Lecture #2
Diode Applications

Instructor:
Dr. Ahmad El-Banna
Agenda

- Load Line analysis
- Series, Parallel and Series-Parallel Configurations
- AND/OR Gates
- Half and Full-wave Rectification
- Clippers, Clampers and Zener Diodes
- Voltage-Multiplier Circuits
- Practical Applications
Introduction

• This lecture will develop a working knowledge of the diode in a variety of configurations using models appropriate for the area of application.

• Once the basic behavior of a device is understood, its function and response in an infinite variety of configurations can be examined.

• The analysis of electronic circuits can follow one of two paths: using the actual characteristics or applying an approximate model for the device.
LOAD LINE ANALYSIS
Load Line Analysis

The intersections of the load line on the characteristics can be determined by first applying Kirchhoff’s voltage law in the clockwise direction.

- Solving for V_D

\[
E = V_D + I_D R
\]

\[
E = V_D + (0 \text{ A})R
\]

\[V_D = E|_{I_D=0 \text{ A}}\]

- Solving for I_D

\[
E = V_D + I_D R
\]

\[
0 \text{ V} + I_D R
\]

\[I_D = \frac{E}{R}|_{V_D=0 \text{ V}}\]

- the load line is determined simply by the applied network, whereas the characteristics are defined by the chosen device.
Example

Example 2.1 For the series diode configuration of Fig. 2.3a, employing the diode characteristics of Fig. 2.3b, determine:

a. V_{DQ} and I_{DQ}
b. V_R

Solution:

a. Eq. (2.2): $I_D = \frac{E}{R} \bigg|_{V_D=0V} = \frac{10 \text{ V}}{0.5 \text{ k}\Omega} = 20 \text{ mA}$

Eq. (2.3): $V_D = E \bigg|_{I_D=0A} = 10 \text{ V}$

The resulting load line appears in Fig. 2.4. The intersection between the load line and the characteristic curve defines the Q-point as

$V_{DQ} \approx 0.78 \text{ V}$

$I_{DQ} \approx 18.5 \text{ mA}$

The level of V_D is certainly an estimate, and the accuracy of I_D is limited by the chosen scale. A higher degree of accuracy would require a plot that would be much larger and perhaps unwieldy.

b. $V_R = E - V_D = 10 \text{ V} - 0.78 \text{ V} = 9.22 \text{ V}$
SERIES, PARALLEL AND SERIES-PARALLEL CONFIGURATIONS
Series Diode Configuration

- It’s assumed that the forward resistance of the diode is usually so small compared to the other series elements of the network that it can be ignored.
- In general, a diode is in the “on” state if the current established by the applied sources is such that its direction matches that of the arrow in the diode symbol, and $V_D \geq 0.7V$ for silicon, $V_D \geq 0.3V$ for germanium, and $V_D \geq 1.2V$ for gallium arsenide.

\[
V_R = E - V_K
\]
\[
I_D = I_R = \frac{V_R}{R}
\]
\[
V_R = I_R R = I_D R = (0 \text{ A})R = 0 \text{ V}
\]
Example

EXAMPLE 2.7 Determine V_o and I_D for the series circuit of Fig. 2.19.

Solution: An attack similar to that applied in Example 2.4 will reveal that the resulting current has the same direction as the arrowheads of the symbols of both diodes, and the network of Fig. 2.20 results because $E = 12 \text{ V} > (0.7 \text{ V} + 1.8 \text{ V} [\text{Table 1.8}]) = 2.5 \text{ V}$. Note the redrawn supply of 12 V and the polarity of V_o across the 680-Ω resistor. The resulting voltage is

$$V_o = E - V_{K_1} - V_{K_2} = 12 \text{ V} - 2.5 \text{ V} = 9.5 \text{ V}$$

and

$$I_D = I_R = \frac{V_R}{R} = \frac{V_o}{680 \Omega} = \frac{9.5 \text{ V}}{680 \Omega} = 13.97 \text{ mA}$$

FIG. 2.19 Circuit for Example 2.7.

FIG. 2.20 Determining the unknown quantities for Example 2.7.
Parallel Configuration

Design Problem

EXAMPLE 2.11 In this example there are two LEDs that can be used as a polarity detector. Apply a positive source voltage and a green light results. Negative supplies result in a red light. Packages of such combinations are commercially available.

Find the resistor R to ensure a current of 20 mA through the “on” diode for the configuration of Fig. 2.30. Both diodes have a reverse breakdown voltage of 3 V and an average turn-on voltage of 2 V.

Solution: The application of a positive supply voltage results in a conventional current that matches the arrow of the green diode and turns it on.

The polarity of the voltage across the green diode is such that it reverse biases the red diode by the same amount. The result is the equivalent network of Fig. 2.31.

Applying Ohm’s law, we obtain

$$I = 20 \text{ mA} = \frac{E - V_{\text{LED}}}{R} = \frac{8 \text{ V} - 2 \text{ V}}{R}$$

and

$$R = \frac{6 \text{ V}}{20 \text{ mA}} = 300 \ \Omega$$

What about blue LED?
EXAMPLE 2.13 Determine the currents \(I_1, I_2, \) and \(I_{D_2} \) for the network of Fig. 2.37.

Solution: The applied voltage (pressure) is such as to turn both diodes on, as indicated by the resulting current directions in the network of Fig. 2.38. Note the use of the abbreviated notation for “on” diodes and that the solution is obtained through an application of techniques applied to dc series-parallel networks. We have

\[
I_1 = \frac{V_{K_2}}{R_1} = \frac{0.7 \text{ V}}{3.3 \text{ k\Omega}} = 0.212 \text{ mA}
\]

Applying Kirchhoff’s voltage law around the indicated loop in the clockwise direction yields

\[-V_2 + E - V_{K_1} - V_{K_2} = 0\]

and

\[V_2 = E - V_{K_1} - V_{K_2} = 20 \text{ V} - 0.7 \text{ V} - 0.7 \text{ V} = 18.6 \text{ V}\]

with

\[I_2 = \frac{V_2}{R_2} = \frac{18.6 \text{ V}}{5.6 \text{ k\Omega}} = 3.32 \text{ mA}\]

At the bottom node \(a \),

\[I_{D_2} + I_1 = I_2\]

and

\[I_{D_2} = I_2 - I_1 = 3.32 \text{ mA} - 0.212 \text{ mA} \approx 3.11 \text{ mA}\]
AND/OR GATES
AND/OR Gate

- Positive logic: Logic 1 \rightarrow E volt, Logic 0 \rightarrow 0 volt

Positive logic OR gate

Positive logic AND gate
HALF AND FULL-WAVE RECTIFICATION
Half-wave Rectifier

The process of removing one-half the input signal to establish a dc level is called half-wave rectification.

- Effect of V_K on half-wave rectified signal.

Cross Over distortion

$V_{dc} \approx 0.318 (V_m - V_K)$
Full-wave Rectifier

FIG. 2.53
Full-wave bridge rectifier.

FIG. 2.54
Network of Fig. 2.53 for the period 0 → T/2 of the input voltage v_i.

FIG. 2.55
Conduction path for the positive region of v_i.

FIG. 2.56
Conduction path for the negative region of v_i.

FIG. 2.57
Input and output waveforms for a full-wave rectifier.

\[V_{dc} = 0.636 \cdot V_m \]

full-wave
Center-tapped transformer full-wave rectifier

Determining $V_{o\max}$ for diodes in the bridge configuration

- Center-tapped transformer full-wave rectifier.
CLIPPERS, CLAMPERS AND ZENER DIODES
Clippers

- Clippers are networks that employ diodes to “clip” away a portion of an input signal without distorting the remaining part of the applied waveform.

- **Series**

- **Parallel**

Clipper with DC supply →
Clipping Circuits

Simple Series Clippers (Ideal Diodes)

Biased Series Clippers (Ideal Diodes)

Simple Parallel Clippers (Ideal Diodes)

Biased Parallel Clippers (Ideal Diodes)
Clampers

Clamping networks

A clamper is a network constructed of a diode, a resistor, and a capacitor that shifts a waveform to a different dc level without changing the appearance of the applied signal.

Clamping network with a sinusoidal input.
Networks with a Dc and AC sources

- The response of any network with both an ac and a dc source can be found by finding the response to each source independently and then combining the results.

\[V_R = E - V_D = 10\, \text{V} - 0.7\, \text{V} = 9.3\, \text{V} \]

\[I_D = I_R = \frac{9.3\, \text{V}}{2\, \text{k}\Omega} = 4.65\, \text{mA} \]

Load Line

\[V_{R_{\text{peak}}} = \frac{2\, \text{k}\Omega (2\, \text{V})}{2\, \text{k}\Omega + 5.59\, \text{\Omega}} \approx 1.99\, \text{V} \]

\[V_{D_{\text{peak}}} = V_{R_{\text{peak}}} - V_{R_{\text{peak}}} = 2\, \text{V} - 1.99\, \text{V} = 0.01\, \text{V} = 10\, \text{mV} \]
Zener Diodes

Example 1:
First we have to check that there is sufficient applied voltage to turn on all the series diode elements.

The white LED will have a drop of about 4 V across it, the 6-V and 3.3-V Zener diodes have a total of 9.3 V, and the forward-biased silicon diode has 0.7 V, for a total of 14 V.

\[V_{e_1} = V_{Z_1} + V_{R} = 3.3 \text{ V} + 0.7 \text{ V} = 4.0 \text{ V} \]
\[V_{e_2} = V_{e_1} + V_{Z_2} = 4 \text{ V} + 6 \text{ V} = 10 \text{ V} \]

\[I_R = I_{LED} = \frac{V_R}{R} = \frac{40 \text{ V} - V_{e_2} - V_{LED}}{1.3 \text{ k}\Omega} = \frac{40 \text{ V} - 10 \text{ V} - 4 \text{ V}}{1.3 \text{ k}\Omega} = \frac{26 \text{ V}}{1.3 \text{ k}\Omega} = 20 \text{ mA} \]
Zener Diodes V_i and R Fixed

1. Determine the state of the Zener diode by removing it from the network and calculating the voltage across the resulting open circuit.

$$V = V_L = \frac{R Lv_i}{R + R_L}$$

2. Substitute the appropriate equivalent circuit and solve for the desired unknowns.

$$V_L = V_Z$$

$$I_R = I_Z + I_L$$

$$I_Z = I_R - I_L$$

$$I_L = \frac{V_L}{R_L}$$

$$I_R = \frac{V_R}{R} = \frac{V_i - V_L}{R}$$

$$P_Z = V_Z I_Z$$
Zener Diodes Fixed V_i, Variable R_L

\[V_L = V_Z = \frac{R_L V_i}{R_L + R} \]

\[R_{I_{\text{min}}} = \frac{R V_Z}{V_i - V_Z} \]

\[I_{L_{\text{max}}} = \frac{V_L}{R_L} = \frac{V_Z}{R_{I_{\text{min}}}} \]

\[V_R = V_i - V_Z \]

\[I_R = \frac{V_R}{R} \]

\[I_Z = I_R - I_L \]

\[I_{L_{\text{min}}} = I_R - I_{ZM} \]

\[R_{L_{\text{max}}} = \frac{V_Z}{I_{L_{\text{min}}}} \]

Example:

\[R_{L_{\text{min}}} = \frac{R V_Z}{V_i - V_Z} = \frac{(1 \text{ kΩ})(10 \text{ V})}{50 \text{ V} - 10 \text{ V}} = \frac{10 \text{ kΩ}}{40} = 250 \text{ Ω} \]

\[V_R = V_i - V_Z = 50 \text{ V} - 10 \text{ V} = 40 \text{ V} \]

\[I_R = \frac{V_R}{R} = \frac{40 \text{ V}}{1 \text{ kΩ}} = 40 \text{ mA} \]

\[I_{L_{\text{min}}} = I_R - I_{ZM} = 40 \text{ mA} - 32 \text{ mA} = 8 \text{ mA} \]

\[R_{L_{\text{max}}} = \frac{V_Z}{I_{L_{\text{min}}}} = \frac{10 \text{ V}}{8 \text{ mA}} = 1.25 \text{ kΩ} \]

\[P_{\text{max}} = V_Z I_{ZM} = (10 \text{ V})(32 \text{ mA}) = 320 \text{ mW} \]
Zener Diodes \text{ Fixed } R_L, \text{ Variable } V_i

EXAMPLE 2.28 Determine the range of values of \(V_i \) that will maintain the Zener diode of Fig. 2.121 in the "on" state.

\[
V_L = V_Z = \frac{R_L V_i}{R_L + R}
\]

\[
V_{i_{\text{max}}} = \frac{(R_L + R)V_Z}{R_L}
\]

\[
I_{R_{\text{max}}} = I_{ZM} + I_L
\]

\[
V_{i_{\text{max}}} = V_{R_{\text{max}}} + V_Z
\]

\[
V_{i_{\text{max}}} = \frac{(R_L + R)V_Z}{R_L} = \frac{(1200 \, \Omega + 220 \, \Omega)(20 \, \text{V})}{1200 \, \Omega} = 23.67 \, \text{V}
\]

\[
I_L = \frac{V_L}{R_L} = \frac{V_Z}{R_L} = \frac{20 \, \text{V}}{1.2 \, \text{k}\Omega} = 16.67 \, \text{mA}
\]

\[
I_{R_{\text{max}}} = I_{ZM} + I_L = 60 \, \text{mA} + 16.67 \, \text{mA} = 76.67 \, \text{mA}
\]

\[
V_{i_{\text{max}}} = I_{R_{\text{max}}} R + V_Z = (76.67 \, \text{mA})(0.22 \, \text{k}\Omega) + 20 \, \text{V} = 16.87 \, \text{V} + 20 \, \text{V} = 36.87 \, \text{V}
\]

FIG. 2.121
Regulator for Example 2.28.

FIG. 2.122
\(V_L \) versus \(V_i \) for the regulator of Fig. 2.121.
VOLTAGE-MULTIPLIER CIRCUITS
Voltage Doubler

- Half wave voltage doubler

- Full wave voltage doubler

FIG. 2.123

Half-wave voltage doubler.

FIG. 2.126

Alternate half-cycles of operation for full-wave voltage doubler.
Voltage Tripler and Quadrupler

FIG. 2.127
Voltage tripler and quadrupler.
PRACTICAL APPLICATIONS
Rectification

- Battery Charger

![Diagram of Rectification System]

120 V ac

Transformer (step-down)

Peak = 18 V

Diodes (rectifiers)

13 V

Circuit breaker

Current meter

Positive clamp of charger

Negative clamp of charger
Protective Configurations

FIG. 2.131
(a) Transient phase of a simple RL circuit; (b) arcing that results across a switch when opened in series with an RL circuit.

FIG. 2.132
(a) Inductive characteristics of a relay; (b) snubber protection for the configuration of part (a); (c) capacitive protection for a switch.
Protective Configurations ..

FIG. 2.133
Diode protection for an RL circuit.

FIG. 2.134
(a) Diode protection to limit the emitter-to-base voltage of a transistor; (b) diode protection to prevent a reversal in collector current.

FIG. 2.135
Diode control of the input swing to an op-amp or a high-input-impedance network.

FIG. 2.136
(a) Alternate appearances for the network of Fig. 2.135; (b) establishing random levels of control with separate dc supplies.
Polarity Insurance

FIG. 2.137
(a) Polarity protection for an expensive, sensitive piece of equipment; (b) correctly applied polarity; (c) application of the wrong polarity.

FIG. 2.138
Protection for a sensitive meter movement.
Controlled Battery-Powered Backup

FIG. 2.139
Backup system designed to prevent the loss of memory in a car radio when the radio is removed from the car.

Polarity Detector

FIG. 2.140
Polarity detector using diodes and LEDs.
Display

FIG. 2.141

EXIT sign using LEDs.

Settings Voltage Reference levels

FIG. 2.142

Providing different reference levels using diodes.
Establishing a Voltage Level Insensitive to the Load Current

FIG. 2.143

(a) How to drive a 6-V load with a 9-V supply (b) using a fixed resistor value.
(c) Using a series combination of diodes.
AC Regulator and Square-Wave Generator

FIG. 2.144
Sinusoidal ac regulation: (a) 40-V peak-to-peak sinusoidal ac regulator; (b) circuit operation at $v_i = 10$ V.

FIG. 2.145
Simple square-wave generator.
• For more details, refer to:
 • Chapter 2, Electronic Devices and Circuits, Boylestad.
• The lecture is available online at:
 • https://speakerdeck.com/ahmad_elbanna
• For inquires, send to:
 • ahmad.elbanna@fes.bu.edu.eg
 • ahmad.elbanna@ejust.edu.eg