SUBCHRONIC TOXIC EFFECTS OF DI-ETHYLHEXYL PHTHALATE ON OVARY AND TESTIS OF ADULT ALBINO RATS

*Forensic Medicine & Clinical Toxicology Department; **Pathology Department, Faculty of Medicine, Benha University, Egypt

ABSTRACT

Di-ethylhexyl phthalate (DEHP) –a common type of phthalate plasticizers- has become a major environmental toxic hazard to human health especially the reproductive system. This work aimed to assess the subchronic toxic effects of DEHP on adult albino rats’ reproductive organs (ovary and testis) using body & reproductive organs weight parameter, combined with biochemical, histopathological and immunohistochemical methods. Forty adult male & female albino rats were divided as follows: male control groups (10 rats = “5 negative & 5 positive”); female control groups (10 rats= “5 negative & 5 positive”); male DEHP-treated group (10 rats) and female DEHP-treated group (10 rats), both were given DEHP dissolved in corn oil at a dose of 3gm/kg once daily for 4 weeks. The results of present study revealed the followings: a decrease in body weight and reproductive organs’ weights (ovary and testis); hormonal disruption effects (decrease estrogen “estradiol” & testosterone serum levels in females & males respectively); histopathological and immunohistochemical changes in ovary and testis in DEHP-treated groups as compared to control groups. In conclusion, oral exposure of adult albino rats to DEHP at a dose of 3 g/kg daily for 4 weeks resulted in toxic hazards to male & female reproductive organs (ovary and testis).

Keywords: Di-Ethylhexyl Phthalate, Ovary, Testis, Reproductive.

INTRODUCTION

Phthalates are substances commonly used as plasticizers. Every year massive amounts of them are manufactured through the world, and they can exist in many consumer products (Muczynski et al., 2012).

Di-ethylhexyl phthalate (DEHP) constitutes the chief type of phthalates and it is considered as a major environmental toxic hazard (Liu et al., 2017).

It is widely used in plastic bags, building substances, toys, food stuffs, personal care products and medical instruments (Schoeters et al., 2008 & Zhang et al., 2016).

Di-ethylhexyl phthalate can enter human body and hence causes its toxic hazards via several routes like ingestion; inhalation and also through intact skin (Ji et al., 2014).

Di-ethylhexyl phthalate can induce many endocrine and reproductive disorders in males such as testicular injury, infertility, and diminishing of sperm motility. Its exposure may also result in cryptorchidism and hypospadias (Kabir et al., 2015).

Furthermore, female exposure to DEHP can produce many reproductive toxic complications with the ovary being the most affected organ (Martino-Andrade and Chahoud,
AIM OF THE WORK
This work aimed to assess the subchronic toxic effects of di-ethylhexyl phthalate (DEHP) on adult albino rats' reproductive organs (ovary and testis) using body and reproductive organs weight parameter, combined with biochemical, histopathological and immunohistochemical methods.

MATERIAL & METHODS
I-material:
A- Chemicals: all were purchased from Sigma-Aldrich (USA)
 • Di-ethylhexyl phthalate (DEHP) as a liquid of purity ±99 % (CAS number 117-81-7).
 • Corn oil as a liquid of purity ±99% (CAS number 8001-30-7).

B- Animals:
Forty adult male & female Wistar albino rats, weighing between 180g and 200g at the beginning of the experiment were included in this study. Rats were allowed for adaptation (1 week before experiments) at Anatomy Department, Faculty of Medicine, Benha University, to ascertain their physical wellbeing, and to exclude any diseased animals. All animals were received the same diet (wheat, bread & milk) on a schedule of 12 hours of light and 12 hours of dark. The time of DEHP administration was fixed for all animals at 12 P.M.

Experimental design and animal grouping:
Group (A) male control (10 male rats):
 • Subgroup A1 (negative control group) 5 male rats: lifted without intervention to measure the basic parameters, with free access to food and water for 4 weeks.
 • Subgroup A2 (positive control group) 5 male rats: each rat received 1 ml/ day of corn oil by oral gavage for 4 weeks according to Takai et al. (2009).

Group (B) female control (10 female rats):
 • Subgroup B1 (negative control group) 5 female rats: each rat received 1 ml/ day of corn oil by oral gavage for 4 weeks according to Takai et al. (2009).
 • Subgroup B2 (positive control group) 5 female rats: each rat received 1 ml/ day of corn oil by oral gavage for 4 weeks according to Takai et al. (2009).

Group (C) DEHP male treated group (10 male rats):
 • Di-ethylhexyl phthalate was dissolved in corn oil and given to male rats by oral gavage at a dose of 3gm/kg once daily for 4 weeks according to Takai et al. (2009).

Group (D) DEHP female treated group (10 female rats):
 • Di-ethylhexyl phthalate was dissolved in corn oil and given to female rats by oral gavage at a dose of 3gm/kg once daily for 4 weeks according to Takai et al. (2009).

C- Dosage regimen and vehicle:
The used dose of DEHP was 3g/kg/day dissolved in corn oil represented about 1/10 LD50 in rats (Kavlock et al., 2002).

Each rat was received DEHP orally, via appropriate sized metallic cannula dressed with plastic cover (oral gavage) that not exceeds the tip by 2-3 mm to prevent injury of the esophagus. Each group received its corresponding drug
doses daily for 4 weeks then rats were sacrificed after 24 hours from last administrated dose.

This study was accepted by the Research Ethical Board of Faculty of Medicine, Benha University.

II- methods (study parameters):

A-Weight of the body and reproductive organs (ovary & testis):

Rats' body weights were measured before treatment, then at the end of each week of the studied four weeks using a sensitive balance. Testes and ovaries were removed and stripped from their fatty tissues and blood vessels, after scarification of rats at the end of the 4th week of treatment and their relative weights were measured.

B-Biochemical study (hormonal assay):

Animals were anesthetized by ether, then they were laid on appropriate device and blood samples were taken from their hearts by 5 ml syringes. Blood samples were put in clean tubes lacking anticoagulant and left at 37°C incubator for 15 minutes. After centrifugation of clotted blood, serum samples were put in the special tubes, covered by parafilm, labeled and kept frozen for three days to be tested later for different hormones (Picard et al., 2008).

Serum estrogen (estradiol), testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH) levels were estimated using Enzyme Linked Fluorescence Assay (Anckaert et al., 2002), with the commercial kits VIDAS (BIOMERIEUX Company, France) by VIDAS apparatus (BIOMERIEUX Company, France).

C- Histopathological study:

According to Bancroft and Gamble (2008) testes and ovaries soaked in bouin’s solution, which is used to fix organs that need good morphologic analysis like testis and ovary. Tissue specimens were fixed for 6–8 hours and then transferred to 70% alcohol before submitting to histology for automated dehydration, paraffin embedding, sectioning and staining at Pathology Department, Faculty of Medicine, Benha University.

D- Immunohistochemical study:

Immunohistochemical (IHC) reactions were carried out through the streptavidin/peroxidase method for replicative DNA synthesis using proliferating cell nuclear antigen (PCNA) (Happerfield et al., 1993). Positive reactions appeared brown and strict to the nucleus of the cell.

Statistical analysis:

The collected data were tabulated and analyzed using SPSS version 16 software (SPSS Inc, Chicago, ILL Company). Quantitative data were expressed as mean ±standard deviation (± SD) and range. They were tested for normality using Shapiro-Wilks test assuming normality P>0.05. Student ‘t’ test and Mann Whitney U (ZMWU) test were used to assess difference between parametric and non-parametric variables (respectively). The accepted level of significance in this work was stated at 0.05 (P <0.05 was considered significant) according to Greenberg et al. (1996).

RESULTS

The results of both negative and positive control groups [male & female] did not show any statistically significant differences, so, the data obtained for both groups were expressed in the figures and tables as one group
"control".

Weight of the body and reproductive organs:

This study revealed a non-significant (p > 0.05) difference between all male rat groups as regard to body weight before treatment, meanwhile, a non-significant (p > 0.05) decrease in the mean values of body weight of male DEHP-treated group in comparison to control groups was observed after the 1st and the 2nd weeks of treatment, but a highly significant (p < 0.001) decrease in the mean values of body weight of male DEHP-treated group was detected after the 3rd and the 4th weeks of treatment, as illustrated in fig. 1.

![Figure (1): Line graph showing the mean values of body weight of DEHP-treated male rat group over the period of the study (n. =10).](image)

The present work illustrated a significant (p < 0.016) reduction in the mean values of relative testes weights of male DEHP-treated group in comparison to control groups at the end of the experiment, as showed in table 1.

Table (1): Comparison between the mean values of relative testes weights among different male rat studied groups (n = 20, 10 for each)

<table>
<thead>
<tr>
<th>Male Groups</th>
<th>Relative testes weight (g)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Range</td>
</tr>
<tr>
<td>DEHP-treated</td>
<td>0.965 ± 0.052</td>
<td>0.899-1.06</td>
</tr>
<tr>
<td>Control</td>
<td>0.910 ± 0.040</td>
<td>0.843-0.970</td>
</tr>
</tbody>
</table>

S*: Significant

The current work illustrated a non-significant (p > 0.05) difference between the female rat groups as regard body weight before treatment. A non-significant (p > 0.05) reduction in the mean values of body weight of female DEHP-treated group was observed after the 1st and the 2nd weeks of treatment in comparison to control groups, meanwhile a significant (p < 0.05) decrease in the mean values of body weight of female DEHP-treated group was detected after the 3rd week of treatment and a highly significant (p <0.001) decrease in the mean values of body weight was confirmed after the 4th
week of treatment, as illustrated in fig. 2.

Figure (2): Line graph showing the mean values of body weight of DEHP-treated female rat group over the period of the study (n=10).

The current work showed a highly significant (p <0.001) reduction in the mean values of relative ovary weights of female DEHP-treated group in comparison to control groups at the end of the experiment, as showed in table 2.

Table (2): Comparison between the mean values of relative ovary weights among different female rat studied groups (n = 20, 10 for each)

<table>
<thead>
<tr>
<th>Female groups</th>
<th>Relative ovary weight (g)</th>
<th>Student "t" test</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>DEHP-treated</td>
<td>0.017 ± 0.003</td>
<td>0.01-0.023</td>
<td>5.11</td>
</tr>
<tr>
<td>Control</td>
<td>0.025 ± 0.002</td>
<td>0.021-0.03</td>
<td></td>
</tr>
</tbody>
</table>

HS*: Highly Significant

II- biochemical study (hormonal assay):

In the present study, DEHP-treated male rats showed a highly significant (p <0.001) decrease in the mean values of testosterone level as compared to control groups, and a non-significant (p > 0.05) increase in the mean values of FSH and LH levels in DEHP-treated male group as compared to control groups, as showed in table 3.

Table (3): Comparison between different male rat studied groups regarding the mean values of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels (n = 20, 10 for each):

<table>
<thead>
<tr>
<th>Studied hormone (ng/ml)</th>
<th>Male groups</th>
<th>Mean ± SD</th>
<th>Range</th>
<th>Student "t" test</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEHP-treated</td>
<td>1.25 ± 0.136</td>
<td>1.12-1.48</td>
<td>52.7**</td>
<td><0.001 (HS*)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>3.66 ± 0.047</td>
<td>3.61-3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSH</td>
<td>DEHP-treated</td>
<td>0.445 ± 0.073</td>
<td>0.32-0.53</td>
<td>0.98**</td>
<td>0.32 (NS*)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>0.412 ± 0.081</td>
<td>0.33-0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>DEHP-treated</td>
<td>1.525 ± 0.072</td>
<td>1.45-1.60</td>
<td>1.33**</td>
<td>0.18 (NS*)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>1.478 ± 0.063</td>
<td>1.32-1.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HS*: Highly Significant; NS*: Non-Significant.

**"Z" value of Mann Whitney U (Z_{MWU}) test was used

At the same time, the DEHP-treated female rats showed a highly significant
(p <0.001) decrease in the mean value of estrogen (estradiol) level as compared to control groups and showed a non-significant (p >0.05) increase in the mean values of FSH and LH levels in DEHP female treated group in comparison to control groups, as illustrated in table 4.

Table (4): Comparison between different female rat studied groups regarding the mean values of estrogen (estradiol), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels (n = 20, 10 for each):

<table>
<thead>
<tr>
<th>Studied hormone (ng/ml)</th>
<th>Female groups</th>
<th>Mean ± SD</th>
<th>Range</th>
<th>Student 't' test</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen (estradiol)</td>
<td>DEHP treated</td>
<td>20.90</td>
<td>0.875</td>
<td>20-22</td>
<td>3.81**</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>31.50</td>
<td>2.321</td>
<td>29-35</td>
<td></td>
</tr>
<tr>
<td>FSH</td>
<td>DEHP treated</td>
<td>2.09</td>
<td>0.29</td>
<td>1.95-2.9</td>
<td>1.68**</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>1.95</td>
<td>0.04</td>
<td>1.88-2.02</td>
<td></td>
</tr>
<tr>
<td>LH</td>
<td>DEHP treated</td>
<td>2.440</td>
<td>0.043</td>
<td>2.40-2.49</td>
<td>1.41**</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>2.405</td>
<td>0.033</td>
<td>2.34-2.46</td>
<td></td>
</tr>
</tbody>
</table>

HS*: Highly Significant; NS*: Non-Significant. **"Z" value of Mann Whitney U (ZMWU) test was used.

III- histopathological study:

The biochemical findings were associated with histopathological changes in the testicular and ovarian tissues stained by hematoxylin and eosin stains. These changes were in the form of seminiferous tubules of variable sizes & shapes, degenerated germinal layers, and vacuolations in the stroma between seminiferous tubules, as compared to normal structure of testes of control rats, as illustrated in fig. 3-5.

Figure (3): Photomicrograph of a section in rat’s testis prepared from a control rat showing normal architecture with well-arranged seminiferous tubule and normal interstitial tissues (H&E x 400).
Figure (4): Photomicrograph of a section in rat’s testis prepared from a DEHP-treated rat showing seminiferous tubules variable in sizes & shapes with degenerated germinal layers (red arrow) (H&E x 400).

Figure (5): Photomicrograph of a section in rat’s testis prepared from a DEHP-treated rat showing degenerated spermatocytes (red arrow) & vacuolations (yellow arrow) (H&E x 400).

In the ovarian tissues, there were degenerations in the follicular cells with vacuolations in the stroma in DEHP-treated female rats, as compared to normal structure of ovaries in female control rats, as illustrated in fig. 6-7.
Figure (6): Photomicrograph of a section in rat’s ovary prepared from a control rat showing normal architecture with well-arranged follicular cells (H&E x 400).

Figure (7): Photomicrograph of a section in rat’s ovary prepared from a DEHP-treated rat showing degenerated follicular cells (red arrow) with vacuolations in the stroma (yellow arrow) (H&E x 400).

IV- IMMUNOHISTOCHEMICAL STUDY:
Testicular sections of DEHP-treated male group showed a strong expression of nuclear PCNA staining seen only in spermatogonia layer and a weak expression in primary spermatocyte and secondary spermatocyte, indicating suppression of germ cell proliferation, as compared to control rats which showed a strong expression of nuclear PCNA staining in all germinal layers (spermatogonia, primary spermatocyte and secondary spermatocyte), as illustrated in **fig. 9-10**.

Figure (9): Photomicrograph of a section in rat’s testis prepared from a control rat showing seminiferous tubule with strong expression of nuclear PCNA staining in all germinal layers (spermatogonia, primary spermatocyte and secondary spermatocyte) with regular sizes of seminiferous tubules (red arrow) (IHC x 400).
Figure (10): Photomicrograph of a section in rat’s testis prepared from a DEHP-treated rat showing strong expression of nuclear PCNA staining in only spermatogonia layer (red arrow) and weak expression in primary spermatocyte and secondary spermatocyte (yellow arrow) with irregular sizes of seminiferous tubules (**IHC x 400**).

The present work showed a weak expression of nuclear PCNA staining in follicular cells and stromal cells in ovarian sections of DEHP-treated female group, as compared to control rats which showed a strong expression of nuclear PCNA staining in follicular cells and weak expression in the stromal cells of ovarian sections, as illustrated in **fig. 11-12**.

Figure (11): Photomicrograph of a section in rat’s ovary prepared from a control rat showing a strong expression of nuclear PCNA staining in follicular cells (red arrow) and a weak expression in the stromal cells (yellow arrow) (**IHC x 400**).
DISCUSSION

Di-ethylhexyl phthalate (DEHP) is considered as a toxic hazard and can produce several endocrine and reproductive disorders in rodents (Liu et al., 2017).

As a result of its prevalent and widespread use, DEHP can be found in water, food products, air, soil, plants and animals (Latini et al., 2006).

The present study revealed that the body weight mean values of DEHP-treated rats either in male or female groups decreased as compared to control groups, which was non-significant after the 1st and the 2nd weeks, and became highly significant after the 3rd and the 4th weeks of treatment.

Liu et al. (2014) showed that DEHP oral exposure at a dose of 1000 or 3000 mg/kg resulted in a non-significant difference in the mean body weights of rats by the 1st week. But after the 2nd, 3rd, and 4th weeks, their weights were significantly decreased as compared with the control rats.

Erkekoglu et al. (2011) concluded that rates treated with 1000 mg/kg of DEHP by oral gavage exhibited a significant reduction in body weights after 10 days of DEHP exposure.

On the other hand, Somasundaram et al. (2017) detected no changes in the body weight of adult female rats exposed to oral doses (1, 10, and 100 mg/kg daily) of DEHP for 30 days.

Body weight may be considered as a useful marker that inclusively reflects the toxic effects of DEHP on the growth status of rats. DEHP can decrease the body weight gain by disturbing fat metabolism and synthesis (Itsuki-Yoneda et al., 2007).

The current study showed a significant decrease in relative testis and ovary weights in DEHP-treated rat groups as compared to control rat
The results of the present study were in agreement with the study of Helal (2014) who reported a statistically significant testicular weight reduction in male rats treated with DEHP at a dose of 1000 mg/kg body weight.

Meanwhile, Grande et al. (2007) found that exposure to DEHP in female rats did not show any change in ovary weight.

In the present study and as regard to hormonal assay; a significant decrease in serum testosterone levels was detected, and a non-significant decrease in serum follicle-stimulating hormone (FSH) & luteinizing hormone (LH) levels were observed in DEHP-treated male groups as compared to control male groups.

These findings were in a harmony with those of Gao et al. (2014) who showed a significant decrease in testosterone levels in male rats treated with DEHP.

Noriega et al. (2009) detected a highly significant decrease in serum testosterone level with large dose of DEHP. They explained that due to the inhibitory effects of phthalates on pubertal development especially on testis.

Zhang et al. (2014) concluded that DEHP decreased testosterone production through activation of oxidative stress. In this study, DEHP was administrated orally to pre-pubertal male rats, from postnatal day 22 to day35.

Savchuk et al. (2015) stated that mono (2-ethylhexyl) phthalate (MEHP) –a main DEHP metabolite- decreases LH/human chorionic gonadotropin stimulated androgen production by isolated rat Leydig cells.

The current study illustrated that there was a highly significant decrease in serum estrogen (estradiol) levels and a non-significant decrease in serum FSH and LH levels in DEHP-treated female rats, compared to control female rats.

Liu et al. (2014) showed that DEHP exposure via oral gavage at a dose of 1000–3000 mg/kg/day significantly decreased serum estrogen (estradiol) levels in adult female rats.

Hirosawa et al. (2006) detected that serum estrogen (estradiol), FSH and LH levels were reduced after DEHP exposure in female rats.

Lovekamp-Swan and Davis (2003) stated that MEHP inhibits estrogen (estradiol) synthesis through lowering the mRNA, protein levels and the activity of aromatase.

The results of the present study showed histopathological changes in the testicular specimens of the DEHP-treated male rats, including dilatation in seminiferous tubules, edematous stroma with vacuolations and degenerated spermatocytes.

These results were in agreement with the study of Abd-Ellah et al. (2016) who observed histopathological changes of DEHP-treated male rats in the form of degeneration and necrosis of spermatogonial cells, combined with azoospermia.

Also, Kitaoka et al. (2013) reported that DEHP exposure in adult male mice showed germ cell sloughing of seminiferous tubules intermixed with normal seminiferous tubules at 4 weeks, while significant
spermatogenic disorders occurred after 8 weeks of treatment.

Abdel-Kawi et al. (2016) observed distorted seminiferous tubules, associated with abundant vacuoles in some tubules, reduction in the thickness of the germinal epithelium and sloughed germ cells in DEHP-treated male rats.

Another study detected hyperplasia and clustering of Leydig cells after doses of 938 mg/kg/day of DEHP in Sprague-Dawley rats (Culty et al., 2008).

Alam et al. (2010) detected that vacuolation is the first microscopic sign of testicular injury followed by ultrastructural alterations in sertoli cells produced by DEHP exposure.

Also Zhao et al. (2012) concluded that the main DEHP metabolite (MEHP) adversely affects the steroidogenesis in rat Leydig cells by stimulating reactive oxygen species (ROS) production.

The results of the present study also showed histopathological changes in the ovarian specimens of the female rats treated with DEHP in the form of degenerated follicular cells with vacuolation in the stroma.

These results were consistent with those of Takai et al. (2009) who observed vacuolations of stromal cells in the female rats receiving 300 mg/kg or more of DEHP and an increase of large atretic follicles in groups at doses of 1,000 and 3000 mg/kg.

Female rats exposed to DEHP resulted in a reduction in numbers of growing follicles (primary, secondary and antral follicles), and increased irregularity of estrous cycles and granulosa cell apoptosis (Xu et al., 2010).

Assessing of DEHP toxic effects by combined histopathological and immunohistochemical studies on the reproductive organs (testis and ovary) is a valuable indicator of DEHP toxicity (Sanbuissho et al., 2009).

Regarding Immunohistochemical study on testicular sections of DEHP-treated male group, the present study revealed a strong expression of nuclear PCNA staining in only spermatogonia layer and a weak expression in primary & secondary spermatocytes.

These findings were in a harmony with those of Salama et al. (2013) who reported that phthalate exposure in adult male rats for 4 weeks showed a positive (strong) reaction for PCNA in the nuclei of spermatogonia, and a negative (weak) reaction for PCNA in the nuclei of primary spermatocytes and early spermatids.

Li et al. (2014) reported that DEHP produced anti-proliferative effects on testicular germ cells, and caused atrophy of testes by germ cell apoptosis.

Di-ethylhexyl phthalate could induce mitochondrial injury and ROS overproduction which may result in apoptosis of spermatocytes (Kasahara et al., 2002).

Regarding immunohistochemical study of ovarian sections of DEHP-treated female rats, the present study showed a weak expression of nuclear PCNA staining in follicular cells and stromal cells.

The results of this study were consistent with those of Takai et al. (2009) who observed large atretic follicles with weak PCNA
immunohistochemical staining in follicular cells, in female rats treated with DEHP.

Hannon and Flaws (2015) stated that phthalates can impair ovarian/oocyte development, follicular growth and ovarian maturation and ovulation.

Phthalates can result in free radicals production which is suggested to induce many pathologic disturbances in the reproductive system *(Rusyn et al., 2006)*.

CONCLUSION

It can be concluded that oral exposure of adult Wistar albino rats to di-ethylhexyl phthalate (DEHP) at a dose of 3 g/kg body weight /day for 4 weeks resulted in:

- A decrease in body weight and reproductive organs' weights (ovary and testis).
- Hormonal disruption effects, i.e., a decrease in testosterone and estrogen “estradiol” serum levels in male and female adult albino rats respectively.
- Histopathological and immunohistochemical changes in the reproductive organs of both sexes (ovary and testis).

RECOMMENDATIONS

1. Comprehensive awareness of general population to the toxic hazards of DEHP on human health, especially the reproductive system.
2. Minimize the environmental exposure of DEHP to maintain the normal reproductive functions.
3. Finally, the use of other alternative materials to DEHP that have either no or minimal toxic effects should be encouraged.

ACKNOWLEDGMENT

Our deep gratitude to all staff members of the Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, for their help and cooperation.

http://www.fmed.bu.edu.eg

REFERENCES

Kavlock, R.; Boekelheide, K.; Chapin, R.; Cunningham, M.; Faustman, E.; Foster, P.; Golub, M.; Henderson, R.; Hinberg, I.; Little,

الملخص العربي

الآثار السمية دون المزمنة للداي ايثيل هيكسيل فاتلات على المبيض والخصية

للجرذان البيضاء البالغة

المشروكون في البحث

هادي محمد فخر، محمد كامل أحمد، علاء جابر حجاج، عبد المنعم جودة مدبولي، رشا محمود عبد ربه

بعد الفحص لمئات الفحوصات الأعلى على المجتمع، نظرنا لحجم التشخيص وانتشار استخدامها كنوع من المشفادات. ويعتبر الداي ايثيل هيكسيل ذاتية واحدة من أكثر الفاتلات أثراً في البيئة، وفي العديد من المنتجات مثل الأدوات وأغذية الحيوان، وأيضاً في التطبيقات الغذائية والآجزة الطبية. ولذا كان استخدام الداي ايثيل هيكسيل في التنظيرات أدت إلى العديد من الأضرار، مثل الأذى العصبي، والحمل، والجيوب الرئة، وتاريخ ذلك على الأضواء التناسلية. ويهدف هذا العمل إلى تقييم الآثار السمية دون المزمنة للداي ايثيل هيكسيل في المبيض والخصية للجرذان البيضاء البالغة. قد تشير إثديالية الداي ايثيل هيكسيل على المبيض والخصية في الجرذان الذكور المعالجة بالداي ايثيل هيكسيل مقارنة بالمجموعة الضابطة.

وأظهرت الدراسة الحالية وجود نقصان ذو دلالة إحصائية عالية في القيمة المتوسطة للوزن النسبي للمبيض للجرذان الأناث المعالجة بالمادة الداي ايثيل هيكسيل مقارنة بالمجموعات الإضافية. وكما أشارت الدراسة الحالية إلى وجود زيادة ليس لها دلالة إحصائية عالية في القيمة المتوسطة للوزن النسبي للخصية للجرذان الذكور المعالجة بالمادة الداي ايثيل هيكسيل مقارنة بالمجموعات الضابطة. ومثل الأرضيات، ويعتبر الداي ايثيل هيكسيل واحداً من أكثر الفاتلات تواجداً في البيئة بسبب استخدامها كنوع من المذن والثوان بتطبيقاته الغذائية والأجهزة الطبية. ويعتبر هذا البحث على عدد 40 جرذان واناث من الذكور والإناث الموزعة إلى خمسة مجموعات، وتم اعطاء كل جرذ زيت ذرة مفصلي، وقد تم تقسيمها الى مجموعات: مجموعة ضابطة سالبة (A) مكونة من 5 جرذان ذكور، و مجموعة ضابطة موجبة (B) مكونة من 5 جرذان ذكور. تم إعطاء كل جرذ من مجموعة الضابطة (A) المكونة من 10 جرذ ذكر، وتم إعطاء كل جرذ من مجموعة الضابطة (B) المكونة من 10 جرذ أنثى.

ويهدف هذا البحث إلى تقييم الأثار السمية دون المزمنة للداي ايثيل هيكسيل على المبيض والخصية في الجرذان البيضاء البالغة. وقد أظهرت الدراسة الحالية وجود نقصان ذو دلالة إحصائية عالية في القيمة المتوسطة لوزن الجسم والخصية للجرذان الذكور المعالجة بالمادة الداي ايثيل هيكسيل مقارنة بالمجموعات الضابطة. وتعتبر إثديالية الداي ايثيل هيكسيل على المبيض والخصية في الجرذان الذكور المعالجة بالمادة الداي ايثيل هيكسيل ذاتية نوعية من المشفادات، حيث يمكن استخدامها كنوع من المذن والثوان بتطبيقاته الغذائية والأجهزة الطبية. وتعتبر إثديالية الداي ايثيل هيكسيل على المبيض والخصية في الجرذان الذكور المعالجة بالمادة الداي ايثيل هيكسيل ذاتية نوعية من المشفادات، حيث يمكن استخدامها كنوع من المذن والثوان بتطبيقاته الغذائية والأجهزة الطبية.

Egypt J. Foren Sci. Appli. Toxicol Vol 18 (2), June 2018
Webikeyl Fakher et al.

Statistical analysis in the level of estradiol and progesterone in female rats treated with diethylhexyl phthalate compared to the control groups.

3- Histopathological study: The current study showed histopathological changes in the reproductive organs of female rats treated with diethylhexyl phthalate. Changes in tissue structure in the shape and size of the transport tubes of spermatozoa, and a decrease in the epithelial layers. And there were also gaps in the stroma between the transport tubes of spermatozoa.

4- Immunohistochemical study: In examining the male reproductive organs treated with diethylhexyl phthalate, it was found a strong expression of the pink color in the cells of the spermatic cord, and a weak expression in the primary and secondary spermatocytes, indicating a reduction in the proliferative cells and the epithelial layers. And it was also noted a weak expression of the pink color in the cells of the follicles and stroma of the female reproductive organs when stained with sections of females treated with diethylhexyl phthalate.

Conclusions:

1- Total awareness of the dangers of diethylhexyl phthalate on health, especially the toxic effects on the reproductive system.

2- Reducing the environmental exposure to diethylhexyl phthalate to preserve reproductive capacity, and therefore it is necessary to carry out the necessary tests to determine the effects and mechanisms of diethylhexyl phthalate on the ovary and the reproductive system.

3- And finally, it is necessary to encourage the use of other materials that respect health and the environment.

And it is recommended to use the latter method for maternal health and the environment.