Original Article

Diosmin versus cabergoline for prevention of ovarian hyperstimulation syndrome

Ahmed Samy Saada,b,*, Khalid Abd Aziz Mohameda

aDepartment of Obstetrics and Gynaecology, Faculty of Medicine, Benha University, Egypt
bHawaa Fertility Center, Benha, Egypt

A R T I C L E I N F O

Article history:
Received 5 February 2017
Accepted 26 February 2017
Available online 8 March 2017

Keywords:
Cabergoline
Diosmin
Infertility
ICSI
Ovarian hyperstimulation syndrome

A B S T R A C T

Background: OHSS (Ovarian Hyperstimulation Syndrome) is the most serious iatrogenic complication of ovulation induction. The pathophysiology of OHSS is characterised by increased capillary permeability, leading to leakage of fluid from the vascular compartment, with third space fluid accumulation and intravascular dehydration.

Objective: This study aimed to evaluate the effectiveness of diosmin in comparison to the dopamine agonist cabergoline in preventing OHSS in high risk patients undergoing assisted reproductive technique cycles.

Methods: In this study, 200 women who were at high risk for developing OHSS were randomly allocated into two groups. Group A (Diosmin group, 100 women) and group B (Cabergoline group, 100 women). All patients were assessed every two weeks after retrieval and for 8 weeks to determine early clinical or ultrasound evidence of OHSS.

Results: There was a statistically significant reduction (P = 0.005) in the incidence of OHSS in the diosmin group (12%) compared to cabergoline group (28%). The number of severe OHSS cases in the cabergoline group (n = 13) was significantly higher (P = 0.003) than the diosmin group (n = 2). There was no difference in clinical pregnancy rate.

Conclusion: Our results concluded that diosmin was more effective in preventing severe OHSS and decreasing OHSS occurrence rates than cabergoline when used in high-risk patients.

Trial registration: Clinical trial.gov (NCT02134249).

1. Introduction

Ovarian hyperstimulation syndrome (OHSS) is one of the most dangerous iatrogenic complication of ovulation induction in controlled ovarian stimulation cycles [1]. The incidence of OHSS ranges from 33% in mild cases to 3–6% in moderate cases while reaching only 0.1–2% in severe cases [2,3]. The pathophysiology of early OHSS remains unknown but it is clear that its appearance is mediated by the administration of hCG in COH cycles [4]. Human chorionic gonadotrophin (hCG) or luteinising hormone (LH) following controlled ovarian stimulation by follicle-stimulating hormone (FSH) is responsible for most cases of OHSS. It is the hCG action on the stimulated ovaries that leads to the production of numerous proinflammatory mediators with vascular endothelial growth factor (VEGF) as the chief player [5].

Numerous other factors have been implicated in the disease process such as angiotensin II, interleukin-6, insulin-like growth factor 1 (IGF-1) [6], epidermal growth factor (EGF), transforming growth factors (TGF) a and b, basic fibroblast growth factor (BFGF), platelet-derived growth factor (PDGF), interleukin-1b (IL-1b), and interleukin-6 (IL-6) in which they can act directly or indirectly via VEGF [7–9].

Vascular endothelial growth factor-A (VEGF-A) acts on VEGF receptor-2 (VEGFR-2) causing angiogenesis and vascular hyperpermeability. Thus, its increase in OHSS is responsible for the increased vascular permeability [10,11].

The importance of VEGF in increased vascular permeability has been demonstrated in stimulated female rats. This study confirmed that VEGF and VEGFR-2 are overexpressed in hyperstimulated rats, and are associated with an increase in vascular permeability, which may be responsible for the accumulation of ascitic fluid in the syndrome [12].
The main pathophysiological feature of OHSS is increased capillary permeability, which leads to fluid shift to the third space [1]. This results in ascites or, less commonly, pleural and pericardial effusions. Women in acute severe cases are usually presented by hypovolaemia, with a typical loss of 20% of their calculated blood volume [13].

In a group of women with polycystic ovarian syndrome and hyperprolactinemia, cabergoline administration was reported to reduce the incidence of OHSS [14]. Results obtained with animal models, and the safe clinical profile of dopamine agonists, have led to studies on humans. Concerning the safety of cabergoline use during infertility treatment: fertilization, implantation and pregnancy rates were similar to matched controls [15].

Four systematic reviews and meta-analyses have revealed that cabergoline reduces the incidence of moderate/severe OHSS without affecting implantation, pregnancy and miscarriage rates [16–19].

The flavonoid glycosides diosmin and hesperidin are present naturally in citrus fruit. Micronized purified flavonoid fraction (MPFF) is a semisynthetic drug which is composed of 90% micronized diosmin and 10% hesperidin [20].

MPFF is used in a broad spectrum of patients to treat varicose veins and venous ulcers, hemorrhoids and lymphatic insufficiency [21,22]. In these conditions, MPFF exerts a venotonic action, decreasing venous reflux, and thereby relieving the edema through providing effective venous drainage [23].

Diosmin is a hesperidin-derivative bioflavonoid. Flavonoids have been demonstrated to exert anti-lipoperoxidant, anti-tumoral, anti-platelet, anti-ischemic, anti-allergic, and anti-inflammatory activities [24].

MPFF has been shown to interfere between the leukocytes and the endothelium [25]. MPFF normalizes the synthesis of free radicals and prostaglandins to alleviate the microcirculatory dysfunction [26]. MPFF has been shown to decrease leukocyte adhesion to the vascular endothelium and the levels of granulocyte and macrophage infiltration into the inflamed tissues. The decrease in release of oxygen free radicals, cytokines, and proteolytic matrix metalloproteinases from activated inflammatory and endothelial cells, results in lowering of inflammation, decreased microvascular permeability and decreased leukocyte-dependent endothelial damage [25,27].

Diosmin causes a reduction in the release of inflammatory mediators, such as prostaglandin E2 (PGE2) and thromboxane A2 (TXA2) [28]. Furthermore, diosmin causes significant decreases in plasma levels of endothelial adhesion molecules and reduces neutrophil activation, thus providing protection against microcirculatory damage [29,30].

These effects of MPFF can be accredited to the antioxidant, microcirculatory, and anti-inflammatory effects by decreasing the level of hydroxyl free radicals [31], increasing free SH-group concentration, and natural scavenger capacity [32]. MPFF decreases vascular permeability more than any of its single constituents, suggesting that the flavonoids present in its formulation have a synergistic action [33].

In a study where 20 patients with chronic venous disease were treated with MFFP (Diosmin 500 twice daily for 60 days). VEGF plasma levels were significantly decreased in the patients after treatment (98–57 pg/ml) [34].

Aim of the study: Is to determine the efficacy of diosmin in comparison to cabergoline in preventing OHSS in high-risk women undergoing ICSI cycles.

2. Patients & methods

This was an interventional comparative clinical trial conducted at the department of obstetrics and gynecology, Benha University Hospital and a private fertility center from April 2014 till December 2015, after approval of the study protocol by the local ethical committee.

Patients enrolled in the study were infertile women undergoing ICSI with one of the following criteria: previous episodes of OHSS, polycystic ovaries (i.e., >24 antral follicles present on baseline ultrasound examination), high AMH (>3.0 ng/mL), large number of small follicles (8–12 mm) seen on ultrasound during ovarian stimulation, high s.E2 at hCG trigger (E2 > 3000 pg/ml or rapidly rising s.E2), presence of >20 follicles by ultrasound on day of retrieval or large number of oocytes retrieved (>20).

All participating patients provided written informed consent at their first visit. Each participant underwent a complete evaluation including: clinical history, physical examination, ultrasound evaluation & hormonal profile.

Two hundred high-risk patients after meeting these inclusion criteria, were randomly divided into: Gp A: were given 2 tab. (500 mg)/8 hs diosmin orally, for 2 weeks starting at the day of hCG injection. Gp B: received 1 tab. (0.5 mg)/day cabergoline orally for 8 days starting at day of hCG injection. The occurrence and severity of OHSS was defined according to the classification described by Golan et al. [3] Complaints of abdominal discomfort, nausea, vomiting and ultrasound evidence of enlarged ovaries (5–12 cm) and/or the detection of ascites defined the occurrence of moderate OHSS.

The presence of clinically evident ascites and/or hydrothorax, increased blood viscosity and coagulation abnormality or lab. Investigation of increased hematocrit level (>45%) or decreased S. albumin (<35 g/l) defined the occurrence of severe OHSS. Patients with severe OHSS were hospitalized. Onset of OHSS within 10 days of ovulatory trigger was defined as early onset OHSS while beyond 10 days was defined as late onset OHSS.

Clinical and ultrasound examinations were performed on the day of embryo transfer, then weekly to detect the occurrence of OHSS. All patients were instructed to contact us if they experienced difficulty in breathing, recurrent vomiting, decreased urine volume, dizziness on standing, abdominal pain, enlargement of the abdomen and rapid weight gain and were examined as needed.

Women were monitored on an outpatient basis via phone contact and visits until menstruation occurred or until fetal heart activity was detected in pregnant patients.

The primary outcome was an evaluation for the development of OHSS in the participants. Implantation rate and clinical pregnancy rate were secondary outcomes.

3. Results

There were no statistically significant differences between the diosmin and cabergoline groups concerning age, no. of total ampoules of FSH used, duration of infertility, antral follicle count (AFC), body mass index (BMI), length of stimulation days, E2 level on the day of hCG trigger and the total number of the retrieved oocytes (Table 1).

OHSS occurred in 12 cases in the diosmin group versus 28 cases in the cabergoline group showing a statistically significant reduction (P = 0.005) in the diosmin group. Also severe OHSS was 2% in the diosmin group compared to 13% in the cabergoline group. The difference was statistically highly significant (P = 0.003) (Table 2).

The secondary outcomes concerning fertilization, implantation, clinical pregnancy and multiple pregnancy rates between diosmin and cabergoline groups showed no statistically significant differences (Table 3).
So, we used it with an accepted safety profile. The transplacental migration and passage into breast milk are minimal were reported on the use of diosmin in pregnancy and preterm labour management, pelvic pain in pelvic congestion syndrome and internal hemorrhoids of pregnancy.

Diosmin were used for the treatment of varicose veins for a higher level of prevention to reach an OHSS-free ICSI/IVF possible.

The complete prevention of OHSS has not yet been possible. But regardless of OHSS following COS showed promising results with a daily dose of 0.5 mg starting on the day of hCG administration. No embryo toxicity, nor any significant effect on reproductive function were reported on the use of diosmin in pregnancy and the transplacental migration and passage into breast milk are minimal. So, we used it with an accepted safety profile.

What about the rationale for use in high-risk patients for developing OHSS? Concerning the pathogenesis and pathophysiology of OHSS, Shoab et al. demonstrated a significant decrease in plasma VEGF (the main player in the development of OHSS) in patients with chronic venous disease treated with oral diosmin for 60 days. Urios et al. demonstrated correction of hypoalbuminemia & decrease of urinary albumin clearance in diabetic rats which is one of the most important cascades of events causing the wide morbidity in OHSS.

Tsimoyannis et al. showed that diosmin plus LMWH was more effective than LMWH alone in preventing postoperative thromboembolism. Tanrikulu et al. proved the protective effect of diosmin on hepatic ischemia reperfusion injury. So, both studies are proving a role of diosmin in preventing the complications of OHSS.

This study included 200 high risk cases for OHSS. Diosmin treatment reduced OHSS to 12% compared to 28% in the cabergoline group. The difference was statistically highly significant (P = 0.005). Moreover, diosmin decreased severe OHSS to 2% compared to 13% in the cabergoline group (P = 0.003). The clinical pregnancy rate (PR) and miscarriage rate were not statistically significant in both groups.

Youssef et al. conducted a meta-analysis to answer the question about the success of dopamine agonist in the treatment of OHSS. Four randomized trials enrolling 570 women were included. There was evidence of a statistically significant reduction in the incidence of OHSS in the cabergoline group (OR 0.41, 95% CI 0.25–0.66) with an absolute risk reduction of 12% (95% CI 6.1–18.2%), but there was no statistically significant evidence of a reduction in severe OHSS (OR 0.50, 95% CI 0.20–1.26).

There was no evidence for a difference in clinical pregnancy rate (OR 1.07, CI 0.70–1.62) and miscarriage rate (OR 0.31, 95% CI 0.03–3.07). They concluded that although cabergoline block the onset of early-stage OHSS in 50% of women, it was not effective in preventing the late onset OHSS. This was comparable to our results but all the studies involved were versus no treatment or placebo.

Baumgarten et al. conducted another meta-analysis, including 1646 women. It included 914 received a dopamine agonist. In the treated group 86 (9.41%) developed OHSS, compared with 157 (21.45%) in the non-treated group. This showed a benefit to the use of dopamine agonists (RR 0.51 [0.33, 0.78], Chi² 16.07). The reduction in OHSS included all the stages of OHSS.

Table 1
Demographic characteristics of women in the diosmin and cabergoline groups.

<table>
<thead>
<tr>
<th></th>
<th>Diosmin gp (n = 100)</th>
<th>Cabergoline gp (n = 100)</th>
<th>Z test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female age (years)</td>
<td>28.1 ± 4.8</td>
<td>29.1 ± 5.7</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>No. of total amp.(75 IU/Amp)</td>
<td>25.3 ± 3.6</td>
<td>25.9 ± 3.7</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Duration of infertility (years)</td>
<td>6.0 ± 3.4</td>
<td>5.8 ± 2.9</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Antral follicle count (AFC)</td>
<td>23.9 ± 3.0</td>
<td>23.6 ± 3.3</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.0 ± 4.1</td>
<td>25.3 ± 3.9</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Length of stimulation (days)</td>
<td>9.6 ± 2.1</td>
<td>9.4 ± 1.6</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>E2 on day of hCG (pg/mL)</td>
<td>4540 ± 509</td>
<td>4348 ± 502</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Retrieved oocytes</td>
<td>18.3 ± 4.1</td>
<td>18.2 ± 4.0</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

Table 2
Incidence of OHSS in diosmin group vs. cabergoline group.

<table>
<thead>
<tr>
<th></th>
<th>Diosmin gp (n = 100)</th>
<th>Cabergoline gp (n = 100)</th>
<th>Z test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHSS (%)</td>
<td>12</td>
<td>28</td>
<td>2.829</td>
<td>0.005</td>
</tr>
<tr>
<td>Severe OHSS (%)</td>
<td>2</td>
<td>13</td>
<td>2.953</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Table 3
ICSI outcomes between diosmin group vs. cabergoline group.

<table>
<thead>
<tr>
<th></th>
<th>Diosmin gp (n = 100)</th>
<th>Cabergoline gp (n = 100)</th>
<th>Z test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilization rate (%)</td>
<td>70</td>
<td>68</td>
<td>0.31</td>
<td>0.76</td>
</tr>
<tr>
<td>Implantation rate (%)</td>
<td>65</td>
<td>66</td>
<td>-0.15</td>
<td>0.88</td>
</tr>
<tr>
<td>Clinical pregnancy rate n (%)</td>
<td>58</td>
<td>55</td>
<td>0.44</td>
<td>0.67</td>
</tr>
<tr>
<td>Multiple pregnancy rate n (%)</td>
<td>21</td>
<td>18</td>
<td>0.54</td>
<td>0.59</td>
</tr>
<tr>
<td>First trimester miscarriages n (%)</td>
<td>5</td>
<td>6</td>
<td>-0.31</td>
<td>0.76</td>
</tr>
</tbody>
</table>
A systematic review by Leitao et al. included 7 RCTs has further established the efficacy of cabergoline in preventing the occurrence of moderate and severe OHSS (RR 0.38; 95% CI 0.29–0.51) without a negative impact on clinical pregnancy or oocytes retrieved. So, according to their results cabergoline decreased the incidence of moderate and severe OHSS [16].

The last Cochrane review by Tang et al. included 16 RCTs involving 2091 high-risk women for this updated review. They evaluated three types of dopamine agonists: cabergoline, quinagolide and bromocriptine. When compared with placebo or no intervention, dopamine agonists seemed effective in the prevention of moderate or severe OHSS (OR 0.27, 95%CI 0.19 to 0.39) [moderate quality evidence] [18].

The use of dopamine agonists will lower the incidence of OHSS to 7–14% of women. When they compared dopamine agonist plus co-intervention (hydroxyethyl starch, prednisolone or coating) (withholding anymore ovarian stimulation for a few days). But coating had a lower pregnancy rate than cabergoline [18].

To the best of our knowledge this is the first study to use diosmin as a form of preventive measure against OHSS. The efficacy of diosmin in dealing with the pathogenesis, pathophysiology and complications of OHSS seems feasible. Its previous safety profile in pregnancy and this study gives a solid base reasoning for its efficiency in reducing the rate of moderate and severe cases of OHSS with a good safety profile concerning the implantation, pregnancy and miscarriage rates.

5. Conclusion

- Diosmin is more effective in preventing both moderate and severe OHSS occurrence rates than cabergoline when used for high-risk patients.
- Diosmin is an oral cheap drug and well tolerated by the patient.
- Diosmin is safe during pregnancy.
- Diosmin is a well-known drug with a new indication.

References

