GROWTH AND YIELD OF MAIZE PLANTS AS AFFECTED BY AZOSPIRILLUM INOCULATION IN PRESENCE OF DIFFERENT NITROGEN SOURCES.

BY

Zaghloul, R.A.

ABSTRACT

Two field experiments were carried out in the Agricultural Research and Experimentation Center of Fac. Agric., Moshtohor during 1999 and 2000 seasons to study the effect of organic manures (biogas manure or town refuse compost) amendment either alone or in combination with Azospirillum inoculum or ammonium sulphate on the growth and yield of maize plants.

Results of this study showed that, highest densities of azotobacters, azospirilla in maize rhizosphere were observed in the treatment of inoculation with A. lipoferum and supplementation with the half dose of inorganic N-fertilizer (45 kg N/fed). While, the highest densities of phosphate dissolvers were observed in the treatment of inoculation with A. lipoferum in combination with biogas manure. The highest records of CO₂ evolution were observed in the treatment of soil amendment with full dose of biogas manure, 5.555 ton/fed (90 kg N/fed).

Maize grains inoculated with A. lipoferum and provided with the half dose of inorganic nitrogen fertilizer showed the highest records of N₂-ase activity, ammoniacal and nitrate nitrogen as well as available phosphorus. Application of full dose of biogas manure gave higher values of NH₄-N and NO₃-N as well as available phosphorus than the application of full dose of town refuse compost (6.338 ton/fed). The highest records of growth performance i.e growth characters, ear characteristics, straw and grain yields of maize were obtained in the treatment of maize grains inoculated with A. lipoferum and supplemented with half dose of inorganic nitrogen fertilizer. Generally, organic manure application either solely (full dose) or in combination with Azospirillum inoculation or inorganic N-fertilizer (half dose) gave higher records of growth performance of maize plants than the application of full dose of inorganic N-fertilizer alone. Therefore, maize grains inoculation with asymbiotic N₂-fixing bacteria at sowing and application of half the dose of either inorganic or organic N-fertilizers may be recommended as an alternative for inorganic N-fertilizers application alone to minimize the environmental pollution resulted from the excessive use of chemical fertilizers.

Key words: Maize, Azospirillum lipoferum, biogas manure, town refuse compost, inorganic N-fertilizer.
INTRODUCTION

One of the major problems of Egyptian soils is their deficiency in organic matter content, not exceeding from 1-2% in all cultivated soils (Abdel-Malek et al., 1961). Therefore, the application of organic manures seems to be of a great value for improving biological, chemical and physical properties of soils, thus improving their productivity (Tester, 1990; More, 1994 and Peoples et al., 1995). Nevertheless, organic matter application to different soils is essential for successful management through the following:

1- increasing both soil fertility and productivity as a result of improving soil properties.
2- Minimizing chemical fertilizer application.
3- Reducing environmental pollution.

Manuring the soil with either sewage sludge or town refuse compost increased the dry matter yield, grain yield and uptake of NPK by sorghum plants. (Soltan et al., 1996). A significant interaction on barley growth was obtained with the combination of compost and inorganic N-fertilizers. This combination was much better in increasing growth characters and barley yield compared with either compost or inorganic N-fertilizer applied alone (Hountin et al., 1995). Gagnon et al (1997) found that application of compost in combination with inorganic N-fertilizer significantly increased growth characters, grain yield and N uptake of wheat plants. Grain and straw yields of sorghum were increased with the application of town refuse and sewage sludge compost (Mahmoud, 2000). Many earlier investigators reported that high levels of N-fertilizers may be a limiting factor for N₂ fixation process and exhibited a negative effect on N₂ase activity in various ecosystems (Neyra and Dobereiner, 1977 and Vlassak and Reynders, 1980). Biofertilizers either solely or in combination with certain N-inorganic additives proved to be an efficient tool in increasing available nutrients in soil as well as crop yield. Several investigators showed that inoculation with azospirilla improved growth and yield of maize crop due to their N₂-fixation activity and production of growth promoting substances (Fulchieri and Frioni, 1994; Raso, 1996 and Hamdi and El-Komy, 1998). Moreover, El-Demerdash (1994) reported that maize grains inoculation with associative N₂-fixers resulted in improving the growth of maize plants and consequently gave high grain and straw yields. He also reported that such application can save 50% of the cost of inorganic nitrogen fertilizers.

So, the objective of the present study is to evaluate the effect of organic fertilization (biogas manure or town refuse compost) either alone or in combination with Azospirillum inoculation or inorganic N-fertilizer on growth performance and yield of maize plants.

MATERIAL AND METHODS

Two field experiments were carried out in the Agricultural Research and Experimentation Center of Fac. Agric. Moshtohor, Zagazig Univ., during 1999 and 2000 seasons to study the effect of biogas manure and town refuse compost.
Growth & Yield Of Maize Plants As Affected By........... 2199

Application either alone or in combination with Azospirillum lipoferum inoculation or inorganic N-fertilizer (ammonium sulphate 20.5%N) on growth performance, yield and yield components of maize (Zea mays c.v. Taba).

Mechanical and chemical analyses of the experimental soil are presented in Table (1). Also, the chemical analysis of the used organic manures are shown in Table (2).

Mechanical analysis was estimated according to Jackson (1973). Whereas, chemical analysis of soil and organic manures was estimated according to Black et al, (1982).

Biogas manure and town refuse compost were added before sowing at a rate of 90 kg N / fed., also, the inorganic nitrogen fertilizer (NH₄)₂SO₄ was added at a rate of 90 kg N / fed. to represent the full dose of nitrogen in three equal doses i.e. at sowing, after 30 and 60 days of sowing. All plots were supplemented with calcium superphosphate (15.5 % P₂O₅) at a rate of 30 kg P₂O₅ / fed.

Inoculum preparation and inoculation process

Azospirillum lipoferum Mn3 strain was provided from the Unit of Biofertilizers, Fac. of Agric., Ain Shams Univ., Cairo, Egypt.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>1999</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Particle size distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse sand (%)</td>
<td>2.83</td>
<td>2.48</td>
</tr>
<tr>
<td>Fine sand (%)</td>
<td>17.62</td>
<td>16.58</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>23.10</td>
<td>23.50</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>56.45</td>
<td>57.44</td>
</tr>
<tr>
<td>Textural class</td>
<td>Clayey</td>
<td>Clayey</td>
</tr>
<tr>
<td>B. Chemical analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic matter (%)</td>
<td>1.78</td>
<td>1.86</td>
</tr>
<tr>
<td>PH</td>
<td>8.21</td>
<td>8.05</td>
</tr>
<tr>
<td>Total nitrogen (%)</td>
<td>0.36</td>
<td>0.48</td>
</tr>
<tr>
<td>Total phosphorus (%)</td>
<td>0.19</td>
<td>0.22</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>0.42</td>
<td>0.56</td>
</tr>
<tr>
<td>Cations (meq/l.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺</td>
<td>0.26</td>
<td>0.30</td>
</tr>
<tr>
<td>K⁺</td>
<td>0.62</td>
<td>0.64</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>3.2</td>
<td>3.41</td>
</tr>
<tr>
<td>Mg⁺⁺</td>
<td>2.4</td>
<td>2.45</td>
</tr>
<tr>
<td>Anions (meq/l.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>3.21</td>
<td>3.41</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>2.61</td>
<td>2.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Biogas manure</th>
<th>Town refuse compost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1999</td>
<td>2000</td>
</tr>
<tr>
<td>Organic matter</td>
<td>%</td>
<td>56.82</td>
<td>57.12</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>%</td>
<td>32.95</td>
<td>33.13</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>%</td>
<td>1.62</td>
<td>1.69</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>%</td>
<td>0.76</td>
<td>0.70</td>
</tr>
<tr>
<td>Total potassium</td>
<td>%</td>
<td>1.12</td>
<td>1.20</td>
</tr>
<tr>
<td>Iron</td>
<td>ppm</td>
<td>32.0</td>
<td>36.5</td>
</tr>
<tr>
<td>Zinc</td>
<td>ppm</td>
<td>26.1</td>
<td>30.0</td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>12.4</td>
<td>18.2</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppm</td>
<td>9.3</td>
<td>11.6</td>
</tr>
</tbody>
</table>

For preparation of *A. lipoferum* inoculum, semi-solid malate medium (Dobereiner, 1978) was inoculated with *A. lipoferum*, then incubated at 32°C for 7 days. Maize grains were successfully washed with water and air-dried. Thereafter, grains were soaked in cell suspension of *A. lipoferum* (1 ml contains about 8×10^7 viable cells) for 30 min. Gum arabic (16%) was added as an adhesive agent prior to inoculation. The inoculated grains were air dried for one hour before sowing.

A control was carried out, where the soil was left without fertilization and grains were treated by using uninoculated N-deficient medium instead of *Azospirillum* inoculum. Another control was also prepared, where the grains were sown without inoculation, but the soil was fertilized with the recommended doses of nitrogen and phosphorus i.e. 90 kg N and 30 kg P_2O_5 / fed as ammonium sulphate and calcium superphosphate, respectively.

Experimental design

A randomized complete block design with four replicates was used. This experiment included the following treatments:

1- Control.
2- Fertilized control (90 kg N of ammonium sulphate + 30 kg P_2O_5 of superphosphate / fed.).
3- *Azospirillum* inoculum + a half dose of ammonium sulphate (45 kg N / fed.).
4- Full dose of biogas manure, 5.555 ton/fed. (90 kg N / fed.).
5- Biogas manure (45 kg N / fed.) + *Azospirillum* inoculum.
6- Biogas manure (45 kg N / fed.) + ammonium sulphate (45 kg N / fed.).
7- Full dose of town refuse compost, 6.338 ton/fed. (90 kg N / fed.).
8- Town refuse compost (45 kg N / fed.) + *Azospirillum* inoculum.
9- Town refuse compost (45 kg N / fed.) + ammonium sulphate.

Cultivation process

Cultivation process was performed by sowing four inoculated or uninoculated grains in hills at rows with a distance of 25 cm between hills and 70 cm between rows. The area of each plot was 14 m² (4mx 3.5 m). After sowing,
soil was directly irrigated to provide suitable moisture for inoculum. The normal
cultivation practices for growing maize were followed as recommended in the
region.

Sampling and determinations
After 35 and 70 days of sowing, representative rhizosphere soil samples
of the developed plants were taken. These periods are representing the vegetative
and heading stages. The samples were microbiologically analyzed for CO2
evolution, nitrogenase activity, densities of azotobacters, azospirilla and inorganic
phosphate dissolvers. Also, rhizosphere soil samples were chemically analyzed
for NH4-N, NO3-N and available phosphorus as follows:

1. Microbiological analysis
1.1. CO2 evolved by soil microorganisms was estimated using the method
described by Page et al. (1982).
1.2. Nitrogenase activity was estimated according to Hardy et al. (1973).
1.3. Densities of azotobacters and azospirilla were determined on modified
Ashby’s medium (Abdel-Malek and Ishac, 1968) and semi-solid malate
medium (Dobereiner, 1978), respectively using the most probable number
technique (Cochran, 1950). Whereas, the densities of inorganic phosphate
dissolvers were determined on Bunt and Rovira medium (1955) modified by
Abdel-Hafez (1966) using the plate count method.

2. Chemical analysis
2.1. Ammoniacal and nitrate nitrogen were determined according to Bremner and
Keeny (1965).
2.2. Available phosphorus was extracted from soil according to Olsen et al.
(1954) and colourimetrically determined according to American Public
Health Association (APHA, 1992).

3. Growth parameters
After 70 days of sowing, plant height (cm), stem diameter (mm), number
of leaves / plant and leaf area of topmost ear (cm²) were estimated.

4. Yield and its components
At harvest, ear length (cm), ear diameter (cm), weight of grains / ear (g),
weight of cob ear (g) and weight of 100-grain (g) were recorded. Also, straw
yield, ears yield, biological yield [straw and ears] (ton / fed.) and grain yield
(ardab / fed.) were recorded.

5. Chemical analysis of maize grains
Total nitrogen, phosphorus and potassium were estimated in grains
according to microkjeldahl method (A.O.A.C., 1980), APHA (1992) and Dewis
and Freitas (1970), respectively.

Crude protein was calculated according to the following equation.
Crude protein = % total nitrogen x 6.25. (A.O.A.C., 1980).
Statistical analysis

Analysis of variance (ANOVA) of data obtained from growth parameters, ear characteristics, yield and yield components were carried out according to Snedecor and Cochran (1989).

The differences between the mean values of various treatments were compared by Duncan's multiple range test (Duncan, 1955).

RESULTS AND DISCUSSION

Effect of different soil applications on microbial densities in rhizosphere of maize plants.

Data in Table (3) show that the densities of azotobacters, azospirilla and phosphate dissolvers in rhizosphere of maize plants increased in all soil application treatments compared to control one. At vegetative stage, highest densities of azotobacters and azospirilla were observed in the treatment of maize grains inoculated with A. lipoferum and received half the dose of inorganic N-fertilizer. Whereas, the highest densities of P-dissolvers were observed in the treatment of maize grains inoculated with A. lipoferum that received half dose of nitrogen (hdn) of biogas manure. At heading stage, the highest densities of azotobacters, azospirilla and P-dissolvers were recorded in the treatments of Azospirillum inoculation + half dose of inorganic nitrogen, Azospirillum inoculation + biogas manure (hdn) and full dose of biogas manure, respectively. These results are in agreement with those obtained by Zaghloul et al. (1996) and Neweigy et al. (1997).

Irrespective of control, the lowest densities of azotobacters, azospirilla and P-dissolvers were observed in the treatment of full dose of inorganic N-fertilizer application. The same trend of results was observed in both growing seasons and growth stages.

Data recorded in Table (3) also show that the densities of azotobacters, azospirilla and P-dissolvers in rhizosphere of maize plants tended to increase progressively in all treatments. At heading stage, densities of abovementioned microbial groups were higher than those recorded in vegetative stage. Such differences may be due to the changes in multiplication rate of different soil microorganisms as a result of qualitative changes in nature of the root exudates during the different growth stages (Abdel-Ati et al., 1996).

Also, increase of different microbial groups densities during heading stage is likely to be due to the beneficial effect of root exudates and debris during heading stage in most cultivated plants.

Generally, from data presented in Table (3) it can be concluded that the densities of azotobacters, azospirilla and P-dissolvers were higher in case of Azospirillum inoculation in combination with organic manures than its combination with inorganic N-fertilizer. Similar results were observed by several investigators (De-Freitas and Germida, 1990; Shatokhina and Khristenko, 1996).
and Moharram et al., 1998) who emphasized that, in addition to the beneficial effect of N₂-fixing bacteria associated with roots of cereal crops in providing them with nitrogen, these bacteria are also reported to produce growth promoting substances which help in increasing the proliferation of different soil microorganisms (Abdel-Jawad, 1998).

Effect of different soil applications on CO₂ evolution and N₂-ase activity.

It is obvious from data recorded in Table (4) that the evolved CO₂ (as an indication for activity of soil microorganisms) was remarkably increased in the treatments of organic manures application either alone or in combination with A. lipoferum. The highest values of evolved CO₂ were observed in the treatment of soil amendment with full dose of biogas manure. The same trend of results was observed in both 1999 and 2000 growing seasons as well as at vegetative and heading stages of maize growth. Rates of CO₂ evolution (activity of soil microorganisms) considerably increased with the increasing of growth period reaching their maximal values at heading stage. The same trend of results was obtained in all treatments. These results confirmed those obtained by Neweigy et al. (1997) and Moharram et al. (1998) who reported that soil amendment with organic manures increased CO₂ evolution rates in rhizosphere soil rather than inorganic N-fertilizers application.

As regard to N₂-ase activity, data presented in Table (4) show that maize grains inoculated with A. lipoferum and provided with a half dose of inorganic N-fertilizer gave the highest values of N₂-ase activity. This result was true in vegetative and heading stages of maize growth.

Also, it is worthy to notice that the application of organic manures (biogas manure or town refuse compost) in combination with Azospirillum inoculum showed higher records of N₂-ase activity than the application of organic manures in combination with ammonium sulphate. Irrespective of control, the lowest values of N₂-ase activity were observed in the treatment of full dose of ammonium sulphate application. These results confirmed those obtained by Vlassak and Reynders (1980) and EL-Demerdash (1994), who reported that the high levels of inorganic fertilizer may be a limiting factor for N₂-fixation process and exhibited a negative effect on N₂-ase activity in various ecosystems.

Data in Table (4) also show that N₂-ase activity values were higher at heading stage than those recorded at vegetative stage. This result can be attributed to the high densities of azotobacters and azospirilla which showed an increase in their counts at heading stage of maize growth (Table, 3).

Generally, CO₂ evolution rates and N₂-ase activity were higher in the 2nd season than in the 1st one and these differences between the two seasons are likely to be due to the difference in the climatic conditions.
Table (3): *Azotobacters, azospirilla* and inorganic phosphate dissolving bacteria (PDB) densities (x10⁴/ g dry weight of soil) in *rhizosphere* of maize plants.

<table>
<thead>
<tr>
<th>Growth stage</th>
<th>Treatments</th>
<th>Vegetative stage</th>
<th>P.D.B.</th>
<th>Azotobacters</th>
<th>Azospirilla</th>
<th>P.D.B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>22.50</td>
<td>24.30</td>
<td>21.5</td>
<td>26.80</td>
<td>18.6</td>
</tr>
<tr>
<td>Fert. control (full dose of amm. sulphate)</td>
<td>Azos. lipoferum + amm. sulphate (hdn)</td>
<td>52.40</td>
<td>58.60</td>
<td>38.6</td>
<td>43.60</td>
<td>44.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>147.2</td>
<td>156.2</td>
<td>96.9</td>
<td>104.3</td>
<td>92.2</td>
</tr>
<tr>
<td></td>
<td>Full dose of biogas manure (BM)</td>
<td>90.60</td>
<td>96.30</td>
<td>60.4</td>
<td>68.00</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>BM (hdn) + Azos. lipoferum</td>
<td>117.2</td>
<td>129.6</td>
<td>86.2</td>
<td>92.30</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td>BM (hdn) + amm. sulphate (hdn)</td>
<td>108.4</td>
<td>121.5</td>
<td>81.1</td>
<td>88.50</td>
<td>88.6</td>
</tr>
<tr>
<td></td>
<td>Full dose of town refuse compost (TRC)</td>
<td>66.40</td>
<td>73.60</td>
<td>52.6</td>
<td>56.40</td>
<td>80.1</td>
</tr>
<tr>
<td></td>
<td>TRC (hdn) + Azos. lipoferum</td>
<td>120.2</td>
<td>124.6</td>
<td>74.2</td>
<td>79.00</td>
<td>70.3</td>
</tr>
<tr>
<td></td>
<td>TRC (hdn) + amm. sulphate (hdn)</td>
<td>112.3</td>
<td>118.4</td>
<td>58.0</td>
<td>63.60</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Fert., fertilized.
Full dose, (90 kg N/ fed.).
Half dose, (45 kg N/ fed.).
TRC, Town refuse compost.

hdn, half dose of nitrogen.
Azos, Azospirillum.
BM, Biogas manure.
Table (4): Carbon dioxide evolution and nitrogenase activity in rhizosphere of maize plants.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Vegetative stage</th>
<th></th>
<th>Heading stage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂ evolved</td>
<td>N₂-ase activity</td>
<td>CO₂ evolved</td>
<td>N₂-ase activity</td>
</tr>
<tr>
<td></td>
<td>(µg/g dry soil/hr.)</td>
<td>(n moles C₂H₄/g dry soil/hr.)</td>
<td>(µg/g dry soil/hr.)</td>
<td>(n moles C₂H₄/g dry soil/hr.)</td>
</tr>
<tr>
<td>Fert. control (full dose of amm. sulphate)</td>
<td>1999 (60.53)</td>
<td>2000 (68.47)</td>
<td>1999 (52.60)</td>
<td>2000 (55.00)</td>
</tr>
<tr>
<td>Azospirillum plus amm. sulphate (hdn)</td>
<td>1999 (80.42)</td>
<td>2000 (86.36)</td>
<td>1999 (105.4)</td>
<td>2000 (116.6)</td>
</tr>
<tr>
<td>Full dose of biogas manure (BM)</td>
<td>1999 (110.2)</td>
<td>2000 (121.5)</td>
<td>1999 (67.80)</td>
<td>2000 (74.20)</td>
</tr>
<tr>
<td>BM (hdn) + Azospirillum</td>
<td>1999 (86.34)</td>
<td>2000 (95.30)</td>
<td>1999 (81.36)</td>
<td>2000 (92.31)</td>
</tr>
<tr>
<td>BM (hdn) + amm. sulphate (hdn)</td>
<td>1999 (65.60)</td>
<td>2000 (68.50)</td>
<td>1999 (42.80)</td>
<td>2000 (48.00)</td>
</tr>
<tr>
<td>Full dose of town refuse compost (TRC)</td>
<td>1999 (98.34)</td>
<td>2000 (102.6)</td>
<td>1999 (73.00)</td>
<td>2000 (80.40)</td>
</tr>
<tr>
<td>TRC (hdn) + Azospirillum</td>
<td>1999 (74.46)</td>
<td>2000 (104.8)</td>
<td>1999 (86.10)</td>
<td>2000 (96.60)</td>
</tr>
<tr>
<td>TRC (hdn) + amm. sulphate (hdn)</td>
<td>1999 (63.62)</td>
<td>2000 (81.39)</td>
<td>1999 (45.20)</td>
<td>2000 (57.10)</td>
</tr>
</tbody>
</table>

Abbreviations: as those stated for Table (3).
Effect of different soil applications on nitrogen forms and available phosphorus in soil.

Data presented in Table (5) show that ammoniacal and nitrate nitrogen as well as available phosphorus were remarkably increased in the treatment of maize grains inoculated with *A. lipoforum* and provided with the half dose of inorganic N-fertilizer. The same trend of results was obtained in both growth stages and growing seasons of maize plants.

Taking the organic manure source into account, biogas manure application as full dose of nitrogen gave higher values of nitrogen forms (NH$_4^-$ and NO$_3^-$) as well as available phosphorus than the application of full dose of nitrogen from town refuse compost. It seems that the biogas manure is easily decomposable rather than town refuse compost. Nevertheless, the high records of available phosphorus which observed in biogas manure treatment can be explained by its high content of P-dissolvers densities especially at heading stage in comparison with town refuse compost (Table, 3).

Data in Table (5) also show that half dose of organic manures application in combination with *Azospirillum* inoculation gave higher records of NH$_4^-$N, NO$_3^-$N and available phosphorus compared to half dose of organic manures application in combination with ammonium sulphate (bdn). This was true in both maize growth stages and the two growing seasons.

Irrespective of control, the lowest records of NH$_4^-$N, NO$_3^-$N nd available phosphorus were observed in the treatment of full dose of ammonium sulphate. This result can be attributed to the lower densities of azotobacters, azospirilla and P-dissolvers which showed a decrease in their counts in the treatment of full dose of ammonium sulphate application (Table, 3).

Generally, from data recorded in Table (5) it is worthy to mention that NH$_4^-$N, NO$_3^-$N and available phosphorus were remarkably increased at heading stage in comparison with vegetative one. Such differences is likely be due to the difference in multiplication rate of different soil microorganisms as a result of qualitative and quantitative changes in the nature of root exudates during different growth stages (De-Freitas and Germida, 1990 and Abdel-Ati et al., 1996).

Effect of different soil applications on growth and yield of maize plants.

A. Growth characters of maize.

It is clear from data presented in Table (6) that maize growth characteristics i.e plant height, stem diameter, number of leaves/plant and leaf area of topmost ear significantly increased in the treatment of maize grains inoculated with *A. lipoforum* and supplemented with a half dose of inorganic nitrogen fertilizer. This may be due to the production of growth regulators such as auxins, gibberillins and cytokinins by azospirilla which positively affected the production of root biomass and nutrients uptake (Fulchieri and Frioni, 1994).
Table (6): Effect of organic manures application alone and in combination with either *A. lipoferum* or ammonium sulphate on growth parameters of maize plants.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Growth parameters</th>
<th>Plant height (cm)</th>
<th>Stem diameter (mm)</th>
<th>No. of leaves / plant</th>
<th>Leaf area of topmost ear (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1999</td>
<td>2000</td>
<td>1999</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>166.3<sup>d</sup></td>
<td>171.3<sup>d</sup></td>
<td>19.67<sup>b</sup></td>
<td>20.00<sup>c</sup></td>
</tr>
<tr>
<td>Fert. control (full dose of amm. sulphate)</td>
<td></td>
<td>200.0<sup>f</sup></td>
<td>210.0<sup>f</sup></td>
<td>28.33<sup>a</sup></td>
<td>32.00<sup>a</sup></td>
</tr>
<tr>
<td>Azos. lipoferum + amm. sulphate (hdn)</td>
<td></td>
<td>251.7<sup>a</sup></td>
<td>256.7<sup>a</sup></td>
<td>33.33<sup>a</sup></td>
<td>34.67<sup>a</sup></td>
</tr>
<tr>
<td>Full dose of biogas manure (BM)</td>
<td></td>
<td>196.7<sup>c</sup></td>
<td>216.7<sup>bc</sup></td>
<td>29.30<sup>ab</sup></td>
<td>27.00<sup>b</sup></td>
</tr>
<tr>
<td>BM (hdn) + Azos. lipoferum</td>
<td></td>
<td>216.0<sup>e</sup></td>
<td>236.7<sup>abc</sup></td>
<td>27.33<sup>a</sup></td>
<td>29.00<sup>a</sup></td>
</tr>
<tr>
<td>BM (hdn) + amm. sulphate (hdn)</td>
<td></td>
<td>206.7<sup>f</sup></td>
<td>226.7<sup>bc</sup></td>
<td>27.67<sup>a</sup></td>
<td>29.33<sup>a</sup></td>
</tr>
<tr>
<td>Full dose of town refuse compost (TRC)</td>
<td></td>
<td>195.0<sup>f</sup></td>
<td>210.0<sup>f</sup></td>
<td>30.33<sup>a</sup></td>
<td>25.67<sup>b</sup></td>
</tr>
<tr>
<td>TRC (hdn) + Azos. lipoferum</td>
<td></td>
<td>238.3<sup>ab</sup></td>
<td>255.0<sup>a</sup></td>
<td>30.67<sup>a</sup></td>
<td>32.67<sup>a</sup></td>
</tr>
<tr>
<td>TRC (hdn) + amm. sulphate (hdn)</td>
<td></td>
<td>216.7<sup>bc</sup></td>
<td>226.7<sup>bc</sup></td>
<td>30.67<sup>a</sup></td>
<td>32.00<sup>a</sup></td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) within each column, are not significantly different from each other at 1% level.

Abbreviations: as those stated for Table (3).
Growth & Yield Of Maize Plants As Affected By………

Taking the organic manure source into account, insignificant differences were observed in maize growth characteristics when full dose of nitrogen was amended from either biogas manure or town refuse compost. The same trend was observed in the two growing seasons. Except of stem diameter, the obtained results showed that application of organic manures in combination with either A. lipoferum inoculation or ammonium sulphate gave higher records of growth characteristics of maize than the application of full dose of nitrogen from the two organic manures under investigation. This observation was consistent in both growing seasons.

These results confirmed those obtained by Hountin et al. (1995) and Gagnon et al. (1997) who noticed a significant response of growth of barley and wheat with the combination of compost and inorganic N-fertilizer. Irrespective of control treatment, data in Table (6) clearly emphasize that the lowest records of growth performance were obtained when the full dose of ammonium sulphate was applied as a sole source of N-fertilizer.

B. Ear characteristics.

Data in Table (7) show that ear characteristics i.e. ear length, ear diameter, weight of ear grains, weight of ear cob and weight of 100-grains were significantly increased in inoculated treatments with A. lipoferum provided with a half dose of inorganic N-fertilizer. The same trend of results was observed in the two growing seasons. With respect to organic manure source, obtained results clearly show that ear characteristics of maize plants were significantly higher with the application of biogas manure (full dose) than the application of full dose of town refuse compost. Except of ear diameter, data in Table (7) indicate that the treatments of Azospirillum inoculation in combination with either biogas manure or town refuse compost gave higher records of ear characteristics than the combination of organic manure with ammonium sulphate using half the dose of both of them. The increase of growth performance and ear characteristics of maize plants due to inoculation with associative N₂ fixer (A. lipoferum) may be due to the capability of this organism to fix nitrogen which could be taken by the growing plants (El-Demerdash, 1994; Raso, 1996 and Hamdi and El-Komy, 1998).

C. Yield of straw, ears, biological and grains.

It is obvious from data presented in Table (8) that the straw, ears and biological yield as well as grain yield of maize plants were significantly increased in the treatments inoculated with A. lipoferum compared to uninoculated ones.

The highest values of the abovementioned criteria were obtained in the treatment of maize grains inoculated with A. lipoferum and provided with half the dose of inorganic nitrogen fertilizer. The results of season 2000 are emphasized as those obtained from 1999. These results are in harmony with Fulchieri and Frioni (1994), Raso (1996), Badawy et al. (1997) and Moharram et al. (1998) who reported that azospirilla inoculated treatments scored the highest improvement in maize straw and grain yield when moderate inorganic N-fertilization rates were used.
Table (7): Effect of organic manures application alone and in combination with either *A. lipoferum* or ammonium sulphate on some ear characteristics and weight of 100 grains of maize plants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Ear length (cm)</th>
<th>Ear diameter (mm)</th>
<th>Weight of grains/ ear (g)</th>
<th>Weight of ear cob (g)</th>
<th>Weight of 100 grains (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15.13<sup>d</sup></td>
<td>15.60<sup>d</sup></td>
<td>3.86<sup>e</sup></td>
<td>3.76<sup>e</sup></td>
<td>152.6<sup>d</sup></td>
</tr>
<tr>
<td>Fert. control (full dose of amm. sulphate)</td>
<td>18.33<sup>f</sup></td>
<td>18.67<sup>f</sup></td>
<td>5.03<sup>f</sup></td>
<td>4.16<sup>b</sup></td>
<td>186.1<sup>abc</sup></td>
</tr>
<tr>
<td>Azos. lipoferum + amm. sulphate (hdn)</td>
<td>24.00<sup>a</sup></td>
<td>24.63<sup>a</sup></td>
<td>6.40<sup>a</sup></td>
<td>5.70<sup>a</sup></td>
<td>247.6<sup>a</sup></td>
</tr>
<tr>
<td>Full dose of biogas manure (BM)</td>
<td>22.60<sup>abc</sup></td>
<td>23.66<sup>ab</sup></td>
<td>5.60<sup>abc</sup></td>
<td>5.66<sup>a</sup></td>
<td>192.1<sup>abc</sup></td>
</tr>
<tr>
<td>BM (hdn) + Azos. lipoferum</td>
<td>24.66<sup>a</sup></td>
<td>24.00<sup>a</sup></td>
<td>6.10<sup>ab</sup></td>
<td>5.13<sup>a</sup></td>
<td>193.2<sup>abc</sup></td>
</tr>
<tr>
<td>BM (hdn) + amm. sulphate (hdn)</td>
<td>21.60<sup>b</sup></td>
<td>22.33<sup>bc</sup></td>
<td>6.10<sup>ab</sup></td>
<td>5.16<sup>a</sup></td>
<td>179.2<sup>bc</sup></td>
</tr>
<tr>
<td>Full dose of town refuse compost (TRC)</td>
<td>21.33<sup>b</sup></td>
<td>21.67<sup>b</sup></td>
<td>5.06<sup>c</sup></td>
<td>4.36<sup>b</sup></td>
<td>161.3<sup>c</sup></td>
</tr>
<tr>
<td>TRC (hdn) + Azos. lipoferum</td>
<td>23.16<sup>ab</sup></td>
<td>23.33<sup>ab</sup></td>
<td>5.40<sup>a</sup></td>
<td>5.66<sup>a</sup></td>
<td>236.8<sup>ab</sup></td>
</tr>
<tr>
<td>TRC (hdn) + amm. sulphate (hdn)</td>
<td>22.60<sup>abc</sup></td>
<td>23.00<sup>ab</sup></td>
<td>5.33<sup>bc</sup></td>
<td>5.53<sup>a</sup></td>
<td>224.7<sup>ab</sup></td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) within each column, are not significantly different from each other at 1% level.

Abbreviations: as those stated for Table (3).
Table (8): Effect of organic manures application alone and in combination with either *A. lipoferum* or ammonium sulphate on straw, ear, biological and grain yield of maize plants.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Straw yield (ton/fed.)</th>
<th>Ear yield (ton/fed.)</th>
<th>Biological yield (ton/fed.)</th>
<th>Grain yield (ardab/fed.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.16</td>
<td>3.21</td>
<td>2.26</td>
<td>2.63</td>
</tr>
<tr>
<td>Fert. control (full dose of amm. sulphate)</td>
<td>4.73</td>
<td>4.60</td>
<td>3.16</td>
<td>3.33</td>
</tr>
<tr>
<td>Azos. lipoferum+ amm. sulphate (hdn)</td>
<td>7.46</td>
<td>7.83</td>
<td>6.53</td>
<td>5.80</td>
</tr>
<tr>
<td>Full dose of biogas manure (BM)</td>
<td>3.66</td>
<td>3.56</td>
<td>3.33</td>
<td>3.53</td>
</tr>
<tr>
<td>BM (hdn) + Azos. lipoferum</td>
<td>6.53</td>
<td>6.13</td>
<td>5.20</td>
<td>5.26</td>
</tr>
<tr>
<td>Full dose of town refuse compost (TRC)</td>
<td>4.26</td>
<td>3.93</td>
<td>3.46</td>
<td>3.90</td>
</tr>
<tr>
<td>TRC (hdn) + Azos. lipoferum</td>
<td>3.83</td>
<td>3.86</td>
<td>3.24</td>
<td>3.93</td>
</tr>
<tr>
<td>TRC (hdn) + amm. sulphate (hdn)</td>
<td>4.00</td>
<td>4.96</td>
<td>4.66</td>
<td>4.86</td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) within each column are not significantly different from each other at 1 % level.

Abbreviations: as those stated for Table (3).
With regard to organic manures source, data in Table (8) indicate that biogas manure application (full dose) didn’t show significant differences on the abovementioned criteria compared to the treatment of town refuse compost. Generally, *Azospirillum* inoculation in combination with either biogas manure or town refuse compost significantly increased maize yield compared to the application of full dose of nitrogen from either organic manures or ammonium sulphate.

In addition, obtained results clearly show that the combination of organic manures with either *Azospirillum* inoculation or ammonium sulphate gave higher straw, ears, biological and grain yields than the application of both organic and inorganic N-fertilizers alone. The same trend of results was observed in the two growing seasons.

Similar results were observed by (Hountin *et al.*, 1995; Gagnon *et al.*, 1997 and Moharram *et al.*, 1998) who found that the application of compost in combination with inorganic N-fertilizer significantly increased grain yield in barley, wheat and maize plants compared to the application of either compost or inorganic N-fertilizer alone. Also, Mahmoud (2000) found that grain and straw yields of sorghum considerably increased with the application of town refuse and sewage sludge compost.

From data presented in Table (8), it could be generally concluded that the straw, ears, biological and grain yields of maize plants were slightly differed in the two growing seasons. This difference between the two growing seasons may be due to the changes in the meteorological factors.

Effect of different soil applications on N, P, K and crude protein contents of maize grains.

Data recorded in Table (9) clearly show that the treatment of maize grains inoculated with *A. lipoferum* and provided with a half dose of inorganic nitrogen gave the highest values of N, P, K and crude protein of grains. These results are in accordance with the findings of Fulchieri and Frioni (1994), Hamdi and El-komy (1998) and Moharram *et al.* (1998) who found that maize grains inoculated with *A. lipoferum* gave higher values of nutrients uptake than uninoculated ones.

It is also clear that the nutrients content (N and P) of maize grains were slightly higher in the treatment amended with biogas manure than the treatment amended with town refuse compost whereas, town refuse compost application gave higher values of potassium content of maize grains compared to biogas manure application.

Maize plants inoculated with *A. lipoferum* and provided with a half dose of nitrogen from either biogas manure or town refuse compost gave higher values of N, P, K as well as crude protein content than those fertilized with either biogas manure or town refuse compost in combination with ammonium sulphate. In this concern, biofertilizers either solely or in combination with certain nitrogen
Table (9): Effect of organic manures application alone and in combination with either *Azos. lipoferum* or ammonium sulphate on N,P,K, and crude protein content of maize grains.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Parameters</th>
<th>Total nitrogen</th>
<th>Crude protein</th>
<th>Total phosphorus</th>
<th>Total potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Control</td>
<td>1.12</td>
<td>1.16</td>
<td>7.00</td>
<td>7.25</td>
<td>0.320</td>
</tr>
<tr>
<td>Fert. control (full dose of amm. sulphate)</td>
<td>1.41</td>
<td>1.44</td>
<td>8.81</td>
<td>9.00</td>
<td>0.424</td>
</tr>
<tr>
<td>Azos. lipoferum + amm. sulphate (hdn)</td>
<td>1.87</td>
<td>1.90</td>
<td>11.68</td>
<td>11.87</td>
<td>0.815</td>
</tr>
<tr>
<td>Full dose of biogas manure (BM)</td>
<td>1.48</td>
<td>1.56</td>
<td>9.25</td>
<td>9.75</td>
<td>0.459</td>
</tr>
<tr>
<td>BM (hdn) + Azos. lipoferum</td>
<td>1.63</td>
<td>1.70</td>
<td>10.18</td>
<td>10.62</td>
<td>0.724</td>
</tr>
<tr>
<td>BM (hdn) + amm. sulphate (hdn)</td>
<td>1.47</td>
<td>1.56</td>
<td>9.18</td>
<td>9.75</td>
<td>0.492</td>
</tr>
<tr>
<td>Full dose of town refuse compost (TRC)</td>
<td>1.37</td>
<td>1.40</td>
<td>8.56</td>
<td>8.75</td>
<td>0.405</td>
</tr>
<tr>
<td>TRC (hdn) + Azos. lipoferum</td>
<td>1.58</td>
<td>1.56</td>
<td>9.87</td>
<td>9.75</td>
<td>0.651</td>
</tr>
<tr>
<td>TRC (hdn) + amm. sulphate (hdn)</td>
<td>1.42</td>
<td>1.35</td>
<td>8.87</td>
<td>8.43</td>
<td>0.601</td>
</tr>
</tbody>
</table>

Abbreviations: as those stated for Table (3).
additives proved to be an efficient tool in increasing available nutrients in soil. This is likely to be due to N2-fixed and production of growth promoting substances by Azospirilla (El-Demerdash, 1994, Raso, 1996 and Hamdi and El-komy, 1998).

CONCLUSION

From the above-mentioned results, it can be concluded that maize grains inoculation with associative N2-fixers (azospirilla) and supplementation with half the dose of inorganic N-fertilizer resulted in improving the growth performance of maize plants and consequently gave higher straw and grain yield than using the full dose of inorganic N-fertilizer without inoculation. Such application can save 50% of the cost of inorganic N-fertilizer.

Also, the growth responses (characteristics) of maize plants and maize yield were higher with the application of organic manures (biogas manure or town refuse compost) in combination with either A. lipoferum or inorganic nitrogen fertilizer than the application of full dose of organic manures alone.

Moreover, organic manures application either alone or in combination with biofertilizers gave significantly higher records of growth performance and grain yield of maize than the application of full dose of inorganic nitrogen fertilizer.

REFERENCES

Growth & Yield Of Maize Plants As Affected By...... 2215

تأثير التلقيح بالألوبرسيبريلام في وجود مصادر مختلفة للفيتوجين على النمو والمحصول في
الزراعة الشامية.

رائد عبد الفتاح زغلول
قسم النبات الزراعي- كلية الزراعة- جامعة الزقازيق- مصر

أقيمت تجربتان خلال عام 2000، في كل تجربة، تم استخدام أنبوبين من عصير الأسيتامينوفين،
أقسام التجربة تشير إلى تأثير إضافة النمو النباتي (بافيتوم) أو سائلات الأمونيوم على نمو وتنمية
النباتات. وقد أظهرت هذه الدراسة أن النتائج النهائية كانت:

أعطت نتائج تأثير تلقائي للزراعة بالألوبرسيبريلام والتسليط بنسبة جرعة من السماد
النيتروجيني المغذي (5 كجم أزوت/ فدان) أعلى الأعداد من الميكروبات المثبتة للآزوت (الأزوباركتر).
بينما سجلت أعلى أعداد من الميكروبات المثبتة للفوسفات في منطقة الريزوسبرير عند التلقيح
بالألوبرسيبريلام مع التسليط بنسبة جرعة من سماد البيوجاز.

أدى التسليط بنسبة جرعة كامنة من سماد البيوجاز 0.5 طن/ فدان (0.5 كجم أزوت / فدان) إلى زيادة
نشاط ميكروبات التربة معياراً على الأكاسيد الكربونية المنخفضة في التربة بالمقارنة بالتعاملات الأخرى.
ولوحظ أن نشاط إنزيم النيتروجيني في منطقة الريزوسبرير عند التلقيح بالألوبرسيبريلام والتسليط بنسبة جرعة من
السماد النترتيجني المغذي وأيضاً أعطت نفس النتائج أعلى محتوى من النتيرتيجنين الأمونيومي والسنتراتي
وذلك للفوسفور الميسر في التربة. كذلك أوضحت النتائج أن التسليط بدفع جرعة كامنة من سماد البيوجاز أعطى فيما
أعلى من النتيرتيجنين الأمونيومي والسنتراتي للفوسفور الميسر في التربة بالمقارنة بالتسليط بدفع جرعة كامنة من
سماد قمامة البدن 0.3 طن/ فدان (0.3 كجم أزوت / فدان).

أوضحت هذه الدراسة أيضاً أن هناك فروقًا معينة في المحاصيل وكميات حيث اتضح هذه القيادات معينة عند تلقيح الفيتاه بالألوبرسيبريلام والتسليط بنسبة جرعة من السماد
النيتروجيني المغذي.

وعموماً تبين نتائج هذه الدراسة أن استخدام الأسمدة العضوية سواء بصرفها (جرعة كامنة) أو
مختلطة مع نافذ الألوبرسيبريلام أو التسليط المغذي (نصف جرعة) يؤدي إلى زيادة صفات النمو للذرة الشامية
والحصول على محصول أعلى بالمقارنة بالتسليط بدفع جرعة كامنة من السماد المغذي. لذلك ننصح بالسفر للإسهام
تئيجي الذرة الشامية عند الزراعة بالللكزيرا المثبتة لأزوت الدهون الهالوج التي تتم بالاشتراكية مع إضافة نسبة جرعة أزوت
سوا من الأسمدة الفيتاه أو العضوية وبديل للأسمدة الكيماوية مما يقلل من التلوث البيئي الناتج من
الإفراط في استخدام الأسمدة الكيماوية.