THE EFFECT OF CARVEDILOL ON POST-ISCHEMIC
SPLANCHNIC TISSUE INJURY

Awad El-Abd MD*, Mohamed Abdel-Aziz MD, Adel Hussein MD and Amany Tawfik M.B., B.ch

Departments of Biochemistry* and Pharmacology
Benha* and Menoufiya Faculties of Medicine
Zagazig and Menoufiya Universities (Egypt)

Abstract

The objective of the current work aimed to investigate whether carvedilol is an effective antishock agent in the well established in vivo ischemia/reperfusion model of splanchnic artery occlusion shock. Also, to investigate the mechanism of this protection, such as antioxidant properties, preservation of endothelial function, and inhibition of neutrophil accumulation and adhesion. For this study, 36 rats weighing 120-200gm were selected. They were classified into 4 groups; control, splanchnic ischemia-reperfusion (SI/R), SI/R rats injected by 0.5mg/kg carvedilol and SI/R rats injected by 1.0 mg/kg carvedilol. Each group was formed of 9 rats. The results obtained showed that; hematocrite, tissue malondialdehyde (MDA), and tissue myeloperoxidase (MPO) were significantly increased (p<0.001) while plasma MDA and anti MPO were non-significantly increased in ischemic-reperfusion group compared with the control group. Comparative study of injected groups versus non-injected SI/R group, the result showed that; significant decrease of hematocrite (p<0.01), tissue MDA (p<0.001) and MPO (p<0.001) while plasma MDA and anti MPO were non-significantly changed in SI/R rats injected with 1.0 mg/Kg carvedilol. Mean while, SI/R rats injected with 0.5mg/Kg carvedilol showed non significant changes of all studied biochemical parameters when compared with the non-injected SI/R rats.

We could conclude that; carvedilol pretreatment leads to amelioration of the adverse effects of SI/R shock by scavenging oxygen free radicals, counteracting the increased microvascular permeability and inhibiting the adhesion and activation of neutrophils in this model of splanchnic ischemia/reperfusion.

Introduction

Ischemia and reperfusion of the splanchnic circulation resulting from vascular occlusion, hemorrhage, or trauma are critical in the
development of shock states, since, this region appears to play a major role in promoting lethality (Hayward and Lefer, 1998).

Gut ischemia-reperfusion injury is a serious condition in intensive care patients. Activation of immune cells within the huge endothelial surface area of gut microcirculation may initiate a systemic inflammatory response with secondary injury to distant organs (Schwarz et al., 1999).

Splanchnic ischemia and reperfusion results in the accumulation of neutrophils in the splanchnic visceral organs where they mediate their injurious effects (Hayward and Lefer, 1998).

MPO is a heme-containing enzyme secreted by human phagocytes after activation by respiratory burst stimulants. MPO has 2 major activities: halogenation and peroxidation. During the halogenation activity of MPO, hydrogen peroxide (H$_2$O$_2$) reacts with native MPO to form the redox intermediate which oxidizes halides to hypophalous acids (HOCl) via a 2-electron oxidation. HOCL is the major strong oxidant generated by the MPO system of stimulated phagocytes at physiological concentrations of halide ions. MPO also oxidizes a number of organic substrates (RH) to free radical intermediates by a classical peroxidase cycle (Carr et al., 2000).

During reperfusion, gut injury may be amplified by increased production of oxygen radicals and exhaustion of endogenous antioxidant defense mechanisms (Schwarz et al., 1999).

Recent studies have demonstrated that carvedilol is a vasodilating beta-blocker and antioxidant approved for treatment of mild to moderate hypertension, angina, and congestive heart failure (Lysko et al., 2000; Cargoni et al., 2000 and Kurz et al., 2000).

However, the effect of carvedilol on post ischemic/reperfusion of the splanchnic area needs to be clarified.
Aims of the work

The objective of the current work aimed to investigate whether carvedilol is an effective antishock agent in the well established in vivo ischemia/reperfusion model of splanchnic artery occlusion (SAO) shock. Also, to investigate the mechanism of this protection, such as antioxidant properties, preservation of endothelial function, and inhibition of neutrophil accumulation and adhesion.

Material and methods

Experimental animals:

Thirty six male albino rats of local strain, weighing from 120-200gm were used without previous preparation.

Experimental design and animal groups:

The animals were subdivided into four equal groups. Each consisting of nine rats. All groups were fasted for 12-18 hours with free access to water.

Group I: Served as control group.
Group II: Subjected to acute splanchnic ischemia and reperfusion shock (SI/R).
Group III: Received carvedilol (0.5mg/kg/day) aqueous suspension by intraperitoneal injection for five successive days, then subjected to acute splanchnic ischemia and reperfusion shock.
Group IV: Received carvedilol (1mg/kg/day) aqueous suspension by intraperitoneal injection for five successive days, then subjected to acute splanchnic ischemia and reperfusion shock.

The above two doses used were consistent with the plasma levels of the drug attained in patients on doses of 25-50 mg/day (Ruffolo and Feuerstein, 1997).
Methods:

A-Induction of acute splanchnic ischemia/ reperfusion shock *(Christopher et al., 1995)*:

The rats were anaesthetized with urethane in a dose of (0.6 ml/100 gm) of 25% freshly prepared solution injected intraperitoneally (I.P). The abdomen was opened via midline incision. The superior mesenteric artery (SMA) was isolated from the surrounding connective tissue near its aortic origin. Acute splanchnic ischemia-reperfusion shock was induced using total occlusion of the SMA with non-traumatic ligation. Thirty minutes later, the ligation was removed from the SMA followed by observing the rat for additional 60 min. of reperfusion.

B-Preparation of the intestinal tissues and blood samples:

The abdomen was opened and part of jejunum was taken (about 1.0gm) in a clean dry tube. Also, the thorax was opened and a blood sample was taken by intracardiac heparinized syringe (200 µl heparin/2 ml blood). The blood sample was divided into two parts. The first part, was drawn in a fine capillary tube for hematocrite determination. The second part was centrifuged at 3000 r.p.m for 15 min. The supernatant plasma was collected in a dry clean tube for determination of malondialdehyde and antimyeloperoxidase autoantibodies. The small intestinal tissues were homogenized for determination of myeloperoxidase and malondialdehyde.

C-Biochemical Analysis:

1. Estimation of hematocrite % *(Thompson and Briton, 1977)*.
2. Estimation of malondialdehyde in plasma *(Draper and Hadley, 1990)*.
3. Estimation of malondialdehyde in tissue homogenates *(Draper and Hadley, 1990).*

4. Estimation of myeloperoxidase in tissue homogenates *(Bradly et al., 1982).*

5. Estimation of antimyeloperoxidase autoantibodies in plasma *(Hagen et al., 1993).*

Statistical analysis:

The obtained results were tabulated and statistically analyzed using student’s t-test. P values < 0.05 were considered significant while p values > 0.05 were insignificant *(Budneck, 1987).*
Results & Discussion

Table (1): Mean, ±SE, and p values of hematocrite, plasma malondialdehyde (MDA), tissue MDA, tissue myeloperoxidase (MPO) and plasma antimyeloperoxidase (anti MPO) in SI/R group compared with the control group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Group I (control) n=9</th>
<th>Group II (SI/R) n=9</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrite (%)</td>
<td></td>
<td>42.16±0.94</td>
<td>49.29±0.88</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Plasma MDA (nmol/ ml)</td>
<td></td>
<td>7.31±0.47</td>
<td>8.09±0.78</td>
<td>NS</td>
</tr>
<tr>
<td>Tissue MDA (nmol/ml/h)</td>
<td></td>
<td>4.27±0.32</td>
<td>8.65±0.29</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Tissue MPO (U/dl/100mg tissues)</td>
<td></td>
<td>0.126±0.023</td>
<td>1.205±0.163</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Plasma antiMPO (U/ml)</td>
<td></td>
<td>7.31±0.47</td>
<td>5.914±0.076</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: Non significant (p>0.05).
p<0.05 : significant
p<0.01 : probability versus control group.
Table (2): Mean, ± SE, and p values of hematocrite, plasma (MDA), tissue MDA, tissue (MPO) and plasma (anti MPO) in SI/R group pretreated with 0.5 mg/kg carvedilol compared with SI/R group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group I (SI/R) n=9</th>
<th>Group II (SI/R+carvedilol 0.5 mg/kg) n=9</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrite (%)</td>
<td>49.29±0.88</td>
<td>47.92±1.48</td>
<td>NS</td>
</tr>
<tr>
<td>Plasma MDA (nmol/ m1)</td>
<td>8.09±0.78</td>
<td>6.82±0.75</td>
<td>NS</td>
</tr>
<tr>
<td>Tissue MDA (nmol/ml/h)</td>
<td>8.65±0.29</td>
<td>7.89±0.26</td>
<td>NS</td>
</tr>
<tr>
<td>Tissue MPO (U/dl/100 mg tissues)</td>
<td>1.205±0.163</td>
<td>0.980±0.105</td>
<td>NS</td>
</tr>
<tr>
<td>Plasma anti MPO (U/ml)</td>
<td>5.914±0.076</td>
<td>5.985±0.082</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: Non significant (p>0.05).
p<0.05 : significant
Table (3): Mean, ± SE, and P values of hematocrite, plasma (MDA), tissue MDA, tissue (MPO) and plasma (anti MPO) in SI/R group pretreated with 1.0 mg/kg carvedilol compared with SI/R group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group I (SI/R) n=9</th>
<th>Group II (SI/R + carvedilol 1.0 mg/kg) n=9</th>
<th>P values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrite (%)</td>
<td>49.29±0.88</td>
<td>45.16±0.69</td>
<td>p2<0.001</td>
</tr>
<tr>
<td>Plasma MDA (nmol/ ml)</td>
<td>8.09±0.78</td>
<td>6.52±0.25</td>
<td>NS</td>
</tr>
<tr>
<td>Tissue MDA (nmol/ml/h)</td>
<td>8.65±0.29</td>
<td>6.58±0.23</td>
<td>p2<0.001</td>
</tr>
<tr>
<td>Tissue MPO (U/dl/100mg/tissues)</td>
<td>1.205±0.163</td>
<td>0.460±0.045</td>
<td>p2<0.001</td>
</tr>
<tr>
<td>Plasma anti MPO (U/ml)</td>
<td>5.914±0.076</td>
<td>6.096±0.099</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: Non significant (p>0.05).

p<0.05 : significant

p2 : probability versus (SI/R) group.
DISCUSSION

Occlusion followed by reperfusion of the major vessels which supply blood to the abdominal viscera, primarily the intestine is well known to produce a severe form of circulatory shock that leads to death. Some of the mechanisms involved in this shock state include parenchymal and microvascular damage that leads to increased microvascular permeability and intravascular fluid loss (Haglund and Lundgren, 1978).

The results of this work revealed that splanchnic ischemia reperfusion shock significantly increased the hematocrite value (Table 1) compared with the control group while pretreatment with (0.5 mg/kg) of carvedilol showed non significant decreases (Table2). However, carvedilol in a dose of (1.0 mg/kg) significantly decreased the hematocrite value (p<0.01) when they compared with SI/R group (Table 3).

These findings are consistent with the observations of Christopher et al., (1995) who reported that hematocrite value increased in SI/R shock rats, however carvedilol-treated rats displayed significantly less haemoconcentration. These findings indicate that carvedilol curtailed the increase in hematocrite value, an indirect measure of loss of fluid from the vascular compartment in this model of SI/R shock.

Also, pretreatment with carvedilol was found to protect against endothelial damage that could exacerbate the systemic shock state by increasing microvascular permeability and aggravating mesenteric ischemia with subsequent decrease of Hematocrite (Christopher et al., 1998).

The present findings, showed that plasma MDA was non significantly increased in SI/R group compared with the control group.
(Table I). Also pretreated groups showed non significant decreases of plasma MDA compared with SI/R group (Tables 2 &3).

However, there was no previous reports about plasma MDA level in SI/R shock of rats or those treated by carvedilol but compatible studies in SI/R shock of dogs and patients with coronary artery disease (Matsuda et al., 2000) and those with ischemic heart failure (Lysko et al., 2000).

While, Lysko et al., (2000) found that; plasma MDA level was non-significantly changed between treated and non-treated groups Matsuda et al., (2000) found that long term therapy with carvedilol produced a significant decrease of plasma MDA level in patients with coronary artery disease due to its antioxidant effect. It is clear that the cause of discrepancy between these results and the present results may be referred to the use of different species, the site of ischemia and the duration of therapy with carvedilol.

Moreover, the present study revealed that tissue MDA level was markedly increased in splanchnic ischemia/reperfusion compared with the control group (p<0.001) (Table 1). Carvedilol pretreatment (0.5mg/kg) non significantly decreased the tissue MDA level (Table 2) while carvedilol in a dose (1.0 mg/kg) significantly decreased it (p<0.001) (Table 3) when compared with SI/R group.

The above results may be due to the inhibition of oxygen free radicals mediated lipid peroxidation inside the cells and tissues (Lysko et al., 2000). Also, these results suggested that the protective effect of carvedilol may be closely related to its antioxidant effect (Christopher et al., 1995). So, it is effective against SI/R shock model which is associated with a burst of oxygen free radicals production, thus it inhibits the lipid peroxidation (Yue et al., 1994a).

In (1998), Tadolini and Franconi suggested the molecular mechanism of carvedilol action. It may inhibit lipid peroxidation by
binding the Fe^{+3} generated during the oxidation of Fe^{+2} by lipid hydroperoxides in the substrate. Therefore, the antioxidant potency of carvedilol can be ascribed to its ability to bind Fe^{+3} that is a catalyst of the process and to its lipophilic nature that concentrates it in the membranes where Fe^{+3} is generated by a site specific mechanism.

Also, Noguchi et al., (2000) concluded that the antioxidant effect of carvedilol against lipid peroxidation, may be due to prevention of ferric ion induced oxidation by sequestering ferric ion.

Although, the model of splanchnic ischemia/reperfusion was used to induce free radical, there were no reports estimated the tissue MDA level except of Aydin et al., (1998). They found a significant increase of intestinal tissue MDA & serum MDA in experimental dogs using the same model of SMA legation. Also, they concluded that plasma MDA levels are valuable marker of diagnosis in intestinal ischemia.

There are different models, used to generate free radicals either by ischemia (Yue et al., 1995b; Krammer and Weglick, 1996; and Lysko et al., 2000) or by non-ischemic measures such as chemicals e.g. phorbol ester and/or dihydrofumaric acid (Yue et al., 1992b), vitamin C/Fe^{+2} (Yue et al., 1992a) and enzymatically using xanthine and xanthine oxidase (Yue et al., 1994b). All these models revealed that carvedilol acts as an oxygen free radical scavenger which are nearly the same results of our findings.

In the present work, SI/R shock was associated with a significant increase of MPO activity (p<0.001) (Table 1) compared with the control group. On the other hand, pretreatment with (0.5mg/kg) carvedilol only slightly decreased MPO activity (Table 2) while pretreatment with (1.0 mg/kg) of carvedilol induced a significant decrease in MPO activity (p<0.001) (Table 3) when they compared with SI/R group.
It was clear that rats subjected to splanchnic artery occlusion developed significant increase in tissue MPO activity, and a marked injury to the distal ileum (Cuzzocrea et al., 2000). This can be explained by the fact that polymorph nuclear leukocytes (PMNs) play an important role in tissue injury associated with ischemia and reperfusion (Mullane, 1991). Also PMNs-endothelial adhesive interaction can be rapidly induced by a burst of free radical generation at the onset of reperfusion (Mc-Ever, 1990).

By scavenging free radicals generated after reperfusion, carvedilol prevented PMNs accumulation in ischemic-reperfused tissue and significantly attenuated the increase in MPO activity and therefore protect tissues from PMNs induced injury (Christopher et al., 1995).

Yue et al., (1995a) demonstrated that carvedilol inhibited the adhesion of neutrophil to damaged or activated endothelial cells through suppressing intracellular adhesion molecule-1 (ICAM-1) which is involved in the attachment of neutrophil to endothelial cells and smooth muscle cells thereby, limiting neutrophil induced tissue injury.

The present results were in agreement with that of Christopher et al., (1998) who found that both carvedilol as well as its hydroxylated metabolite were effective against post-ischemic splanchnic tissue injury. The high MPO activity demonstrated in the ischemic ileal tissue showed significant decrease on treatment with either the metabolite or carvedilol, at a dose 1.0 mg/kg. However, treatment with 0.5mg/kg carvedilol resulted in a slight decrease in MPO activity. These results suggested that carvedilol as well as its metabolite retarded accumulation of neutrophils in intestinal tissues following SI/R shock.

Additionally, the present results were in parallel with other studies used the same model of ischemia/reperfusion on hearts of different animal species: minipigs (Bril et al., 1992) and Rabbits (Brunvand et al.,
The net results revealed that carvedilol and/or its metabolite produced a significant reduction of MPO activity. So, carvedilol exerted a protective effect through its antioxidant properties in myocardial ischemia/reperfusion studies (Feuerstein et al., 1998).

On the other hand, plasma anti MPO showed non-significant changes in the all studied groups (Tables 1, 2,3).

From the present results, it can be observed that neither SI/R nor carvedilol pretreatment produced significant change in plasma anti MPO level. These results indicated that carvedilol can not induce the formation of antibodies against neutrophil which react with the cytoplasmic constituents of neutrophil to produce attenuation in myeloperoxidase level.

This expectation depends on the findings of Iwahori et al., (1998), who reported that treatment with antineutrophil antibody such as (RP3) selectively and sufficiently depleted the circulating neutrophil, markedly reduced myeloperoxidase and attenuated ischemia/reperfusion injury in skeletal muscles. However, Fabian and Kent, (1999) demonstrated that superoxide anion production during reperfusion is reduced by antineutrophil antibody treatment after prolonged cerebral ischemia.

The above mentioned results indicated that carvedilol did not induce the formation of antineutrophil cytoplasmic autoantibodies or (Anti-MPO) and this provides further evidence that carvedilol leads to inhibition of the inflammatory response to ischemic injury and reduction in infiltration of activated neutrophils into the ischemic tissue (Bril et al., 1992 and Ma et al., 1996).

Thus, we could conclude that; carvedilol may ameliorate the adverse effects of SI/R shock by scavenging oxygen free radicals, counteracting the increased microvascular permeability and inhibiting the
adhesion and activation of neutrophils in this model of ischemia/reperfusion.

REFERENCES

Blood and tissue findings in the diagnosis of mesenteric ischemia: an experimental study.

Measurement of cutaneous inflammation: estimation of neutrophil content with enzyme markers.

Cardioprotective effects of carvedilol, a novel of B-adrenoreceptor antagonist with vasodilating properties in anesthetized minipigs: comparison with propanolol.

S.B 211475, a metabolite of carvedilol, reduces infarct size after myocardial ischemic and reperfusion injury in rabbits.

Reduction of oxidative stress by carvedilol: Role in maintenance of ischemic myocardium viability.

Oxidation of LDL by myeloperoxidase and reactive nitrogen species: Reaction pathways and antioxidant protection.
Carvedilol, a new B-adrenoreceptor blocker, vasodilator and free radical scavenger, exerts an anti-shock and endothelial protective effect in rat splanchnic ischemia and reperfusion. J. Pharmacol. Exp. Ther., 273: 64.

Haglund U., and Linden O. (1978):
Antineutrophil cytoplasmic autoantibodies: a review of the antigens involved in assays and the clinical and possible pathogenic consequences.
Blood, 81: 1996.

Time course of endothelial-neutrophil interaction in splanchnic artery ischemia-reperfusion.
Am. J. Physiol. Heart Circ. Physiol., 275: H2080

Selective neutrophil depletion with monoclonal antibodies attenuates ischemia/reperfusion injury in skeletal muscle.

A hydroxylated analog of the B-adrenoceptor antagonist, carvedilol, affords exceptional antioxidant protection to postischemic rat hearts.

Differential effect of carvedilol on norepinephrine release in normoxic and ischemic heart.

A comparison of carvedilol and metoprolol antioxidant activities in vitro.

Carvedilol, a new B-adrenoreceptor blocker and free radical scavenger attenuates myocardial ischemia-reperfusion injury in hypercholesterolemic rabbits.
Carvedilol improves endothelium-dependent dilatation in patients with coronary artery disease.

Properties of GMP-140 an inducible granule membrane protein of platelets and endothelium.
Blood Cells., 16(1): 73.

Neutrophil and endothelial changes in reperfusion injury.

Antioxidant action of the antihypertensive drug, carvedilol, against lipid peroxidation.
Bioch. Pharmacol., 59 (9): 1069.

Intestinal ischemic reperfusion syndrome: Pathophysiology, clinical significance, therapy.

Carvedilol inhibition of lipid peroxidation: A new antioxidative mechanism.

Carvedilol, a new vasodilator and beta adrenoreceptor antagonist, is an antioxidant and free radical scavenger.

تأثير دواء كارفيدول على إصابة نسبة الأكسجين بعد الاختناقات في الفنار

د. عوض العبد، د. عادل حسين، د. محمد عبد العزيز، ط. أماني توفيق

قسم الكيمياء الجيولوجية والماراكلوؤج-كلية طب بنها والمنوفية

جامعتي الزقازيق والمنوفية

يتسبب نقص سريان الدم للأحشاء أو الاختناقات الذي يعقبه عمود سريان الدم في حدوث صدمة دموية يصعبها زيادة في معدل الوفاة. تعددت الأسباب لهذه الظاهرة ولكن بعد العديد من التجارب تبين أن عنصر الأكسجين الحرارة تعتبر من أهم العوامل في حدوث هذه الصدمة. لذلك صممت هذه الدراسة لإيجاد تأثير دواء كارفيدول على إصابة ناسبة الأعضاء بعد الاختناقات ومحاولة التعرف على كيفية حدوث هذا التأثير مثل دوره كمعاكس لعناصر الأكسجين الحرارة والحفاظ على خصائص النسيج المبطن للأمعاء ومنع تجمع والتصاق كرات الدم البيضاء بالложение المصابة. وللهذه الدراسة تم استخدام 36 من ذكور الفنار البيضاء وقسمت إلى أربع مجموعات متساوية وهي مجموعة ضابطة والثانية تم تغريبها لصدمة الاختناقة (نقص سريان الدم للأحشاء لمدة 30 دقيقة يعقبها عمود سريان الدم لمدة 60 دقيقة) والثالثة والرابعة تم حقنهم بدواء كارفيدول كروم. مجم. 1 مجم/كم على التوالي لمدة 5 أيام. وقد أوضحت نتائج هذه الدراسة وجود زيادة ذات دلالة إحصائية في مستوى الهيماتوكريتي والمالونديالدهيد والممالوبيروكسيدز داخل الأسمرة بينما وجد أن مستوى المالونديالدهيد والممالوبيروكسيدز بالبلازما لاكثرهما لزيادة إحصائية وذلك في مجموعة الاختناقة عند مقارنتها بالمجموعة الضابطة. عند عمل دراسة مقارنة بين المجموعتين لتقييم الدقة يتم حقن الكريات بالمجموعة الاختناقة، تشير الدراسة إلى وجود نقص ذات دلالة إحصائية في مستوى الهيماتوكريتي والمالونديالدهيد والممالوبيروكسيدز داخل الأسمرة بينما وجد أن مستوى المالونديالدهيد والممالوبيروكسيدز بالبلازما لاكثرهما لزيادة إحصائية وذلك في مجموعة الاختناقة التي تم حقنها بجرعة مقدارها 0.1 مجم/كم. أما التي تم حقنها بـ 0.2 مجم/كم فلا يوجد لها أي تأثير على جميع المواد البيوكيميائية التي تم قياس مستواها سواء داخل الأسمرة أو بالبلازما.

وما سبق يمكننا استنتاج أن إعطاء دواء كارفيدول يخفف من الآثار السلبية لصدمة الاختناقات وذلك عن طريق معاكسة تأثير عنصر الأكسجين الحرارة والتغلب على زيادة نفاذية
الأنواع الدموية الدقيقة ومنع تجمع والتصاق كرات الدم البيضاء بالأنسجة المصابة في هذا النوع من الاحتشاء.