STUDY OF ATRIAL NATRIURETIC PEPTIDE IN PATIENTS WITH BRONCHIAL ASTHMA AND CHRONIC OBSTRUCTIVE PULMONARY DISEASES

By
Magdy M. Omar; Magdy A. Abd El-Motaleb*
Awad M. El-Abd**; Sherif Abu El-Dahab***
Hasan G. Abdel-Salam***; and Eman A. El-Betar*

From
Departments of Chest; Cardiology*; Medical Biochemistry*
Internal Medicine***; and Public Health**'
Benha Faculty of Medicine, Zagazig University

ABSTRACT

The present study was carried out to study the changes in plasma atrial natriuretic peptide (ANP) in asthmatic children and in cases with chronic obstructive pulmonary disease (COPD) and to correlate these changes with the ventilatory and cardiac functions in the COAD group.

About 105 subjects were selected. From pediatric and chest Departments, Menha university Hospital. They were classified into 20 asthmatic children (Group A1), who were reinvestigated 4 weeks after treatment (Group A2). Their age ranged from 1.5 to 11 year old. This group of patients was compared with 15 healthy children matched for the same ages and sex. Another 60 patients with COPD were subclassified into 3 subgroups. Subgroup I: included 20 cases on hospital admission with acute infective exacerbation (subgroup Ia), those cases were reinvestigated 6 weeks after medical treatment (subgroup Ib). Subgroup II: included 20 patients with COPD cor pulmonale and right-sided heart
failure. Subgroup III: included 20 patients with COPD without cor-
pulmonale. Their age ranged from 40 to 74 years old. This group of
patients were compared with 10 healthy subjects matched for the same
ages and sex.

For all groups, plasma ANP was done while ventilatory functions
and echocardiography was done for COPD group only. The main results
of this study, showed that plasma ANP was significantly elevated in
asthmatic children compared with the control group but, it was
significantly higher in subgroups AI in comparison to subgroup A2.

In the COPD group, ANP was significantly elevated in all
subgroups. The highest level in subgroup la, the lowest level was in
subgroup III. ANP was significantly elevated in subgroup II in
comparison to Ib and III subgroups.

Also, ANP was correlated with mean pulmonary artery pressure
(PAP), surface area of right atrium (RAsa), right atrial diameter (RAD),
right ventricular diameter (RVD) and tight ventricular anterior wall
(RVAV) diameter. The decrease of ANP in subgroup Ib was associated
with improvement in the ventilatory and cardiac functions,

We could conclude that; ANP was elevated and correlated with the
severity of the disease in both asthmatic and COPD cases. Also, it was
correlated with the degree of PAP, right atrial and right ventricular
dimensions. So, ANP may give a new meaning in the future for the
treatment of both asthmatic and COPD cases.

INTRODUCTION AND AIM OF THE WORK

Atrial natriuretic peptide (ANP) is a recently discovered
polypeptide. Little has been written about this peptide in asthma or COPD
although expanded researches were done in the different cardiac
conditions. It has an important hormonal regulator of salt and water and arterial blood pressure (Di-Nardo et al., 1992). It is synthesized mainly by the right atrium. In the lung, it is synthesized by type II alveolar cell and respiratory epithelial cell. It is also localized in the smooth muscle cell of the pulmonary vein (not the arteries) and the superior vena cava (Springall et al., 1988). It has been recovered in the pleural fluid in patients with congestive heart failure (Vesely et al., 1989).

The lung is the first and an important clearing organ for ANP through the neural endopeptidase enzyme (NEP) (Di-Nardo et al., 1996). In addition to natriuresis and arterial vasodilatation including pulmonary arteries, ANP produces a c-GMP mediated bronchorelaxation and protects against histamine induced bronchoconstriction (Kang et al., 1993). It may prevent pulmonary oedema by increasing c-GMP, decreasing intracellular \(\text{Ca}^{+2} \) and stabilizing tight junctions (Di-Nardo et al., 1996). It also stimulates surfactant production (Ishii, et al., 1989). These beneficial effects have led to the production of inhaled, oral and intravenous ANP to be used to modify bronchial tone and reactivity. However, as a peptide, ANP is not orally bioactive and inhalation studies demonstrate only mild effects (Hulk & Thomson, 1994). Many authors studied the effect of ANP inhibitors (e.g. thiorphan) by inhalation or infusion in asthmatic patients and the results were increase ANP and bronchodilatation, (Angus et al., 1990) (Angus et al., 1995).

This study was designed to study changes in plasma ANP in cases of bronchial asthma and COPD and to correlate these changes with the ventilatory functions and with right atrial and ventricular functions.
SUBJECTS AND METHODS

This study was conducted on 105 subjects divided into 2 main groups. The first group included 20 asthmatic children, 12 cases were males and 8 were females. Their age ranged from 1.5 to 11.0 year old with a mean of 8.3 ±2.1 years. They were admitted to Benha University Hospital with acute severe asthma (Group Ai). Those cases were reinvestigated after improvement, at least 4 weeks after treatment (Group A2). The selection of cases of bronchial asthma was based on the criteria stated by The National Heart, Lung and Blood Institute (1991).

The second group included 60 COPD patients, 39 cases were males and 21 were females. Their age ranged from 40 to 74 years old with a mean of 52.1 ± 6.6 years. The selection of cases of COPD was based on the criteria stated by The American Thoracic Society(1995). They were divided into 3 subgroups:

- Subgroup I: Included 20 cases on admission to the hospital with acute infective exacerbation of COPD (Subgroup Ia). Those cases were reinvestigated after clinical improvement at least 6 weeks after treatment (Subgroup Ib).

- Subgroup II: Included 20 cases with cor-pulmonale and right sided heart failure when clinically stable at least 6 weeks after their last infective exacerbation.

- Subgroup III: Included 20 cases without cor-pulmonale when clinically stable at least 6 weeks after their last infective exacerbation.

Twenty five subjects were taken as a control group. 15 healthy children and 10 healthy adults with comparable age and sex were taken for the asthmatic group (Control A) and for the COPD group (Control C); respectively.
All subjects were submitted to:

1. Thorough history taking.
2. Complete clinical examination.
3. Urine and stool analysis.
4. Plain X-ray chest (PA & Lateral views).
5. Electrocardiogram.
6. Ventilatory function tests using Spirosift (Fukuda Denshi, Model 3000). The following data were measured, forced vital capacity (FVC), forced expiratory volume in the first second (FEVi), FEVi/FVC ratio, forced expiratory flow at 25 - 75% of the FVC (FEF25_75%). These tests were done before and 5 minutes after giving 2 puffs of salbutamol inhalation (done in the COPD group only).
7. Echocardiography

Echocardiographic examination was done in the COPD cases only to measure RAD, RVD, PAP, RPAW, RVD, RAsa and RAD, using HEWLETT PACKARD ultrasonic imaging (Sonos 1000).

Exclusion criteria:

* Patients with underlying heart disease apart from right side affection as congenital, rheumatic valvular and ischemic heart disease. Also, patients with arrhythmias, pericardial effusion, pericarditis or systemic hypertension which may affect the right or left side of the heart.
* Patients with underlying chest disease apart from bronchial asthma and COPD with or without acute infective exacerbation. Also, COPD patients with reversibility in FEVj more than 20% were excluded.
- Patients with impaired liver or kidney functions and other causes of generalized edema as nutritional edema.
- Patients with parasitic infestations that can affect the pulmonary artery pressure or produce asthma like picture,
- Patients with any other systemic affection that might affect ANP level as diabetes mellitus,

7. Sampling

About 5.0 c.c. venous blood sample was collected while the patient was fasting and divided into 2 parts. The first part (2.0 c.c.) was transferred into polypropylene tube containing 2mg of EDTA and Aprotonine (2000 KIU/ml). Blood was centrifuged in a cooling centrifuge at 1,600 Xg for 15 minutes at 0°C. Plasma was transferred to fresh polypropylene tube and stored at -70°C until assay of ANP. The second part was left to be clotted. centrifuged and serum separated was used for determination of:

a- Fasting serum glucose (Trinder, 1969).

b- Liver function tests:
 - SGOT & SGPT (Reitman & Frankel, 1957),
 - S. albumin (Grant & Kachmar, 1970).
 - S. total protein (Henry & Beters, 1968).

c- Renal function tests:
 - S. creatinine (Henry, 1974).

Determination of plasma ANP by ELISA (Prostmaan & Ksessig, 1992):

The kit of ANP was purchased from Peninsula Laboratories Inc. ANP was extracted from plasma using C3 sep columns and eluted with a mixture of acetonitrile and trifluoroacetic acid. Measurement was done by specific and sensitive competitive enzyme immunoassay.

Vol. 27, No. 1, June 30, 1995
Data analysis:

Results were expressed as mean value + standard deviation, paired and unpaired t-test was used for comparison. P-value of <0.05 was considered significant (Budneck, 1987).

RESULTS

Table (1) showed that plasma ANP was significantly increased in asthmatic children before and after treatment (P < 0.001) compared with the control group while plasma ANP was significantly decreased after treatment (P < 0.001) compared with the same cases before treatment.

Table (2) showed that plasma ANP was significantly increased in all COPD cases (P < 0.001) compared with the control group. Group IIb and group III showed a more significant decrease in plasma ANP (P < 0.001) compared with the group Ia while, group II showed a significant increase of plasma ANP (P < 0.01), group III showed a non-significant decrease compared with group Ia. Furthermore, group II showed a significant decrease of plasma ANP (P < 0.001) compared with group II.

Tables (3 & 4) showed a statistical comparison between different ventilatory functions and echocardiographic data in different COPD cases compared with the control group.

Table (5 & 6) showed the correlation coefficient (r) between plasma ANP with ventilatory and cardiac functions.
Table (1): Mean± S$ f$ t-iesf (paired and unpaired) xnti p values of plasma ANP in asthmatic children before and after medical treatment compared with each other and with the control group (A).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Biochemical parameter</th>
<th>ANP (ng/ml)</th>
<th>t-test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (A) (n = 15)</td>
<td></td>
<td>1.45 ±0.12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Group A₁ (before treatment) (n = 20)</td>
<td></td>
<td>9.25 ±2.95</td>
<td>10.83</td>
<td>P₁<0.001</td>
</tr>
<tr>
<td>Group A₂ (after treatment) (n = 20)</td>
<td></td>
<td>6.13±2.12</td>
<td>6.95</td>
<td>P₂<0.001</td>
</tr>
</tbody>
</table>

P₁: Probability versus control group.
P₂: Probability versus group A₁ (before treatment).

Table (2): Mean± S$ f$, t-test and p values of plasma ANP in COPD sit control group (C).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Biochemical parameter</th>
<th>ANP (ng/ml)</th>
<th>t-test</th>
<th>r-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (C) (n = 10)</td>
<td></td>
<td>0.5 ±0.06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subgroup Ia (before treatment) (n = 20)</td>
<td></td>
<td>7.9 ±3.2</td>
<td>4.1</td>
<td>P₁<0.001</td>
</tr>
<tr>
<td>Subgroup Ib (after treatment) (n = 20)</td>
<td></td>
<td>4.0 ±1.2</td>
<td>13.6</td>
<td>P₁<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.1*</td>
<td>P₂<0.001</td>
</tr>
<tr>
<td>Subgroup n (n =20)</td>
<td></td>
<td>7.4 ±3.9</td>
<td>4.1</td>
<td>P₁<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>P₂: NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
<td>P₃<0.001</td>
</tr>
<tr>
<td>Subgroup III (n =20)</td>
<td></td>
<td>3.9 ± 2.1</td>
<td>4.1</td>
<td>P₁<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
<td>P₂<0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>P₃: NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td>P₄<0.001</td>
</tr>
</tbody>
</table>

P₁: Probability versus control group.
P₂: Probability versus group Ia.
P₃: Probability versus Ib.
P₄: Probability versus II

NS = Non significant

Vol. 27, No. i, June 30, 1995
Table (3): Mean ± SD and P values of ventilator functions in COPD cases compared with the control group.

<table>
<thead>
<tr>
<th>Ventilatory functions</th>
<th>Studied groups</th>
<th>FVC (% Pred.)</th>
<th>FEV$_1$ (% Pred.)</th>
<th>FEV$_1$/FVC</th>
<th>FEF$_{5-75}$ (% Pred.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (C) (n=10)</td>
<td></td>
<td>94.4 ±2.5</td>
<td>91.6 ±2.8</td>
<td>96.6 ±1.9</td>
<td>94.5 ±3.02</td>
</tr>
<tr>
<td>Subgroup Ia (n=20)</td>
<td>60.8 ±8.8, P<0.00!</td>
<td>45.5 ±6.8, P<0.00!</td>
<td>54.7 ±6.3, P<0.001</td>
<td>28.7 ±7.9, P<0.001</td>
<td></td>
</tr>
<tr>
<td>Subgroup Ib (n=20)</td>
<td>70.4 ±8.3, P<0.001</td>
<td>55.4 ±5.9, P<0.001</td>
<td>59.9 ±6.1, P<0.001</td>
<td>38.4 ±8.8, P<0.001</td>
<td></td>
</tr>
<tr>
<td>Subgroup II (n=20)</td>
<td>73.7 ±8.1, P<0.001</td>
<td>50.9 ±8.0, P<0.001</td>
<td>52.1 ±7.5, P<0.001</td>
<td>36.1 ±9.7, P<0.001</td>
<td></td>
</tr>
<tr>
<td>Subgroup III (n=20)</td>
<td>64.2 ±9.7, P<0.001</td>
<td>45.2 ±5.7, P<0.001</td>
<td>53.9 ±7.5, P<0.001</td>
<td>42.1 ±9.5, P<0.001</td>
<td></td>
</tr>
</tbody>
</table>

P: Probability versus control group.

Table (4): Mean ± SD and P-values of echocardiographic data in COPD cases compared with the control group.

<table>
<thead>
<tr>
<th>Studied groups</th>
<th>Echocardiographic data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EF (<%V)</td>
</tr>
<tr>
<td>Control (C) (n=10)</td>
<td>48.5 ± 3.5</td>
</tr>
<tr>
<td>Group Ia (n=20) (before treatment)</td>
<td>42.9 ± 6.5</td>
</tr>
<tr>
<td>Group Ib (n=20) (after treatment)</td>
<td>48.2 ± 6.5</td>
</tr>
<tr>
<td>Subgroup II (n=20) (after treatment)</td>
<td>47.5 ± 9.6</td>
</tr>
<tr>
<td>Subgroup III (n=20)</td>
<td>45.1 ± 5.1</td>
</tr>
</tbody>
</table>

P: Probability versus control group.
NS = Non significant.

T&Tnta Medical Journal
Table (5): Correlation coefficient (r) between the ventilatory functions and plasma atrial natriuretic peptide (ANP) level in the different studied groups.

<table>
<thead>
<tr>
<th>Ventilatory Function</th>
<th>FVC (% Pred.)</th>
<th>FEV$_1$ (% Pred.)</th>
<th>FEF$_{	ext{Is.75%}}$ (% Pred.)</th>
<th>FE)$_1$/FVC (%)</th>
<th>FEF$_{75%}$ (% Pred.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANP in control group</td>
<td>$r = 0.086$ P >0.05</td>
<td>$r = 0.316$ P >0.05</td>
<td>$r = 0.393$ P >0.05</td>
<td>$i = 0.389$ P >0.05</td>
<td></td>
</tr>
<tr>
<td>ANP in COPD with acute exacerbation</td>
<td>$r = 0.146$ P >0.05</td>
<td>$r = 0.144$ P >0.05</td>
<td>$r = 0.317$ P >0.05</td>
<td>$r = 0.159$ P >0.05</td>
<td></td>
</tr>
<tr>
<td>ANP in COPD 6 weeks after treatment</td>
<td>$r = 0.465$ P >0.05</td>
<td>$r = 0.152$ P >0.05</td>
<td>$r = 0.405$ P >0.05</td>
<td>$r = 0.108$ P >0.05</td>
<td></td>
</tr>
<tr>
<td>ANP in COPD with cor-pulmonale</td>
<td>$r = 0.349$ P >0.05</td>
<td>$r = 0.020$ P >0.05</td>
<td>$r = 0.260$ P >0.05</td>
<td>$r = 0.090$ P >0.05</td>
<td></td>
</tr>
<tr>
<td>ANP in COPD without cor-pulmonale</td>
<td>$r = 0.159$ P >0.05</td>
<td>$r = 0.310$ P >0.05</td>
<td>$r = 0.424$ P >0.05</td>
<td>$r = 0.023$ P >0.05</td>
<td></td>
</tr>
</tbody>
</table>

*Significant

Table (6): Correlation coefficient (r) between the echocardiographic data and plasma atrial natriuretic peptide (ANF) level in the different studied groups.

<table>
<thead>
<tr>
<th>Echocardiographic data</th>
<th>EF (%)</th>
<th>PAP (mmHg)</th>
<th>RAD (cm)</th>
<th>RAsa (cm2)</th>
<th>RVD (cm)</th>
<th>iVAW (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studied groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANP in control group</td>
<td>$r = 0.424$ P >0.05</td>
<td>0.010 P >0.05</td>
<td>0.343 P >0.05</td>
<td>0.459 P >0.05</td>
<td>0.101 P >0.05</td>
<td>0.494 P >0.05</td>
</tr>
<tr>
<td>ANP in COPD with acute exacerbation</td>
<td>$r = 0.353$ P >0.05</td>
<td>$<0.01^*$</td>
<td>0.546^* P >0.05</td>
<td>0.493^* P >0.05</td>
<td>0.493^* P >0.05</td>
<td>0.546^* P >0.05</td>
</tr>
<tr>
<td>ANP in COPD 6 weeks after treatment</td>
<td>$r = 0.026$ P >0.05</td>
<td>0.411 P >0.05</td>
<td>0.193 P >0.05</td>
<td>0.111 P >0.05</td>
<td>0.370 P >0.05</td>
<td>0.139 P >0.05</td>
</tr>
<tr>
<td>ANP in COPD with cor-pulmonale</td>
<td>$r = 0.217$ P >0.05</td>
<td>0.054 P >0.05</td>
<td>0.241 P >0.05</td>
<td>0.223 P >0.05</td>
<td>0.164 P >0.05</td>
<td>0.277 P >0.05</td>
</tr>
<tr>
<td>ANP in COPD without cor-pulmonale</td>
<td>$r = 0.164$ P >0.05</td>
<td>0.208 P >0.05</td>
<td>0.434 P >0.05</td>
<td>0.436 P >0.05</td>
<td>0.238 P >0.05</td>
<td>0.314 P >0.05</td>
</tr>
</tbody>
</table>

*Significant

DISCUSSION

In this study, there was a highly significant increase of the serum ANP in the asthmatic children (P <0.001) in comparison with control.
group especially during acute attack (Table 1). This was in consistent with
the work done by Di-Nardo et al. (1992) and De-Gouw et al., (1996),
Almirall and Hedenstierna (1991), reported that ANP has a bronchodilator
effect in asthmatic patients and it is c-GMP mediated and it may be
considered a protective mechanism. Scharf et al.(1989), also postulated
that acute asthma cause a fall in inspiratory pleural pressure with
bronchoconstriction eliciting a marked increase in functional residual
capacity (FRC). This results in a higher negative force surrounding the
atria at inspiration, augmenting right atrial distension and contributing to
ANP release. Another mechanism including increase in airway resistance
which increase alveolar pressure and rise pulmonary vascular resistance,
(Adnot et al., 1987), as well as activation of sympathetic nervous system
and increase in heart rate which occur in acute severe asthma,
(Scliebinger & Linden, 1986) with a corresponding increase of atrial
contraction that stimulate specific granules for ANP release. Di-Nardo et
al. (1996), confirmed the enhancement of ANP receptor gene expression
and localization in the respiratory system induced by hypoxia during the
acute state.

Plasma ANP in our asthmatic children 4 weeks after the acute attack
although was significantly higher ($P_2<0.001$) than the control group but
still significantly lower than that during the acute attack (Table 1). A
similar results were obtained by Skwarski et al. (1993).

In the COPD group, it was found that the highest level of serum
ANP was in the subgroup la and it was statistically significant ($P_2<0.001$)
when compared with subgroups (Ib & III) and with the control group
($P_2<0.001$). This was in consistent with the work done by Skwarski et al.
(1993). The lowest level of ANP was in subgroup III (Table 2).

Several mechanisms could explain the very high level of serum ANP
in COPD patients: (a) Hypoxia: which acts either directly on the right
atrium or indirectly through hypoxic pulmonary vasoconstriction which increase ANP and accordingly causes hypertrophy of the right ventricle and right atrium which are the main sites for ANP secretion (Winter et al., 1989). (b) Hypercapnoea: which acts through several mechanisms. All of them causes Na" retention and expansion of the extracellular fluid volume with subsequent stimulation of ANP secretion. First, is renal retention of bicarbonate in the form of NaHCO₃ (Winter et al., 1989). Second, is directly stimulation of rT secretion, which is electronically balanced by reabsorption of Na⁺ (Koehny, 1986). Third, is renal afferent arteriolar constriction as a result of reduction of renal plasma flow (Faber et al., 1986). Fourth, is increasing vasopressin secretion, which is mediated through activation of rennin-angiotensin-aldosteron system (Faber et al., 1986).

It has been reported that very high level of ANP in COPD cases with exacerbation has a protective role against the development of oedema due to its beneficial hemodynamic effects and inhibition of rennin-angiotensin-aldosteron system (Espiner, 1994). However, Na⁺ and water retention still occur in those patients inspite of the very high level of plasma ANP. This could be explained by the blunted renal response to ANP or the possibility of suppressive effect of ANP on the renin-angiotensin axis is outweighed by the stimulatory effect of inadequate renal perfusion on this axis (Shenker et al., 1985).

In this study, it was found that ANP in COPD cases 6 weeks after treatment (Subgroup Ib) although was significantly lower than that in subgroup la (P<0.001), it was still significantly higher than their control group (P<0.001) (Table 2). This was in consistent with the work done by Skwarski et al. (1993), who also reported that at least 6 weeks should be passed after the last exacerbation to detect accurately changes in ANP level.
The significant reduction in ANP level in subgroup to in comparison to subgroup Ia was also associated with significant improvement in the large and small airway function parameter (a similar results were also reported by Di-Nardo et al. (1992), and also significant improvement in PAP, EF and RAD (LA) (Table 4). This improvement in ANP could be explained by a combination of factors including improvement in blood gases as a result of improvement of EF and PAP [a similar results were also obtained in this study (Table 4)] and hence perfusion is better and finally reduction in central venous pressure consequent on diuresis (Raine et al., 1986).

The mean plasma ANP level in subgroup II was significantly higher ($P_1<0.001$) as compared with its control group (Table 2). This was in agreement with work done by Habib et al. (1994), and Skwarski et al. (1993), and could be explained by persistent elevation of the PAP with subsequent increase in RAD, RAsa, RVD and RVAV (Mac-Nee et al., 1988), in addition to chronic hypoxia and hypercapnoea which are detected in such cases.

It was found that plasma ANP in subgroup III was still significantly higher ($P_2<0.001$) as compared with their control group (Table 2). Habib et al. (1994) and Skwarski et al. (1993) also obtained similar results. No significant difference in plasma ANP was detected between Ia and II subgroups. This could be explained by that both groups have comparable PAP (Table 2). Similar results were obtained by Skwarski et al. (1993). However, ANP was significantly higher ($P_2<0.001$) in subgroup Ia in comparison to subgroup III (Table 2). This could be explained by the more hypoxia, hypercapnoea, increase PAP and chest infection in subgroup Ia (Skwarski et al., 1993).
There was a significant ($P_{<0.01}$) decrease of plasma ANP in subgroup Ib in comparison with subgroup I (Table 2) which could be explained by the reduction in PAP and hence, right atrial pressure (Kwashima et al., 1989). Plasma ANP was significantly higher in subgroup II ($P_{<0.001}$) in comparison to subgroup III (Table 2) which could be explained by the presence of chronic pulmonary hypertension in subgroup II but not in subgroup III (Mac-Nee et al., 1988).

Plasma ANP in subgroup Ia significantly correlated with FVC (Table 5). This may be due to the effect of treatment that improves the ventilatory functions, blood gases, PAP and lead to reduction in ANP level (Di-Nardo et al., 1992).

Plasma ANP in subgroup Ia significantly correlated with PAP, RAsa (Table 6) which may indicate the role of ANP in modulating PAP through vasodilatation and blood volume regulation (Morice et al., 1987). This was in agreement with the work done by Adnot et al. (1987), Ibrahim et al. (1993) and Skwarski et al. (1993) but not in agreement with those done by Winter et al. (1989) and Habib et al. (1994). These conflicting results may be due to depletion of ANP stores due to long duration of the disease (Winter et al., 1989).

In this study, there was a significant positive correlation between plasma ANP and RAD, RVD and RVAW in subgroup Ia (Table 6). This may be due to pulmonary hypertension, which conflict on the right ventricle and right atrium.

The highest value of PAP was found in subgroup II (Table 4). Weitzenblun and his colleague (1984), had reported that hypoxaemia was not significantly differ in those with or without cor-pulmonale but hypercapnoea and acidosis were higher in patients with cor-pulmonale and may have contributed to a higher increase in ANP.

Vol. 27, No. 1, June
From this study, it could be concluded that plasma ANP was elevated in asthmatic and COPD cases and it correlated with the severity of the disease and COPD cases- with the degree of PAP, right atrial and ventricular dimensions. ANP has a beneficial effect in bronchial asthma and COPD patients. So, we recommend further studies to prolong its duration of action via blocking ANP degrading enzyme or its clearance receptor.

T&a Medical Journal
- Rowe., 525,

T&nta Medical Journal

Vol. 27, No 1, June 30, 1999