mm, Large:13 mm) and was not statistically significant(p=0.86). Scatter Graph for differential Length (pre-and post-operative) versus prosthesis length showed to be statistically not significant. We investigated correlations between pre-and post-op outcomes related to BMI, HTN, diabetes and PD. None of these variables affected outcome.

CONCLUSIONS: Penile implant surgery does not significantly decrease penile size compared to pre-operative assessment, but preserves it for the majority of patients.

Table 1: Summary of change in length and girth according to type of implant

<table>
<thead>
<tr>
<th>Length change</th>
<th>Length increase N (%)</th>
<th>Same length N (%)</th>
<th>Length decrease N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>133</td>
<td>59 (44.1%)</td>
<td>68 (51.1%)</td>
</tr>
<tr>
<td>IPP</td>
<td>45</td>
<td>26 (57.8%)</td>
<td>39 (62.2%)</td>
</tr>
<tr>
<td>MP</td>
<td>88</td>
<td>30 (34.1%)</td>
<td>49 (55.7%)</td>
</tr>
<tr>
<td>Girth change</td>
<td>Girth increase N (%)</td>
<td>Same girth N (%)</td>
<td>Girth decrease N (%)</td>
</tr>
<tr>
<td>N</td>
<td>133</td>
<td>90 (67.7%)</td>
<td>68 (51.1%)</td>
</tr>
<tr>
<td>IPP</td>
<td>45</td>
<td>40 (88.9%)</td>
<td>5 (11.1%)</td>
</tr>
<tr>
<td>MP</td>
<td>88</td>
<td>50 (56.8%)</td>
<td>32 (36.4%)</td>
</tr>
</tbody>
</table>

Source of Funding: None

PD18-12
IMPLANT SELECTION PATTERNS AND REOPERATION RATES IN IMMUNOCOMpromised PATIENTS THAT UNDERWENT PENILE PROSTHESIS SURGERY
Denise Asafu-Adjie*, George Moran, Michael Lipsky, Gen Li, Doron Stember, Peter J. Stahl, New York, NY

INTRODUCTION AND OBJECTIVES: Immuno compromised patients pose unique challenges for penile implant surgeons as their status could increase their infectious risk. HIV and solid organ transplant patients were the index populations for this study as they compromise major immunocompromised groups. Our objective was to describe practice patterns and surgical outcomes of penile prosthesis (PP) surgery in the solid organ transplant and HIV seropositive populations. Trends of the type of penile prosthesis in HIV patients and solid organ transplant patients have not been described.

METHODS: The New York Statewide Planning and Research Cooperative System (SPARCS) database was queried for ICD and CPT codes indicating insertion or replacement of malleable or inflatable PP from 1995-2014. Patients with HIV, history of kidney, heart, liver, lung, and pancreas transplants were identified by ICD codes. Reoperations were identified by ICD and CPT codes for prosthesis removal, repair, or replacement. Descriptive statistics relating to practice patterns and surgical outcomes were generated. Reoperation rates in the index populations versus people without HIV or solid organ transplants were compared by Chi-square testing.

RESULTS: 214 immunocompromised patients underwent PP surgery during the study period, including 123 patients with solid organ transplants and 91 HIV positive patients. Implant selection patterns are depicted in the accompanying table. Reoperation rates in the immunocompromised and non-immunocompromised cohorts were 15% and 12.6%, respectively (p = 0.35). Reoperations for infection occurred in 7.9% of immunocompromised PP recipients and in 2.5% of non-immunocompromised PP (p = 0.0001).

CONCLUSIONS: This is the first report of PP outcomes in immunocompromised recipients based on population based data. We did observe a higher rate of infection in the immunocompromised cohort, but the overall reoperation rate was similar to that observed in the general population. These data suggest an acceptable safety profile for PP surgery in this high risk population.

Source of Funding: None

PD19-01
EVALUATION OF THE VAGINAL MYCOBIOME IN ASYMPTOMATIC PRE-MENOPAUSAL WOMEN
Victoria Scott*, Jie Tang, Los Angeles, CA; Tiina Drell, Jaak Simm, Tallinn, Estonia; Andres Salumets, Tartu, Estonia; Madis Metsis, Tallinn, Estonia; David M. Underhill, A. Lenore Ackerman, Los Angeles, CA

INTRODUCTION AND OBJECTIVES: While the bacterial composition of the vaginal microbiome has been well studied, much less is known about the composition and complexity of the fungal community (“mycobiome”). Investigating the vaginal mycobiome and how it changes in concert with the host environment will be essential in determining why fungal species, such as Candida, can be pathogenic for some hosts and a seemingly inert colonizer in others. To address this question, we sought to evaluate the fungal mycobiome of asymptomatic reproductive-age women.

METHODS: The operational taxonomic unit library used for analysis was obtained from a dataset examining asymptomatic, reproductive-age Estonian women obtained by amplification of the fungal internal transcribed spacer-1 (ITS-1) region from DNA isolated from...