Diagnostic and Prognostic Values of Monocyte Chemotactic Protein-1 in Ascitic Fluid of Patients with Spontaneous Bacterial Peritonitis

Naglaa El-Toukhy and Sherin M. Emam

Departments of Hepatology, Gastroenterology & Infectious diseases and Medical Microbiology & Immunology, Faculty of Medicine, Benha University, Benha, Egypt.

Spontaneous bacterial peritonitis (SBP) is a severe complication in cirrhotic patients with ascites. Monocyte chemotactic protein-1 (MCP-1) is a chemotactic factor for monocytes/macrophages, and it activates lymphocytes and neutrophils during infection. This study aimed to evaluate the role of MCP-1 in the pathogenesis of SBP and assess its prognostic value and correlation to disease severity. The study included ninety patients with liver cirrhosis and ascites. Patients were divided into 2 groups: Group I including 45 ascetic patients with SBP (polymorph nuclear cell count (PMN) ≥ 250 cell/mm³ in ascitic fluid), and Group II including 45 ascetic patients without SBP. Assessment of the severity of liver cirrhosis was done using the modified Child-Pugh and model for end stage liver disease (MELD) scores. Ascetic fluid samples were subjected to total leucocytic count and differential, albumin, protein, glucose, and serum-ascetic albumin gradient analysis. Ascetic fluid levels of MCP-1 were measured by ELISA. Higher level was detected in patients with SBP as compared to those without SBP. The number of polymorph nuclear cell count (PMN) ≥ 250 cell/mm³ in ascitic fluid was used as gold standard for diagnosis of SBP. The diagnosis sensitivity and specificity of MCP level test were 86.7% and 95.4% respectively at cutoff of 122.5 ng/ml with accuracy 91%. MCP-1 level showed positive significant correlation with TLC, PMN leucocytes and MELD score. In conclusion, ascitic fluid MCP-1 level could be a reliable test for diagnosis of SBP, and could be used as a prognostic marker due to its positive correlation with the severity of liver disease.

Spontaneous bacterial peritonitis (SBP) is the most frequent bacterial infection in cirrhosis, accounting for 10 to 30% of all reported bacterial infections in hospitalized patients (Wiest et al., 2012).

It is also one of the potential life threatening complications in ascitic cirrhotic patients with a mortality rate ranging between 30 and 50% (Thevenot et al., 2004).

In-hospital mortality for the first episode of SBP ranges from 10% to 50%, depending on various risk factors (Nobre et al., 2008). One-year mortality after a first episode of SBP has been reported to be 31% and 93% (Wiest & Garcia-Tsao, 2005).

In clinical practice the diagnosis is based on a polymorph nuclear cell count (PMN) that must be greater than or equal to 250 cell/mm³ in ascitic fluid in absence of intra-abdominal cause of infection (Thuluvath et al., 2001; Cardenas et al., 2012). However, total leukocytic and PMNs counts in ascitic fluid are not always readily available, the account of 250 cells/mm³ or more of PMN is highly indicative of SBP and is an indication for antibiotic therapy (Runyon, 2009; Castellote et al., 2010).

Because inflammatory and immune reactions are altered by hepatic cirrhosis, the efficacy of innate reactions is limited. In these patients, spontaneous bacterial protein is recognized, and proinflammatory cytokines are released to the blood and ascites (Kim et al., 2007).

Monocyte chemotactic protein 1 (MCP-1) is produced by many cell types, including endothelial, fibroblasts, epithelial, smooth muscle, mesangial, astrocytic, monocytic, and microglial cells (Deshmune et al., 2008).

Monocyte chemotactic protein 1 (MCP-1) is the most representative member of α and β
Monocyte chemotactic protein-1 (MCP-1), also called Chemokine (C-C motif) ligand 2 (CCL2), is a 76-amino acid protein and a member of the C-C subfamily of chemokines, was first purified by Matsushima from serum-free culture supernatant of human myelomonocytic cells in 1989 (Matsushima et al., 1989). It acts as a chemotactic factor for monocytes/macrophages, activated lymphocytes and neutrophils during infections thus, these cells migrate to the ascitic fluid. Monocytes and macrophages release TNF-α and other cytokines, which in turn induce the expression of adhesion molecules on endothelial cells, thereby mediating a systemic reaction to the infection. TNF-α has been shown to be elevated in the ascitic fluid of SBP patients, stimulating the release of interleukin-8 (IL-8), growth-related oncogene-α (GRO-α), and MCP-1 by mononuclear cells or endothelial cells. This release propagates the inflammatory reaction (Kolattukudy & Niu, 2012).

Aim of the work this study assesses the level of ascitic fluid monocyte chemotactic protein-1 level in cirrhotic patients with and without SBP and to evaluate its role in the pathogenesis of SBP and its prognostic value and correlation to disease severity.

**Subjects and Methods**

**Subjects**

The study was carried out at Hepatology, Gastroenterology and Infectious diseases at Benha University Hospital & Medical Microbiology and Immunology Department of Benha faculty of Medicine. A written informed consent (in Arabic language) was obtained from the patients before Participation. This study included ninety patients with liver cirrhosis and ascites. Patients were divided into 2 groups: Group I including 45 patients with SBP (a polymorph nuclear cell count (PMN) that must be greater than or equal to 250 cell/mm3 in ascitic fluid) (Cardenas et al., 2012), Group II including 45 ascetic patients without SBP served as control group. Because many cases of SBP are culture-negative, the isolation of the responsible organisms was not considered essential for the diagnosis.

- **Inclusion criteria:**
  - Cirrhotic Patients with spontaneous bacterial peritonitis not receiving antibiotics in the last one week.

- **Exclusion criteria:**
  - Ascites secondary to bacterial peritonitis.
  - Ascites secondary to mycobacterial or fungal peritonitis.
  - Ascites secondary to (HCC) hepatocellular carcinoma.

Each patient was subjected to:

**I-** Complete medical history taking including demographic, clinical and laboratory data, etiology and history of complications were recorded and available for analysis.

**II-** Full general and local examination, assessment of the severity of liver cirrhosis was obtained in all patients with modified Child-Pugh score (Pugh et al., 1973), MELD (model for end stage liver disease) score (Kamath et al., 2001) and the updated MELD (uMELD) score (Sharma et al., 2008).

**III-** Full laboratory investigations including:

- Complete blood picture, renal function tests, liver profile, and serological tests for viral markers (Hepatitis B surface antigen and Hepatitis C virus antibody by enzyme – linked immunosorbent assay technique (ELISA))

Diagnostic paracentesis was carried out at the bedside under complete aseptic condition using a sterile 22-G needle attached to a 20-cc syringe after local anesthesia with lidocaine. Asitic fluid (AF) was immediately drawn from the peritoneal fluid after the sterile needle was attached to a syringe for paracentesis. Then, aspirated AF was collected into ethylenediaminetetraacetic acid tubes and analyzed for biochemistry and leukocyte counts within 3 h tests for ascitic fluid includes:

1. Biochemical tests including: Total protein content, albumin and glucose.

2. WBCs (total and differential): SBP is diagnosed when PMN count in ascitic fluid is > 250 cell/mm in the absence of data compatible with secondary peritonitis (i.e gastro-intestinal perforation).
(3) Serum - ascites albumin gradient (SAAG): SAAG is the best single test for classifying ascites into portal hypertensive (SAAG >1.1 g/dL) and non-portal hypertensive (SAAG <1.1 g/dL) causes. It was calculated by subtracting the ascitic fluid albumin value from the serum albumin value, it correlates directly with portal pressure, (Caldwell & Battle, 1999).

(4) MCP-1 level in ascitic fluid (Kim et al., 2007):
   a- Sampling aliquots of approximately 1 mL ascites were centrifuged for 15 min at 500 × g. The supernatant phase was transferred to a fresh tube and stored at -70°C until analysis by ELISA
   b- Principle of the test:
   It was done using the commercially available Human MCP-1 ELISA Kit (BD OptEIA™ Biosciences, Pharmingen, USA). It is a solid phase sandwich ELISA (Enzyme-Linked Immunosorbent Assay). It utilizes a monoclonal antibody specific for MCP-1 coated on a 96-well plate. Standards and samples are added to the wells, and any MCP-1 present binds to the immobilized antibody. The wells are washed and streptavidin-horseradish peroxidase conjugate mixed with biotinylated anti-human antibody is added, producing an antibody-antigen-antibody “sandwich”. The wells are again washed and TMB substrate solution is added, which produces a blue color in direct proportion to the amount of MCP-1 present in the initial sample. The Stop Solution changes the color from blue to yellow, and the microwell absorbances are read at 450 nm

Statistical Analysis
Descriptive statistics were presented as mean ± standard deviations (SD) for continuous variables and number and percentage for categorical variables (frequency distribution). Unpaired Student t-test (two sided) was used to test the significance of difference between the mean value of studied groups and chi-square test was used for comparison of categorical variables. The diagnostic value for MCP-1 by determining its sensitivity, specificity, positive (PPV) and negative predictive values(NPV). Receiver operating characteristic curves (ROC) were constructed to assess the validity of the markers in predicting SBP by calculating the area under the curve (AUC). Pearson correlation test was used to identify the correlation between MCP-1 and different clinicopathological variables. All calculations were done using SPSS for Windows version 20.0. For all tests, a P-value <0.05 was considered to be statistically significant.

Results
Characteristics of the study patients
Characteristics of SBP patients and controls are provided in Table (1). There was no statistical difference between non-infected cirrhotic patients and patients with SBP with respect to age or sex and etiology of liver cirrhosis. Marked hepatic failure was present at time of diagnosis in most cases, as indicated by high Child, MELD and uMELD scores.

Renal impairment as indicated by higher mean value of serum creatinine levels were detected in patients with SBP.

Most cases of SBP were presented by abdominal pain and fever.

Ascetic fluid analysis
Parameters of AF analysis are shown in Table (2). SBP group showed higher ascetic fluid TLC, SAAG and lower protein and glucose levels.

Ascetic fluid MCP-1 levels: Patients with SBP showed increased AF concentration of MCP-1 Fig. (1).

MCP-1 as a marker for SBP
For MCP-1 the cutoff point that gives an area under curve of 91% was 122.5 ng/ml with a sensitivity of 86.7%, a specificity of 95.4%, PPV of 95.1% and NPV of 87.5% table (3), Fig. (2) Correlations of MCP-1.

There was statistical significant positive correlations between MCP-1 values and TLC, PMN leucocytes and MELD score table (4).
Table 1. Overview of the studied groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SBP N=45</th>
<th>Non-SBP N=45</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(years)</td>
<td>47.69±7.43</td>
<td>50.36±7.78</td>
<td>NS</td>
</tr>
<tr>
<td>Male</td>
<td>33(73.3%)</td>
<td>32(71.2%)</td>
<td>NS</td>
</tr>
<tr>
<td>Female</td>
<td>12(26.7%)</td>
<td>13(28.8%)</td>
<td>NS</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>45(100%)</td>
<td>9(20%)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Bleeding</td>
<td>10(22.2%)</td>
<td>12(26.7%)</td>
<td>NS</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>20(44.4%)</td>
<td>13(28.9%)</td>
<td>NS</td>
</tr>
<tr>
<td>Fever</td>
<td>42(93.3%)</td>
<td>4(8.9%)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Jaundice</td>
<td>18(40%)</td>
<td>15(33.3%)</td>
<td>NS</td>
</tr>
<tr>
<td>Hemoglobin(g/dl)</td>
<td>10.32±1.3</td>
<td>10.3±1.28</td>
<td>NS</td>
</tr>
<tr>
<td>TLC(mm³)10³</td>
<td>8.6±4.5</td>
<td>5.26±2.4</td>
<td>0.02*</td>
</tr>
<tr>
<td>Platelets (mm³)10³</td>
<td>100.6±36.54</td>
<td>80.9±34.85</td>
<td>0.01*</td>
</tr>
<tr>
<td>Creatinine(mg/dl)</td>
<td>1.67±0.7</td>
<td>1.1±0.4</td>
<td>0.001*</td>
</tr>
<tr>
<td>HCV</td>
<td>43(95.6%)</td>
<td>42(93.9%)</td>
<td>NS</td>
</tr>
<tr>
<td>HBV</td>
<td>2(4.4%)</td>
<td>2(4.4%)</td>
<td>-</td>
</tr>
</tbody>
</table>

Child score

<table>
<thead>
<tr>
<th></th>
<th>SBP</th>
<th>Non-SBP</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>19(42.2%)</td>
<td>26(57.8%)</td>
<td>NS</td>
</tr>
<tr>
<td>C</td>
<td>26(57.8%)</td>
<td>19(42.2%)</td>
<td>NS</td>
</tr>
</tbody>
</table>

MELD     19.6±6.32   | 14.22±6.9   | 0.000*  
uMELD 4.02±0.7   | 3.54±0.8    | 0.009*  

SBP N: number of spontaneous bacterial peritonitis patients; Non-SBP N: number of non-spontaneous bacterial peritonitis patients. 
P>0.5 is not Significant (NS). TLC=total leucocytic count, HCV=hepatitis C virus, HBV=hepatitis B virus, MELD=model for end stage liver disease, uMELD=updated MELD.
Table 2. Ascitic fluid analysis of the studied groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SBP N=45</th>
<th>Non-SBP N=45</th>
<th>*P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>TLC(mm³)</td>
<td>1259.11±707.34</td>
<td>815±202.7</td>
<td>0.000</td>
</tr>
<tr>
<td>Polymorphs(mm³)</td>
<td>7655±9.14</td>
<td>64.3±15.68</td>
<td>0.000</td>
</tr>
<tr>
<td>Albumin(g/dl)</td>
<td>0.67 ± 0.28</td>
<td>0.74±0.25</td>
<td>NS</td>
</tr>
<tr>
<td>Protein(g/dl)</td>
<td>1.07 ± 0.3</td>
<td>1.7±0.6</td>
<td>0.001</td>
</tr>
<tr>
<td>Glucose(mg/dl)</td>
<td>98.06 ± 12.7</td>
<td>112.9±29.9</td>
<td>0.003</td>
</tr>
<tr>
<td>SAAG(g/dl)</td>
<td>1.7±0.31</td>
<td>1.63 ± 0.35</td>
<td>NS</td>
</tr>
<tr>
<td>MCP-1(ng/ml)</td>
<td>743.14 ± 488</td>
<td>38.13±56.8</td>
<td>0.000</td>
</tr>
</tbody>
</table>

SBP N: number of spontaneous bacterial peritonitis patients; Non-SBP N: number of non-spontaneous bacterial peritonitis patients. 
P> 0.5 is not Significant (NS). TLC=total leucocytic count, SAAG=serum ascetic albumin gradient, MCP-1=monocyte chemotactic protein-1.

Figure 1. MPC-1 level in studied groups
Table 3. ROC curve analysis for MCP-1 as a marker for SBP.

<table>
<thead>
<tr>
<th>MCP-1 cut-off point</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive Predictive Value</th>
<th>Negative Predictive Value</th>
<th>Area Under Curve (AUC)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.5ng/ml</td>
<td>86.7%</td>
<td>95.4%</td>
<td>95.1%</td>
<td>87.5%</td>
<td>91</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

*P ≤ 0.5 is significant.

Figure 2. ROC curve analysis for MCP-1.

Table 4. Correlations between MCP-1 and different variables among SBP group

<table>
<thead>
<tr>
<th>Correlations of MCP-1 with (ng/ml)</th>
<th>Pearson coefficient (r)</th>
<th>*P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>0.5</td>
<td>0.000</td>
</tr>
<tr>
<td>Polymorphs</td>
<td>0.27</td>
<td>0.009</td>
</tr>
<tr>
<td>MELD score</td>
<td>0.22</td>
<td>0.042</td>
</tr>
</tbody>
</table>

*P ≤ 0.5 is Significant.
Discussion

The present study revealed that SBP was more frequent in males (73.3%) and it was not influenced by the age, these results were in agreement with the study done by Obstein et al., (2007) in which 79% of SBP group were males and were not affected by the age.

As regards the cause of liver cirrhosis in our study, we found that chronic hepatitis C is the cause in 95.6% of patients and chronic hepatitis B is the cause in the remainder (4.4% of patients) with no significant difference in both groups and this goes in agreement with that was reported by Thomas & Strickland (2006) who found that the cause of liver cirrhosis does not affect incidence of SBP.

Analysis of the results showed that patients with SBP commonly presented by abdominal pain (100%) with a highly significant difference compared to non SBP group (20%) and this goes in agreement with that elicited by Mchutchinson & Runyon, (1994), Liovet et al., (1993), Filik & Unal (2004) and Wallerstedt et al., (2007) who stated that abdominal pain was detected in (50%, 52%, 54.5% and 70%) of SBP cases respectively.

In the present study, 22.2% of SBP cases had gastrointestinal bleeding with no significant difference, this was close to that reported by Wallerstedt et al., (2007) who stated that 30% of SBP cases had gastrointestinal bleeding.

Hepatic encephalopathy was detected in 44.4% of SBP and 28.9% of non SBP cases with statistically non significant difference, these results were close to that reported by Wallerstedt et al., (2007) and Nobre et al., (2008) who stated that hepatic encephalopathy was detected in 20% and 24.5% of SBP cases respectively and also this goes in agreement with Liovet et al., (1993) who detected that hepatic encephalopathy was in 40% of SBP cases, also this is repoted in (Paul et al., 2015) who detected that most patients of SBP have signs clearly suggestive of peritoneal infection, especially pain abdomen.

In clinical examination of studied patients fever was detected in 93.3% of SBP group with a highly statistical significant difference between both groups, this goes in agreement with that reported by Mchutchinson & Runyon (1994) and Wallerstedt et al., (2007) as fever was detected in 66% of SBP, also this goes in agreement with (Paul et al., 2015) who detected that most patients of SBP have signs clearly suggestive of peritoneal infection, especially fever, so fever is cosidered one of the characteristic clinical sign of SBP.

As regard clinical examination of studied patients Jaundice was detected in 40% of SBP group and this goes in agreement with that elicited by Filik & Unal (2004) who found that Jaundice was the most prominent physical signs 54.5%in SBP group, also this goes in agreement with (Paul et al., 2015) who detected that jaundice was in 39% in SBP patients.

Laboratory investigations in this study revealed that higher leucocyte count in SBP patients, this result goes in agreement with that reported by Cholongitas et al., (2006) as leucocytosis was higher in SBP patients.

As regard platelets count of studied patients, it revealed thrombocytopenia is higher in SBP group with highly significant difference between both groups, this result was in agreement with that reported by (Lata & Pribramska, 2004), also this result is in agreement with (Paul et al., 2015), butthis difference may not related to SBP, rather to the severity of the liver disease.

As regad hemoglobin value in studied patients showing no difference between two groups and this was documented by (Coşkun et al., 2001) but the hemoglobin value may be
related to the severity of the liver disease which reported by (Paul et al., 2015).

In this study, the level of serum creatinine was significantly increased in patients with SBP when compared to non SBP patients and this goes in agreement with Angeloni et al., (2008), who showed that the hospital mortality in SBP is high due to hepato-renal syndrome and also reinforced by (Tsung et al., 2013) who stated that renal dysfunction occurs in patients with SBP and it is independent predictor of mortality.

Regarding the relation between occurrence of SBP and severity of liver disease this study showed that 42.2% and 57.8% of SBP cases had Child-Pugh class B and class C cirrhosis respectively.

This result matched with that reported by Navasa et al., (1999), Liovet et al., (1993) and Rodriguez –Romas et al., (2001) who elicited that SBP patients usually had Child-Pugh class B or C cirrhosis, also Cirera et al., (2001) reported that about 70% of patients who developed SBP had Child class C.

In the present study, it was found that a high MELD and uMELD scores was positively associated with a greater risk of incidence of SBP.

This goes in agreement with Obstein et al., (2007) who suggested that MELD score was associated with SBP risk in a linear fashion and also this is reinforced by Evans et al., (2003) who elicited that MELD score has been shown to be a good prognostic marker in cases of SBP.

The total leucocyic count > 500 cell/cm3 and PMN count >250 cell/cm3 in ascitic fluid is laboratory diagnostic marker in SBP patients (wiest et al., 2012).

In this study we found that as regard to the ascitic fluid cell count, there were in higher levels of TLC, PMN count in SBP group compared to non SBP group, these results goes in agreement with Giron-Gonzzales et al., (2001), also this goes in agreement with Yildirim et al., (2002) who reported higher ascitic TLC in SBP more than non SBP patients.

As regard to ascitic fluid total protein level was lower in SBP group, this agrees with (Paul et al., 2015) who denoted that patients with poor synthetic function have diminished level of protein in ascitic fluid that correlate with low level of opsonization and this play a role in SBP susceptibility and denoted also AF total protein < 1 g/dl is important predictor for SBP.

In this study, we found that the ascitic fluid glucose was with lower level in SBP patients, and this goes in agreement with (Tsung et al., 2013), who reported that lower level of ascitic glucose level in SBP patients and also considered that lower ascitic glucose level is independent predictive factor of overall survival rates in cirrhotic patients with SBP.

As regard SAAG value, in our study had significantly higher in SBP patients than non SBP patients, this is in agreement with (Desai et al., 2012) who denoted that regardless of the severity of liver disease, those with lower ascitic fluid protein levels, lower ascitic albumin and higher SAAG, are also less likely to mount a satisfactory immune response and poor clearance of infection.

Because inflammatory and immune reactions are altered by hepatic cirrhosis, the efficacy of innate reactions is limited. In these patients, SBP is recognized, and proinflammatory cytokines are released to the blood and ascites (Kim et al., 2007).

Monocyte chemotactic protein-1 (MCP-1) is a cytokine involved in the chemotaxis of monocytes and activated T lymphocytes, and interleukin-10 (IL-10) is an anti-inflammatory substance. These compounds partially control the degree of inflammation by regulating the production of proinflammatory cytokines in SBP (Kim et al., 2007).

In this study we evaluate the difference in ascitic MCP-1 level in SBP and non SBP
patients which showed that higher levels in SBP patients than non SBP patients, this is in agreement with Giron-Gonzalez et al., (2001) and Rodriguez-Ramos et al., (2001) who mentioned that MCP-1 concentration is increasing in ascite fluid in SBP patient and rapidly decreasing after treatment.

Also this result is in agreement with Kim et al., (2007) who mentioned that patients with SBP had higher levels of MCP-1 in their ascitic fluid than non SBP patients and its concentrations had decreased after treatment. As the bacterial invasion stimulates the immune system, in SBP MCP-1 released in ascites and play as a potent chemotactic factor for monocytes and activated T lymphocytes Kim et al., (2007).

In this study, MCP-1 is significantly a determining predictor for SBP positivity, this is in agreement with lutz et al., (2015) who stated that, there is higher level of the MCP-1 in both blood and ascitic fluid of cirrhotic patients with SBP than non SBP.

ROC curve analysis of MCP-1 as a marker of SBP of the studied cases revealed that a high MCP-1 was independently associated with a greater risk of SBP with cut off level of 122.5 ng/ml with sensitivity 86.7% and specificity 95.4% in diagnosis of SBP with area under the curve 91%.

This is in agreement with Giron-Gonzales et al., (2001) who reported the higher concentrations of MCP-1 level in SBP patients with highly statistical difference than non SBP patients.

Also reinforced with Kim et al., (2007) who showing the same higher concentration of ascitic MCP-1 in SBP patients as highly sensitive diagnostic marker.

In this study, there is a significant positive correlation between MCP-1 level and ascitic TLC, PMN among SBP patients. These findings agree with Kim et al., (2007) who state that there is positive association between ascitic MCP-1 concentration and ascitic total leucocytic count and PMN.

In this study, there is a significant positive correlation between MCP-1 level and MELD score among SBP patients, this is in agreement with (Tsung et al., 2013) who stated that increasing MELD score was independently associated with greater risk of SBP and had important implications for increasing the suspicion of SBP.

In conclusion, according to this study, MCP-1 level was higher in ascitic fluid of SBP patients, so it can be used as a diagnostic marker in SBP and can be used as a good prognostic marker due to its positive relation with the severity of liver disease which indicated by high MELD and uMELD scores.

References


Diagnostic and Prognostic Values of MCP-1 in Ascitic Fluid of Patients with SBP


