Volumul a fost editat cu sprijinul financiar al Ministerului Educației, Cercetării și Inovării

COLEGIUL DE REDACȚIE

Redactor responsabil:
Prof. dr. SOLCAN Gheorghe

Redactor adjunct:
Prof. dr OPREAN Octavian Zaharie

Membri:
Prof. COTE A Corneliu
Conf. dr. VULPE Vasile
Prof. CARP-CĂ RARE Mihai
Prof. DRUGO CIU Dan

COMISIA DE REFERENȚI ȘTIINȚIFICI

Prof. dr. OPREAN Octavian
Prof. dr. H.C. CRESPEAU F. L. – ENV Alfort, France
Prof. dr. SOLCAN Gheorghe
Prof. dr. MIRON Liviu
Prof. dr. SĂ VUȚA Gheorghe
Prof. dr. PREDOI Gabriel – FMV. București
Prof. dr. GROZA Ioan Ștefan – FMV. Cluj-Napoca
Prof. dr. DĂRĂBUȘ Gheorghe – FMV. Timișoara
Prof. dr. COTE A Corneliu
Prof. dr. CARP-CĂ RARE Mihai
Conf. dr. MOROȘAN Șerban – INSERM Paris
Prof. dr. H.C. RUNCEANU Liviu
Prof. dr. H.C. COȚOFAN Vasile
Prof. dr. ȘINDILAR Eusebie
Prof. dr. PERIANU Tudor
Prof. dr. COMAN Ioan
Prof. dr. VELESCU Elena

ISSN 1454-7406
This study investigated the gastroenteritis caused by coccidial infection in domestic goats (Capra hircus) managed under three different rearing systems (intensive, semi-intensive, and extensive) at Kalubyia governorate, Egypt. Eimeria oocysts were found in 93 (66%) of the 141 faecal samples examined. Six species of Eimeria were morphologically identified; E. hirci (90.32%), E. arloingi (83.87%), E. alijevi (75.27%), E. christenseni (63.44%), E. caprina (29.03%), and E. ninakohlyakimovae (24.73%). Up to six Eimeria species were recorded from individual specimen.

The infection rates and the mean number of oocyst outputs (OPG) decreased with increasing age of goats; 80% and 31758.08 for kids; 72.92% and 19543 for young; and 30.30% and 1769.92 for adult goats, respectively. For treatment study, 4 groups of kids were used, each of 5. The first group has 5 apparently healthy kids used as control (CH). The second group involved 5 naturally infected kids and left untreated (IN). The third group included 5 naturally-infected kids and treated with Toltrazuril (20 mg/kg body weight, orally for 2 weeks). The fourth group had 5 naturally-infected kids treated with Propolis (1 ml of 3% aqueous solution/liter of drinking water for 7 days). The result showed that Toltrazuril was highly effective as anticoccidial drug (94.33% reduction of OPG) than Propolis that moderately reduced OPG (54.66%). The efficacy of both drugs was further compared based on antioxidant assays, serum biochemical analysis, and histopathological changes. There was a significant reduction (P < 0.05) in erythrocyte reduced glutathione (GSH), glutathione reductase (GRase), superoxide dismutase (SOD), catalase activities, serum albumin, A/G ratio, calcium, sodium, and potassium in Eimeria-infected kids compared to control. On the other hand, significant elevations (P < 0.05) in serum malondialdehyde (MDA), iron and nitrate were recorded in infected animals compared to control. The total protein and phosphorus showed non-significant decrease compared to control. Propolis and Toltrazuril treatment significantly alter the serum biochemical aberrances toward the control values. However, Toltrazuril was more efficacious than Propolis as anticoccidial drug. To the best of our knowledge, this is the first investigation on goat Eimeria prevalence and treatment in Kalubia Governorate.

Goat is the one of the most resourceful and efficient ruminant all over the world (Mussman, 1982). Easy handling, independence and adaptability to living free, modest feeding requirements, good tolerance to climatic semi-arid and arid regions, and effective conversion of limited resources into meat, milk, and hides are desired factors favoring the goat as a stock animal for small-scale farmers (Balicka-Ramisz, 1999; Harper and Penzhorn, 1999). Accordingly, diseases affecting goats received great attention, particularly those affecting their production.

Coccidiosis is considered as one of the most economically important diseases in intensive goat industry in the world (Opoku-Pare and Chineme, 1979; Varghese and Yayabu, 1985; Chhabra and Pandey, 1991; Jalila et al., 1998; Kusiluka et al., 1998). Clinical coccidiosis in goats is most frequently caused by E. arloingi and E. ninakohlyakimovae, (Koudela and Boková, 1998; Ola-Davies, 2002; Kaba et al., 2007), E. caprina (Norton, 1986; Kaba et al., 2007), E. christenseni (Kusiluka et al., 1996; MAFF,
Young kids often develop and show the symptoms of the disease, while the older animals are asymptomatic (Yvore, 1984; Jalila et al., 1998). The adult goats in a herd keep their infections year-round, continually contaminating the environment with oocysts, which serve as a source of infections for young kids (Balicka–Ramisz, 1999; El-Seify et al., 2003). Unless successfully treated, these infections in young animals lead to unthriftiness and even mortalities (Ola-Davis et al., 2002; Dai et al., 2006; Kaba et al., 2007, Öcal et al., 2007).

The disease pattern is influenced by a number of factors such as environmental issues, such as moisture, temperature and oxygen tension (Kheysin, 1972). Climatic conditions, the nature of feeding, systems of housing and breed differences (Kusiluka et al., 1998; Harper and Benzhorn, 1999; Chhabra and Pandey, 1991) are also important factors contributing to spread of infection. Moreover, poor hygienic conditions were found to be associated with higher intensity of coccidial infections (Foreyt, 1990; Jalila et al., 1998).

Prevention measures are based on increase hygienic conditions and reducing stress in goat herds (Dhollander et al., 2005; Kaba et al., 2007). Treatment of older goats with anticoccidial drugs suppresses the passage of oocysts in their feces; consequently, reduces the risk of infection of kids. The administration of anticoccidials to young animals at the time of weaning and shipping when stress is likely prevents a disruption of the host-parasite equilibrium, with the resultant appearance of clinical signs (Yvore 1984). Many anticoccidial drugs have been commercially used, of which Toltrazuril is the most common. Toltrazuril was highly efficacious in therapy of goat coccidiosis (Balicka-Ramisz, 1999; Balicka-Ramisz et al., 2004; Steinfelder et al., 2005; Öcal et al., 2007). On the other hand, Propolis, which is a sticky resinous hive product used by bees as glue in general purpose, has been used in folk medicine for long time in different nations, such as Egypt (Hegazi, 1998). The pharmacologically active molecules in the Propolis are flavonoids and phenolic acids and their esters, which have multiple effects on bacteria, fungi, and viruses. In addition, Propolis and its components have anti-inflammatory and immunomodulatory activities (Castaldo and Capasso, 2002). Although the anticoccidial efficacy of Propolis against coccidia of rabbits has been reported (Krell, 1996; El-Akabawy et al., 2004), no study has ever conducted to determine its effect on caprine coccidiosis.

Lipid peroxidation is one of the best indicators of the level of reactive oxygen species (ROS) that induced systemic biological damage (Popova and Popove, 2002). The antioxidant system has a cellular protective action against oxidative stress of cell, organs and tissue damage that result from parasitic invasion (Dede et al 2000). It also plays a role in the protection of the phagocytic leukocytes against their own products and oxygen radicals. Reduced glutathione, an important antioxidant enzyme, reacts with peroxides to remove toxic substances and radicals, since it possesses active sulphydryl group (Novak et al. 1991). Although some investigation have revealed that parasitic infection causes change in lipid peroxidation parameters (Kaya et al 2007, Cam et al. 2008), data concerning lipid peroxidation parameters in Eimeria-infected goats treated with Propolis in not available. In addition, little literature is available on the efficacy of Toltrazuril on intestinal coccidiosis in goats.

Therefore, this study was carried out to determine the prevalence and oocyst burden of infections in different age categories of goats kept under different types of production systems, [intensive (modern), semi-intensive, and extensive (traditional or free range)] at three different localities in Kalubya governorate, Egypt. Further aim was to evaluate the therapeutic efficiency of Propolis compared with that of Toltrazuril for controlling coccidainfection in goats. The comparative efficiency was based on the OPG, the biochemical alterations in erythrocyte redox system, lipid peroxidation, nitric oxide (NO) production and serum total protein, albumin, globulin and minerals.
MATERIALS AND METHODS

Goats
To determine the prevalence of caprine coccidiosis, we used a total number of 141 goats at three goat farms at Kalubyia Governorate, Egypt, where goats were managed under three different managemental systems: the intensive, semi-intensive, and extensive. Domestic goats (Capra hircus) were classified according to their age into three categories; kids (2-4 months), young goats [weaned but not served (5-12 months)], and adult goats (1-5 years). Data concerning the number of goats on different farms are given in Table 1.

<table>
<thead>
<tr>
<th>Farm location</th>
<th>Management system</th>
<th>Kids</th>
<th>Young</th>
<th>Adult</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm 1</td>
<td>Intensive</td>
<td>20</td>
<td>16</td>
<td>11</td>
<td>47</td>
</tr>
<tr>
<td>Farm 2</td>
<td>Semi-intensive</td>
<td>20</td>
<td>16</td>
<td>11</td>
<td>47</td>
</tr>
<tr>
<td>Farm 3</td>
<td>Extensive</td>
<td>20</td>
<td>16</td>
<td>11</td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
<td>48</td>
<td>33</td>
<td>141</td>
</tr>
</tbody>
</table>

To evaluate the treatment, twenty kids (3- to 4- month-old) were subdivided into 4 groups, each of 5. The first group involved 5 apparently healthy kids as a control (CH). The other fifteen kids were naturally infected and classified into three groups. Group 2 was left untreated as infected non-treated (IN) group. Group 3 involved animals treated with the anticoccidial drug, Toltrazuril (TT) (Baycox®, Bayer AG, LeverKusen) by oral administration at a dose of 20 mg/kg body weight for 2 weeks, according to Balicka-Ramisz (1999). Group 4 included animals treated with Propolis (PT) at a dose of 1ml of 3% aqueous solution/liter of drinking water for 7 days according to El-Akabawy et al. (2004). The efficacy of treatments was assessed on the basis of the oocyst counts, biochemical analysis and histopathological examination.

Faecal examination and determination of OPG
Approximately 5 grams of faecal samples were directly collected from the rectum on a monthly basis for each animal of the 141 goats, placed in labeled clean container and immediately transferred to the laboratory at the Veterinary Teaching Hospital at the Faculty of Veterinary Medicine, Benha University, Egypt for examination. Faecal examination was carried out by concentration-flotation technique according to Pritchard and Kruse (1982). For every positive faecal sample, oocysts per gram of feces (OPG) were estimated by McMaster technique according to Levine (1986). Eimeria species were identified after sporulation of faeces in a thin layer of 2.5 % (w/v) potassium dichromate for one or two weeks at 25 ºC, according to Koudela and Boková (1998).

Identification of Eimeria oocysts was based on the morphologic criteria as previously described (Soulsby 1982, Levien 1986; Ministry of Agriculture, Fisheries, and Food (MAFF, 1986)).

Biochemical analysis
Blood samples were collected from jugular vein of control and infected kids. Blood samples were divided into two parts. The first part was collected in tubes containing 20 IU heparin/ml blood and was used for preparation of hemolysate after washing erythrocytes by physiological saline as described by Kornburg and Korecker (1955). The hemolysate was used for determination of erythrocytic glutathione peroxidase (GSH-Px) (Chiu et al., 1976), glutathione reductase (GR-ase),
erythrocyte reduced glutathione (GSH) (Sedlak and Lindsay, 1968), superoxide dismutase (t-SOD) (Misra and Fridovich, 1972) and catalase (Sinha, 1972). The second part of blood samples was collected in plain tubes without anticoagulant for separation of serum samples for the quantitative determination of nitrite concentration according to Montgomery and Dymock (1961). The malondialdehyde (MDA) was estimated spectrophotometrically using thiobarbituric acid assay. The serum was also used for determination of total protein, albumin and globulin (Doumas and Biggs, 1972), calcium (Henry, 1974), phosphorous (Morinal and Prox, 1973), sodium (Gindler and King, 1972) potassium (El-Merzobani et al., 1977) and iron (Dreux, 1977).

Histopathological examination:
Specimens were collected from the small intestine of untreated and treated kids and immediately fixed in 10% neutral buffered formalin. After proper fixation, thin paraffin sections (5-7 microns thickness) were routinely prepared and stained with hematoxylin-and-Eosin (H&E) for microscopical examination according to Drury and Wallington (1967).

Statistical analysis:
Data were analyzed by one way analysis of variance (ANOVA) followed by Duncan’s multiple range test using SPSS program (SPSS v10, SPSS Inc., Chicago, IL, USA). Data were represented by means ± standard error (SE). Means were considered significantly different when P-value < 0.05.

RESULTS

Prevalence of coccidian infection in goats
A total of 93 (66%) of the 141 faecal samples taken during the study period were positive for *Eimeria* oocysts. Concerning age categories, the infection rates were 80 %, 72.92%, and 30.30% for kids, young, and adult goats, respectively. With regard to rearing systems, infections rates were 76.60%, 65.96%, and 55.32% in goats managed under the intensive, semi-intensive and extensive systems, respectively (Table 2). Six species of *Eimeria* were identified in fecal samples. *E. hirici* (90.32%), *E. arloingi* (83.87%), *E. alijevi* (75.27%), and *E. christenseni* (63.44%) were predominant in all age categories, whereas *E. caprina* (29.03%), and *E. ninakohlyakimovae* (24.73%) were less common (Table 3). Infections with different types of *Eimeria* was evident within the same animal where up to 6 *Eimeria* species recovered from individual animal. Mixed infections with three and four *Eimeria* species were the most common (55.91 and 49.46%, respectively) (Table 4).

Table 2. Number and percentage of coccidial infection in kids, young and adult goats at three different managemental systems at Kalubia Governorate, Egypt

<table>
<thead>
<tr>
<th>Management system</th>
<th>Number of infected goats</th>
<th>Percentage of infected goats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kids</td>
<td>Young</td>
</tr>
<tr>
<td>Intensive</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Semi-intensive</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Extensive</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Totals</td>
<td>48</td>
<td>35</td>
</tr>
</tbody>
</table>
Table 3. Percentage of each species of Eimeria infecting goats of all ages under three managemental systems (intensive, semi-intensive and extensive) at Kalubya Governorate, Egypt.

<table>
<thead>
<tr>
<th>Eimeria Type</th>
<th>Management system</th>
<th>E. Hirci</th>
<th>E. ariongi</th>
<th>E.alijevi</th>
<th>E. christen</th>
<th>E. caprina</th>
<th>E. nina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensive</td>
<td>38.71%</td>
<td>38.71%</td>
<td>40.86%</td>
<td>37.63%</td>
<td>13.98%</td>
<td>16.13%</td>
</tr>
<tr>
<td></td>
<td>Semi-intensive</td>
<td>27.96%</td>
<td>21.51%</td>
<td>19.35%</td>
<td>23.66%</td>
<td>6.45%</td>
<td>4.30%</td>
</tr>
<tr>
<td></td>
<td>Extensive</td>
<td>23.66%</td>
<td>23.66%</td>
<td>15.05%</td>
<td>2.15%</td>
<td>8.60%</td>
<td>4.30%</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>90.32%</td>
<td>83.87%</td>
<td>75.27%</td>
<td>63.44%</td>
<td>29.03%</td>
<td>24.73%</td>
</tr>
</tbody>
</table>

Table 4. Single and mixed infections with Eimeria species

<table>
<thead>
<tr>
<th>Number of Eimeria species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of infected goats</td>
<td>0</td>
<td>15</td>
<td>52</td>
<td>46</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Percentage</td>
<td>0</td>
<td>16.13</td>
<td>55.91</td>
<td>49.46</td>
<td>8.60</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Clinical Signs
Clinical coccidiosis was detected in 54.17% of kids reared mainly in the intensive system. Symptoms were poor coat, anaemia with paleness of mucous membrane (Figure 1) diarrhea (Figure 2), weight loss, dehydration, and mortality of untreated kids.

Figure 1. Eye of Eimeria-infected kid showed pale mucus membrane
Figure 2. Eimeria-infected kid with soiled hind quarter and rough coat.

PG, was highly variable among farms. The mean OPG counts were 31758.08, 19543, and 1769.92 for kids, young, and adult goats, respectively. Goats in farm 1 shed significantly (P< 0.05) lower oocyst counts than that of goats in other farms. OPG of kids was approximately two and eighteen times that of young and adult goats, respectively (Table 5).

After treatment, both Toltrazuril and Propolis significantly (P <0.05) reduced the oocyst outputs compared the untreated control group (Table 6).
Table 5. Mean OPG in kids, young, and adult goats managed under three different feeding systems at Kalubia Governorate, Egypt.

<table>
<thead>
<tr>
<th>Management system</th>
<th>Kids</th>
<th>Young</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive</td>
<td>46448.25 ± 478a</td>
<td>37661.25 ± 780a</td>
<td>3132.50 ± 518a</td>
</tr>
<tr>
<td>Semi-intensive</td>
<td>36311.50 ± 416b</td>
<td>14460.00 ± 442b</td>
<td>1412.00 ± 426b</td>
</tr>
<tr>
<td>Extensive</td>
<td>12314.50 ± 357c</td>
<td>6509.25 ± 371c</td>
<td>765.25 ± 451c</td>
</tr>
</tbody>
</table>

Data are presented as means ± SE
Different superscripts within the same column indicate significant difference at P > 0.05 (Duncan's multiple range test)

Table 6. Anticoccidial efficacy of Toltrazuril and Propolis against caprine coccidiosis

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control healthy</td>
<td>0</td>
</tr>
<tr>
<td>Untreated</td>
<td>2.41</td>
</tr>
<tr>
<td>Toltrazuril</td>
<td>94.33</td>
</tr>
<tr>
<td>Propolis</td>
<td>54.66</td>
</tr>
</tbody>
</table>

Data are presented as means ± SE
Different superscripts within the same column indicate significant difference at P > 0.05 (Duncan's multiple range test).

Biochemical changes
There were significant reductions (P < 0.05) in erythrocyte GSHpx, GR-ase, SOD, and catalase activities of IN group compared to that of CH. However, increasing in these parameters was observed after treatment, particularly with Toltrazuril. In addition, there was a significant decrease (P <0.05) in erythrocyte GSH concentration of IN compared to control, which was significantly increased after treatment with Propolis and Toltrazuril. On the other hand, significant elevations in serum MDA and nitric oxide (P <0.05) were recorded in infected animals, which had been significantly reduced after treatment with Propolis and Toltrazuril (Table 7).

There was a significant decrease in the level of albumin and A/G ratio of IN kids compared to control while globulin showed a non-significant elevation compared to control group. However, treatment with Propolis and Toltrazuril significantly increased albumin and A/G ratio (Table 8).

Eimeria infection resulted in a significant reduction (P <0.05) in the level of serum Ca, Na and K. These parameters were mildly increased after treatment with Propolis and Toltrazuril. On the other hand, iron was significantly increased (P < 0.05) in IN kids compared to control group, but decreased, albeit non-significantly, after treatment with Propolis and Toltrazuril.
Table 7. The mean values of erythrocyte and serum antioxidant assays in Eimeria-infected kids before and 2 weeks after treatment with Propolis and Toltrazuril

<table>
<thead>
<tr>
<th>Groups Variables</th>
<th>CH</th>
<th>IN</th>
<th>PT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH-px (u/gHb)</td>
<td>11.59 ± 0.43<sup>a</sup></td>
<td>9.15 ± 0.44<sup>b</sup></td>
<td>9.91 ± 0.37<sup>b</sup></td>
<td>10.23 ± 0.25<sup>b</sup></td>
</tr>
<tr>
<td>GR-ase (u/gHb)</td>
<td>24.29 ± 0.43<sup>a</sup></td>
<td>19.21 ± 0.51<sup>c</sup></td>
<td>21.12 ± 0.13<sup>b</sup></td>
<td>20.35 ± 0.36<sup>bc</sup></td>
</tr>
<tr>
<td>SOD (u/gHb)</td>
<td>12.43 ± 0.26<sup>a</sup></td>
<td>9.59 ± 0.33<sup>b</sup></td>
<td>10.15 ± 0.26<sup>b</sup></td>
<td>9.82 ± 0.32<sup>b</sup></td>
</tr>
<tr>
<td>Catalase (u/gHb)</td>
<td>19.31 ± 0.21<sup>a</sup></td>
<td>15.78 ± 0.15<sup>b</sup></td>
<td>15.93 ± 0.22<sup>b</sup></td>
<td>16.42 ± 0.26<sup>b</sup></td>
</tr>
<tr>
<td>GSH (umol/gH)</td>
<td>64.53 ± 3.81<sup>a</sup></td>
<td>42.66 ± 3.53<sup>b</sup></td>
<td>57.15 ± 4.25<sup>a</sup></td>
<td>51.44 ± 4.37<sup>ab</sup></td>
</tr>
<tr>
<td>MDA (umol/L)</td>
<td>0.63 ± 0.26<sup>c</sup></td>
<td>0.83 ± 0.35<sup>a</sup></td>
<td>0.71 ± 0.28<sup>ab</sup></td>
<td>0.74 ± 0.29<sup>b</sup></td>
</tr>
<tr>
<td>Nitrite (umol/L)</td>
<td>1.57 ± 0.45<sup>a</sup></td>
<td>2.86 ± 0.22<sup>a</sup></td>
<td>2.05 ± 0.11<sup>c</sup></td>
<td>2.13 ± 0.10<sup>c</sup></td>
</tr>
</tbody>
</table>

CH = control healthy, IN = infected non-treated, PT = Propolis-treated, TT = Toltrazuril-treated. Data are presented as means ± SE. Means within the same column followed by different superscripts are significantly different at P > 0.05 (Duncan's multiple range test).

Table 8. Protein and electrolyte profile in control and Eimeria-infected kids before and 2 weeks after treatment with Propolis and Toltrazuril

<table>
<thead>
<tr>
<th>Groups Variables</th>
<th>CH</th>
<th>IN</th>
<th>PT</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (gm/dl)</td>
<td>6.10 ± 0.41<sup>a</sup></td>
<td>5.25 ± 0.49<sup>a</sup></td>
<td>5.71 ± 0.21<sup>b</sup></td>
<td>5.92 ± 0.15<sup>a</sup></td>
</tr>
<tr>
<td>Albumin (gm/dl)</td>
<td>3.48 ± 0.57<sup>a</sup></td>
<td>2.32 ± 0.55<sup>c</sup></td>
<td>2.89 ± 0.23<sup>b</sup></td>
<td>3.14 ± 0.14<sup>ab</sup></td>
</tr>
<tr>
<td>Globulin (gm/dl)</td>
<td>2.63 ± 0.35<sup>a</sup></td>
<td>2.93 ± 0.49<sup>a</sup></td>
<td>2.82 ± 0.24<sup>c</sup></td>
<td>2.79 ± 0.28<sup>b</sup></td>
</tr>
<tr>
<td>A/G ratio</td>
<td>1.36 ± 0.17<sup>a</sup></td>
<td>0.86 ± 0.11<sup>b</sup></td>
<td>1.04 ± 0.16<sup>b</sup></td>
<td>1.12 ± 0.16<sup>ab</sup></td>
</tr>
<tr>
<td>Ca (mg/dl)</td>
<td>10.84 ± 0.70<sup>a</sup></td>
<td>9.63 ± 0.13<sup>c</sup></td>
<td>9.81 ± 0.11<sup>b,c</sup></td>
<td>10.11 ± 0.18<sup>b</sup></td>
</tr>
<tr>
<td>P (mg/dl)</td>
<td>6.43 ± 0.29<sup>a</sup></td>
<td>5.61 ± 0.33<sup>a</sup></td>
<td>5.73 ± 0.22<sup>b</sup></td>
<td>5.86 ± 0.14<sup>a</sup></td>
</tr>
<tr>
<td>Na (mmol/L)</td>
<td>142.85 ± 8.58<sup>a</sup></td>
<td>115.28 ± 6.58<sup>b</sup></td>
<td>119.13 ± 5.28<sup>b</sup></td>
<td>118.94 ± 3.78<sup>b</sup></td>
</tr>
<tr>
<td>K (mmol/L)</td>
<td>6.50 ± 0.13<sup>a</sup></td>
<td>5.65 ± 0.22<sup>b</sup></td>
<td>5.76 ± 0.22<sup>b</sup></td>
<td>5.89 ± 0.16<sup>b</sup></td>
</tr>
<tr>
<td>Iron (ug/dl)</td>
<td>144.37 ± 10.60<sup>b</sup></td>
<td>176.48 ± 10.06<sup>a</sup></td>
<td>161.33 ± 8.19<sup>ab</sup></td>
<td>160.01 ± 7.24<sup>ab</sup></td>
</tr>
</tbody>
</table>

CH = control healthy, IN = infected non-treated, PT = Propolis-treated, TT = Toltrazuril-treated. Data are presented as means ± SE. Means within the same row followed by different superscripts are significantly different (P > 0.05, Duncan's multiple range test).

Histopathological changes

Microscopically, the intestinal mucosa of the untreated kids was characterized by hypertrophy of the intestinal villi that were severely infected with large number of the developmental stages of *Eimeria* species (Figure 3). Such stages were mainly schizonts, macrogametocytes, and immature oocysts (Figure 4). The mucosal blood vessels were congested with blood and the lamina propria was infiltrated with leucocytes particularly lymphocytes and oesinophils. Large area of the intestinal mucosa were eroded and showing desquamation of the lining epithelia cells which seen in the intestinal lumen mixed with necrotic debris and inflammatory cells. Moreover, some areas of hemorrhages were also detected in the mucosa and submucosa of the intestinal wall.
The intestine of the Propolis-treated kids revealed focal infection of the intestinal mucosa which were well-demarcated from the adjacent normal tissue by inflammatory cells (Figure 5). The infected area revealed focal aggregation of oocysts mixed with necrotic tissue and infiltrated with lymphocytes, macrophages, and eosinophils. The intestinal villi were moderately infected with the developmental stages of *Eimeria* particularly macrogametocytes and immature oocysts (Figure 6). Focal lymphocytic aggregations were also observed in the lamina propria of the intestinal mucosa.

Histological examination of the intestine of Toltrazuril-treated kids revealed lower number of *Eimeria* developmental stages in the intestinal epithelium. The intestinal mucosa appeared normal and mucosa of the intestinal villi were free from the developmental stages of *Eimeria* species, while only few cells were still infected (Figure 7). Moreover, regeneration of the intestinal mucosa was evidenced by hyperplasia of the epithelial cells with intestinal lymphocytic infiltration.

Figure 3. A photomicrograph showing high degree of *Eimeria* oocyste infestation in untreated kid

Figure 4. A photomicrograph showing heavy infection with schizonts and macrogametocytes of *Eimeria* in untreated kid

Figure 5. A photomicrograph of histopathological section of intestine of a kid from Propolis-treated group showing moderate number of macrogametocytes and immature oocysts in serosal layer.

Figure 6. A photomicrograph of histopathological section of intestine of a kid from Propolis-treated group showing focal aggregation of oocysts separated by lymphocytes and some eosinophils that replaced the necrotic crypts of Lieberkuhn.. The adjacent mucosa appeared normal as it were uninfected.
DISCUSSION

Coccidiosis is one of the most economically important diseases causing parasitic gastroenteritis of goats worldwide (Foreyt, 1990; Jalial et al., 1998; Koudela and Boková, 1998; Öcal et al., 2007). The prevalence and identity of the goat coccidia in Kalubyia Governorate, Egypt, has not been previously reported. The present study indicated that Eimeria oocysts were found in 66% of 141 samples. The prevalence of coccidiosis was comparable to those reported in Poland (55%) (Kaba et al., 2007) and turkey (73.6%) (Değer et al., 2003). Lower prevalences were recorded, such as 6.62% in India (Patel et al., 2001) and 28% in Kenya (Waruiru et al., 2005). On the other hand, the finding of higher prevalences, such as 94.65%, 91.5%, 93.7%, and 93.4%, was recorded in different Egyptian Governorates by Otify (1984), El-Manyawe (1999), Arafa (2002), and El-Seify et al. (2003), respectively. Worldwide, higher infection rates were recorded, such as 80-90% (Jalila et al., 1998; Balica-Ramisz, 1999; Abo-Shehada and Abo-Farieha, 2003; Gül, 2007) and <91% (Norton, 1986; O’Callaghan, 1989; O’Callaghan, 1989; Harper and Penzhorn, 1999). The difference in the prevalence of coccidial infection among different goat flocks may be attributed to the density of animals, the hygiene and management procedures, the type of husbandry adopted (intensive, semi-intensive, or free range), the climatic condition in the farming area including rainfall, temperature, and humidity (Abo-Shehada and Abo-Farieha, 2003). In addition, the coccidiosis carrier-state in the dams may be considered as the main source of infection to kids (Balicka-Ramisz, 1999; El-Seify et al., 2003).

In general, several Eimeria species occur simultaneously in goats (Levine, 1986). In the present work, six species of Eimeria were identified, E. hirci (90.32%), E. arloingi (83.87%), E. alijevi (75.27%), E. christensenii (63.44%), E. caprina (29.03%), and E. ninakohlyakimovae (24.73%). Species of coccidia encountered in goats in this study have also been reported in other Egyptian Governorates by Otify (1984), Arafa (2002), and El-Seify et al. (2003), also they recorded 8, 8, and 15 Eimeria species, respectively. Mixed infections with different Eimeria species were common. This result is in agreement with other reports (Soulsby, 1982; Foreyt, 1990; Chhabra and Pandey, 1991; Kusiluka et al., 1996; Koudela and Boková, 1998; Harper and Penzhorn, 1999; Değer et al., 2003; Gül, 2007). Usually, from eight (Kusiluka et al., 1996) to 16 (Smith and Sherman, 1994) Eimeria species were recorded worldwide; however, the exact number of species is usually different (O’Callaghan, 1989).
Analogous to our result, infection with 3 *Eimeria* species was the most common in Turkey (Değer et al. 2003; Gül, 2007).

The pathological significance of different types of *Eimeria* has been documented. These species include *E. arloingi* and *E. ninakohlyakimovae* (Levine, 1986; Kusiluka et al. 1996; MAFF, 1996; Koudela and Boková, 1998; Ola-Davies, 2002; Kaba et al. 2007), *E. caprina* (Norton, 1986; Kaba et al. 2007), *E. christenseni* (Kusiluka et al. 1996; MAFF, 1996; Kaba et al., 2007) *E. hirci* (Ola-Davies et al. 2002), and *E. alijevi* (Kusiluka et al. 1996; MAFF, 1996; Ola-Davies et al. 2002). As described by Smith and Sherman (1994), the pathogenicity of *E. arloingi* and *E. christenseni* is moderate to severe. In contrast, *E. ninakohlyakimovae* is considered to be the most pathogenic species (Smith and Sherman, 1994; Taylor and Catchpole, 1994; Dai et al., 2006) in goat causing severe coccidiosis. These pathogenic species may be contributing to enteric syndromes and mortalities encountered in goats in our study.

Infections in all three-age categories were observed in this study. The prevalence of coccidial infections was highest in young animals, which was similar to that reported by Jalila et al. 1998; Kusiluka 1998; Balicka-Ramisz, 1999, Değer et al. 2003; Waruiru et al. 2005; Kaba et al. 2007; Kimbita et al. 2009. The higher intensity of infections in kids may be attributed to the reduction of passive immunity provided by the colostrum during the first weeks (Taylor, 1995), the lack of acquired immunity at this young age and the current bad management of keeping young kids alongside their dams in and near the shed and thus exposing them to a higher infection level (Jalila et al. 1998; Balicka –Ramisz, 1999; El-Seify et al. 2003). The data revealed that the oocyst counts showed a decreasing trend after 4 months of age, suggesting development of acquired immunity. Similar observation was previously reported by Jalila et al. 1998.

Another important factor contributes to the prevalence of eimeriosis in goats is the management systems. A very high prevalence and oocyst counts in this study were observed in kids reared under intensive system, when compared to that reared under extensive system. In an agreement with this result, clinical coccidiosis was considered to be mainly a disease of young animals (Soulsby, 1982; Foreyt, 1990; Balicka-Ramisz et al, 2004) particularly those kept under intensive systems of management (Opoku-Pare and Chineme, 1979; Varghese and Yayabu, 1985; Catchpole et al., 1993; Kusiluka et al., 1996). Moreover, higher coccidia prevalence and oocyst counts were observed in the semi-intensive system when compared to those of the free range (Patel et al. 2001). Quite the opposite, the disease rarely occurs in less intensive systems probably because the young animals meet the parasite more gradually and able to gain effective immunity (Catchpole et al. 1993).

Caprine Eimeriosis caused severe pathological gastroenteritis, which is manifested clinically by poor coat, diarrhea, anaemia, weight loss, dehydration, and mortality of untreated kids. These findings were also reported by several other authors (Koudela and Kovkova, 1998; Ola-Davis et al., 2002; Dai et al., 2006; Kaba et al., 2007; Öcal et al., 2007). Caprine coccidiosis might be the cause of kid’s mortality observed in the intensive system management as previously reported (Ola-Davis et al., 2002; Dhollander et al 2005). Coccidiosis causes a significant economical loss due to retarded growth and death as a consequence of dysentery and anaemia (Gab-Allah, 1990; Jalila et al., 1998), whereas survival of the remaining kids could be due to their level of resistance or immunity to the parasite (Agyei et al. 2004).

Sub-clinical infections are common in goat (Koudela and Boková, 1998; Değer et al., 2003; Balica-Ramisz et al., 2004). The presence of such sub-clinical level of *Eimeria* infection in goat flocks might be significant in two ways. First, infected goats can be potential carriers and may act to increase the severity of infection precipitating the disease in a susceptible group of kids (Jalila et al., 1998). Second, sub-clinical *Eimeria* infection alone or with concurrent gastrointestinal nematodes may negatively influence the weight gain of goats (Faizal et al., 1999). The absence of clinical symptoms of coccidiosis may be attributed to the species of *Eimeria* involved in the disease (Jalila et al.
al., 1998), the level of hygiene (Foreyt 1990; Jalila et al. 1998), and the type of management system (Jalila et al., 1998). On the other hand, clinical coccidiosis often occurs when oocyst counts are very high (Yvore, 1984; Soulsby, 1982) with over 5000 OPG being significant in ruminants (Radostits et al. 2007). Additionally, Norton (1986) demonstrated that kids showing clinical signs when excreting up to 36,000 oocysts per gram of faeces. Although large number of oocysts were found in the feces of some kids (more than 5x 10^5 OPG), they showed sub-clinical sings (Koudela and Boková, 1998). This may be support the view of Taylor and Catchpole (1994) that the level of oocyst output is not important in determining the severity of eimeriosis.

Because caprine eimeriosis has a great economical impact, treatment of this disease represents a challenge because of the reinfecion. Toltrazuril was highly efficient in treatment of caprine coccidiosis as it produces 94.33% reduction of the mean OPG, a result that was consistent with recorded by Balicka- Ramisz (1999); Balicka- Ramisz et al. (2004). Moreover, treatment with Toltrazuril terminated the ongoing disease and did not interfere with the establishment of protective immunity against challenge infections (Steinfelder et al. 2005). Öcal et al. (2007) added that oral administration of Toltrazuril at a dose of 25 mg/kg/day for two consecutive days provided an effective treatment for acute clinical coccidiosis in goat kids and such dose did not result in acute liver and kidney damage.

On the other hand, Propolis decreased OPG by 54.66% and stopped diarrheas. Treated goats presented no behavioral signs of toxicity and the palatability of the drinking water was not reduced by the presence of Propolis. It has been demonstrated that Propolis was also effective against other protozoa species, such as Eimeria stiedaei (El- Akabawy et al. 2004), Giardia duodenalis (Freitas et al. 2006), Trypanosoma cruzi (Dantas et al. 2006), and Leishmania species (Duran et al. 2008). Propolis is an old remedy used in modern medicine. It is one of the few natural remedies that have got its popularity over a long period. In veterinary medicine, Propolis is used to heal wounds, in weight gain programs for unweaned calves and egg-laying hens, and in the treatment of much pathology, such as diarrhoeas, abscesses, burns, dermatosis, mastitis, coccidiosis, and Eimeria in rabbits (Krell, 1996). Besides, extracts of Propolis are non-toxic in experimental animals (Kleinrok et al. 1978). In addition, Propolis has an immunomodulatory activity (Castaldo and Capasso, 2002; Sforcin et al. 2002) on the host’s specific (Sá-Nunes et al. 2003) and non-specific immunity (Orsi et al. 2000; Sá-Nunes et al. 2003) which occurs through macrophage activation (Orsi et al. 2000). Additionally, there were no significant differences related to the seasonal effect on the immunomodulatory action of Propolis (Sforcin et al. 2002). The antimicrobial properties of Propolis is possibly attributable to its high flavonoid content (Kleinrok et al. 1978; Castaldo and Capasso, 2002).

Caprine eimeriosis was associated with changes in the antioxidant assays. The significant decreases (p <0.05) in erythrocyte GSH-px, SOD and catalase activities were similar to the data reported by Cam et al. (2008). The significant decrease in erythrocyte antioxidant enzyme activities including GSH-px, SOD and catalase of Eimeria-infected kids could be attributed to the release of excessive free radicals during the infection or the decrease in production of these enzymes as a result of liver damage. These radicals are of parasitic origin as confirmed by Georgieva et al. (2006). The present data also demonstrated a significant decrease (P <0.05) in erythrocyte GSH and GRase activity, of infected animals. Similar results were obtained by Georgieva et al. (2006) who recorded changes in lipid peroxidation as well as altered the activities of antioxidant enzyme in the blood of chicken infected with Eimeria tenella. The decreased values of GSH of infected goats indicated the oxidative damage due to generation of H_2O_2 by various mechanisms (Gibson et al. 1980). The librating free radicals resulted in the formation of protein peroxide and inactivation of detoxifying enzymes, such as GSH-Px via splitting of peptide chain (Pigeolet and Ramacele 1991). The recorded significant increase in the lipid peroxidation came in accordance with Dede et al (2002) who reported that the parasites, such as Trichostrongylus sp., Eimeria sp. and Babesia sp. in kids induced lipid peroxidation due to increased ROS generation to an extent that overcomes the cellular
antioxidants resulted in oxidative stress (Mates 2001). In addition, there is increased production of aldehydic compounds such as MDA, which is considered one of the bio-products in lipid peroxidation and a marker of oxidative stress (Lee et al. 2004). The significant increase in the nitrate in Eimeria-infected goats was similar to the results of Dede et al. (2002) who concluded that the elevated level of nitrate concentration in serum of goats infected with parasites is a result of damage caused by invasion, suggesting that parasitic infection has direct effect on nitrate level.

Regarding the effect of Eimeria infection on protein profile, the noticed hypoalbuminemia could be attributed to the diarrhea caused by parasitic gastroenteritis caused by Eimeria infection (Bangoura et al 2007). In general, diarrhea causes intestinal protein loss and consequently reduces serum total protein and albumin concentration due to increased intestinal protein loss and malabsorption after moderate Eimeria infection.

The changes in mineral concentrations in this study were in agreement with those reported by Bangoura et al. (2007) who concluded that coccidiosis in calves causes diarrhea with subsequent systemic acid-base and electrolyte imbalance. The observed hypocalcaemia could be attributed to the reduction of non-diffusible albumin bound fraction (Coles 1986). Generally, the level of minerals decreased due to anorexia and fluid loss as well as decreased absorption of calcium and other minerals from the intestine due to diarrhea (Steinmmer et al. 1991). On the other hand, the present data revealed a significant increase of serum iron of Eimeria-infected goats, which could be attributed to the blood haemolysis induced by parasites because of the release of free radicals invading erythrocytes leading to destruction of their membranes (Itoh and Itoh, 1992).

The recorded significant increase in GSH of Eimeria-infected kids after 2 weeks of treatment with Propolis agreed with Uzbekova et al. (2001) who demonstrated a reduction of MDA content in blood and liver and an increase of GSH content in the rat liver by 83.3%. This result may be attributed to the antioxidant properties of Propolis which has been shown to inhibit both lipoxygenase activity and suppress lipid peroxidation (Fadilligolu et al. 2004). As well as maintenance of cellular reduced glutathione (GSH) content which play an important role in conserving the integrity of biomembranes (El-Khatib et al. 2002). It was reported that Propolis supplement modulated antioxidant enzymes and significantly decreased lipid peroxidation processes in plasma, liver, lungs and brain of mice (Sobocanec et al. 2006). In addition, treatment of naturally Eimeria-infected kids with Propolis reduced the nitrate, which was similar to that previously reported (Fuliang, 2005) who found that, following treatment with Propolis the levels of NO and NOS was decreased. This result suggested that Propolis decreases the level of NO by decreasing the output of NOS thus protecting the endothelial cells of blood vessels and reducing neuronal toxicity.

The current study also showed that Propolis improves hypoproteimemia, hypoalbuminemia and decreased the A/G ratio. These results were in complete harmony with Murad et al. (2002) who confirmed that Propolis has hepatoprotective and immunostimulating effect. The improvement of serum total protein, albumin and globulin reflects the protective effect of Propolis on hepatic injury caused by parasitic infection (El-Akabawy et al., 2004). Moreover, the relief of intestinal degeneration reflects the partial protective effects of Propolis on intestinal injury caused by Eimeria infection (El-Khatib et al., 2002), which consequently improve the absorption of minerals in intestine such as Ca, P , Na and K. In addition Propolis contains protein, amino acids, vitamins, flavinoid and minerals such as Ca, P, Mg, k, iron, copper, cobalt and zinc; (Walker and Grane 1987) that may play a part in improvement of mineral levels. It was also demonstrated that the addition of Propolis to the diet improves the digestive utilization of iron and regenerate efficiency of hemoglobin (Haro et al. 2000).

Regarding the Toltrazuril -induced changes in the anti-oxidant assays, our data were in agreement with Gokhan et al (2004) who reported that Toltrazuril administration increased antioxidant enzyme activities in erythrocytes of poultry. In contrast MDA level showed a significant decrease in the group which received Toltrazuril following Eimeria infection. This result was
confirmed by Cam et al (2008) who concluded that treatment with Toltrazuril was highly effective in reducing fecal oocyst output in Eimeria infected rabbit as well as modulate biochemical and lipid peroxidation parameters to be close to the level of control group. Toltrazuril had also a good prophylactic effect reflect on biochemical serum analysis via improvement of hypoproteinemina, hypoalbuminemia (Mohamed, 2002). In addition, the recorded results displayed that oocysts reduction percent. under treatment with Toltrazuril was 94.7%; thus it is highly effective against all intracellular stages of Eimeria (El-Akabawy et al. 2004) and consequently improves most biochemical parameters including serum minerals and erythrocyte antioxidant enzyme.

The major histopathological changes observed in this study were identical to those described by many other authors (Jubb et al. 1985; Gab Allah 1990; Koudela and Boková, 1998; and Öcal et al. 2007). Lower number of Eimeria developmental stages and presence of regenerated mucosa were observed in Toltrazuril -treated kids. Toltrazuril was efficient against schizonts and microgametocytes of coccidia strains in poultry (Sreter et al 1999). On the other hand, the therapeutic effect of Propolis could be attributed to stimulation of the local immune reaction resulting in elimination of most developmental stages of Eimeria. Moderate number of macrogametocytes and immature oocysts were focally observed in the intestinal epithelium of Propolis -treated group. Furthermore, absence of intestinal degeneration reflects the partial protective effect of Propolis on intestinal injuries caused by eimeriosis. Propolis induced similar observation in hepatic tissues (El-Akabawy et al., 2004).

CONCLUSION

It could be concluded from this study that Eimeriosis is a widespread disease among goats at kalubya Governorate, Egypt. The disease showed age and management-related variations in oocyst outputs with special clinical and pathological significance in kids under intensive management. The use of Propolis and Toltrazuril seems beneficial in reduction of oocyst production and amelioration of disease-associated biochemical and histopathological changes, although Toltrazuril was more efficient in reducing the OPG.

REFERENCES

Activities in blood of patients with acute and chronic fascioliasis. Int. J. of...

98. Uzebkova, D., Makarova, V.G., Chungova, L.G., 2001. protective effect of Propolis against hepatotoxicity induced by CC14 in rats. Medical University, Russia.

